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The modularity of the Barth±Nieto quintic and its relatives
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Abstract. The moduli space of �1; 3�-polarized abelian surfaces with full level-2 structure
is birational to a double cover of the Barth±Nieto quintic. Barth and Nieto have shown that
these varieties have Calabi±Yau models Z and Y, respectively. In this paper we apply the Weil
conjectures to show that Y and Z are rigid and we prove that the L-function of their common
third eÂtale cohomology group is modular, as predicted by a conjecture of Fontaine and Mazur.
The corresponding modular form is the unique normalized cusp form of weight 4 for the group
G1�6�. By Tate's conjecture, this should imply that Y, the ®bred square of the universal elliptic
curve S1�6�, and Verrill's rigid Calabi±Yau ZA3

, which all have the same L-function, are in
correspondence over Q. We show that this is indeed the case by giving explicit maps.

0 Introduction

The Barth±Nieto quintic is the variety given by the equations

N �
�X5

i�0

xi �
X5

i�0

1

xi
� 0

�
HP5:

This singular quintic threefold in P4 � f
P5

i�0 xi � 0g was studied by Barth and Nieto
in [1]. They show that it parametrizes Heisenberg H2;2-invariant quartics in P3 which
contain a line. A smooth such quartic then contains 32 lines which form two H2;2-
orbits of 16 disjoint lines each. Taking the double cover branched along these orbits
of lines gives two abelian surfaces which are dual and which have a polarization
of type �1; 3�. This de®nes a map A1;3�2�d N of degree 2, where A1;3�2� is the
moduli space of abelian surfaces with �1; 3�-polarization and a full level-2 structure.
The moduli space A1;3�2� is birationally equivalent to the inverse image ~N of N

under the the double cover of P5 branched along the union of the 6 hyperplanes
fxk � 0g. (All tildes ``~'' in this paper denote double covers; resolutions of singular-
ities are denoted by a hat ``^''.)

The varieties N and ~N have smooth (strict) Calabi±Yau models, denoted by Y and
Z respectively. Thus they have trivial canonical bundle and hi�O� � 0 for 0 < i < 3.
The Euler numbers are e�Y � � 100 and e�Z� � 80. The paper [10] gives a di¨erent



proof for the existence of a Calabi±Yau model of ~N, using a Siegel modular form
and the birationality of A1;3�2� and ~N.

In this paper we prove that Y and Z are rigid. In fact, this determines all Hodge
numbers and we obtain the following result.

Theorem 2.1. Both Y and Z have Hodge numbers hp;q � 0 except the following:

h0;0 � h3;0 � h0;3 � h3;3 � 1;

h1;1�Y� � h2;2�Y � � 50; h1;1�Z� � h2;2�Z� � 40:

In particular, both manifolds are rigid.

The most di½cult part of the proof of Theorem 2.1 is the determination of h2;2

and h2;1. We exploit the fact that Y is de®ned over Z and that we can replace Z by
another model, ~Y , which is de®ned over Z and which has H 3� ~Y�GH 3�Z�. Follow-
ing the method pioneered in [19], we reduce modulo some primes where Y and ~Y
have good reduction and explicitly count the number of points on the reductions with
the help of a computer. Using the Lefschetz ®xed point formula and the Riemann
hypothesis for varieties over ®nite ®elds leads to the desired result.

We summarize the maps between the various varieties by the commutative
diagram

Z  ��� ~Y ���! ~N  ÿÿ A1;3�2�???y ???y
Y ���! N

where the horizontal and vertical maps are generically 1 : 1 and 2 : 1, respectively. As
mentioned above, we usually work with ~Y instead of Z, even though it is not Calabi±
Yau, since it is de®ned over Z.

According to Theorem 2.1 the eÂtale cohomology groups H 3
�et�Y� and H 3

�et� ~Y � are
2-dimensional representations of Gal�Q=Q�. By a conjecture of Fontaine and
Mazur [8] these representations should be modular, which, as we shall show, is
indeed the case. To make a precise statement let h�q� � q1=12

Qy
n�1�1ÿ qn� be the

Dedekind h-function and de®ne

f �q� :� �h�q�h�q2�h�q3�h�q6��2:

This is a (normalized) newform of weight 4 with respect to the group G0�6�. In fact,
one has S4�G0�6�� � C � f , where Sk�G� denotes the vector space of cusp forms of
weight k with respect to a congruence group G.
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Theorem 3.2. There is an equality

L�H 3
�et�Y�; s� �� L�H 3

�et� ~Y�; s� �� L� f ; s�

where L1 �� L2 means that the Euler factors of L1 and L2 coincide with the possible

exception of the bad primes which are 2 and 3 in this case.

