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OF THE THETA DIVISORS OF FOUR-DIMENSIONAL 

PRINCIPALLY POLARIZED ABELIAN VARIETIES 
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Abstract 

Let A be a principally polarized abelian variety of dimension four and 
let 8 C A be a symmetric theta-divisor, which we assume to be smooth. 
Using the Hodge structure on ~ ~ ( 8 )  we associate to A two abelian 
subvaneties J(K) C J(H) of the intermediate jacobian J(8) of 8 of 
dimensions five and nine respectively. We show that J(H) is generated 
by the image under the Abel-Jacobi map of the family F of Prym- 
embedded curves in 8 and that there is a commutative diagram 

where J(Q) is the dual abelian vanety of J(K) , 9 : ii, -+ d4 is the 

Prym map, the two vertical arrows are onto and the image of 9-'(A) 
generates J(Q) . 

Introduction 

Let A be a principally polarized abelian variety (ppav) of dimension 
four, let 8 be a symmetric theta divisor for A, and assume that 8 is 
smooth. The cohomology group 

contains a natural rank 10 sublattice 

K := ~ e r ( ~ ' ( 8 ,  Z) 2 H'(A, Z)). 

So we obtain a five-dimensional complex subtorus J(K) of the interme- 
diate jacobian J(@) of 8. It could be called the "primitive intermediate 
jacobian of 8". We denote the dual toms of J(K) by J ( Q ) ,  this is a 
quotient of J (@) .  We also define a complex toms J (H)  C J(8) which 
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sits in an exact sequence 

These complex tori (all except J(@))  are in fact abelian varieties. In 
general, the interrnediate jacobian J( V) of a threefold V with h3'O(v) # 
0 does not contain any nonzero abelian subvarieties. Grothendieck's ver- 
sion of the Hodge conjecture states that if there is a nonzero abelian variety 
in J ( V )  , then it should be generated by the image under the Abel-Jacobi 
map of some family of curves in V. We use the Prym map to show that 
the conjecture is true for J ( H )  C J(8) and hence for J(K) C J(@) : 

To A one'can associate a smooth cubic threefold T C p4 = P ( b O )  
([15]). The intermediate jacobian J ( T )  of T is an abelian variety of 
dimension five, isomorphic to the Albanese variety of the variety F para- 
metrizing the family of lines in T (181). The fiber 9 - ' ( A )  of the Prym 
map at A maps onto F with generically finite fibers of cardinality 2 
([I 51). There is an involution 1 : ( X ,  X) H (K , X*) acting in the fibers 

of the map 9 - ' ( A )  - F such that (see [15]): 

"The curve parametrizes exactly the Prym- 
embeddings of X into 8 C A ". 

The variety F parametrizing the family of Prym-embedded curves in 
8 therefore maps onto 9 - ' ( A )  with fiber at (X, X ) .  We show that 
the image of F in J ( 8 )  by the Abel-Jacobi mapping generates J ( H )  
and that we have a commutative diagram 

such that the image of 9 - I  (A) generates J (Q)  . When A is generic, it is 
well-known that 9 - ' ( A )  is smooth. We show that in this case F is also 
smooth. The above diagram induces therefore the commutative diagram: 

We show that the bottom horizontal map is actually an isomorphism. 
When A is generic, 9-' (A) is actually an ktale double cover of F (see 
[10] and [15]) and ~ l b ( 9 - '  (A)) is also a double cover of Alb(F) 2 J ( T )  . 
So we .deduce that J ( Q )  is a double cover of J ( T )  . 
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The structure of the paper is as follows. In '$1 we review the basics 
about Lefschetz theory, intermediate jacobians and polanzations that we 
need. In $2 we show the existence of the above diagrams and the fact that 
the image of 9 - ' ( ~ )  generates J ( Q )  . This is done in the usual way by 
a computation at the level of tangent spaces. In $3 we show that F is 
smooth and its Albanese variety has dimension 9 when A is generic. In 
$4 we show that the map ~lb(9-' (A)) - J ( Q )  is an isomorphism and 
that the image of A l b ( F )  is the torus J ( H )  for A genenc. This is done 
by degeneration to the case where A is the jacobian of a smooth curve 
of genus 4 .  We then deduce from this that for any A with smooth theta 
divisor the image of F by the Abel-Jacobi map generates J ( H )  . 

Conventions. Unless otherwise stated, all homology and cohomology 
groups are with integer coefficients. All varieties we consider are over.the 
field C of complex numbers. 

1. The primitive intermediate jacobian 

1.1. Lefschetz theory. Let A be an abelian variety of dimension n + 1 
over C and let 8 C A be a smooth and ample hypersurface. There is a 
strong relation between the cohomologies of A and 8 .  For instance, one 
has: 

Proposition 1.1 (Weak Lefschetz theorem). Let 8 C A be smooth and 
ample. Then 

J* : Hk(@) - Hk(A)  j! : ~ ~ ( 8 )  - H ~ + ~ ( A )  

j* : H ~ ( A )  - H k ( 8 )  J !  : Hk+2(A) - Hk(8 )  

are isomorphisms for k < n are isomorphisms for k > n 

Also j, and j, are surjective for k = n , j* and j! are injective for k = n . 
~urthermore, one has: 

Here P, : H k ( 8 )  - H„-,(Q) and P, : H ~ ( A )  - ( A )  are the 
Poincark duality maps, and U[@] is the cup product with the fundamental 
class of 8 .  

Also, i f the (co)homology of A has no torsion, then the (co)homology of 
8 has no torsion. 

Proof: In the case where 8 is very ample See, for instance, [16] or [21]. 
Since the proofs only depend on the fact that the complement of 8 is 
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an affine variety, they work for an ample smooth divisor in an abelian 
vanety (see [19]). The statement about the torsion follows from the uni- 
versal coefficient theorem and Poincare duality: tors(Hk-,) = t o r s ( ~ ~ )  = 
t o r ~ ( H ~ " - ~ )  ( H = H(@)). As the lower homology of @ is that of A , the 
result follows. 0 

So there is only one "new" group Hn(8) , with two maps 

whose composition is equal to U[@]. The hard Lefschetz theorem says 
that this map is an isomorphism over Q ,  so it is injective over Z (with 
finite cokernel), because there is no torsion. We make the following 

Definition 1.2. 

Proposition 1.3. (i) With respect to the intersection pairing 

the inclusion K r H" (8) is dual to the surjection H" (@) - Q . 
(ii) There is an exact sequence of the form 

where 
T := Coker([B]U : Hn(A) -, H"+~(A))  

is a torsion group, which inherits a nondegenerate pairing 

ProoJ: From the definition of K and Q it follows that (i) is equivalent 
to the formula j* = Pi1 j! P, . The first statement in (ii) follows from 
a straightforward diagram chase. By taking Horn(-, Z) of the sequence 
in (ii) we arrive at the statement about the painng on T .  0 

1.2. Intermediate jacobians. Let H = (H„ F') be a Z-Hodge struc- 
ture of weight n . This means that we are given a lattice H, and a Hodge 
filtration 

0 
O C F " C F " - ' c . . . c F  =H, 

on the complexification H, = H, 8 C. If n := 2m + 1 is an odd number, 
what we will suppose from now On, then the intermediate jacobian of H 
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is defined to be (see [13], Page 9) 

A polarization of H is a nondegenerate alternating bilinear form 

Such a polarization will not in general induce a polarization on the inter- 
mediate jacobian: the Hodge form is not necessarily positive definite. In 

A 

any case, Q defines a map q from J ( H )  to the dual toms J ( H )  . As Q 
is nondegenerate, this is an isogeny. 

