
li THE ROYAL 
10. 1098/rspa.2003.1150 sU-i SOCIETY 

Stochastic factorizations, sandwiched 
simplices and the topology of the 

space of explanations 
BY DAVID MOND1, JIM SMITH2 AND DUCO VAN STRATEN3 

1Mathematics Institute, 2Department of Statistics, 
University of Warwick, Coventry CV4 7AL, UK 

(mond@maths.warwick.ac.uk; j.q.smith@warwick.ac.uk) 
3Fachbereich Mathematik, Johannes Gutenberg Universitdt, 

Staudingerweg 9, 55099 Mainz, Germany 
(straten@mathematik.uni-mainz.de) 

Received 30 May 2002; accepted 21 February 2003; published online 10 September 2003 

We study the space of stochastic factorizations of a stochastic matrix V, motivated 
by the statistical problem of hidden random variables. We show that this space 
is homeomorphic to the space of simplices sandwiched between two nested convex 
polyhedra, and use this geometrical model to gain some insight into its structure and 
topology. We prove theorems describing its homotopy type, and, in the case where 
the rank of V is 2, we give a complete description, including bounds on the number 
of connected components, and examples in which these bounds are attained. 

We attempt to make the notions of topology accessible and relevant to statisticians. 
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1. Introduction 

This paper is motivated by a statistical question, but uses Morse theory and singular- 
ity theory to progress towards its solution. The statistical question is explained, for 
non-specialists, in the following paragraphs. In ? 2 it is translated into a question in 
combinatorial geometry, which we attack in ?? 3 and 4 using a version of Morse the- 
ory for a certain class of piecewise smooth functions. These form the technical heart 
of the paper, and might be read with some interest for their geometrical content, 
independently of any application to statistics. 

The statistical problem is concerned with conditional independence of discrete 
random variables. The random variables X and Y are independent if for all values 
i,j, 

P{X = i, Y = j} = P{X = i}P{Y = j}; 
they are conditionally independent with respect to a third, Z, if for each value k of 
Z, 

P{X = i,Y = j | Z = k = PX = i | Z = k}P{Y = j I Z = k}, 
where P{X = i Z = j is the probability that X = i given that Z = j, 
P{X = i | Z = j} = P{X = i, Z = j}/P{Z = j}. That is, within each level set of 
Z, the variables X and Y are independent. 
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Conditional independence with respect to a third variable may sometimes be 
thought of as an explanation for the dependence of X and Y. Here is an example. 

Random variables X and Y, with sample space (domain) the set of all people, are 
defined as follows: 

2 if x suffers from baldness, 

X(x) = 1 if x has cropped hair, 
0 if x has shoulder-length hair, 

and 

2 if x watches more than 2 hours per week of football on TV, 

Y(x) 1 if x watches between 0 and 2 hours per week of football on TV, 
0 if x does not watch football on TV. 

It is found that X and Y are not independent: an individual who watches football on 
television is much more likely to suffer baldness than one who does not. Nevertheless, 
this does not imply the existence of a causal link. Within each gender group (men 
and women), X and Y are independent: the variables X and Y are conditionally 
independent with respect to the variable 'gender'. 

The correlation between X and Y can be explained simply by the fact that men are 
more likely than women both to suffer baldness and to watch football on television. 

Given random variables X and Y which are found not to be independent, it is 
important to be able to determine whether there exists an explanatory random vari- 
able Z (distinct from X and Y) with respect to which they are conditionally indepen- 
dent. In general, such a variable Z is not unique, and it is important to gain insight 
into the properties of the space of all possible Z: the space of possible explanations 
of the observed dependence. 

Conditional independence of X and Y with respect to Z is equivalent to the matrix 
equation 

P{Y I X} = P{Z I X}P{Y I Z}, (1.1) 

where, for two discrete random variables A and B, P{A I B} is the matrix of condi- 
tional probabilities of A given B, with i, jth element 

P{A B},j = P{A = j,B = i}/P{B = i}. 

All three matrices in (1.1) are stochastic (i.e. all entries are non-negative and each 
row sums to unity), and thus we are led to a study of the space of factorizations of 
stochastic matrices. 

We show the following theorems. 

Theorem 1.1. Let V be an n x m stochastic matrix of rank r. If V is 'small' 
(roughly speaking, if its column vectors are nearly parallel to one another), then the 
space of rank-size stochastic factorizations of V is homotopy-equivalent to the space 
of (r- 1)-simplices with vertices on the (r- 2)-sphere Sr-2. 

See ? 1 b for a brief discussion of the concept of homotopy-equivalence. 

Theorem 1.2. Let V be an n x m stochastic matrix of rank 3. The quotient by 
the action of the symmetric group S3 (permuting the columns of U) of the space of 
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factorizations V = UW, with U and W stochastic matrices of size n x 3 and 3 x m, 
respectively, may be empty, and otherwise is homotopy-equivalent to a circle, or has 
k contractible connected components, where 0 < k < n + m. When m = n, there are 
stochastic matrices V for which this upper bound is realized. 

(a) Introduction for statisticians 

In recent years there has been considerable interest in statistical models whose 
random variables exhibit conditional-independence structures, particularly models 
which are encoded by a directed or undirected graph (see Lauritzen 1996; Spiegel- 
halter et al. 1993; Whittaker 1990). In this paper we examine some of the topological 
features of a subclass of these models, related to latent class models, where we assume 
that all of the random variables in the model are discrete and one is hidden. The 
parameters of these models are then a collection of certain conditional probabilities 
which need to be estimated. 

When complete samples of data from vectors of all of the random variables are 
available, the estimation of these conditional probabilities is relatively straightfor- 
ward. In particular it is well known that undirected graphical models lie in the expo- 
nential family (see, for example, Lauritzen 1996) and it has been proved that directed 
acyclic graphical models lie in the curved exponential family (Geiger & Meek 1998; 
Geiger et al. 1998). Both these families have a helpful geometrical structure (Kass & 
Vos 1997), which makes the statistical problems of estimation and model selection 
amenable to standard, albeit sometimes quite complex, statistical methodologies. 

However, in practice it is often the case that one or more of the random variables 
in a graphical model remains totally unobserved in the available sample. This may 
be because that variable represents a hidden cause or explanation (hence the title of 
our paper), or because sampling it is extremely costly, or simply because sampling 
was performed before it was realized that the missing variable can be relevant. When 
a variable in a graphical model remains totally unobserved, estimation can become 
much more difficult. In particular it has been shown that even very simple graphical 
models will fall outside the curved exponential family (Geiger et al. 1998) and have a 
much richer geometrical structure (Settimi & Smith 2000). Maximum-likelihood esti- 
mates are rarely unique. Furthermore, preliminary estimates of simple special cases 

(e.g. Croft & Smith 2002, 2003; Settimi & Smith 1997, 2003) show that the space 
of maximum-likelihood estimates can be the union of several disconnected regions of 
the parameter spaces, and that these components are not open. Different connected 
components will often relate to completely different explanations for the data (for 
examples of this see Croft et al. (2000)); so, despite its being difficult to achieve, it 
is vital to obtain a good understanding of the nature and extent of this fragmenta- 
tion before any statistical inferences are drawn. In addition, because of the lack of 
closed-form solutions of models with hidden variables, numerical methods are often 
employed to calculate the estimates of the vector of conditional probabilities defining 
that model. Convergence of these algorithms is often disrupted by the existence of 
multiple disconnected maxima and regions of very low probability with complicated 
shapes. Alternatively, convergence may appear to have taken place when it has not. 
So the results of this paper are pertinent to both computational and inferential issues 
associated with graphical models. 