Remark 0.1. The rigidity of Y and the modularity of L�H 3
�et� ~Y�; s� were already noted

in [20, p. 864]. The L-function of Y was also known to R. LivneÂ (unpublished). See
also Yui's survey paper [24, 5.4] where in addition the question was raised whether
there is a connection with Verrill's Calabi±Yau threefold.

Using the 2 : 1 cover ~Y ! Y the proof of this theorem can be reduced to checking
that L�H 3

�et�Y �; s� �� L� f ; s�. By a result due to Serre it su½ces to check equality of the
Fourier coe½cients ap for the primes p � 5; 7; 11; 13; 17; 19; 23 and 73. (These primes
are good primes which represent the elements of �Z=24Z��.)

Given any (normalized) newform g of weight 4 with respect to G0�N� with Fourier
coe¨cients in Z, there are 2-dimensional l-adic Gal�Q=Q� representations rg;l on Q2

l

with the property that L�rg;l� � L�g; s�. The existence of these Galois representations
was established by Deligne, and they occur naturally in the eÂtale cohomology of the
®bre square WN :� S1�N� �X1�N� S1�N� of the universal elliptic curve S1�N� over the
modular curve X1�N�. In our case we have the Shimura isomorphism S4�G0�6��G
S4�G1�6��GH 3;0�Ŵ� where Ŵ is a resolution of

W :�W6 � S1�6� �X1�6� S1�6�

(cf. [16]). The Galois representations rf ;l are subrepresentations of H 3
�et�Ŵ ;Ql�.

The Tate conjecture implies that if isomorphic Galois representations r1, r2 occur
in the eÂtale cohomology of varieties X1, X2 de®ned over Q, then there is a cor-
respondence, de®ned over Q, between X1 and X2 which induces an isomorphism
between r1 and r2.

We say that a smooth projective variety X, de®ned over Q, is a relative of the
Barth±Nieto quintic N if the Galois representation rf ;l occurs in H 3

�et�XQ�. Tate's
conjecture implies that relatives should be in correspondence. Since this conjecture is
still very much open, we tried (and succeeded!) in establishing some correspondences.

The relative ~Y is birationally equivalent to ~N, the double cover of N, and thus
there are correspondences between these relatives. Using the explicit equations for the
varieties involved we also ®nd a correspondence between ~Y and Ŵ :

Theorem 4.1. There exists a birational equivalence between S1�6� �X1�6� S1�6� and Y

which is de®ned over Q.

In her investigations of rigid Calabi±Yau threefolds H. Verrill met another relative
of the Barth±Nieto quintic. It is a threefold denoted by ZA3

and it is constructed
using the root system A3. We establish a correspondence with this relative:
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Theorem (cf. Theorem 4.3). There is a birational equivalence between Y and ZA3
which

is de®ned over Q.

Combining this theorem with Theorem 4.1 gives a birational equivalence between
ZA3

and S1�6� �X1�6� S1�6�. Such an equivalence was ®rst found by M. Saito and
N. Yui (see [16]), but their equivalence is di¨erent from ours.

Acknowledgement. We thank R. LivneÂ and Ch. Schoen for helpful comments.

1 The two protagonists

In this section we recall the construction of our two protagonists Y and Z from [1].
The construction of the Calabi Yau varieties Y and Z from the Nieto quintic N is

summarized by the following commutative diagram:

Z  ���q̂ ~Y ���!~q ~N�3� ���!~q3 ~N�2� ���!~q2 ~N�1� ���!~q1 ~N�0�???yn

???yn3

???yn2

???yn1

???yn0

Y ���!
q

N�3� ���!@
q3

N�2� ���!
q2

N�1� ���!
q1

N�0� :� N:

The three squares on the right are derived from the analogous diagram

~P�3� ���!~p3 ~P�2� ���!~p2 ~P�1� ���!~p1 ~P�0�???yp3

???yp2

???yp1

???yp0

P�3� ���!
p3

P�2� ���!
p2

P�1� ���!
p1

P�0�GP4:

The varieties appearing in the ®rst (second) diagram have dimension three (four). The
horizontal maps are birational, the vertical maps are generically 2 : 1.