We can apply this to the Hodge structure H"(@) considered in the pre- 
vious section, and construct the intermediate Jacobian J ( 0 )  := J ( H ~ ( ~ ) )  . 
Now take a look at the sequence 

As j, is a morphism of Hodge structures (of type (1,1)), one can give K 
the structure of a Z-Hodge structure, polarized by the restriction of Q to 
K . In particular, ( &)P'q := ~ e r ( H ~ ' ~ ( 0 )  - H"' (A)) . So we can 
apply the above construction to K and define 

One defines J(Q) in an analogous way. Then we have 
Proposition 1.4. The theta group of J(K) is isomorphic to T ,  that is, 

we have an exact sequence 

- 
Furtherrnore, there is a canonical isomorphism J (Q)  E J(K). 

Proof: From the snake lemma it follows that for any morphism of a 
torus to its dual torus, the theta group is equal to Coker(Q : K - K*) . 
As we have K* = Q one gets K*/K C T .  0 

The rank of the lattice K can be computed from the knowledge of 
h * ( ~ )  := dim H*(A) and the Euler characteristic of 0. In fact it follows 
easily from Proposition 1.1 that 

1.3. The case of the abelian fourfold. From now on we assume that A 
is a ppav of dimension four, and 0 its theta divisor. For an Open dense 
subset of d4 this will be a smooth threefold. Its Euler characteristic is 
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equal to 
coefficient of e4 in Q/(1 + 8) = -4! = -24. 

As h5(A) = 56 and h4(A) = 70 we find 

From the exact sequence 
4 4 Res 3 O-CI,-QA(0)-Re-0 

it follows that h0(!2e) = 4 (= h0(!2:)), from which it follows that 
dim(&)Oy3 = 0 .  This implies that 

So the Hodge-form is definite, and the torus J(K) is an abelian variety. 
To determine the type of its polarization, we need the following: 

tlu Proposition 1.5. The cup product homomorphism H' (A , Z) - 
H5(A, Z) with := (112) [612 E &(A, Z) induces a natural isomor- 
phism 

(272)' E H' (A,  212) = coker(H3(A, Z) 3 H5(A, Z)). 

ProoJ: One takes a Standard symplectic basis Ai, Bi, i = 1 , 2 ,  3 ,  4 
for H1(A, Z) . The group HP(A , Z) can be identified with the p-th ex- 
terior power of H1(A, Z) and thereby one obtains an induced basis of 
H*(A , Z) . The element [Q] E H2(A, Z) is represented by C:, AiBi , 
the element by Ci,, AiBiAjB, . The Statement follows now from a 
straightforward computation. 0 

Corollary 1.6. The polarization on the torus J(K) is of type (1,2,2,2,2). 
Hence the torus J (Q)  can be given a natural polarization of type (2,1,1,1,1). 

ProoJ: This follows immediately from Propositions 1.3, 1.4 and 1.5. 
One can give J (Q)  a polarization using the dual isogeny, [19]. 0 

1.4. A nine-dimensional torus. Apart from the five-dimensional torus 
J(K) (and it dual J(Q))  there is also a nine-dimensional torus J (H)  that 
will play a role in the sequel. 

Definition 1.7. 

Here p3A := ker(H3(A) 3 H7(A)) is the third primitive cohomology 
lattice, and p3A* E coker(H1 (A) 3 H5(A)) its dual. So H and H* are 
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dual rank nine lattices. It is clear from the construction that these lattices 
underlie natural Z-Hodge structures, so we can consider the intermediate 
jacobians J ( H )  and J(H*) . Again, the polarization type can be deter- 
mined by a diagram chase, using the principal polarization on H 3 ( 8 ) .  
Instead of spelling out the details, we summarize the basic facts in the 
following proposition. 

Proposition 1.8. A. There is a pair of exact sequences: 

und a similar pair obtained by dualizing. 
B. There is an exact sequence: 

So the torus J ( H )  has a natural polarization of type (3,  3 ,  3 ,  3 ,  1 , 1 , 1 , 
1 , l ) .  

ProoJ: This follows from straightforward diagram chases and the fact 
that the principal polarization H3(8 )  induces a polarization with theta 
group H1(A,  213) on the primitive cohomology. 0 

The upshot of all this is that the intermediate jacobian J ( 8 )  contains 
a subtorus J ( H )  of dimension nine which sits in an exact sequence: 

The toms J ( H )  also contains J(K) and sits in an exact sequence 

2. The infinitesimal Abel-Jacobi mapping 

Assume we have a family F of curves in a smooth threefold Q . That 
is, we have a diagram 

Here 'i?? is the "universal curve" over 3 ,  and the restriction of p to the 
fibers of q is an embedding (or finite map) of a curve into 8. Choosing 
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a base point to E F, one obtains an Abel-Jacobi map 

where &; is the fiber of ß - 9 at t E F and J$ is the linear form 
'0 

on H3"(0) CB H2,1(0)  which associates to o its integral on a three-cycle 
with boundary - i!? 

t0  ' 
The image of AJ generates an abelian subvariety of J(@) and Grothen- 

dieck's versio'n of the Hodge conjecture (See e.g. [5], Page 292) states that 
all abelian subvarieties of J(0) are generated by images of Abel-Jacobi 
mappings for appropriate families of curves. 

We have Seen in $1 that, for the theta-divisor 0 of a ppav A of di- 
mension four, there are two nice abelian subvarieties J(K) and J (H)  in 
J(@) . The question now is: can one find families of curves whose images 
by the Abel-Jacobi map generate them? 

Since every ppav A of dimension four contains Prymembedded curves, 
it is natural to take a look at these. 

2.1. Prym-embedded curves in A and 0. Let 9 : s5 - d4 be the 
Prym map, i.e., 9 associates to each admissible double Cover (x  : X - 
X) of a stable curve X of genus five its Prym variety 

where a is the involution interchanging the two sheets of x , v : ~ i c ( 5 )  - Pic(X) is the norm map and by ~ e r ' ( v )  we mean the component 
of the identity in the kerne1 of v . For general background on the Prym 
construction we refer to [2] and [18]. The Prym map 9 is surjective [2], 
and because dim(d4) = 10 and dim(S5) = 12, the fiber 9-' (A) for 
A generic in d4 is a smooth surface. When 8 is smooth, the fiber is 
always a surface and the generic elements of any component of the fiber 
are double Covers of smooth curves (See 1151). 