Each graphical model has an associated factorization of the joint mass function 
over the random variables in the model, where each component factor is a function 
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of a subset of all of its discrete random variables. Furthermore, as discussed at some 
length in Settimi & Smith (2003), for many practical models the number of variables 
in each of these factors will be small, and the geometry of the space of maximum- 
likelihood estimates will have a simple relationship with the geometry associated 
with each of these low-dimensional subsets of variables. It is appropriate therefore 
to begin a study of the topology of the parameter space of graphical models with 
hidden variables by focusing on problems involving only a small number of random 
variables. In this paper we will discuss the homotopy-types of the solution spaces 
associated with the joint distribution of three random variables Y/ with state space 
{1,..., ri}, 1 < i < 3, with the property that Y3 is conditionally independent of Y1 
with respect to Y2 and the margin on Y1, Y3 is extensively sampled, while data on 
Y2 are completely absent. 

(b) Why should statisticians be interested in topology? 

Standard computer packages search for stochastic factorizations, but to our know- 
ledge no attention has yet been paid to the question of whether the solutions obtained 
are unique, or on the contrary, may depend on initial guestimates. We show here that 
the space of stochastic factorizations of a given stochastic matrix may have many 
disjoint pieces ('connected components'). On each connected component the likeli- 
hood function will have at least one (local) maximum, and thus the output of an 
algorithm seeking an optimal factorization may well depend on which component it 
is set loose in. But we believe that the behaviour of algorithms is sensitive to more 
subtle topological features of the space of factorizations. A great deal of informa- 
tion about the topology of a space X is provided by its homology groups Hk(X), 
which measure the presence of 'k-dimensional holes' in the space. For a brief and 
accessible introduction to this topic, we recommend Sato (1999). The rank of its 
homology groups are a measure of the complexity of a space, and have a bearing 
on the behaviour of optimization algorithms on the space. For example, any opti- 
mization function will have many critical points (points at which it is not clear in 
which direction increase is possible), not all of which are maxima or minima. It is 
well known that if X is a manifold (as is the case for the spaces we consider here), 
the number of critical points of a 'generic' function (that is, a function whose criti- 
cal points are all non-degenerate) is bounded below by the sum of the ranks of the 
homology groups Hk(X) (Milnor 1963, ?5). 

Different spaces may have the same homology groups. For example, if one space 
can be contracted to another (as is the case, say, of the annulus and the circle), then 
their homology groups coincide. Two spaces which may both be contracted to the 
same space are said to be homotopy-equivalent, or to have the same homotopy-type. 
Other examples are a punctured sphere and a point, a punctured torus and a figure 
of 8, and a twice-punctured sphere and a circle. A space is contractible if it can be 
contracted to a point. Since homotopy-equivalent spaces have the same homology, 
we can determine the homology of a space X by determining its homotopy-type. It 
is this that we set out to do. 

2. Stochastic factorizations and cones 

Let U and V be matrices with n rows, and let L(U) and L(V) be the subspaces of IR 
generated by their columns. It is elementary linear algebra that V can be divided by 
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U (i.e. there exists a matrix B such that V = UB) if and only if each of the column 
vectors of V lies in L(U), i.e. if L(V) C L(U). If all the entries of B are required 
to be non-negative, then each of the column vectors of V must be expressible as 
a non-negative linear combination of the columns of U; that is, each column of V 
must lie in the cone {v C IRn : v = i AiUi : Ai > 0 for all i}, where the ui are the 
columns of U, which we denote by C(U). So V is positively divisible by U if and only 
if C(V) c C(U). 

Recall that a matrix is stochastic if all its entries are non-negative and each row 
adds up to unity. Requiring that a matrix V should be stochastically divisible by a 
stochastic matrix U (i.e. V = UB with B stochastic) is stronger than asking that V 
should be positively divisible by U. Nevertheless, we have the following proposition. 

Proposition 2.1. If V and U are stochastic matrices, and the number of columns 
of U is equal to the rank of V, then V is stochastically divisible by U if and only if 
C(V) c C(U). 

This follows from lemma 2.2. As a consequence of proposition 2.1, we derive a very 
simple geometric condition which determines whether a given stochastic n x m matrix 
V of rank r admits a stochastic factorization V = UW with U of size n x r (henceforth 
a 'rank-size stochastic factorization'). We also obtain a geometrical description of the 
space of all such factorizations of a given matrix V. 

We adopt the following notation: 

R+ = {x C : x > 0}, 

Sp,q = set of all p x q stochastic matrices, 

SF,.(V) = {(U, W) : r = rankV, U e Sn,,., W E S,,,, V = UW}. 

Thus, SFr(V) is the space of all rank-size stochastic factorizations of V. Since it 
is contained in the product of two spaces of matrices, which is in a natural way a 
Euclidean space, it makes sense to talk about smooth mappings with SFr(V) as 
domain or range (see Milnor 1990): a map from SF,.(V) to a manifold X is smooth 
if it extends locally to a smooth map on the ambient Euclidean space, and a map 
from X to SFr(V) is smooth if it is smooth when thought of as a map into the 
ambient Euclidean space. 

We denote by SFr(V) the quotient of SFr(V) by the natural action of the sym- 
metric group S, permuting the columns of the matrix U. This action is known as 
aliasing in statistics; it corresponds to re-ordering the space of values of the random 
variable Z. 

Lemma 2.2. Suppose that V is an n x m stochastic matrix of rank r. If 

(i) the vectors ul,..., r lie in L(V) n Rn, and 

(ii) the cone C(jl,..., ,r.) contains the cone C(V), 

then 

(i) there exist unique coefficients ai > 0 such that -iaiiui - 1, where 1 
(1*, .1)t, and 

(ii) denoting the vectors aoiti by ui, there exist unique 3i,j > 0 such that vj 
yi Pi,jui for each i, and such that Ij /i,j = 1 for each j. 
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That is, V factorizes as the product of the stochastic matrix U with columns 
ul ,..., ur and the stochastic matrix B = [3i,j]. 

Proof. Since 1 c C(V) C C(ul,... ,i&r), there exist (unique) coefficients ai > 0 
such that yEi ciui = 1. The ai are unique because L(V) C L(il,..., ,U), and so the 
vi are linearly independent. The ai are non-negative, by definition of C(il1,..., ,). 
If ai = 0 for some i, then the point 1 lies on the boundary of the (simplicial) cone 
C(ai,..., ur); it follows that all of the vi must lie on the same bounding face of this 
cone, since Ei vi = 1. This contradicts the supposition that the rank of V is r. Thus 
ai 7 0 for all i. 

