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Abstract. In this article we prove a rigidity theorem for lagrangian singularities by study-
ing the local cohomology of the lagrangian de Rham complex that was introduced in
[SvS03]. The result can be applied to show the rigidity of all open swallowtails of dimen-
sion ≥ 2. In the case of lagrangian complete intersection singularities the lagrangian de
Rham complex turns out to be perverse. We also show that lagrangian complete intersec-
tions in dimension greater than two cannot be regular in codimension one.

1. Introduction

Since the work of Arnold and his school ([Arn82], [Arn83] and [Giv88]), sin-
gular lagrangian subvarieties in symplectic manifolds have become increasingly
important in different areas of mathematics. Arnold and Givental mainly studied
lagrangian projections and calculated normal forms for these objects starting from
the correspondence between such projections from smooth lagrangian germs to the
base and generating families. This does not, however, include the study of deforma-
tion spaces which allow the lagrangian singularity itself to deform. In [SvS03] we
considered the deformation problem for a lagrangian singularity (L, 0) ⊂ (C2n, 0)

given by the deformation functor LagDef loc
L,0 associating to a base space S the set of

isomorphism classes of flat families L → S sitting inside C
2n×S with the property

that each fibre Ls for s ∈ S is lagrangian in C
2n × {s}. Similarly, one might define

a corresponding functor LagDefL for an analytic lagrangian subspace L inside a
symplectic manifold M . The main result of the quoted paper is a description of the
tangent space of this functor using the so-called lagrangian de Rham complex. We
recall this construction in section 2 below.

In this paper we investigate some further properties of this complex. We derive
an inductive principle which can be used to prove vanishing of the cohomology of
the lagrangian de Rham complex. This yields rigidity theorems for certain lagrang-
ian singularities of dimension higher than two and is similar in spirit to the result
of Schlessinger [Sch71] allowing to conclude that quotient singularities which are
regular in codimension two are rigid. In [SvS03], we also developed a constructive
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method to calculate deformation spaces, but this was limited to lagrangian surfaces.
Therefore the results here are complementary to our first paper, in that they extend
the class of examples for which deformations can be studied. On the other hand, the
explicit calculations from [SvS03] are used to make the induction principle work.

The essential ingredients used in this article are the special behavior of lagrang-
ian deformations with respect to the canonical stratification of a singularity and
the local cohomology of the lagrangian de Rham complex. One particular exam-
ple of lagrangian singularities to which our method applies are the so-called open
swallowtails. We show that they are all rigid.

The local cohomology sheaves of the lagrangian de Rham complex also play a
role in deciding whether it is perverse. We show here that lagrangian complete inter-
sections have perverse lagrangian de Rham complex. In this case, there is (via the
Riemann-Hilbert correspondence) a single D-module associated to the lagrangian
de Rham complex. This is consistent with an abstract construction of this complex
described in [Sev03].

A last result contained in this paper is concerned with the codimension of the
singular locus for lagrangian complete intersections. We show that if such a sin-
gularity is regular in codimension one, the tangent module is free. So the space is
smooth for all cases where the Zariski-Lipman problem is solved in the affirmative,
in particular in the quasi-homogeneous case and the case where the space is regular
in codimension two.

2. The lagrangian de Rham complex

We recall in this section the construction from [SvS03] of a sheaf complex associ-
ated to any Lagrangian variety. The relationship of Lie algebroids and lagrangian
singularities is described in detail in [Sev03].

Definition 1. Let L ⊂ C
2n be a lagrangian subvariety with defining ideal sheaf

I ⊂ OC2n . Denote by OL := OC2n/I the structure sheaf of L. The module I/I2

is the conormal module and has a structure of a Lie algebroid over OL, i.e., there
are operations

{ , } : I/I2 × I/I2 −→ I/I2, { , } : I/I2 × OL −→ OL

Define a sheaf complex (C•
L, δ), the lagrangian de Rham complex by

Cp
L := HomOL

(
p∧

I/I2, OL

)

and δ : Cp
L → Cp+1

L with

(δ (φ))
(
h1 ∧ . . . ∧ hp+1

)
:=

p+1∑
i=1

(−1)i
{
hi, φ

(
h1 ∧ . . . ∧ ĥi ∧ . . . hp+1

)}
+

∑
1≤i<j≤p+1

(−1)i+j−1 φ
({

hi, hj

} ∧ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ ĥj ∧ . . . ∧ hp+1
)
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We quote the main results from [SvS03] and [Sev03] concerning the lagrangian de
Rham complex. The first one relates C•

L to the deformation theory of L.