There is a useful parametrization of the Prym of a covering. Consider 
the following subvarieties of pic8(X) 

A' := {D E ~ic*(X)lv(D) E o, , hO(D) even) , 

0 A- := {D E ~ic*(X)lv(D) .̂ U,, h (D) odd}. 



INTERMEDIATE JACOBIANS OF THETA DIVISORS 565 

Both are principal homogeneous spaces over A  . The divisor 8 is a trans- 
late of 

~ 4 +  = { L  E A + I ~ ' ( L )  > 0) 

For each D E A- one gets an embedding 

where Lx is an effective Cartier divisor of degree 1 on X with support 
X . The image of such a morphism is called a Prym-embedding of X or a 
Prym-embedded curve. 

For a generic ppav, R. Donagi [10] has discovered a Strange involution 

The first named author (see [15]) has extended this involution to "most" 
of B5 and has also given the following nice gesmetric interpretation of 
the involution in terms of Prym-curves and the theta-divisor. 

Theorem 2.1 [15, Theorem I]. Let 8 C A  be a symmetric 8-divisor. 
Suppose that A is neither decomposable nor the jacobian of a hyperelliptic 
curve. Then the Prym-embeddings of inside 8 are exactly parametrized 
by the curve 2,. 

Definition 2.2. From now on we let 9- := scheme parametrizing the 
family of Pm-embedded curves inside 8 .  

So we See that the above theorem tells us that the fiber of the natural 
projection 

9- - 9 - ' ( ~ )  

over the point ( X ,  X )  E P-' ( A )  is precisely the curve . In particular, 
the dimension of F is three. We will study the Abel-Jacobi map 

of this family. In general, 3 might be singular, but for A  generic 9- 
will be smooth, See $3. 

2.2. The image of a fiber. Let X C 9- be a fiber of 9- - 9 - ' ( A )  
(so X maps to (K, X,) E g P 1 ( A ) ) .  The Abel-Jacobi map induces a 
morphism J X  - J ( 8 ) .  Composing this with X *  : J X  - J X ,  we get 
a morphism J X  - J ( @ ) .  For generic choices of A  and (G X,) E 

9-'(A) , J X  is a simple abelian variety hence this morphism is either 0 
or an isogeny onto its image. The latter is not possible because the family 
of abelian subvarieties of J ( 8 )  is discrete. So the image of J X  in J ( @ )  
is 0 for generic and hence for all choices of A  and ( X ,  X ) .  So there 
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is an induced morphism A = J ~ / J X  - J (@) .  Let us compute the 
image of Hl(A, Z) C ~ ~ ( 2 ,  L) C H , ( Y ,  Z) in H3(A, Z) = H ~ ( A ,  Z) = 

H3(@, Z)/K:  
Choose a symplectic basis {a, ,  .. . , a,, b, , . . . , 6,) of H,(A, Z) ,  so 

that the homology class of 8 is 

8' = C ai X bi X a, x b, X ak X bk 
i , j , k distinct 

where " X "  is Pontrjagin product. Then the homology class of any Prym- 
embedding 05 2 in A is 

Let us compute, for instance, the image of a l  in H3(A, Z) . Since we are 
just translating the curve 2 along the loop a,  , the image of a,  is just 

2 .  C a, X ai X b,. 
lLiL4 

So, in particular, the image of A in J(@) is nonzero. 
2.3. The tangent space to J(Q) . It follows from [21] pages 444-445 

that there is an exact sequence 

Here the first map is induced by cup product with d8 /8 ,  where 8 = 0 is 
a local equation of 8 C A . Part of the long exact cohomology sequence 
associated to the above sequence is: 

The cotangent space T;J(Q) to J (Q)  at 0 can be identified with the 
"primitive part" of H1(R;), that is, the image of H0(R~(2@)1,). Du- 
alizing the above sequence, we See that the tangent space ToJ(Q) to 
J (Q)  at 0 is the image of H1(R;)* in H0(R4,(2@)(,)'. As HO(R;) E 

A2 Ho(%(@)) and HO(R:(@)~,) E H'(@,(@))"~ , the cokernel of 
HO(R;) 4 HO(R: (@)I,) can be identified with s2 Ho(@,(@)) . Thus we 
get the following presentation of T,'J(Q) : 
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where the rnap m is induced by multiplication of sections. We See that 
indeed dim T,' J (Q)  = h0(We(28)) - dim ~ ~ 9 ( @ ~ ( 8 ) )  = 1 5 - 10 = 5 , as 
it should be. 

2.4. The normal bundle to 2. We choose an element (X ,  X) of 
P-' (A) , a generic Prym-embedding of 2 in 8 and identify it with X .  
We suppose that X is smooth. In order to study the infinitesimal Abel- 
Jacobi map, we need good control over the normal bundle of X in 8. 
We put 

N := Ngte. 

Lemma 2.3. The dimension of H'(N) is 3 . 
ProoJ: First notice that hO(N) is at least 3 because F is three-dimen- 

sional. 
For a E A let 8, be the translate of 8 by a ,  i.e., 8, = t:,@ where 

tu : A - A is translation by a . Choose a E A-such that X C 6, and a 
is generic for this property. Then X C (8 n 8,) which is smooth by the 
proof of Corollary 2.16 in [15] and we have the exact sequence: 

From the exact sequence 

we deduce S wX(-8 - @,) which is easily Seen to have degree 
0 .  It is nontrivial because a is generic in a curve ([ 151, Theorem 1). 
Hence h0(NXje,) = 0 and hO(N) < hO(Nene je lg) . Then we see that 
Nmealeli 2 @g(8,) and it is shown in [ 1 51 (jusi before Proposition 2.1 1) 

that, since X C 8, , one has h0(@g(8,)) = h1(@g(8,)) = 3 .  0 
2.5. The Clemens-Welters diagram. The infinitesimal Abel-Jacobi 

map, i.e., the differential of the Abel-Jacobi rnap 

at the point X E F is the rnap 

We have seen that the image of the rnap H'(R;)* - H0(R4,(28)1,)* C 

H 0 ( R ~ ( 2 8 ) ) *  is the tangent space ToJ(Q) to J (Q)  . We will now study 
the composed rnap 
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We use the following commutative diagram, due to G. Welters (see [6], 
1241): 

Residue 
H O ( N )  8 H0(Cl; (2Q))  - H O ( N )  8 HO(NeIA @ fii) 

Here @ is the subsheaf of @ generated by the closed forms. The vertical 
rnap in the left-hand column is induced by the composition of the maps 
Ho (Cl: (263)) - H' (6: (0)) - H' (6;) , where the second rnap is given 
by taking residues and the first rnap is the first connecting homomorphism 
in the cohomology sequence of the exact sequence: 

2 From the inclusion 6; - Cl, we get a rnap H' (6;) - H' (Cl;) . 
The slanted rnap on the left is induced by the infinitesimal Abel-Jacobi 
mapping composed with the dual of the rnap H' (6;) - H' ( C l ; ) .  On 
the right-hand side, the mapping H O  (NelA 8 fie) - H' ( N  8 Cl;) is the 
composition of the restriction rnap 

with the rnap induced by the first connecting homomorphism of the coho- 
mology sequence of the normal bundle sequence 

after tensoring with Cl;. 
It is easy to show (see [6]) that the rnap H O ( N )  8 H 1 ( N  8 fie) - 