Since v1,... , v C C(ui,..., . ,) = C(ui,..., Ur), there exist /3,j IR+ such that 

/3i,jUj -= Vj 

for each j. Denote the matrix with 3i,j in ith row and jth column by B. Then 
V = UB. 

The matrix U defines an injective mapping R' -+ Rn, since it has rank r. As 
both 1 = V1 = UB1 and 1 = U1 it follows that B1 = 1, showing that B is also 
stochastic. 1 

The significance of these lemmas is that in order to decide whether a given n x m 
stochastic matrix V has a rank-size stochastic factorization, we need merely look at 
the cone generated by its column vectors: such a factorization exists if and only if 
this cone is contained in the cone generated by some r vectors (where r = rank V) 
in the positive orthant R+I of In. 

Example 2.3. Suppose n = 4 and V is a 4 x 4 stochastic matrix for which L(V) 
is the 3-plane in R4 with equation w + x- y - z 0. Then L(V)n RI is the cone 
on the four vectors (1,0,0,1), (1,0,1,0), (0,1,0,1) and (0,1,1,0) (figure 1). The 
slice of L(V) n IR by a plane orthogonal to 1 is a square. Suppose V has column 
vectors vi,..., V4. If the rays t+vi meet the square at points close to its vertices, as 
shown in figure 2a, it is not possible to surround them by a triangle lying entirely 
in the square, and therefore not possible for the cone generated by any three vectors 
in L(V) n [0, 1]4 to contain C(v1,..., v4). Hence V has no stochastic factorization 
of size 3 (i.e. of rank size). If the rays R+vi meet the square at points closer to its 
centre, as in figure 2b, it is possible to surround them with a triangle lying in the 
square; in this case the matrix V has a rank-size stochastic factorization. 

Let Qn C IRn be the hyperplane 

{(xl, ..., xn) C Rn ' i =x 1} 
i 

It is clear that if C and C' are cones contained in Rn+, then C C C' if and only if 
C Qn c c c Qn. 

To simplify notation, denote simply by Vs (for Vslice) the space C(V) n Qn and by 
Ws the space L(V) n Rn n Q,. Under the assumption that rank V = r, Vs and Ws 
are solids in the (r - )-dimensional affine space L(V) n Qn. Let Av,ws denote the 
space of all ordered (r- 1) simplices A such that 

VcACW. 
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ass- (0,1,1,0)' I , . 

/ 
I\ / I ,'lv (1,0,1,0) 
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Figure 1. L(V) nR+. 

(a) (b) ,ul 
* V 

1 
. V2 V 2 V 

0 
v2 -- 

V4~ v4 v3 u2 

V4 * 

U3 

Figure 2. (a) V non-factorizable; (b) V factorizable. 

By means of lemma 2.2 we define a map 0: Av,w', - SFr(V) as follows: if 
A = (U1, ..., r) E AV,,wS, it follows that C(V) C C(A), and thus there exist unique 
ai such that U := (aiLu,..., arur) is a stochastic matrix, and such that V is stochas- 

tically divisible by U. We set 0(A) = (U, B), where U is constructed as we have just 
described, and V = UB. 

There is an obvious map ': S-Fr(V) -+ /A,w, defined simply by mapping the 
stochastic factorization (U, B) to the (r- 1)-simplex with vertices (IRul) Q ,..., 
(RUr) n Q. 

Both 0 and 0 are smooth maps, and are mutually inverse. We have proved the 

following theorem. 

Theorem 2.4. Let V be an n x m stochastic matrix of rank r. Then SFr(V) is 

diffeomorphic to A v,w, 

Let Av,w5 denote the quotient of Av,,w by the symmetric group action 
which permutes the vertices of the simplices. Our diffeomorphism SFr(V) Av,w, 
is equivariant with respect to the symmetric group actions on the two spaces, and 
so we also have the following corollary. 

Corollary 2.5. With the hypotheses of theorem 2.4, SFr(V) is homeomorphic to 

3. Topology of the space of explanations Av,,ws 

In this section we use our geometrical model Av,,w for the space SFr(V) of rank- 
size stochastic factorizations of a given n x rn stochastic matrix, modulo aliasing, to 
obtain information about the homotopy-type of SFr(V). 

Proposition 3.1. If V is an n x m stochastic matrix of rank 2, then the space 
Av,w, is diffeomorphic to the disjoint union of two rectangles. In particular, V 
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Figure 3. C(V) in the rank-2 case. 

has a rank-size stochastic factorization. The quotient Av,w is homeomorphic to a 
rectangle. In particular, it is contractible. 

Proof. The proof is essentially contained in figure 3 (in which m = 4). After re- 
ordering the vi, we can arrange that C(vl,..., vm) = C(vi, vm), as shown. Denote 
by vi the intersection of the lines IR+vi and Q2, and by X and Y the intersection of 
Q2 with the boundary of L(V) n RI. 

It is clear that A?v,ws is diffeomorphic to the space of pairs of points (il, u2) on 
the line-segment XY with u1 between X and v1, and u2 between Y and vm, or vice 
versa. That is, 

AVs,w = [X, i] X [Vm Y][mY] x [X, i]. 

We note that this contradicts an assertion of Gilula (1979), whose main theorem 
states in particular that not all stochastic matrices of rank 2 have a rank-size factor- 
ization. 

The case r > 3 is considerably more interesting. 

(a) Stochastic factorization of stochastic matrices of rank at least 3 

In the remainder of the section we drop the subindexes and refer only to the geo- 
metric model, Av,w, where V C W are n-dimensional convex polyhedra contained 
in some Euclidean RW. We denote by Av,w the space of n-simplices contained in 
W and containing V, and by Av,aw the subspace of Av,w consisting of n-simplices 
whose vertices lie on OW. There is an obvious deformation retraction from Av,w 
to Av,aw: fix a point P C V; for each A C Av,w, simply push each vertex A of A 

along the ray PA until it meets OW. From now on we prefer to consider the smaller 
space v,ow. When V is small in relation to W, the homotopy-type of this space is 
easily described. 

First, let Ap,aw denote the space of n-simplices with vertices on W and containing 
P in their interior, and let Arseg- denote the space of regular n-simplices with vertices 
on Sn-l. The following lemma then holds. 
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Lemma 3.2. 
Ap,w s-eg- O (n)/Sn+l 

(where '-' denotes homotopy-equivalence). 

Proof. 

1. Let B be an n-ball with centre at P. Radial projection from P defines a home- 
omorphism oW -+ OB; applying this to the vertices of simplices in p,aw 
gives rise to a homeomorphism 4 : Ap,aw - 

Ap,OB. 