Theorem 1. Consider the first three cohomology sheaves of C•
L. Then

1. H0(C•
L) = CL

2. H1(C•
L) is the sheaf of first order flat lagrangian deformations. This means that

at every point p ∈ L, the tangent space of LagDef loc
L,p is H 1(C•

L,p).
3. Let (L, 0) be either a complete intersection or Cohen-Macaulay of codimen-

sion two. Suppose moreover that H2(C•
L) = 0. Then the functor LagDef loc

L,0 is
unobstructed.

By the theory of Schlessinger, it is of obvious importance to know whether the
cohomology of the lagrangian de Rham complex is finite. This is answered by the
following result.

Theorem 2. Consider the canonical stratification of L by embedding dimension,
i.e., let SL

k := {p ∈ L | edimp(L) = 2n − k}, where k ∈ {0, . . . , n}. Suppose that
“Condition P” holds, that is, dim(SL

k ) ≤ k for all k. Then the cohomology sheaves
Hp(C•

L) are constructible with respect to the canonical stratification. In particular,
for a germ (L, 0), H 1(C•

L,0) is a finite dimensional vector space. Therefore, there

is a formally semi-universal deformation with respect to LagDef loc
L,0.

3. The rigidity theorem

In this section, we state and prove our main theorem. The technical tool used is the
local cohomology of a sheaf, that is, the derived functor of the functor �T (X, −)

of sections of a sheaf F over a space X with support in a closed subspace T . Let
us start with some preliminary lemmas. In what follows we consider a lagrangian
subvariety X ⊂ C

2n which is not necessarily Stein or contractible. T ⊂ X, T �= X

is always a closed analytic subspace.

Lemma 1. Denote by δOX ⊂ NX the image (sheaf) of the differential

δ : C0
X = OX −→ C1

X = NX

Then we have

H 0
T (H1(C•

X)) = Ker
(
H 1

T (δOX) → H 1
T (NX)

)
Proof. Consider the first three terms of the sheaf complex C•

X associated to the
lagrangian subvariety X ⊂ C

2n. It reads

0 −→ OX −→ NX −→ C2
X

We know that H0(C•
X) = Ker(OX → NX) = CX. By splitting into short exact

sequences, we obtain

0 −→ CX −→ OX −→ δOX −→ 0

0 −→ δOX −→ K −→ H1(C•
X) −→ 0

0 −→ K −→ NX −→ δNX −→ 0
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Here K = Ker(NX → C2
X) and δNX = Im(NX → C2

X). Now we can apply the
functor H •

T (−) to each of these sequences. This gives three long exact sequences
of local cohomology sheaves. However, we know in advance that sheaves of type
HomOX

(−, OX) are torsion free, so in particular H 0
T (Ci

X) = 0 for all i. Moreover,
CX, δOX, K and δNX are subsheaves of OX, NX resp. C2

X, so for them the group
H 0

T (−) also vanishes. We obtain exact sequences

0 −→ H 1
T (CX) −→ H 1

T (OX) −→ H 1
T (δOX) −→ H 2

T (CX)

0 −→ H 0
T (H1(C•

X)) −→ H 1
T (δOX) −→ H 1

T (K)

0 −→ H 1
T (K) −→ H 1

T (NX) −→ H 1
T (δNX)

Combining the last two sequences yields the desired formula. The first sequence
will be used later. �	
We need to investigate further the local cohomology of the sheaf H1(C•

X).

Lemma 2. There is an exact sequence

0 −→ H 0(X, δOX) −→ H 0(X\T , δOX) −→ H 1
T (δOX)

If X is Stein and contractible (e.g., a representative of a germ (X, 0)), then the last
arrow in the above sequence is surjective.