We now describe the diagrams in detail. We work in

P�0� :� fx A P5 : x0 � � � � � x5 � 0gGP4:

The Nieto quintic is the irreducible hypersurface

N�0� :� N :� fx A P�0� : s5�x� � 0g;

where

s5�x� :�
X5

j�0

x0 . . . x̂i . . . x5 � x0 . . . x5

X5

j�0

1

xj
:
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Its singular locus consists of the 20 lines

Lklm :� fxk � xl � xm � 0g �0W k < l < mW 5�

in P�0� and the 10 ``Segre'' points

�1 : 1 : 1 : ÿ1 : ÿ1 : ÿ1� � permutations:

These Segre points are ordinary double points of N. The lines Lklm intersect in the 15
points

Pklmn � fxk � xl � xm � xn � 0g �0W k < l < m < nW 5�:

We also need the 15 planes

Fkl :� fxk � xl � 0g �0W k < lW 5�

and the 6 hyperplanes

Sk � fxk � 0g �0W k W 5�:

Note that

Sk VN � 6
5

l�0

Fkl:

The map p1 is the blow up in the 15 points Pklmn. The map p2 is the blow up along

the 20 lines L
�1�
klm, where L

�1�
klm HP�1� denotes the strict transform of Lklm under p1.

More generally, we denote by L
�i�
klm;F

�i�
kl ; . . . the strict transform of Lklm;Fkl; . . . in

P�i�. Note that the lines L
�1�
klm are disjoint. Finally, the map p3 is the blow up along

the 15 disjoint ``planes'' F
�2�
kl . Note that F

�2�
kl G P̂2�6�, a plane blown up in 6 points.

We de®ne N�i� to be the strict transform of the Nieto quintic in P�i� and we set
qi :� pijN�i� . Note that q3 is an isomorphism. It was shown in [1] that the only singu-
larities of N�3�GN�2� are the 10 Segre points. The Calabi±Yau model Y of N is a
small resolution of N, i.e. the map q : Y ! N�3� replaces 10 points by 10 lines.

We now describe the 2 : 1-coverings. The map pi : ~P�i� ! P�i� is the double cover
with branch locus Di, where

D0 :�
X5

k�0

Sk JP�0�

and Di is the odd part of the pull back of D0 in P�i�. Explicitely, denoting the excep-

tional divisor of pi in P�i� by Ei and its strict transform in P� j� � j > i� by E
� j�
i , we have
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. p�1 �D0� �
P

S
�1�
k � 4E1, whence D1 �

P
S
�1�
k ;

. p�2 �D1� �
P

S
�2�
k � 3E2, whence D2 �

P
S
�2�
k � E2;

. p�3 �D2� �
P

S
�3�
k � E

�3�
2 � 2E3, whence D3 �

P
S
�3�
k � E

�3�
2 .

Remark 1.1. Note that D3 and ~P�3� are singular, since S
�3�
k VE

�3�
2 0q, even though

Barth and Nieto claim they are smooth [1, p. 216]. This problem disappears after

restricting to N�3�, since S
�3�
k VN�3� �q. On the other hand, S

�2�
k VN�2�0q, so the

double cover n3 : ~N�3� ! N�3�GN�2� is di¨erent from n2 : ~N�2� ! N�2�.

Finally, we let ~N�i� :� N�i� �P�i�
~P�i�. The singular locus of ~N�3� consists of 20

double points and ~q : ~Y ! ~N�3� is a small resolution. The branch divisor D3 VN�3� �
E
�3�
2 VN�3� of n3 : ~N�3� ! N�3� consists of 20 disjoint quadrics. The map q̂ : ~Y ! Z

contracts these quadrics to 20 lines.