2. We define a retraction AP,gB g Ae by means of a vector field X on AP,aB. 
The value of such a vector field at a simplex A is determined by the collection 
{Xw e TS'-I : w a vertex of A}, which we define as follows: let A, be the 
face of A opposite w, and let LW be the ray drawn orthogonal to Aw from its 
circumcentre and passing through P. Then Xw is the vector tangent to the 
unique minimal geodesic from w to the point where Lw meets the sphere, and 
has norm equal to the length of this geodesic. Evidently, w e LW for every 
vertex w if and only if A is a regular simplex. It follows that by flowing along 
the integral curves of X we retract AP,B to aeg. One can check that under 
this flow the simplices continue to contain P in their interior. 

This proves the first homotopy-equivalence. The second follows from the fact 
that 0(n) acts transitively on ArB, with isotropy the group of isometries of a 
regular n-simplex, isomorphic to Sn,+. 

Let P E V and let tV denote the dilation of V with centre P and scale factor t e IR>o. 

Proposition 3.3. For convex polyhedra V, W C RIL with V contained in the inte- 
rior ofW, there exists T1 > 0 such that, for 0 < t < rq, the inclusion Atv,aw C AP,W 
is a homotopy-equivalence. 

Together, proposition 3.3, lemma 3.2 and corollary 2.5 prove theorem 1.1. Although 
proposition 3.3 is unsurprising, the proof requires a little preparation. 

Define a function 
fp : Ap,aw -+ R 

by 
fp(A) = sup{t: tV C A} = inf{t: tV n OA # 0}. 

Remark 3.4. Evidently, fp is continuous, but its domain is a polyhedron, not 
everywhere smooth, and even where it is srnooth (namely at those simplices A, all 
of whose vertices lie in the interior of (n - 1)-faces of OW), fp is not always C1. The 
crucial fact about it is that it is the minimum of a collection of n + 1 functions f(, 
defined by 

f(i)() = min{t : V n Ai : 0}, 

where Ai is the ith face of A. Each f() in its turn is the minimum of a further 
collection of functions f(ij), where 

f() (A) is the unique value of t such that tv(j) i, 
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and where v(j) is the jth vertex of OV. Since the polyhedra V and W are semi- 
algebraic subsets of RW, fp is a semi-algebraic function (i.e. has a semi-algebraic 
graph). 

It is clear that Ap,w has a finite partition into smooth pieces ('strata') on which 
fp is smooth. Thus, in particular fp is locally Lipschitz, with respect to any reason- 
able choice of metric on Ap,aw, and it is this that we now exploit. 

Observe that 

Av,w = fl([1, oo)). 

We obtain information about the homotopy-type of v,aw by using Morse theory 
with the function fp. Since neither fp nor its domain is smooth, this presents some 
difficulties, and we do not claim to overcome them all here. One might be tempted to 
try to use stratified Morse theory a la Goresky & MacPherson (1988), but in fact even 
in the lowest dimensional cases the number of strata is very large (see, for example, 
figure 5), and most contain no topologically critical points of fp. Instead, on the one 
hand we exploit the fact that fp is locally Lipschitz to obtain appropriate notions 
of regular and critical points, and to draw conclusions about the local topological 
triviality of fp, and on the other hand we make use of the Morse theory for minima 
described by Matov (1982) (see also Bogaevsky 1989). 

For the former, we recall that any locally Lipschitz map between smooth manifolds 
is almost everywhere differentiable. For such maps there is a notion of 'generalized 
derivative': if f : ItR -+ RP is locally Lipschitz, then 56of is the convex hull, in 
L(IR, IRP), of the set 

{ lim dx,kf f is differentiable at Xk for all k, (k) - 0. 
k-+oo c 

Moreover, there is a Lipschitz inverse-function theorem, proved by Clarke (1976), 
from which a Lipschitz implicit function theorem follows. 

Proposition 3.5. Suppose that M is a C1 manifold and f : M - IR is 
locally Lipschitz. If 0 , 6xf, then there is a Lipschitz homeomorphism germ 

: (IR, 0) -_ (M, x) such that f o ?k is the standard projection (x1l,..., Xn) X Xl. 

From this, a Lipschitz version of the Ehresmann fibration theorem follows. The 
step from proper submersion to locally trivial fibre bundle is more difficult, or at least 
less well known, in this context than in the smooth category. Nevertheless, it follows 
in the topological category by the 'isotopy extension principle' (see Siebenmann 1972, 
corollary 6.15), and in the Lipschitz category by a theorem of Siebenmann & Sullivan 
(1979). 

Lemma 3.6. Let M be a smooth manifold and f : M -i R be a Lipschitz function. 
Suppose that f -[a, b] is compact, and that for all t C [a, b] and x C f -(t), 0 V 6f . 
Then for any t, t2 E (a, b), f -([a, t]) and f ([a, t2]) are Lipschitz homeomorphic, 
as aref-l([a, ti)) and f-([a,t2)). 

As in proposition 3.5, we will call points x Lipschitz regular, and their complement 
Lipschitz critical. Although the domain Ap,yw of fp is not a smooth manifold, there 
is a bi-Lipschitz homeomorphism 9 from Ap,ow to the smooth manifold AP,B, 
where B is a ball centred at P, as shown in the proof of lemma 3.2. Moreover, 
fp o ~-1 continues to be the minimum of a collection of piecewise-smooth functions. 
From this it follows that Sard's theorem holds. 
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Lemma 3.7. The set of Lipschitz-critical values of fp o -1 is contained in a 
semi-algebraic set of measure zero in R. 

Proof. Any polyhedron in a Euclidean space is semi-algebraic, and the map fp 
is itself semi-algebraic. The graph of fp can be embedded in a Euclidean space 
RD x R, and then given a Whitney stratification-a finite partition into manifolds, 
obeying certain regularity conditions (see, for example, Bochnak et al. 1998). We 
can identify fp with projection onto R. The set of critical points of fp on each 
stratum is of measure zero, by Sard's theorem (see, for example, Milnor 1990), and 
semi-algebraic, by the Tarski-Seidenberg theorem (see, for example, Bochnak et al. 
1998). By the regularity of the stratification, if A lies in a stratum Xc and is not a 
critical point of fPIx,, then A is not a Lipschitz-critical point of fp. Hence the set 
of Lipschitz critical values of fp is contained in a finite union of semi-algebraic sets 
of measure zero. 1 

Proof of proposition 3.3. If the set of Lipschitz critical values of fp accumulated 
at zero, then by the curve-selection lemma (see, for example, Milnor 1968, pp. 25ff), 
there would be an interval, containing zero, of critical values. By lemma 3.7, this 
cannot happen. Hence there is some Tr > 0 such that (0, r7) contains no critical value 
of fp. By lemma 3.6, fp is a locally Lipschitz-trivial fibre bundle over (0, r7], and in 
particular for any t e (0, r7), the inclusion 

At, w = fpl([t,o )) - f p((0, c)) = pw 

is a homotopy-equivalence. U 

We remark that for large t, Atv,ow is obviously empty. What can be said about 
Atv,aw for t between these extremes? To answer this we consider the Morse theory 
of fp. That is, we try to describe the changes in the homotopy-type of Atv,dw as t 
passes through Lipschitz-critical values of fp. 