Proof. Consider the following basic sequence in local cohomology ([Gro67]): Let
F be a sheaf on a topological space Y and T any closed subspace, then:

0 → H 0
T (F) → H 0(Y, F) → H 0(Y\T , F)

→ H 1
T (F) → H 1(Y, F) → . . . (1)

For Y = X ⊂ C
2n and F = δOX, we know that H 0

T (δOX) = 0. This gives
the sequence in the general case. Moreover, we can apply the usual cohomology
functor to the sequence

0 −→ CX −→ OX −→ δOX −→ 0

yielding

. . . −→ H 1(X, OX) −→ H 1(X, δOX) −→ H 2(X, CX) −→ . . .

In case that X is contractible (H 2(X, CX) = 0) and Stein (H 1(X, OX) = 0) the
term H 1(X, δOX) vanishes. �	
These last two results tell us how to understand sections of the cohomology sheaf
H1(C•

X) with support in a subspace T , that is, deformations which do not deform
the space X\T : these are elements of H 1

T (δOX), thus, sections of δOX over X\T
which do not extend over T . If we consider the case T = Sing(X), this means that
a deformation is trivial iff the hamiltonian vector field which trivializes it on the
regular part (because H1(C•

X) is zero on Xreg) extends over the whole of X.
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Theorem 3. Let L ⊂ C
2n be a representative of a lagrangian singularity (L, 0) ⊂

(C2n, 0) satisfying Condition P. Denote by S ⊂ L the singular locus. Let T ⊂ S

be a closed analytic subspace in L contained in the singular locus. Suppose that

1. H 1
T (δOL) = 0

2. H 0(L∗, H1(C•
L∗)) = 0, where L∗ := L\T .

Then H 1(CL,0) = 0, i.e., L is rigid under lagrangian deformations.

Proof. Denote by S∗ the singular locus of L∗, obviously, S∗ := S\T . Note that
Lreg = L∗\S∗ because of T ⊂ S. From lemma 2, applied to the spaces L and L∗,
we obtain the following diagram

0 �� H 0(L, δOL)� �

α

��

�� H 0(Lreg, δOL) �� H 1
S (δOL)

β

��

�� 0

0 �� H 0(L∗, δOL) �� H 0(Lreg, δOL) �� H 1
S∗(δOL∗)

Here α is the restriction map and β is the induced map. Moreover, a class c ∈
H 0(H1(C•

L)) = H 0
S (H1(C•

L)) corresponding to a flat lagrangian deformation of
L ⊂ C

2n is represented by lemma 1 by a class (denoted by the same letter) c ∈
H 1

S (δOL) which goes to zero in H 1
S (NL). The same diagram, with the sheaf δOL

replaced by NL shows that β(c) goes to zero in H 1
S∗(NL). By lemma 1 we also

know that

H 0(H1(C•
L∗)) = H 0

S∗(H1(C•
L∗)) = Ker

(
H 1

S∗(δOL) → H 1
S∗(NL)

)
which vanishes by the second hypothesis. So we get that β(c) = 0, this means that
there is a section c̃ extending c over L∗.

We can apply lemma 2 again, this time to the pair (L, T ), yielding the sequence

0 −→ H 0(L, δOL) −→ H 0(L∗, δOL) −→ H 1
T (δOL)

From the first hypothesis, we obtain that c̃ extends to the whole of L, which implies
immediately that the original class c in H 1

S (δOL) is zero. Therefore, L is infinites-
imal rigid. �	
Using lemma 1, the first condition implies in particular that H 0

T (H1(C•
L)) = 0, that

is, there are no deformations deforming only T . This is of course weaker than the
vanishing of H 1

T (δOL) but still sufficient: By the same argument as above, we see
that the class c̃ ∈ H 1

T (δOL) maps to zero in H 1
T (NL) thus defining an element in

H 0
T (H1(C•

L)). But in applications, we will rather prove that H 1
T (δOL) = 0, there-

fore, it is more natural to impose this condition than the vanishing of H 0
T (H1(C•

L)).
In order to make use of this result, we have to find conditions that giveH 1

T (δOL) =
0 and H 0(H1(L∗, C•

L∗)) = 0. We start with the first group. It sits in the exact se-
quence

. . . −→ H 1
T (OL) −→ H 1

T (δOL) −→ H 2
T (CL) −→ . . .

so a sufficient condition is the vanishing of the groups H 1
T (OL) and H 2

T (CL).
Obviously, H 1

T (OL) is of analytic and H 2
T (CL) of topological nature.
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Lemma 3. Suppose that dim(L) ≥ 2 and let T be a closed subspace such that
depth(OL,0) ≥ 2 + dim(T ). Then H 1

T (OL) = 0.