2 The topology of Y and Z

In this section we prove the following

Theorem 2.1. Both Y and Z have Hodge numbers h0;0 � h3;0 � h0;3 � h3;3 � 1 and

h1;0 � h0;1 � h2;0 � h0;2 � h2;1 � h1;2 � h3;1 � h1;3 � h3;2 � h2;3 � 0. In particular,
both manifolds are rigid. Furthermore, h1;1�Y � � h2;2�Y � � 50 whereas h1;1�Z� �
h2;2�Z� � 40.

Remark 2.2. This holds for any smooth Calabi±Yau model of Y or Z, since birational
smooth Calabi±Yau varieties have the same Betti numbers [2]. (Note that the Hodge
numbers of a smooth Calabi±Yau variety of dimension 3 are determined by its Betti
numbers.)

Recall that Y and Z are smooth Calabi±Yau varieties of dimension 3. This deter-
mines the boundary of the Hodge diamond: h0;0 � h3;0 � h0;3 � h3;3 � 1 and h1;0 �
h0;1 � h2;0 � h0;2 � h3;1 � h1;3 � h3;2 � h2;3 � 0. The remaining Hodge numbers
are determined by

a :� h2;1�Y � and b :� h2;1�Z�

and the respective Euler characteristics e�Y � � 100 and e�Z� � 80. Indeed, we

have h2;1�Y � � h1;2�Y� � a, h2;1�Z� � h1;2�Z� � b, h1;1�Y� � h2;2�Y� � a� 50
and h1;1�Z� � h2;2�Z� � b� 40.

It remains to show that a � b � 0. This is done in the remainder of this long sec-
tion. (A short roadmap is given at the end of the next subsection.) As mentioned in
the introduction, we use the reductions of our varieties over suitable ®nite ®elds. We
now explain this ``reduction method'' in detail.
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2.1 The reduction method. We ®rst deal with Y. Note that Y is de®ned over Z. We
write Fp :� Z=pZ; more generally, we write Fq for the ®nite ®eld with q elements.

Lemma 2.3. If p is prime and pX 5, then the reduction of Y modulo p is smooth

over Fp.

Proof. This follows from an easy calculation (cf. [1, (3.1), (9.1) and (9.3)]).

From now on, p denotes a prime number X5. Let Y �Fp� be the set of points of Y

which are rational over Fp. By Grothendieck's version of the Lefschetz ®xed point
formula, we have

aY�Fp� �
X6

j�0

�ÿ1� j tr�Frob�p ; H
j

�et�Y ��;

where Frobp : Y ! Y is the Frobenius morphism [12, p. 454]. Using the abbreviation

tj :� tr�Frob�p ; H
j

�et�Y ��

we have t0 � 1, t6 � p3 and t1 � t5 � 0, whence

aY�Fp� � 1� t2 ÿ t3 � t4 � p3:

The Weil conjectures assert that the eigenvalues of Frobp on H
j

�et�Y� are algebraic
integers, which do not depend on l and which have (archimedian) absolute value p j=2.
This implies that the tj are ordinary integers, independent of l, with absolute value
jtjjW bj�Y � � p j=2. We use this only for j � 3:

jt3jW �2a� 2�p3=2:

For j � 2 we use the following stronger result, the proof of which we postpone to the
end of this section.

Proposition 2.4. If pX 5 then all eigenvalues of Frobp on H 2
�et�Y� are equal to p.

Hence t2 � b2�Y�p � �a� 50�p and t4 � �a� 50�p2, by PoincareÂ duality. Putting
everything together, we get

j1� �a� 50��p� p2� � p3 ÿaY �Fp�jW �2a� 2�p3=2:

For p � 13 we will ®nd aY �Fp� � 11260, whence 182a� 38W 94�a� 1� implying
a � 0.

We use the same method to show that b � 0. In fact, we work with ~Y rather than
Z. The reason is that it is not clear to us if the map q̂ : ~Y ! Z is de®ned over Z,
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since it was obtained in [1] using Mori theory. On the other hand, ~Y is clearly de®ned
over Z. Furthermore, hi; j� ~Y� � hi; j�Z� for �i; j�0 �1; 1� or �2; 2�, whereas h1;1� ~Y� �
h2;2� ~Y � � b� 60.

Lemma 2.5. If p is prime and pX 5, then the reduction of ~Y modulo p is smooth

over Fp.

Proof. Just note that the proof of [1, (10.2)] still works.