H' (oX) E C is a perfect pairing. In particular, H O ( N )  and H 1 ( N  8 f i :)  

have the Same dimension, i.e., 3 .  
We need the following 
Lemma 2.4. The map 
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3 ProoJ As the normal bundle NB,, is isomorphic to @'(f3) and LIe r 

o LI:(f3) - &&(f3), the map can be identified with the restriction map 

Since the map H0(@,(28)) - H0(%(28)) is the composition of the 
two restriction maps H0(@,(28)) - H0(&&(2f3)) and H0(@e(2f3)) - 
9(@2(2f3)) ,  it is enough to show that the map 

is onto. 
Fix an element D of A+ (See 2.1). Then there is an element E of A- 

such that the embedding of i in 8 is given by: p H E o D-'(p - ap)  . 
Let f3 C A be the inverse image of 8+ by the morphism 

where we identify X E A with the corresponding invertible sheaf on X .  
Then, for all X E A , @2(gx) E E o X .  The map 

is onto by the following argument which was told us by A. Beauville: 
The argument consists in finding elements in the image of H0(@,(28)) 

which form a basis of H0(@z(2f3)) . 
Let A' be the connected component of Ker(v : J X  - J X )  which 

does not contain 0.  Consider the morphism 

Choose a E A' such that a o E E 8' and a-' @ E @ f3' : this is 
possible because E is generic in TA = {E : h ' ( ~ )  2 3) C A- (See [15]), 
so that E a * ~  (a-'  o E E 8+ a o a * ~  E 8+). For such genenc 
a , the linear System Ia o EI has no base points. Hence, since it is positive- 
dimensional, it contains a divisor E = C11i18 xi such that the points xi 
are all distinct. Put Ea,, = E - X, + ax.  = ax, + Ci+, xi for j between 

J 
1 and 8 .  Since we supposed a generic in a three-dimensional family, we 
have h ' ( ~ ~ ,  ,) = 1 for all j because TA above is one-dimensional. Since 
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2E(-Ea,,) = E @ a P 1 ( x ,  - ox , ) ,  we also have h0 (2E( -E~ , , ) )  = 1 .  Let 
E , ,  be the unique effective divisor of I 2E(-Ea , ,) I . Then the divisor 

Ea, ,  + E:, , is cut on 2 by 8, + 8-, where a = a ( o x j  - X , ) .  Hence, 

if s, is a section of H0(@z(28))  with divisor Ea,  , + E:, , , then s, is in 

the image of &(@,(28)) . It is now easily seen that the sj's are linearly 

independant hence generate ( 2 8 ) )  . 0 
Proposition 2.5. The rank of the map 

is at least 2 .  
ProoJ It is enough to prove that h1 (Nq R;) is at most 1 . Choose 

two elements a and b of A such that X C 8, n 8, . Since 2 C 8 n 
8, n 8, , one has an exact sequence - 

where sk is a skyscraper sheaf such that hO(sk) = 8 (because the degree 
of NzlA is 16 while the degree of @'(B) @ @'(B,) @ @'(Bb) is 24). 

Write @ n @, n 8, = 2 u S .  Then sk is supported on S n 2 and the 
degree of S n 2 is also 8 . By [15] Proposition 2.14 there is exactly one 
more Prym-embedding of 2 in 8, n 8, , call it X> . It follows easily 
from [15] section 1.4 that one can choose a and b in such a way that 
there is an element c of A with 8, n 8, n 8, = S U X> . Then the divisor 
S n 2 on 2 is cut on 3 by 8, . Tensor the exact sequence above with 
9; E He(8)  to obtain the exact sequence of cohomology groups 

So, in order to show that h1 (NzlA 8 Q;) < 1 , it is enough to show that 

the rank of the map ~ ~ ( 2 ,  2 8 )  - HO(sk)  is 7 .  Both of these spaces 
have dimension 8 .  So we have to show that the kerne1 of this map is 
one-dimensional. Let s be an element of ~ ~ ( 2 ,  2 8 )  such that its image 
in d ( s k )  is 0. Let Z ( s )  be the divisor of zeros of s in 2.  Then, 
Z ( s )  - 8,. 2 8-, - 2 .  Since 8, and B_, do not contain 2 ,  we have 

(See [15] before Proposition 2.1 1 )  that h0(8, .  2) = h0(8- ,  2) = 1 . Also, 
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- 
Z(s)  - 8, . g is effective by hypothesis. Hence Z(s)  = 8, -2 + 8-, . X 
and s is unique up to multiplication by a scalar. 0 

Corollary 2.6. The rank of the map y is at least 2 und at most 3.  
Proof This follows from the commutativity of the Clemens-Welters di- 

agram, Lemma 2.4 and Proposition 2.5. 0 
The space HO(N) sits in the canonical exact sequence: 

obtained from the exact sequence 

The space H0(Telf) parametrizes exactly the infinitesimal deformations 
of g that are trivial in moduli. Since g2 parametrizes deformations of 
X in 8 that are trivial in moduli, H0(~, lZ)  c~ntains the tangent space to 
gL at the point E defined in the proof of 2.4. Hence hO(TelX) is at least 
1 . The image of HO(N)  in H' (Ta) can be canonically identified with 
the tangent space to 9 - I  (A) at (4, X*). Since the dimension of this 
tangent space is at least 2 ,  and hO(N) = 3 ,  we See that hO(TelX) = 1 and 
the tangent space to 9 - ' ( A )  at (G X,) has dimension 2 .  So we can 
canonically identify H O ( T , I ~ )  with T,%, . As %, generates A inside 
J(8) , the infinitesimal Abel-Jacobi mapping is nonzero on HO(~, lX) . 
The following irnplies that H O ( T , I ~ )  is contained in the kemel of y and 
hence that the rank of y is exactly 2 .  

Corollary 2.7. The composition A - J(@) - J (Q)  is zero. Hence 
the map 53 - J (Q)  factors through 9 - ' ( A )  . In other words, we have a 
commutative diagram 

9 - J(8) 
1 1 

9- ' (~)  - J(Q) 

Proof Suppose that the map A - J ( Q )  is nonzero. Let B be its 
cokemel. Then the map 9 - B factors through 9-'(A). When A is 
generic, 9 - I  (A) is smooth and we obtain an induced morphism of abelian 
varieties: Alb9- '(A) - B . Since A is generic, Alb9- '(A) is isoge- 
nous to the simple abelian variety J ( T )  (see [10], [15] and [8]). Hence 
A l b 9 - L  (A) is simple. The kernel of the morphisrn Alb9- '(A) - B is 
an abelian subvariety of ~ l b 9 - ' ( A )  and, since the dimension of B is 
less than 5 ,  it is non zero. So the kernel of A l b 9 - ' ( ~ )  - B is all of 
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~ l b 9 - '  (A) and the morphism ~ l b 9 - ' ( A )  - B is Zero. Now consider 
the canonical exact sequence 

0 0 1 0 - H (T,Jj) - H (N) - T(, , ,)P- (A) - 0 

deduced from the map F - 9-'(A) . We deduce from the above that 
the map of tangent spaces T(X, ,)9-' (A) - TOB is 0 .  Hence the rank 

of y : H'(N) - T, J (Q)  is 1 : this contradicts Corollary 2.6. 0 
Since we saw above that the image of HO(~,li) by the infinitesimal 

Abel-Jacobi map is nonzero, it easily follows that 
Corollary 2.8. The infinitesimal Abel-Jacobi mapping has rank 3 .  The 

image of 9 generates an abelian variety of dimension 9 which surjects 
onto J (Q)  . Zn particular, since the image of A in J (Q)  is Zero (Corollary 
2.7), the image of 9 - ' ( A )  generates J(Q) . 