Proof. The well-known relation between local cohomology and Ext leads to the
statement that H

p
T (F) = 0 is equivalent to Extp

OL
(G, F) = 0 for any sheaf G with

supp(G) ⊂ T , see [Gro67], proposition 3.7. By the lemma of Ischebeck ([Mat89]),
Extp

OL
(G, F) = 0 for all p < depth(F) − dim(supp(G)). So for F = OL and

supp(G) ⊂ T we obtain that H 1
T (OL) = 0. �	

The next step is to investigate the topological group H 2
T (CL). First it follows from

the sequence 1 that in case that L is contractible (e.g, for a representative of a germ
(L, 0)), we have H 2

T (CL) = H 1(L\T , CL). The following lemma lists some cases
where the first homology of L\T is zero.

Lemma 4. We consider a general situation of a germ (X, 0) of a complex space.

1. Consider the normalization
n : X̃ −→ X

and suppose that X̃ is smooth. Let T a subspace of codimension at least two
such that n induces an homeomorphism from X̃\T̃ to X\T , where T̃ := n−1(T ).
Then H 1(X\T , C) vanishes.

2. Let (X, 0) be a rational normal surface singularity and T = Sing(X) = {0}.
Then we also have H 1(X\T , C) = 0.

3. Suppose that X is a complete intersection and T a closed subspace of codimen-
sion at least three which contains Sing(X), then H 1(X\T , C) = 0.

Proof. 1. This is obvious since X̃\T̃ is simply connected and homeomorphic to
X\T .

2. It is known that the link M of (X, 0) is a deformation retract of X\T . On the
other hand, for rational singularities the group H 1(M, Z) is torsion (see, e.g.,
[Bri68]), so that H 1(X\T , C) is zero.

3. This can be found in [Gre75] or [Loo84]. We sketch the argument: First it
follows from a result on the depth of the modules of differential forms on X

that
H 1(�•

X,0, d) ∼= H 1(�(X\T , �•
X\T ), d)

The same reasoning shows (using also the two spectral sequences for the hyper-
cohomology of a sheaf complex) that H 1(�(X\T , �•

X\T ), d) ∼= H 1(X\T , C).
By an analytic argument, one can show that the de Rham complex of X is exact
in degree one. This yields immediately that H 1(X\T , C) = 0. �	

Combining the last two lemmas, we get conditions for H 1
T (δOL) to be zero. When-

ever this is the case, a lagrangian deformation of the germ (L, 0) comes (if it exists)
from a deformation of a transversal slice at a point p ∈ L\T . If we know that
there are no such deformations, we can conclude that L is rigid. This enables us for
example to show that any lagrangian rational triple point in C

4 is rigid. As a further
consequence, we obtain from the third part of the last lemma that lagrangian com-
plete intersection singularities L with codim(Sing(L)) > 2 are rigid. However, as
we will see in the last section, such objects simply do not exist.
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4. Applications

We will use the theorem from the last section to prove rigidity under lagrangian
deformations of a number of examples including the so-called open swallowtails.
Givental introduces these varieties in [Giv95] as subvarieties of certain jet spaces
in order to obtain normal form results for systems of partial differential equations.
All examples studied in that paper are obtained using generating functions of spe-
cial type. Recall that for any function germ F defined on a product of two smooth
spaces B × X such that the restriction f of F to {0} × X defines a function germ
with isolated critical points, one can define (choosing coordinates (x1, . . . , xk) on
X and (q1, . . . , qn) on B)

Lag(F ) := {(p, q) ∈ T ∗B | ∃x ∈ X (∂xi
F )(x, q) = 0; pi = ∂qi

F ; ∀i} ⊂ T ∗B

It is well known that Lag(F ) is a lagrangian subvariety in T ∗B. Moreover, the
generating function also gives rise to a legendrian variety in C

2n+1 (with coor-
dinates (u, p, q) and the standard contact structure u − p dq), simply by setting
u = F(x, q). The front of the lagrangian resp. legendrian variety is the image of
the projection to the (u, q)-space.