We also need the following proposition, which we will also prove at the end of this
section.

Proposition 2.6. If p1 1 mod 4 then all eigenvalues of Frobp on H 2
�et� ~Y� are equal to p.

So for p1 1 mod 4 (which implies pX 5) we have

j1� �b� 60��p� p2� � p3 ÿa ~Y �Fp�jW �2b� 2�p3=2:

For p � 13 we will see that a ~Y�Fp� � 13080, whence 182b� 38W 94�b� 1� imply-
ing b � 0.

Summarizing, we have to determine the number of F13-rational points on Y and
~Y , and we have to prove Propositions 2.4 and 2.6. This is done in §2.3 and §2.4,

respectively. The next subsection is a preparation for §2.3.

2.2 Counting points on Cayley cubics. In order to count the points of Y �Fp� we will
need to understand the structure of the exceptional divisor in Y lying over a point
Pklmn. We now collect the necessary information. Since Y ! N�3�GN�2� is an iso-
morphism outside the Segre points, we can consider N�2� instead of Y: the ®bres over
Pklmn are the same. One easily checks (see [1, (9.1)] and the proof of 2.7 below) that
the ®bre of N�1� ! N lying over P0123 � �0 : 0 : 0 : 0 : ÿ1 : 1� is the Cayley cubic

C�1� :
1

y0
� 1

y1
� 1

y2
� 1

y3
� 0

in P3. This P3 is of course the component of E1 HP�1� lying over P0123 and C�1� �
P3 VN�1�.

Analogously, in order to determine a ~Y �Fp� we need information about the ®bre

of ~Y ! N lying over Pklmn. Since ~Y ! ~N�3� is an isomorphism outside the Segre

points, we may replace ~Y by ~N�3�. Now recall that the double cover ~N�3� ! N�3�G
N�2� is branched along the exceptional divisor E2 VN�2� of the blow up N�2� ! N�1�

along the lines L
�1�
klmn. Hence ~C�2� is the double cover of C�2� branched along E2 V

C�2�, which consists of the four exceptional lines of C�2� ! C�1�.
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Lemma 2.7. Let p1 1 mod 4. Then a~C�3��Fp� � p2 � 8p� 1.

Proof. First we determine the blow up of N in the point

P0123 � �0 : 0 : 0 : 0 : ÿ1 : 1�:

We blow up the A5 HP5 where x5 � 1 in P � �0; 0; 0; 0;ÿ1�, this is the subvariety of
A5 � P4 de®ned by

xiyj ÿ xjyi � 0; �x4 � 1�yj ÿ xjy4 � 0; 0W i < j W 3:

The inverse image of N VA5 in the open set A5 �A4 de®ned by y4 � 1 is given by
the equations xj � �x4 � 1�yj, so we are left with the variables x4; y0; . . . ; y3, the
equation

�x4 � 1��y0 � y1 � y2 � y3 � 1� � 0

(obtained from
P

xi � 0) and the equation

�x4 � 1�3�y0 y1 y2 y3�x4 � 1�2 � x4�y0 y1 y2 � y0 y1 y3 � y0 y2 y3 � y1 y2 y3�� � 0

(obtained from s5 � x0x1x2x3x4 � � � � � x1x2x3x4x5 � 0). The ®bre over P is de®ned
by x4 � ÿ1 and we see that the ®bre over P0123 in the blow up N�1� ! N is the
Cayley cubic C�1� in a P3 (note y4 � ÿ

P
yi� with coordinates y0; . . . ; y3.

The double cover ~N of N rami®es over the zero locus of x0x1x2x3x4x5. One can
thus construct it naturally in a weighted projective space. Equivalently, consider the
image of N in Pk under the third Veronese map, so the coordinates on Pk are the
uijk with uijk � xixjxk. Then ~N is the subvariety of Pk�1, with coordinates uijk and v,
de®ned by the equations of the image of N in Pk and the equation v2 � u012u345. The
inverse image of N VA5 in ~N is therefore isomorphic to the subvariety of A6, with
coordinates x0; . . . ; x4 and v, de®ned by the equations of N VA5 and the equation
v2 � x0x1x2x3x4.