Let JH' be the abelian subvariety of J ( 8 )  generated by the image of 
F. Then it follows from the above that either the intersection of JH' 
with J (H)  is the image of A or J (H)  = JH' . We will See in Corollary 
4.8 that the latter is true. 

3. The space of Prym-embedded curves in 8 

We now take a closer look at the space F of Prym-embedded curves 
in 8 and state some properties of the global Abel-Jacobi map 

Proposition 3.1. Zf A is generic in d4, then 9 is smooth. 
ProoJ: Since we are supposing that A is generic and since the locus 

of curves with automorphisms has codimension at least 3 in the moduli 
space z5 of stable curves of genus 5 ,  the curve X and also (X ,  X) 
have no automorphisms for any element ( 2 ,  X) of 9-'(A) . Also, A 
has no nontrivial automorphisms. Let @ - be the universal double 
Cover over the locus 9: in s5 of Prym-curves ( X ,  X) such that X 
has no automorphisms. We can therefore identify the tangent spaces to 

z 5 ,  4 ,  @ a n d 9 - ' ( A )  at X ,  A ,  ( z , X ) ,  ( X , X , p t X )  and 
( X ,  X) respectively with the corresponding spaces of first order infinites- 
imal deformations. The variety 9 is clearly smooth outside the nodes of 
its fibers over 9-'(A) (since 9-'(A) is smooth). Let p be a node of 
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2 C 9. Then there is an exact sequence 

In particular, since LZ5 is smooth at ( X ,  X) (see, e.g., [ I  I]) and the image - - 
of ?>,,)9P, has corank 1 in T> , %E, is smooth at (2, X ,  p) 
(see also [20] Page 305). 

The elements of P-'(A) are irreducible (i.e., 2 is irreducible) and 
have at worst two nodes. There is a one-dimensional family of elements 
with one node and a finite number of elements with two nodes. Let Ao 
and Aoo be the loci in 9; which pararnetrize respectively irreducible 
elements with exactly one node and irreducible elements with exactly two 
nodes. Then we have the commutative diagram 

when X has one node, and the commutative diagram 

when X has two nodes. (The horizontal maps are injective because, since 
A is generic, the Prym map has maximal rank everywhere on 9 - ' (A)  .) 

It follows easily from [15] section 2, that the two right-hand slanted 
arrows above are surjective and the left-hand slanted arrows are injective. 
Let go and go0 be the loci of the nodes of the fibers of @Ia - Ao 

and $%?JAw - Aoo respectively. Then g0 - Ao is an isomorphism and 
g&, - Aoo is an etale double Cover. So we can add to the above diagrams 
two surjections (these are the rightmost slanted maps below): 

and 
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Since the leftmost maps are injective, it easily follows from the commu- 
tativity of the above diagrams that T;% injects into T&- . SO the 

rnap @ - 4 has maximal rank at p E F C @ . Since is smooth at 
( X ,  X ,  p)  and d4 is smooth at A , 52 is smooth at P .  0 

Consider again the diagram of the universal curve over SZ 

There is an induced rnap 

which is the transpose of the rnap 

obtained by taking the full inverse image of a one-cycle in SZ and mapping 
it into 8 .  If F is smooth, then H' ( F ,  Z) carries the structure of a pure 
Hodge structure of weight 1 , and as a is a morphism of Hodge structures 
of type (- 1 , - 1) , we obtain an induced rnap of tori 

AJ : Alb (F) - J(@). 

The results of $2 now give factorizations: 

Since Alb9- '  (A) and J ( Q )  have the Same dimension, the right bottom 
rnap (defined only when 9-' (A)  is smooth) Alb9- '  (A) - J (Q)  is an 
isogeny. In particular, for A generic, J (Q)  and J (K)  are both simple, 
because Alb9-'(A) is isogenous to the simple abelian variety J ( T )  ([10], 
[ 151 and [8]). We will See in the next section that the rnap Alb9- '  (A) - 
J (Q)  is an isomorphism. We now determine the dimension of Alb ( F ) .  

Proposition 3.2. The Albanese variety Alb (F) of F has dimension 
nine. 

ProoJ: We have to compute h ' ( F ,  Q) . To do this, we use the Leray 
spectral sequence of the rnap p : SZ - 9-'(A) . One obtains an exact 
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sequence: 

Let U C 9 - ' ( A )  be the subset of points over which the fiber of p is 
smooth, i : U -+ 9 - ' ( A )  the inclusion and A the complement of U in 
9 - ' ( A )  . As the general fibre of p is smooth, A is a curve. Furthermore, 
put H = R' ,D,(z,) and S := 9-' (A) . 

Claim: The rnap H - i,i*H is injective. 
This follows from the fact that we are dealing with an H' , and from the 

fact that F is smooth. Take a point p E A , and consider the factorization 
i = k. j , where k : S - {p) -t S and j : U L) S - {P). Let B be a small 
ball around p . The sections of the kernel of H - k,k* H over B is 
just the kernel of the restriction rnap H' (p-'(B)) - H'@-'(B - {p))) . 
This rnap sits in an exact sequence: 

However, 

by Lefschetz duality and contraction to the fibre which is (real) two- 
dimensional. It follows that the rnap H - k*k*H is injective. (In fact, 
it is an isomorphism.) Without loss of generality, we may suppose that 
the rnap p is, in a neigbourhood of any point q E A - {p) , topologically 
isomorphic to the product of (A ,  q) with the preimage ,D-' (D) of a small 
disc D transverse to A at q . Then we can apply the same reasoning to 
the complex surface p-'(D) mapping to D and the point q to conclude 
that the rnap k* H - j* j* k* H is injective. From these two facts the 
injectivity of H - i* i* H follows. 0 

From this we see that we have an inclusion 

The sheaf R' p*(Z,) 1 U is a local System, and its global sections are the 
invariants under the monodromy. The invariant cycle theorem [9] states 
that the composition of t with restriction to U is surjective after tensoring 
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with Q . In other words, we have an exact sequence: 

Claim: H ~ ( R ' ~ * ( ~ ) I U ) = H ' ( A , Q ) .  
Proof: Clearly, H' (A , Q) C HO(R1 p*(Q9)l U) , because H' (A , Q) is 

invariant. On the other hand, H0(R1p*(Q9)lU) is a Hodge structure, 
and the restriction maps rs : H O ( R ' p * ( ~ )  1 U) - H' (P-' (s) , Q) are 
morphisms of Hodge structures, [9]. Put p-'(s) = Ts ; we have an exact 
sequence 

We obtain an induced map of Hodge structures Ho(R'p*(Q9)~ U) - 
H' (Xs, Q) by composition. However, this map must be Zero, as the first 
Hodge structure is constant, whereas the second varies with s and is gener- 
ically simple. The claim follows, and hence the proposition. 0 

Remark. It seems very probable that the above result in fact is valid 
over the integers, that is, we would have exact sequences 

0-  A -A lb (F)  -AIb9-'(A) -0. 