On the other hand, the space of polynomials

P2n+1 =
{
t2n+1 + a1

(2n − 1)!
t2n−1 + a2

(2n − 2)!
t2n−2 + . . . + a2n

}

carries a natural symplectic structure related to the representation theory of sl2.
The subvariety consisting of all polynomials having a root of multiplicity at least
n + 1 is lagrangian and appears as generic singularity of the so-called “obstacle
problem” ([Giv88]). It is called n-dimensional open swallowtail and was denoted
�n in [SvS03]. We will see that it can be described using generating functions.
More precisely, let gn(x, q) := xn+1 + q1x

n−1 + . . . + qn and set Fn,k(x, q) :=∫ x

0 gn(s, q)k+1ds. Denote by �n,k the lagrangian subspace Lag(Fn,k) ⊂ C
2n and

by 	n,k its front. The following lemma, extracted from [Giv88] and [Giv95], de-
scribes the geometry of the singularities �n,k (and of its front 	n,k). Some of these
facts are needed later to apply our rigidity theorem.

Lemma 5. 1. Denote by Pm,n the space of polynomials of degree (k+1)(n+1)+1
with fixed highest coefficient, sum of roots equal to zero and n+1 critical points
of multiplicity k + 1, i.e., all polynomials of the form

pq1,... ,qn,u(s) =
∫ x

0
gn(s, q1, . . . , qn)

k+1ds − u

The front 	n,k of the lagrangian singularity �n,k is isomorphic to the hypersur-
face of polynomials in Pn,k with multiple roots (such a root has automatically
multiplicity at least k + 2).

2. A smooth normalization of �n,k is given by the map

n : (Cn, 0) −→ (�n,k, 0)

(x, q1, . . . , qn−1) �−→ (q1, . . . , qn, p1, . . . , pn)

here qn = xn+1 +∑n−1
i=1 qix

n−i , pi := ∂qi
Fn,k .
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3. The variety �n,1 is isomorphic to the n-dimensional open swallowtail �n.
4. (�n,k, 0) is Cohen-Macaulay.

Proof. 1. This is almost a tautology: The front 	n,k is the graph of the generat-
ing function Fn,k , seen as a multi-valued function (with n + 1-sheets) on the
base B. For any point q = (q1, . . . , qn) ∈ B, let λ1, . . . , λn+1 be the zeros of
gk+1

n . Then the n + 1 points of 	n,m lying over q correspond to the elements
p(q,u) ∈ Pn,k with u = F(λi, q). Obviously, λi is a zero of p(q,u) and of its
derivative, so p(q,u) belongs to the discriminant in Pn,k .

2. The map n is generically one to one and therefore the normalization.
3. We will see that O�n,0 and O�n,1,0 can be identified as subalgebras of their

respective (smooth) normalization. Following [Giv88], the normalization of
�n is given by the following map

ϕ : �̃n
∼= C

n −→ �n ⊂ P2n+1

(x, a1, . . . , an−1) �−→ (t − x)n+1 · (tn + b1t
n−1 + . . . + bn−1)

where bi ∈ O�̃n,0 are chosen such that the coefficient of t2n+1−i in the polyno-
mial ϕ(x, a) is precisely ai/(2n + 1 − i)! for i = 1, . . . , n − 1 (in particular,
b1 = (n + 1)t). Then we get

O�n,0 =
{
f ∈ C{t, a1, . . . , an−1} | f =

∫ x

0
Q(s, a)Fn(s, a)ds + C(a)

}

On the other hand, it is shown in [Giv95] that

O�n,k,0 =
{
f ∈ C{x, q1, . . . , qn−1} | f =

∫ x

0
�(s, q)gn(s, q)kds + Q(q)

}

So O�n,1, 0 ∼= O�n,0.
4. One has to show that the finite analytic mapping (�n,k, 0) → (B, 0) makes

�n,k into a free OB,0-module of rank n+1. This is done in [Giv95] (for k = 1,
this map is simply n-fold differentiation). Then the statement follows.
�	
From the first point of the lemma, we deduce

Lemma 6. Let

{0} ⊂ �
(1)
n,k ⊂ . . . ⊂ �

(n−1)
n,k ⊂ �

(n)
n,k = �n,k

be the canonical stratification with dim(�
(k)
n,k) = k (Condition P). Let p ∈ �

(i)
n,k\

�
(i−1)
n,k , then we have (�n,k, p) ∼= (�n−i,k, 0) × (Ci , 0).