Our analysis is motivated by the following surprising theorem due to Matov (1982). 

Theorem 3.8. Let fl,..., fk be smooth functions in a general position on the 
smooth manifold Mn, f = min{fl,..., fk, and x C M be a point at which the 
values of all k functions coincide. Then either x is a topologically non-critical point 
of f, or the germ of f at x is topologically equivalent to an ordinary Morse critical 
point of index > k- 1. 

In fact the bound on the index becomes less surprising if we consider, for example, 
the case of the minimum of two fiinctions fl, f2 : R - IJR. A moment's thought shows 
that, where f (x) = f2 (), min{f1, f2 } can have a local maximum, or be topologically 
non-critical, but cannot have a local minimum. One can gain further insight from 
figures 11 and 12, which show, respectively, the level sets of a function min{f1, f2, f3} 
in the neighbourhood of a critical point where the values of the fi coincide, and the 
level sets in the neighbourhood of a Morse critical point of index 2. The topological 
equivalence is clear. 

Remark 3.9. It is the bound on the Morse index of the critical point that is 
of most interest to us, since there is evidence that the following ansatz holds: in 
calculating the homotopy-type of Av,w, we can assume that all Lipschitz-critical 
points of fp occur at simplices A for which all the values f(4)(A) coincide. 
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Figure 4. Deformation of A which increases fp. 

If Matov's theorem were to be applied directly, from this ansatz we would deduce 
that, if tl and t2 are regular values of fp and there is a unique critical value in (t1, t2) 
with a unique critical point lying over it, then Atlv,aw is obtained from At2v,aw by 
gluing in a cell of index at least n. Since we know that for t large, tv,ow = 0, this 
would place strong bounds on the homotopy-type of Av,aw: it has the homotopy- 
type of a CW complex of dimension < dim o,aw - n = n2 - 1. See theorem 3.12 
for an approximation to this. 

For n = 2 (when v,w is the space of triangles sandwiched between nested convex 

plane polygons), things do run according to this conjectural sequence. 

Lemma 3.10. Suppose that n = 2, that A E AP,aw with fp(A) = to, and that 
toV does not touch all three edges of A. Then A is not a Lipschitz-critical point of 

fp 

Proof. First we fix a germ of a piecewise linear homeomorphism i : (APaw, A) -- 

(IR3, 0), as follows. Through each vertex wi of A select one edge of 9W, and consider 
the (bi-infinite) line containing it. The product of these three lines will be our R3. If 
at each vertex of A there is only one edge of 9W, no further discussion is necessary: 
locally AP,aw R 3. If at any of the vertices of A two edges of OW meet, radial pro- 
jection from P of the vertices of triangles defines a map germ (AP,aw, A) -+ (R3, 0) 
which is, by the convexity of W, a homeomorphism in the neighbourhood of A. 

Suppose now we are in the favourable situation where Ap,aw is smooth at A. We 
define a smooth path y(A) through A such that 

d(fp o y) 
(0) > 0. dA 

We suppose that the edge w1w2 of A does not meet toV. If A meets the edge wowi 
(i = 1, 2), then this edge does not lie in OW, since we assume toV is contained in the 
interior of W. Let Ei be the edge of W containing wi, and let wi(A) be the radial 
projection from P to Ei of the point (1 - A)wi + Awo. 
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We take 7y(A) to be the triangle with vertices wo,wl(A),w2(A) (figure 4). By 
straightforward geometry, in the figure shown we have 

d(fp o 7) = min l{ - wi sin Oisin(i 
+ i)0 i= 1,2 > 0. 

dA =0 0\P - viU sin s i sin ?i 

If vertices vij, j = 1, 2 of toV lie on the edges wowi of A, the right-hand side of this 
formula must be replaced by 

mi IIvi-wilsin0isin(i +0i) i j 1 2} 
P - vi,j II sin i sin i,j 

which is still strictly positive. 
If one or both of the wi coincide with vertices of OW, then the situation is slightly 

more complicated, since the moving vertices wi(A) lie on different edges of oW for 
A > 0 and A < 0, and thus the angle /)i has different values ~i,+ and i,- for A 
positive and negative. We then have 

d(fp o ?y) min 
I vi-will sinsi sin(ii,? + i) 1 2 

dA =0 l IP - vi,j II sin ?i sin i,j J 

both of which are again strictly positive. The values on d(fp o A)/dA(0) of the mem- 
bers of the generalized derivative 5Afp are contained in the closed interval in R 
bounded by the maximum and the minimum of all of these expressions. Since all are 
strictly positive, the conditions of the Lipschitz implicit function theorem are met, 
and A is not a critical point of fp. U 

Figure 5 shows many distinct configurations that satisfy the hypotheses of 
lemma 3.10; in each, the construction of the proof of lemma 3.10 furnishes us with a 
path through A along which fp increases. Lemma 3.10 thus enables us to deal with 
a large number of geometrically distinct configurations at once. 

One might imagine that a version of lemma 3.10 would hold in higher dimensions 
(figure 6), and indeed essentially the same proof works when W is smooth and strictly 
convex. 

Lemma 3.11. Let W C R1" be a strictly convex n-dimensional manifold, with 
oW of class Ck(k > 1). Let V C int(W) be an n-dimensional convex polyhedron 
and let P C int(V). If A c AP,aw with fp(A) = to, and toV does not meet all of 
the (n- 1)-dimensional faces of A, then A is not a critical point of fp. 

Proof. Let Aj denote the (n- 1)-face of A opposite the vertex wj (figure 7). 
Suppose that toV n A = 0. 

1. We construct a flow on a neighbourhood of A in Ap,aw. 
First we construct a smooth path A(A) through A itself. For i = 1,..., n, let 
wi(A) be the radial projection to OW of (1-A)w-+Awo, let A(A) be the simplex 
(wo, wl(A),... , w(A)), and let Aj(A) be the (n- 1)-face of A(A) opposite the 
vertex wj(A). Note that for each simplex near A, the same construction also 
gives a path, and thus we have a flow on a neighbourhood of A. It has the 
same differentiability class as OW. 
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Figure 5. Regular points of fp. 
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Figure 6. Level sets of regular points of fp. 
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Figure 7. Deformation of simplex A which increases fp(A). 
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A 

A 

Figure 8. Counterexample to extension of lemma 3.11 to polyhedral W. 

2. We obtain a more concrete evaluation of fp. 
Call Aj a contact face of A if toV n Aj 7 0. We can extend the order- 
ing of the vertices of A to an ordering of the vertices of each simplex in 
some neighbourhood of A in the space of simplices, and then on this neigh- 
bourhood define a real-valued function f,, whose value on a simplex is 
the least value of t such that tV meets the jth face of the simplex. Then 
fp = min{f : j = 0,..., n}. Since V is a polyhedron, for each contact face 

Aj there exist contact points vj-, v+ E OV (not necessarily unique, not neces- 
sarily distinct) such that tv~, tvj E Aj and such that for small non-positive 
A, fp(A(A)) is the unique value of t such that tv E A j(A), and similarly for 
small non-negative A, inf{t: tV n Aj(A) 7 0} is the unique value of t such that 
tv+A E A(A). 
Denote these values by Aj(A)/vj- and Aj(A)/v+. Each is a Ck function of A. 