It seems however that this stronger statement does not follow from the 
above arguments. 

4. Degeneration to the jacobian case 

In 52 and 53 we have Seen that, when 9 and 9-'(A) are smooth, 
have a commutative diagram 

Alb (F) - J(@) 
1 1 

~ b ( 9 - ' ( ~ ) )  - J(Q) 

where Alb (9-' (A)) - J (Q)  is an isogeny. 
For generic A , the endomorphism ring of Alb (9-' (A)) is isomorphic 

to Z . So, since both Alb (9-' (A)) and J (Q)  have the same polarization 
type, (Alb(pW1(A))  is an etale double Cover of the ppav J ( T )  by [ lQ]  
and [15]), one can conclude that the isogeny is multiplication by some 
natural number n . In this section we will show: 
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Theorem 4.1. n = 1 , that is, the isogeny Alb (9-' (A)) - J (Q)  is 
an isomorphism for A generic. 

To obtain this result, we degenerate A to the jacobian of a curve C 
of genus four. We will do several computations in cohomology rings of 
symmetric products of C . For this we use some results of Macdonald [ 171, 
which for the convenience of the reader we have gathered in an appendix. 

4.1. The theta-divisor in the jacobian case. By a g: on a curve we 
mean a linear System of degree d and (projective) dimension r . 

Let C be a smooth curve of genus four with two distinct gi's. The 
canonical model KC of C is the complete intersection of a quadric and 
a cubic in p3.  Since C has two distinct gi's, the quadric is smooth and 
its rulings cut the divisors of the two gi's on C .  Let cO) be the third 
symmetric product of C .  The image of the map 

is the variety W, of effective divisor classes. Let P, and P, be the two 
smooth rational curves in C(,) which parametrize the divisors of the two 
gl's. The curves PI and P, are contracted to the Singular points of W, 
[L]. The tangent cones to W, at these points can be identified with the 
quadric containing KC [I]. SO these two points are nodes on W,. Let 
A := J ( C )  be the Jacobian of C. Choosing a theta-characteristic K on 
C ,  we obtain two isomorphisms 

From now on we will identify these spaces. Note that the map 

C(,) d Q 

is a canonical small resolution of the singularities of 8 . This will enable 
us to relate the (CO)-homologies of C(,) and 8. 

4.2. Homology of the theta-divisor. Since C(,) is a small resolution of 
8, we have an exact sequence (see, for instance, [4] pages 119-120): 

where M := 2%. P, @ Z . P, is the free abelian group generated by P, and 
P,. The map 

M - H,(c(')) 
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sends P, to its homology class in C(,) . Now, by a result of Macdonald 
[17] ,  (see also the appendix), the curves P, and P, are homologous in 
C(,) , and hence we obtain an exact sequence: 

where A = P, - P, E M.  Any three-chain r in C(,) with boundary 
P, - P, maps to A . The dual cohomology sequence of the above sequence 
is: 

0 - (z.A)* - H3(8)  - - 0. 

4.3. The fiber of the Prym map at JC. Suppose C is automorphism- 
free. The fiber 9 - ' ( J C )  has two irreducible components both isomor- 
phic to . 

FIRST COMPONENT: Let p  + q be -an element of C(,) . Define V := 
(V, U V,)/ - where 5 2 V2 2 C and " -" identifies p  on V. with q  on 
V,-i .  Let V be the quotient of ? by the involution interchanging V, 
and V,. Then V is isomorphic to C with the points p  and q  identified. 
The cover (V ,  V) is called a Wirtinger double cover and is admissible in 
the sense of [ 2 ] .  One has (see, for instance, [ 2 ] )  

SECOND COMPONENT: Again choose p  + q  E C(,) . The linear System 
1 ( K c  - p  - q (  is a g, on C .  The trigonal construction of Recillas [22] 

realizes the Jacobian of a curve with a g,' as the Prym of a double cover 
of a trigonal curve. The construction is as follows. Let W C be the 
curve 

{ p + q  :hO(gi - p - q )  > 0). 

Define the involution i on W in the following way: if 

then r(s + t )  = U + V . We denote W/r = W .  Then 

As there are three distinct ways to divide four points into two Sets of two 
points, the curve W Comes naturally with a g: . 
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The two distinct d ' s  on C give rise to two embeddings j, and j2 of 

the curve C in : 

J : C - C ; s I+ u + V whenever s + u + V E P, ; i = 1 , 2. 

Let us denote the images of C by these maps by C, and C, . Notice that 
these two curves do not intersect each other. (In fact the class [C,] is equal 

to CL AiBi - 2q (See the appendix); one computes the self intersection 

to be zero.) The surface 9- ' (~) is obtained by glueing two copies of 
C"' together, identifying Cl on one copy with C2 On the other (See [ I  I] 
and [2]). 

4.4. Homology of the fiber of 9 at JC . From the above description 
it is easy to compute the homology of 9 - ' (A)  using the Mayer-Vietoris 
exact sequence. It is as follows 

... H,(c) C+ H,(c) - H ~ ( C ( ~ ) )  C+ H,(c(~))  - H,(P-'(A)) - 
Furthermore, we have the following 

Lemma 4.2. The map 

is an isomorphism for i = 1 , 2 .  
ProoJ This is the Same as saying that U[Ci] : w'(c) - H ~ ( c ( ~ ) )  

is an isomorphism over Z .  However, [C,] = C:=, AiBi - 2q and thus 

Al . [C,] = Al . q ,  etc, which is a basis for H ~ ( c ( ~ ) )  (See the appendix). 
0 

Hence, the image of H,(C) C+ H, (C) is the diagonal of C+ 

H, . SO we obtain the exact sequence 

where I is any cycle that generates the image of H, (9-'(~)) in Ho(C) C+ 
Ho(C) (this is easily Seen to be isomorphic to Z). 

4.5. Prym-embedded curves in 6 and the universal curve. Let ( V ,  V) 
and ( W ,  W) be as in section 4.3. Then, by [15], V parametrizes the 
Prym-embeddings of W into C3 and conversely. The Prym-embeddings 
are as follows: 
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( 3 )  . Let a be a point of C .  Associate to it two maps W  - C . 

two, : s +  t H lKC - Z ( S +  t) - aJ. 