Proof. That �k,n locally decomposes into a product of a lagrangian variety and a
smooth germ is a general fact (this is the essential ingredient in the proof of theo-
rem 2, see [SvS03] and [Sev03]). We only need to show that the transversal section
is precisely (�n−i,k, 0). First it is obviously sufficient to do the case i = n − 1.
For this, we will show that the transversal singularity of the front 	n,k is 	n−1,k .
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This follows directly from the description of the front given as discriminant in the
polynomial space Pn,k . A general polynomial P in this space can be written in the
form∫ x

0
(s − λ)k+1(s − µ)k+1(sn−1 + (λ + µ)sn−2 + q ′

1s
n−3 . . . + q ′

n−2)
k+1ds

with the additional condition that there is a common zero of P and its derivative.
If λ = µ, then the polynomial P represents a point p̃ ∈ 	n,k corresponding to
the point p ∈ �n,k from above. A transversal section at p̃ is given (in appropriate
local coordinates) by setting λ = const and by translating the argument. There-
fore, in a neighborhood of p̃ a point of such a transversal section is represented as∫ x

0 (s − µ)k+1(sn−1 + µsn−2 + q̃1s
n−3 . . . + q̃n−2)

k+1ds, that is, corresponds to a
point in 	n−1,k ⊂ Pn−1,k . �	
In [SvS03], an algorithm to calculate H 1(C•

L,0) for quasi-homogenous lagrangian
surface singularities was described. For the spaces �2,k one obtains by computer
calculation

Lemma 7. H 1(C•
�2,k ,0

) = 0 for k = 2, 3, 4, 5. In these cases, as in the examples

studied in [SvS03] the spectral numbers of the local system H1(C•
L)|Sing(L) (for

L = �2,k) have a symmetry property.

For higher k the computation is possible in the same way and limited only by com-
puter power. Conjecturally, all �2,k are rigid. For all k such that �2,k is rigid, we
can use theorem 3 to obtain.

Theorem 4. Suppose that for fixed k, the lagrangian singularity (�2,k, 0) ⊂ (C4, 0)

is rigid. Then for all n > 2, (�n,k, 0) ⊂ (C2n, 0) is rigid.

Corollary 1. All open swallowtails of dimension greater than one are rigid lagrang-
ian singularities.

Proof of the theorem. We do induction on n. For n = 2, we are done by hypothesis.
Otherwise, we know that for p ∈ �

(1)
n,k\{0}, there is a decomposition (�n,k, p) ∼=

(�n−1,k, 0) × (C, 0) and moreover, H 1(C•
�n,k,p

) ∼= H 1(C•
�n−1,k ,0

). This last group
is zero by the induction hypothesis. This implies that for T = {0} ⊂ �n,k , we have
H 0(�n,k\T , H1(C•

�n,k\T )) = 0. The second point we need to check in order to

apply theorem 3 is the vanishing of H 1
T (δO�n,k

). We use lemma 3: We need that T

is of codimension at least two and that depth(OL) > dim(T )+2 which is obviously
satisfied in view of the last point of lemma 5. Moreover, the second statement of
this lemma gives smoothness of the normalization of (�n,k, 0), so that the second
(topological) condition of lemma 3 is also satisfied. Therefore, H 1

T (δO�n,k
) = 0.

Now we can apply theorem 3, which proves rigidity of �n,k . �	
Remark. As explained in detail in [Sev03], the base space of a semi-universal
unfolding of a hypersurface singularity with non-degenerate intersection form car-
ries a natural symplectic structure provided that its Milnor number is even. This
applies in particular to irreducible plane curve singularities. There is a distinguished
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subspace called δ-constant strata, corresponding to deformations of the curve com-
ing from deformations of its normalization (more precisely, the normalization of
the δ-constant stratum is the semi-universal deformation of the normalization of
the curve, see [Tei80], [DH88] or [FGvS99]). It follows from [VG82] that the δ-
constant stratum is a lagrangian singularity. For the An-series, with n even, we get
precisely the open swallowtails �n,1. This leads us to the following conjecture.