3. We show thlat fp has positive derivative along the flow. 

Provided that, for each i 5 0 for which wi belongs to a contact face, the vector 
wiwo does not lie in T,,iW, it follows that, for each contact face Aj, 

(a d d (Aj(A)/vj+ )|x=o and (z( (A)/vj- )-Ix=o 

are both strictly positive. The condition that wiwo X Tw ,OW is, of course, 
guaranteed by the strict convexity of W. 

There exist contact faces Aj+ and Aj- such that for small A, fp(A(A)) = 
fp(A(A)) for A > 0 and fp(A(A))= f- (A( )) for A < 0. 

By the differentiability of the flow defined in step 1, the linear maps in the 
generalized derivative 5Affp take values between 

d d 
d (Aj(A)/vj+ )lx=o and j(,Aj (A)/vj- ) =o. 

It follows that every linear map in 5a6fp is non-singular. Thus, by the Lipschitz 
implicit function theorem, A is not a critical point of fp. 

* 
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However, the corresponding statement fails in general when W is a polyhedron. In 
figure 8, V is tangent to A only on three of its faces. However, A is a critical point 
of fp if V n H c A n H c W n H is a critical two-dimensional configuration (see 
lemma 4.3), where H is the plane containing the base of V. 

Despite this failure, we are still able to recover one of the consequences of the 
ansatz described in remark 3.9. 

Theorem 3.12. Let V and W be convex n-dimensional polyhedra, with V C 
W c In. Then Hq(Av,w; Z) = 0 for q > n2 - n- 1. 

Proof. By suitable choice of P we can assume that 1 is not a critical value of fp. 
Let A be an approximation to W with a smooth, strictly convex boundary. It can 
be chosen so close to W that there exist t1 < 1 and t2 > 1 such that t1W C A c 
t2W, and there is no critical value of fp in [1/t2, 1/tl]. Moreover, by the standard 
transversality argument, we can suppose that the function fp : AO,A -- R meets 
the requirements of Matov's theorem, so that V,A has the homotopy-type of a CW 
complex of dimension up to and including n2 n - 1 (Milnor 1963, ? 3). 

The configuration V c tiW can be transformed to 1/tiV c W by dilation cen- 
tred at P, so Av,tiw is homeomorphic to Al/tv,w. By lemma 3.6, the inclu- 
sion Al/tiV,W C Al/t2,W is a homotopy-equivalence and hence so is the inclusion 
Av,tlW " Av,t2W- Since this inclusion factors through AV,A, the result follows. U 

4. Factorization of stochastic matrices of rank 3 

In the case of matrices of rank three, we now obtain more detailed information. 

Proposition 4.1. Let V be an n x m stochastic matrix of rank 3. Then 

(i) L(V) n Q, n 0I_ is a convex polygon with no more than n edges, and 

(ii) C(V) n Qn is a convex polygon with no more than m edges. 

Proof. 

(i) L(V) n Qn n nR is a slice of a regular (n- 1)-simplex by a plane, which has to 
meet its interior (as 1 E C(V)). This slice is a convex polygon with no more 
than n edges (one for each of the faces of the simplex that L(V) meets). 

(ii) C(V) is a cone generated by m vectors in the positive orthant, each of which 
is transverse to Q,n 

These bounds are sharp. This is obvious for (ii); for (i), it is not hard to check that, 
for each k with 3 < k < n, there exist 2-planes (containing zero) whose intersection 
with the regular simplex Qn is a k-gon. 

Thus, the space of rank-size stochastic factorizations of an n x m stochastic matrix 
of rank 3 is homeomorphic to the space of triangles contained in a given convex plane 
polygon with no more than n edges and containing another given convex polygon 
with no more than m edges. 

Let v denote the number of vertices of A, coinciding with vertices of W, and which 
bound the edges of A which pass through a vertex of tV. For a generic P c V, the 
codimension in Atov,ow of the set of triangles with given values of 7 and v is r + v. 
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Lemma 4.2. By choosing P appropriately we can ensure that 

(i) no critical triangle A E AP,aw has a vertex at more than one of the vertices 
of OW, and 

(ii) if A C Ap,ow then /A does not pass through more than four vertices of tV 
for any t E R. 

Proof. 

(i) Finitely many lines (the diagonals) join the distinct vertices of OW. By choosing 
P appropriately we can ensure that, for all values of t, at most one vertex of 
tV lies on any of the diagonals of OW. A triangle with two diagonals of OW 
among its edges is therefore not critical, since one of these edges contains no 
vertex of tV. 

(ii) If a triangle ABC passes through five vertices of tV, then two of its edges, say 
AB and AC, must each contain an edge of tV, and the remaining edge, BC, 
must contain a vertex. That is, two edges of tV, continued, meet at a point A 
of OW. This occurs only for finitely many values of t. For each such value of 
t, a triangle ABC containing two edges of tV is determined. For almost all P, 
for all these special values t the third edge BC of triangle ABC does not then 
pass through any vertex of tV. 

By this lemma, we can obtain a complete list of the combinatorial types of configu- 
rations (critical and non-critical) which occur for generic choice of P by considering 
the special case in which m = n = 4. 

Calculations are considerably simplified if we apply a projective transformation 0 
which turns W into a square; such a transformation induces a diffeomorphism 

A* : Av,w -+ Ak(v),o(w) 

and, since we are at this point interested only in the topology of Av,w, let us 
therefore now assume that W is a square. 

Now we consider the critical points of fp, and examine the way that fp ([t, oo)) 
changes as t passes through a critical value. By lemma 4.2, the only remaining com- 
binatorial types generically occurring are those shown in figure 9. 

Lemma 4.3. In configuration 1 (figure 9a), A is either a 3-corner (and in partic- 
ular non-critical) or a saddle. 

In configurations 2 and 3 (figure 9b, c), A is a 4-corner or a local maximum. 

Proof. In each configuration, A passes through three or more vertices of P. In each 
case, we vary the position x of one of its vertices, and try to complete a triangle in 
Av,w retaining the three tangencies. Despite its naivety, this dynamic description 
seems to us to give the clearest understanding, and so we clarify its premise. We 
imagine uncoupling the two edges of the triangle A which meet on the bottom edge 
of the square, and view x as the coordinate of the lower end of the edge xy. We let 
w be the coordinate of the point where the edge zx meets the bottom edge of the 
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Figure 9. Critical points of fp. (a) Configuration 1; 
(b) configuration 2; (c) configuration 3 (see text). 

square. Initially, of course, w = x. We imagine the edges of A meeting at the other 
two vertices as remaining coupled. Through our insistence on tritangency, by shifting 
x to a nearby value, x' = x + 6x, we define new values y' = y + 6y, z' = z + 8z, 
w/ = w + 6w for the coordinates of the end points of the other edges. Of course, if 
w' -: x' we will no longer have a triangle in Av,aw. However, if the new edge z'w' 
crosses x'y' inside W, then by pushing the point Q of intersection to OW along the 
ray PQ, we obtain a triangle A' in Atv,aw This slack can be used to construct 
a path in AP,aw along which fp has positive derivative, and, as in the proof of 
lemma 3.10, we see that A is not a critical point of fp. 