As one, = two and one, = two, , we See that we obtain embeddings of 
4 

W in parametrized by F.  Also, given a point s + t E W ,  we obtain 
a map V - c ( ~ )  as foiiows: 

Composing these embeddings with the map - Q gives us Prym- 
embedded curves in 0, and it can be shown that all Prym-embedded 
curves are obtained in this way, [15]. So we See that the family 9 - 
9-'(A) of Prym-embedded curves in 8 has three components. Two 
of these lie over the component of 9 - ' ( A )  which parametrizes smooth 
Prym-curves: 

5, - c x  C(') ,  5q2-cx C('). 

The point (p , p + q) E 5, is identified with (q , p + q) E T2  . We put 
= q1 ~ ' 5 ~ .  
Over the component parametrizing the Singular Prym-curves, there is 

only one component 

Note that 3 also is glued to 5, and 5,. 
From this description of 9 one can also See that the universal curve 

E over 9 has four components, each of which is isomorphic to C X P : 

Here E .  maps to 5";. (For our purposes it is not necessary to write down '! 
the explicit glueings between these components.) 

For example, the restriction of the universal curve over 3, and its 
mapping to and 5, are explicitly given by 

% I  = C x P  - C  
( 3 )  

( t , p + q ,  r + s )  H t + r + s  

ql = C x P  - 31 - - C X C"' 
( t , ~ + 9 ,  r + s )  ( t , p + q )  
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We will need this later for our explicit calculations. 
4.6. The degeneration argument. Now consider a generic one-param- 

eter family of abelian varieties over a small disc T .  

We denote the fibers w P 1 ( t )  by At , and assume that A, = A = J C  . We 
can associate to this family the families 

3, - T 

9-'(d) - T* 

We may assume that the fibers 6 , ,  5 and 9-'(d), = 9 - ' ( A t )  are 
smooth for t  E T ,  t  # 0 .  For t  = 0 the fibers 6 = 6, and 9 - ' ( J C )  
are singular and were described above. Under these circumstances, there 
is a vanishing homology sequence relating the homology of 6 = 6, and 
6, , t  # 0 (see, for instance, [ 4 ] ) .  It is as follows: 

0 - H,(@,)  - H,(@)  - N - H,(@,)  - H,(@)  - 0.  

Here N := Z @ Z is the free abelian group with basis the two nodes of 6 .  
The map 

N - H,(@,)  
maps a node to the corresponding vanishing cycle in the nearby fiber 6 , .  
Since P, and P2 are homologous, the two vanishing cycles are homologous 
in 6 , .  So we have an exact sequence 

where V is any of the two vanishing cycles. 
Recall that we also have a sequence: 

Similarly, there is a vanishing homology sequence for 9-' (d)  : 

which complements the sequence 

The Hodge structures H,(@,)  and H, (9-' ( A , ) )  depend on the choice of 
t  # 0 ,  but it follows from the work of Clemens ( [ 3 ] )  and Steenbrink ( [ 2 3 ] )  
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that one can define a limes mixed Hodge structure on the homology of the 
general fiber in such a way that the above sequence becomes a sequence 
of mixed Hodge structures. The relation between C(,) and 0, can then 
be expressed as follows (with a slightly nonstandard convention for the 
weights) : 

Similarly 
GrY(H, (P-' (A,))) = Z . V ,  

GrY (H, ( 9 - I  (A,))) = H, (C(') , Z) , 
G ~ ~ ( H ,  (9-'(A,))) = Z . A. 

Now, for each t # 0 ,  we have an Abel-Jacobi mapping 

AJ, : Alb (9J - J(@,) 

which is induced by a morphism of Z-Hodge structures of weight 
(-1, -1): 

P, : H,(* - H,(@,). 
This then induces a morphism of limes mixed Hodge structures, and we 
obtain a commutative diagram: 

So, since the morphism from ~ l b 9 - ' ( A )  to J ( Q )  is multiplication by 
n , in order to prove that the Abel-Jacobi mapping induces an isomorphism 
between Alb (9 - ' (A) )  and J (Q)  , it suffices to show that it induces an 
isomorphism on the pure weight three part, which can be related directly 
to symmetric products of the curve C .  

4.7. Cohomology of 6. From the above exact sequences and the results 
of Macdonald, we can get a complete description of H*(@, , Z) in terms 
of the curve C .  For the Betti-numbers one gets: 

In fact, one has: 

k 
rank Hk(@,) 

4 

28 1 8 
5 6  

1 
0 1 2  

8 28 
3 
66 
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4 where C = Ci=, A,Biq - 3q2 is the class of P, and P, . For the description 
of ~ ' ( 0 , )  we have to choose a lift of of V* to H3(0,)  . By Poincare 
duality, this can be done in such a way that A* . V* = 1 One can then 
write: 

H'(@,)  2 H3(c( '))  @ Z . A* fb Z . V*. 

The ring structure of H*(@,) is now obvious. Using this, it becomes 
a matter of straightforward linear algebra to write down bases for all the 
lattices involved. We just state the result. 

Proposition 4.3. With the notation of the appendix, one has the follow- 
ing bases: 

For K : 
Ai(2q - O), B,(2q - O), A * ,  V*. 

For H : 
A;q, B i - q ,  A i .8 ,  B , .O,A*,  V*. 

The dual lattices are generated by the following elements: 
For Q : 

A i - q ,  B i . q , A * ,  V*. 

For H* : 

Ai('j . Bj) Bi(Aj . B,), A, . q , B,. V, A* , V*/ 

.Bj) A,(A, . B,), etc. 

Using these descriptions, one also can check the results of $1 for a 
generic A . 

4.8. An Abel-Jacobi mapping. We now Want to compute explicitly the 
Abel-Jacobi mapping 

ß H I ( ~ - I ( A ) )  - Q 
in the Jacobian case. Geometrically, this map arises as follows: Consider 
the diagram 

-C  (3) 

1 
3 

By taking the full inverse image of a cycle y E H, (3) we obtain a three 
cycle in 29 , which is mapped to a three cycle E H,(c(')) . We can restrict 
this family to the component 5, of F. For each choice of a point t, 
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on C ,  the map 9;, -+ ; ( t  , r + S )  H r + s has a section: 

In this way we obtain maps 

whose composition can be checked to be injective. When we restrict the 
family to this section, we obtain a diagram: 

where the map P --, is the composition of the maps 

and 

C'" - cC ; r + s c to + r + s.  

(Recall that P : =  { @ + q ,  r + s )  E C ( ~ ) X C ( ~ ) J ~ ~ ( K ~ - - ~ - ~ - S - ~ )  > O).) 
Now consider the diagram 

where the maps p, are the restrictions of the natural projections q, : 
C(') x C") 4 ~ ( ~ 1 ,  i = 1 , 2 .  