Conjecture 1. Let (C, 0) ⊂ (C2, 0) be an irreducible plane curve singularity, de-
fined by a holomorphic function f ∈ OC2,0. Let F ∈ OC2×Cµ,0 be its semi-
universal unfolding. Then the germ of the δ-constant stratum (Bδ, 0) ⊂ (Cµ, 0) is
a rigid lagrangian singularity.

Let us remark that the only missing piece in the proof of this conjecture is the last
point of lemma 5: It is not known in general whether Bδ is Cohen-Macaulay.

5. Lagrangian complete intersections

The perversity condition mentioned in the introduction involves the study of the
local cohomology of the lagrangian de Rham complex. For that reason, it is quite
natural to include it here. It turns out that a positive answer to this problem is possi-
ble in the case of lagrangian complete intersections. Let us first recall what it means
for a complex to be perverse. Consider a, say, complex space X of dimension n and
a sheaf complex K• on X (we suppose for simplicity that it is concentrated in non-
negative degrees). Then there are two condition, called first and second perversity
conditions. The first one states that

dim supp(Hi (K•)) ≤ n − i

for all i ≤ 0. The second one (also called co-support condition) involves the derived
functor R�T (seen as functor in the derived category), where T is a closed analytic
subspace in X. It states that

dim supp(Ri�T (K•)) < dim(T )

for any such T and for all i ∈ {0, . . . , n − dim(T ) − 1}. We also recall the spec-
tral sequence with E2-term Hp(Hq

T (K•)) which converges to R
p+q�T (K•). Now

consider the case K• = C•.

Theorem 5. Let L ⊂ C
2n be a representative of a lagrangian complete intersection

singularity. Then the complex C•
L is perverse.

Proof. The first condition is easily verified using the decomposition of a lagrangian
variety around a point of non-maximal embedding dimension (this has already been
done in [SvS03]).

Consider the above spectral sequence. L is a complete intersection, therefore,
the conormal module and hence the modules Cp

L are locally free. In particular,
depth(Cp

L) = n. By the lemma of Ischebeck (see the proof of lemma 3), we have
that Hq

T (Cp
L) = 0 for all q < n − dim(T ). This implies the vanishing of the

corresponding local hypercohomology R
q�T (C•

L), as required. �	
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Corollary 2. Let L be lagrangian with dim(L) ≤ 3 and depth(L) ≥ 2. Then C•
L is

perverse.

Proof. The proof of the last theorem shows that whenever we have a vanishing of
Hq(Cp

L), we get vanishing of the hypercohomology. But there is a general state-
ment (see, e.g., [Sch71]) that for a space X of depth at least two, sheaves of type
HomOX

(F, OX) are of depth at least two. Up to dimension three, this vanishing
result is sufficient for the co-support condition to be satisfied. �	
The natural question whether there exist examples of lagrangian singularities with
non-perverse lagrangian de Rham complex is still open. If one looks at the open
swallowtail �4 ⊂ P9 ∼= C

8, it would be sufficient to have depth(N�2) = 2 in order
to get a counterexample, but we were not able to compute this depth.

We remark that the co-support condition simplifies due to the decomposition
principle as follows: Let {0} = L(0) ⊂ L(1) ⊂ . . . ⊂ L(n) = L be the canonical
stratification. Then it is sufficient to show the co-support condition only for subspac-
es T = L(i). Moreover, if we can show that for all i and all q ∈ {0, . . . , n− i − 1},

supp(Rq�L(i) (C•
L)) ⊂ L(i−1)

(where L(−1) := ∅), then we are done by “Condition P”. This amounts to show that
for p ∈ L(i)\L(i−1), the stalk R

q�L(i) (C•
L)p is zero. But we know that (L, p) ∼=

(L′, p′) × (Ci , 0) with p′ ∈ L(0) and that C•
L,p is quasi-isomorphic to π−1C•

L′,p′
(with π : (L, p) → (L′, p′) the projection). Therefore

R
q�L(i) (C•

L)p = R
q�L(i) (π

−1C•
L′)p = R

q�
L′(0) (C•

L′)p′

So if we know for a class of lagrangian singularities that the transversal slices also
belongs to this class (as, e.g., for complete intersections), it suffices to show that
R

q�{0}(C•
L) = 0 for all 0 ≤ q < n for all L in this class.