To obtain ~N�1�, locally near P0123, we consider the inverse image of N VA5 in the
open set of the blow up where y4 � 1:

v2 � �x4 � 1�4x4 y0 y1 y2 y3:

As explained in Section 1, we need to ramify only over the odd part of this divisor, so
locally ~N�1� is de®ned by

w2 � x4 y0 y1 y2 y3

and the equations de®ning the strict transform of N VA5. Restricted to the special
®bre x4 � ÿ1 this gives the equation w2 � ÿy0 y1 y2 y3. In case ÿ1 is a square in the
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®eld under consideration (for example Fp with p1 1 mod 4), we can change the
variable to obtain the equation w2

1 � y0 y1 y2 y3.

The equation yi � 0 de®nes the divisor S
�1�
i . The intersection S

�1�
i VC�1� consists of

three lines in C�1�. In this way we get the 6 lines S
�1�
i VS

�1�
j VC�1� in the Cayley cubic

which connect the nodes. In particular, the cover ~C�1� ! C�1� rami®es over these 6

lines and these lines are singular on ~C�1�.
The map C�2� ! C�1� is the blow up of the Cayley cubic in the 4 nodes. We denote

the exceptional ®bres, �ÿ2�-curves, by R
�2�
i . The double cover ~C�2� ! C�2� rami®es

along the 6 lines and the 4 R
�2�
i 's. The map N�3� ! N�2� is an isomorphism (since the

F
�2�
kl are smooth surfaces in the smooth part of the threefold N�2�). But since F

�1�
kl �

S
�1�
k VS

�1�
l intersects the Cayley cubic in a line, the map ~C�3� ! ~C�2� is the normaliz-

ation of ~C�2�. Therefore the double cover

~C�3� ! C�3� � C�2�

rami®es only over the four nodal curves Ri. It is easy to check that h1;0� ~C�3�� �
h2;0� ~C�3�� � 0 and h1;1� ~C�3�� � 8.

We recall the explicit parametrizations for the Cayley cubic and its double cover,
rami®ed only in the nodes. The cubic C�1� is obtained by blowing up a P2 in 6 points
which are the intersection points of 4 general lines, next one blows down the strict
transforms of the 4 lines. For the plane we will take

P2 :� fx A P3 : x0 � x1 � x2 � x3 � 0g;

the 4 lines are de®ned by xi � 0 so the 6 points xi � xj � 0 �0W i < j W 3�. The
linear system of cubics through these 6 points is generated by x0x1x2; x0x1x3; x0x2x3,
and x1x2x3. Denoting temporarily the coordinates of the target space P3 by �y0 :
y1 : y2 : y3�, we see that the associated rational map P2 d P3, �x0 : x1 : x2 : x3� 7!
x0x1x2x3

1

x0
:

1

x1
:

1

x2
:

1

x3

� �
�: �y0 : y1 : y2 : y3�, maps P2 to the Cayley cubic

P 1

yi
�

0. It blows up the six points, the exceptional divisors being the edges of the tetrahe-
dron spanned by the four singular points of C�1�, and it contracts the four lines xi � 0
to these singular points. In other words, the map P2 d C�1� induces an isomorphism

P̂2�6� !@ C�2�;

where P̂2�6� is the blow up of P2 in the 6 points. This also works over the ®nite ®eld
Fp, hence aC�2��Fp� � 1� 7p� p2.

An alternative description of ~C�3� would be the double cover of P2 branched along
the four lines xi � 0 with the six quadratic singular points lying over the intersection
points resolved by a �ÿ2�-curve.

Since each of the 6 points lies on exactly two lines, the inverse image in ~C�3�

of the exceptional divisor is an irreducible rational curve which maps 2 : 1 onto
the exceptional divisor in C�3�. Note that the line x3 � x4 � 0 is parametrized by
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�s : ÿs : t : ÿt� and splits in this double cover since it meets the rami®cation locus
only in the points �1 : ÿ1 : 0 : 0� and �0 : 0 : 1 : ÿ1� and each point has multiplicity 2.