Proposition 4.4. The mapping 

is the inverse of the mapping 

In particular, it is an isomorphism. 
Proof: First note that our cycle P is the pull-back of the cycle D C 

consisting of coplanar four-tuples of points on the canonical curve. So, by 
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the formula of Macdonald, its class in is 

Using the Künneth-isomorphism 

we can write the class of P  as: 

Take any element of H ~ ( c ( ~ ) ) ,  say Al . q  . Clearly one has : 

Now, q ; ( ~ ,  q )  = Al . q  @ 1 , so by a computation in the ring H * ( c ( ~ ) )  
we find that 

To compute the image of this by q2! , one has to use the projection formula: 

(for all (Y E H ~ ( c ( ~ )  X c ( ~ ) )  and all ß E H ~ ( c ( ~ ) ) ) .  NOW take: 

(Y = [ P I .  4 ; ( A ,  . r l )  

and let ß run over a basis of , that is, Ai . q  and B, q  , i = 
1 , 2 ,  3 ,  4 .  We obtain: 

(q2 , ( [P1 .  Al  - V @ 1 ) ) .  ( 1  @ A i S  V )  = 0 

for i = 1 , 2 , 3 , 4 , b u t  

onlyfor i = 2, 3,  4 andequalto 1 for i = 1 .  As A i . q ,  B i . q  E H 3 ( c ( " )  
is exactly the dual basis to B,,  Ai E H 1 ( c ( ' ) )  we conclude that 

P ~ ! ( P ; ( A ,  . V ) )  = A l .  

Hence, p2,pl is indeed the inverse of qU . 0 
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Notice that the proposition also says that the mapping 

is an isomorphism (over Z). 
Corollary 4.5. The Abel-Jacobi mapping 

is obtained by sending an element to the element with the same name, but 
now considered in the other ring (by the natural inclusion H*(c(')) + 

H* (c'~))). 
Proof The class of + t,, C is just q , SO the result follows from 

the proposition. 0 
Corollary 4.6. The induced map 

is an isomorphism. 
Corollary 4.7. If A is generic, then the morphism induced by the Abel- 

Jacobi mapping 
A ~ ~ ( P - ' ( A ) )  + J(Q) 

is an isomorphism of polarized a belian varieties. 
Corollary 4.8. For any abelialz variety with smooth theta divisor, the 

image of 9- by the Abel-Jacobi mapping generates J ( H )  . If .F is smooth, 
then there is an isogeny Alb (F) - J (H)  . 

Proof By our observation at the end of section 2 it suffices to observe 
that it follows from Corollary 4.5 that, for A generic, the intersection of 
JH' and J (H)  is not A . Hence J (H)  = JH' for generic and hence for 
all A with smooth theta divisor. 0 

Remark 4.9. A calculation similar to 4.4 gives Al  8 as the image of 

which describes the cohomology class of a cycle in a fiber. This is in 
accordance with what we found in 2.2. 

Remark 4.10. For a generic abelian variety, the result of section 2 could 
have been deduced from the results of this section. However, it cannot 
be deduced from the results of this section for any abelian variety with 
smooth theta divisor. 

Some Open problems. We would like to mention a few Open problems. 
1s it true that the Abel-Jacobi mapping induces an isomorphism Alb (F) - J(H)? 
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Our construction gives a nice family of curves that generate the torus 
J ( H )  . By taking restrictions we obtain families that generate J(K) . But 
is there a nice family of curves around that generates J(K)? 

1s there a simple construction of the point of order two in J (Q)  that 
corresponds to the Strange involution A on the fibres of the Prym map? 

1s there a direct description of the Theta-divisor of J(K) or J(Q)? 
Generalizations. One might ask what happens with the picture de- 

scribed in this paper if we consider abelian varieties of dimension different 
from four. As explained in 5 1, if A is an abelian (n + 1)-fold with smooth 
8-divisor, then the Hodge structure H"(@) has an interesting sub-Hodge 
structure K = ker(Hn(6) - H"+~(A)) .  If n is odd, we can form its 
intermediate jacobian J(K) . However, for n > 3 ,  the complex torus 
J ( K )  will no longer be an abelian variety because there will be consecu- 
tive nonzero H',~'S and thus the Hodge form will no longer be positive 
definite. In any case, the level (that is, max(lp - ql , HP'q # 0)) of the 
Hodge structure K will be n - 2 ,  and the generalized Hodge conjecture 
would imply that this sub-Hodge structure Comes from some nontrivial 
family of subvarieties of 6 via an Abel-Jacobi mapping, the cohomology 
of the Parameter space of the family being basically K.  We are unable 
to produce such a nontrivial family of subvarieties inside 8 in higher di- 
mensions and this seems to be an interesting problem for further research. 
If n is even, say n = 2p,  then one can try to See whether the primitive 
cohomology classes of Hodge type (p , p)  come from subvarieties of 6 .  
As for abelian varieties of dimension 1, 2 and 3 K is trivial or uninterest- 
ing, the case of abelian fourfolds is really the first nontrivial case. 

5. Appendix: Cohomology of a symmetric prsduct 

We recall a result of Macdonald ([17]) which describes the cohomol- 
ogy ring H*(c(")) in terms of the cohomology of the curve C .  Let 
a,, . . . , a4 ; ß„ . . . , ß4 be a symplectic basis for H' (C)  , that is, the 
products 

a, ß, = n = -ß 
1 -a, 

are the only nonzero intersection products (here A is a generator of 
H2(c ) ) .  Consider now the following elements in the n-th symmetric prod- 
uct of H'(c): 
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~ : = A @ l @ . . ~ @ l + l @ A @ . . . @ 1 + . . - + 1 @ . - - @ 1 @ A  . 

These elements can be considered as living in H* (C'")) , and in fact these 
generate the cohomology as a (graded) ring: 

where deg(A,) = deg(Bi) = 1 ; deg(q) = 2 ,  and the ideal Zn is generated 
by the elements of the form 

where Z = {i„ i2 ,  . . .), J = { j „  j 2 ,  . . . ), and K = {k , ,  k2, . . . } are 
disjoint index Sets with 11) + (J1 + 21KJ + q = n + 1 , AI = Ai Ai2.. . , 

1 

BJ = BjiBj2 ... , (AB - V), = (A B -- q)(Ak2 Bk2 - V ) .  . . . 
k! , k, 

From this the ranks and an additive basis for the cohomology are easily 
obtained. For instance, for a curve of genus four one finds: 

with relations AiA J B .  J = Aiv, AiBiq = v2,  etc. For the third symmetric 
product one has: 

Basis 

Basis 
1 1  

Ai,  Bi 
AiA,, AiBj , BiB, , q 

Ai% Biq 
v2 

Group 

H O  ( 
H' 
H ~ ( c ' ~ ' )  
H3(cC2)) 
H ~ ( c ( ~ ) )  

where Ci = Ai or B, . Relations: Al B, A2B2 = A, B, q + A2B2q - qL , 
A ' A ~ B ~ ~  = A ~ ~ ~ ,  A , B , A ~ B ~ A , B ,  = v3,  etc. 

Rank 

8 
29 

8 
1 
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Furthermore, the class of the subvariety of parametrizing the di- 
0 r visors D E C(') such that h (g, - D) > 0 for some fixed g; on C is 

equal to the coefficient of tn-r  in the expression 

where g is the genus of the curve. 
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