We add here a statement giving a partial answer to a question on the singular
locus of lagrangian complete intersections.

Theorem 6. Let (L, 0) ⊂ (C2n, 0) be a lagrangian complete intersection singu-
larity such that codim(Sing(L)) ≥ 2. Then the tangent module �L,0 is free.

Proof. Let I ⊂ OC2n,0 be the defining ideal of (L, 0). From [SvS03], we have the
following diagram

I/I 2 ��

α

��

�1
C2n,0

⊗ OL,0

∼=
��

�� �1
L,0

α̃

��

�� 0

0 �� �L,0 �� �C2n,0 ⊗ OL,0 �� NL,0 �� T 1
L,0

�� 0

where α and α̃ are isomorphisms on Lreg . By the snake lemma, Coker(α) ∼=
Ker (̃α). We know that NL,0 is torsion free and that the kernel of α̃ is concen-
trated on the non-smooth locus, hence, Coker(α) ∼= Tors(�1

L,0). Now if L is a

complete intersection then it follows from [Gre75] that �
p
L,0 is torsion free for all
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p < codim(Sing(L)), in particular, �1
L,0 is torsion free under the hypotheses of

the theorem. This shows that α is surjective. For a complete intersection, I/I 2 is
free and I/I 2 → �1

C2n,0
⊗ OL,0 is injective. Therefore, �L,0 ∼= I/I 2 is free. �	

From the freeness of �L,0 one would like to conclude that (L, 0) is in fact
smooth. This is the celebrated Zariski-Lipman-conjecture.

Let R be an analytic C-algebra such that the R-module
�R := DerC(R, R) is free. Then R is smooth.

This conjecture is proved in a number of cases. The first case is the graded one, due
to Platte [Pla78], starting from a proof in the algebraic case by Hochster, [Hoc75],
[Hoc77].

Lemma 8. Let A be a positively graded analytic algebra, that is, there is E ∈ �A

such that the maximal ideal mA is generated by elements xi with E(xi) = w(i),
where w(i) ∈ N>0. If �A is a free A-module, then A is regular.

If R is not graded, one has to use rather different techniques. The following lemma
([SS85]) relates the Zariski-Lipman conjecture with the question of extendability
of differential forms on R to its resolution.

Lemma 9. Let (X, 0) the germ of an analytic space X. Consider a resolution π :
X̃ → X with π∗�X̃

∼= �X. Let U := X\Sing(X). If the natural morphism
�X̃ → π∗�U is surjective, then X is smooth if �X is locally free.

Proof. The idea is simply that a basis θ1, . . . , θn of �X gives rise to vector fields
on θ̃1, . . . , θ̃n on X̃ tangent to the exceptional locus E of the resolution. On X̃\E,
there are independent forms α1, . . . , αn dual to these vector fields which extends
over E. This is a contradiction, as for any point p ∈ E, the vectors θ̃i (p) cannot be
linearly independent, because dim(E) < n, unless X is smooth. �	
In the quoted paper, the extendability of differential p-forms on isolated singu-
larities is studied and the authors prove that any p-form with p < dim(R) − 1
is extendible. Flenner ([Fle88]) showed that more generally, for any space X, a
p-form on X\Sing(X) with p < codim(Sing(X)) − 1 extends to a resolution X̃

of X. Therefore, one has

Corollary 3. Let R be any analytic algebra such that codim(Sing(R)) ≥ 3. Then
the Zariski-Lipman conjecture is true.

One of the sources of lagrangian singularities are Frobenius manifolds, where
they arise as spectral covers of the multiplication on the tangent bundle. It was asked
in [Her02], chapter 14, whether there exists an isolated Gorenstein, hence complete
intersection, lagrangian surface singularity. In the quasi-homogeneous case this is
excluded by our theorem. The case of a non-quasi-homogenous lagrangian isolated
complete intersection surface singularity remains open, because the Zariski-Lipman
conjecture is not proved in this key case.
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