In general (e.g. in the configurations in figure 9b, c) dw/dx does not exist; how- 
ever the one-sided derivatives dw/dx+ and dw/dx_ always exist. If both one-sided 
derivatives are greater than unity, fp increases along a path through A in which 
x increases; if both are less than unity, fp increases along a path in which x 
decreases. Thus A is a critical point precisely when dw/dx_ > 1 > dw/dx+ or 
when dw/dx_ > 1 > dw/dx+. 

In figure 9a, evidently, dw/dx exists. It is equal to 

bdf -- tan a tan 7. 
ace 

If dw/dx h 1, A is a 3-corner on Atv,w: the level set f (t) is contained in the union 
of smooth surfaces D1, D2, D3, with Di the set of triangles in AP,aw containing the 
vertex vi to tV. These three meet in general position A, and locally f ([t, oo)) is 
contained in the intersection of the three half-spaces D. they define. It thus resembles 
an octant in R3. 

If dw/dx = 1, then A is a saddle; for d2w/dx2 > 0, so that it becomes easier to 
complete the tritangent triangles in Atv,w as x moves from its initial value. Thus, 
the unique allowable infinitesimal motion in either direction in Atv,W lifts to a true 
motion. The three surfaces Di meet at A as shown in figure 10, that is to say, pairwise 
transversely, but with the curve of intersection of each two being simply tangent to 
the third. The small arrow on each surface Di in figure 10 indicates the region D. 
The union of the three surfaces (figure 10) is known in singularity theory as the 
'birth of two triple-points' (see, for example, Goryunov 1991). 

The sequence of pictures in figure 11 shows the transition in the level sets of fp as 
t passes through the critical value. The heavy line around the waist of the level set 
in figure lla, which contracts to a point in figure llc, is known as a vanishing cycle 
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L................................. . ........ ....... 

Figure 10. Levels set at a Cevian configuration. 

in singularity theory. The vertical arrow in figure la indicates the x-coordinate axis 

(cf. figure 9a). 
In figure 9b, if x increases, then the edge zx pivots at Q; if x decreases then it 

pivots at R. Therefore, dw/dx_ > dw/dx+. Generically, neither limit will be equal 
to unity for any value of t, since this configuration occurs only for finitely many 
values of t. 

There are thus three cases: 1 > dw/dx_, dw/dx_ > 1 > dw/dx+ and 
dw/dx+ > 1. Only in the second of these is A a critical point for fp. In this case, 
A is isolated in the level set of fp, and is a local maximum for fp. In the first and 
third cases, A is a 4-corner. This last can be seen as follows. Denote the triangles 
ABQ and ABR in figure 9b by tV1 and tV2, respectively. Then tV is the convex hull 
of tV1 U tV2, and 

Atv,ow = Atv,,ow n Atv2, w. 

In the neighbourhood of A, Atv,,ow is a 3-corner, diffcomorphic to a closed octant 
in R3, witll bounding sllrfaces DA, DB and DQ. By adding the vertex R to tV1, we 
introduce a fourth smooth surface, DR. In case (b), the region DI nmeets the octant 
only at A; in the other two cases, it meets tile octant in a pyralidlal region with 
vertex at A. 

A similar analysis can be brought to bear on the configuration in figure 9c. How- 
ever, it is more revealing to use projective duality. Recall that duality of projective 
configurations associates to each line in projective space the correspondiing point 
in the dual space of lines (P2)V and to each point in P C P2 the line ep in (Ip2)V 
corresponding to the set of lines passing through P. 

It is rea(lily checked that the configuration in figure 9c is projectively ldual to that 
in figure 9b. 

Take coordinates on R2 with P at the origin, and include R2 in RI2 by (x, y) X 

[x, y, 1]. Let x, y,z be coordinates on (RI2)V; lines not passing throulgh (0,0) in 
R2 become points in the finite portion {z : 0} of (RP2)V, and thus, taking affien 
coordinates u = 4x/, v = y/z, points in the dual affine space (R2)V. 

Denote the dual of a configuration C by CV. If V C W c IR2 is a configuration 
of convex polygons, then so is WV C VV C (R2)V. And if V C T C W is a triangle, 
then Tv is also a triangle and Wv C Tv C VV. It follows that projective duality 
induces a bijection (in fact a diffeomorphism) Atv,w -+ Av,(tv)v. 

The dual of the line f = {ax + by + c = 0} C R2 is the point (a/c, b/c) C (R2)V, 
and so the dual of tt is (a/ct, b/ct). Hence (tV)V = (1/t)Vv. Denote by P the ori- 
gin of coordinates in the dual affine space. Denote by sQ the image of a point or 
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............................................................................................. 

Figure 11. Passage through the critical value. 

(a(b) (c) 

Figure 12. Level sets near non-degenerate critical point of index 2. 

(a) f < 0; (b) f = O; (c) f > 0. 

figure under dilation with centre P and scale factor s. Clearly, dilation induces an 
isomorphism Awv,(tv) v ASwv ,S(tv)v. Hence 

Atv,w A Jwv,(tv)v = Awv,(l/t)vv _ zAtWv,VV. 

In particular, the topological change (if any) in Atv,w, as t passes through a critical 
value of fp with critical point of type 3, is the same as the change in Atwv,vv 
associated with a point of type 2, which has already been discussed. V 

Remark 4.4. 

(i) If W is replaced by a circle, tV is a triangle and the vertices X, Y and Z of 
V lie on the edges BC, AC and AB of A, respectively, then the dynamical 
analysis of the proof of lemma 4.3 shows that A is a critical point for fp if and 
only if 

AZ BX CY 
ZB XC YA 

This equality appears in Ceva's theorem in Euclidean geometry, which asserts 
that it is necessary and sufficient for the lines AX, BY and CZ to be concur- 
rent. For this reason we call configuration 1 of lemma 4.3 (when it is critical) 
a Cevian configuration. 

(ii) The sequence of level sets shown in figure 11 should be compared with the 
sequence showing the level sets near the standard non-degenerate critical point 
of index 2 f(x, y, z) = z2 x2 - y2 (figure 12). At a critical point of type 1, the 
behaviour of fp is exactly as described by Matov's theorem 3.8: fp is locally 
the minimum of three smooth functions whose values coincide at the critical 
point. 

(iii) Under the projective duality described in the proof of lemma 4.3, the dual of 
a Cevian configuration is also a Cevian configuration. 
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(iv) The appearance of projective duality in this problem can be understood in 
terms of the original statistical problem, as follows. As discussed in ?1, ran- 
dom variables X and Y are conditionally independent with respect to a third 
variable Z if and only if P{Y IX} = P{Z I X}P{Y I Z}, where P{A I B} is 
the matrix of conditional probabilities of A given B. The search for explanatory 
random variables Z thus corresponds to the search for stochastic factorizations 
of the stochastic matrix P{X I Y}, and as shown in ? 2, this leads to the geo- 
metric problem of sandwiched simplices. One can equally look for stochastic 
factorizations of P{Y I X}; these are naturally dual to stochastic factorizations 
of P{X Y}, and it is this duality that corresponds to projective duality in 
the associated geometrical problem. 

Using the description of the topological transitions given in lemma 4.3, we now 
compute the homotopy-type of Av,w. We return to the general case. V and W are 
once again convex polygons with p and q edges, respectively. 

Lemma 4.5. For all values of t > O, Av,w has the homotopy-type of a CW 
complex. 

Proof. This follows by the standard argument (see Milnor 1963): for t large, 
Atv,aw is empty; as t diminishes, it passes through a finite number of critical val- 
ues, at each of which the homotopy-type changes as described in lemma 4.3. Up to 
homotopy, the effect of each change is simply to glue in a cell. T 

Theorem 4.6. Avow (and therefore Av,w) is homotopy-equivalent to a circle 
if V is small; otherwise it has a finite number of contractible connected components. 

Proof. Assume for convenience that no two distinct critical points have the same 
critical value, and let E > 0 be less than the minimum difference between consecutive 
critical values. 

Each of the critical points of fp is either a strict local maximum or a saddle, 
topologically equivalent to a non-degenerate critical point of index 2. Thus, in the 
case of a maximum, A(t_)v,a w is homeomorphic to the disjoint union of A(t+E)v,ow 
and a 3-ball, and, in the case of a saddle, A(t-_)v,ao is homeomorphic to the union 
of A(t+E)v,aW and the product of a disc and an interval, D2 x [0,1], glued in along 
D2 X {0,1}. 

The conclusion follows by a standard topological technique-patch together this 
local description with a trivialization of the family outside the neighbourhood of the 
critical point. See, for example, Milnor (1963) for a description. 1 

It remains to estimate the number of connected components of Avow. For an 
upper bound it is necessary only to estimate how many local maxima fp will have. 
Let p and q denote the number of edges of V and W, respectively. 

Lemma 4.7. fp has at most q local maxima of type 3. If q = 3, then fp has no 
local maximum of type 3. 

Proof. Suppose fp has a local maximum of type 3 with critical value tc and 
suppose that the critical triangle Ac has a vertex at the vertex A of W. Then for 
t > tc there is no triangle in AtV, OW with vertex at A. T 
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Figure 13. Configuration in which Av,w has eight connected components. 

Lemma 4.8. fp has at most p local maxima of type 2. If p 3, then fp has no 
local maximum of type 2. 

Proof. At a local maximum of type 2 with critical value tc, one edge of the polygon 
tV is contained in an edge of the critical triangle Ac. For t > tc, it is not possible for 
the corresponding edge of tV to be contained in any edge of a triangle in Atv,aw 
Therefore, there is at most one local maximum of type 2 for each edge of V. 

The second assertion is obvious. a 

We have now proved the following theorem. 

Theorem 4.9. Av,ow has no more than p + q connected components. If W is 
a triangle, Av,ow has no more than p connected components. If V is a triangle, 
Av,ow has no more than q connected components. If V and W are both triangles, 
Av,aw is connected. 

This result, together with theorem 4.6, proves theorem 1.2, except for the state- 
ment concerning the existence of stochastic matrices realizing the upper bound on 
the number of connected components. 

5. Maximal configurations 

Let V C W be convex polygons in the plane, with p and q edges, respectively. We 
call the configuration V C W maximal if Av,w has the maximal possible number of 
connected components, namely p+q. We do not know if maximal configurations occur 
for arbitrary values of p and q; nevertheless, we can construct maximal configurations 
in which p = q. The simplest of these, for p = 4, is shown in figure 13. Here V and 
W are concentric parallel squares, whose sides are in the ratio 2- 1: 1. The figure 
shows two triangles of different types. The symmetry of the figure gives three more 
of each type. All of them are isolated in Av,w, which thus has eight connected 
components. 

This configuration arises in considering the stochastic factorizations of the stochas- 
tic matrix 

/v/2- 1 1 1 /2-1\ 
1 1 V 2-1 1 2 -1 

2v2 1 /2-1 -1 1 
\9V2- 1 1 -1 1 / 
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Figure 14. Maximal configurations. 

(see Croft et al. 2000). The reader will recognize the two triangles shown here from 
figure 9 and lemma 4.3. The side ratio chosen here is the only one for which either 
type of local maximum occurs (given that the squares are concentric and parallel). 
It is not a coincidence that both occur for the same ratio, for, as described in the 
proof of lemma 4.3, the configurations 2 and 3 of figure 9 are projectively dual. More 
precisely, if V C W is a configuration of parallel concentric regular polygons with 
sides in the ratio r : 1, then, with respect to the coordinates described in the proof of 
lemma 4.3, so is WV C VV. And if V C T C W is a triangle of one of the two types 
shown in figure 9, then WV C Tv C VV is a triangle of the other type. By regularity 
and concentricity, there is at most one ratio rp of side-lengths for which a pair of 
concentric parallel regular p-gons adniits a triangle of either type (and therefore of 
both types). Since the function fp must have local maxima on Ap,aw (where P is 
the centre of the polygons) it follows from lemma 4.3 that such a ratio rp does exist 
(figure 14). The rotation group of the polygons acts on each triangle of each type, 
and thus we get p of each, unless there is non-trivial isotropy. This occurs when p 
is divisible by three: for example, when p = 6 there are only two triangles of each 
type. Nevertheless, by breaking the symmetry of the configuration by means of a 
perturbation so small that each of the critical points of types 2 and 3 persist, we can 
ensure that the coincident triangles separate from one another, and thus, once again, 
we obtain a rnaximal configuration. Here we use the fact that the 'non-degenerate' or 
'generic' critical points described in lemnma 4.3 do persist under small perturbations. 

Note added in proof 

Since this paper was submitted, we have learned of the paper by Cohen & Roth- 
blum (1993), which discusses the non-negative rank of a (non-negative) matrix, and 
contains a result equivalent to our proposition 2.1. The non-negative rank of a non- 
negative matrix V is the smallest number of non-negative matrices of rank 1 which 
can be added together to give V. It is easy to see that the non-negative rank of V is 
equal to the minimal number of generators of a cone C c R+N containing the columns 
of V. 

We are grateful to Yuliy Baryshnikov for several essential suggestions, and to James Montaldi 
for a very useful discussion on the Cevian configuration, described in lemma 4.3 and remark 4.4, 
which was the key to further progress. We thank David Epstein for pointing out the work of 
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Siebenmann & Sullivan (1979) to us, and we thank Nick Bingham and Ian Stewart for helpful 
comments on early drafts of the manuscript. 
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