Consider the morphism f : C�3� ! P1 de®ned by the pencil of lines through the
point �1 : ÿ1 : 0 : 0� (so f is obtained from the rational map P3 d P1,
�x0 : x1 : x2 : x3� 7! �x2 : x3�). If the line in the pencil f meets the rami®cation locus
in two other distinct points, besides �1 : ÿ1 : 0 : 0�, the corresponding ®bre of the

composite map ~f : ~C�3� ! C�3� ! P1 is smooth. There are only three exceptions: the
lines x2 � 0, x3 � 0 and x3 � x4 � 0.

The ®bre of ~f corresponding to the line x3 � 0 consists of the strict tranform of
this line as well the two �ÿ2�-curves corresponding to the points �1 : 0 : ÿ1 : 0� and
�0 : 1 : ÿ1 : 0�. Thus ~f ÿ1�1 : 0� is a tree of three P1's, and the same holds for
~f ÿ1�0 : 1�. We already observed that the line x3 � x4 � 0 splits in the covering. Be-
sides these two components, f ÿ1�1 : ÿ1� also contains the �ÿ2�-curve over the point
�0 : 0 : 1 : ÿ1� and this ®bre is thus also a tree of three P1's.

If the two components over the line x3 � x4 � 0 are rational over Fp, then the
number of points of ~C�3� over P1 minus the three exceptional points is �pÿ2��p�1�,
and each exceptional point contributes a tree of three P1's hence 3�p� 1� ÿ 2 �
3p� 1 points. Thus for such ®elds

a~C�3��Fp� � �p2 ÿ pÿ 2� � 3�3p� 1� � p2 � 8p� 1:

From this one easily obtains that dim H 2� ~C�3�� � 8. (On ~C�3� we have 7 obviously
independent divisor classes, the pull-back of a hyperplane section of C�3� and the 6
nodal curves. Each of the components over the line x3 � x4 � 0 can serve as an
``eighth divisor''. To see this, one checks that the 8� 8 intersection matrix has non-
zero determinant.)

To see for which primes the two components over x3 � x4 � 0 are rational over Fp,
we pull-back the de®ning equation for the double cover w2 � ÿy0 y1 y2 y3 (and y4 �
ÿ�y0 � � � � � y3�) to P2, and one ®nds that that over �1 : ÿ1 : t : ÿt� the double cover
is given by w2 � ÿt2, hence the two components are rational i¨ ÿ1 is a square in the
®eld i¨ p1 1 mod 4.

Remark 2.8. For completeness sake we give the well-known identi®cation of ~C�3� with
a P2 blown up in 7 points. The standard Cremona transformation on P2, �t0 : t1 : t2�
7! �1=t0 : 1=t1 : 1=t2�, is well de®ned on the blow up of P2 in the three `basis' points
and has 4 ®xed points:

�1 : 1 : 1�; �1 : 1 : ÿ1�; �1 : ÿ1 : 1�; �ÿ1 : 1 : 1�:

Blowing up these 7 points gives a surface with 1� p� p2 � 7p � 1� 8p� p2 points.
The smooth quotient surface has 4 (ÿ2)-curves (the images of the exceptional divisors
over the ®xed points) and blowing these down you get the Cayley cubic C�1�. There-
fore ~C�3� is isomorphic to the blowup of P2 in 7 points. An explict formula for
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the rational 2 : 1 map from P2 to C�1� is given by the following polynomials, which
are invariant (modulo the common factor �t0t1t2�2) under the Cremona transfor-
mation

x0 � 2t0t1t2; x1 � t0�t2
1 � t2

2�; x2 � t1�t2
0 � t2

2�; x3 � t2�t2
0 � t2

1�
and they satisfy the cubic relation 2x1x2x3 ÿ x0�x2

1 � x2
2 � x2

3 ÿ x2
0�. The ®xed points

map to �1 : 1 : 1 : 1�, �1 : 1 : ÿ1 : ÿ1�, �1 : ÿ1 : 1 : ÿ1� and �1 : ÿ1 : ÿ1 : 1�. Using
the linear combinations x0 � x1 � x2 � x3, x0 ÿ x1 � x2 ÿ x3, x0 � x1 ÿ x2 ÿ x3 and
x0 ÿ x1 ÿ x2 � x3, one obtains functions which satisfy the equation de®ning C�1�.

Corollary 2.9. All eigenvalues of Frobp acting on H 2
�et� ~C�2�� are equal to p if p1

1 mod 4.

Proof. The eigenvalues a1; . . . ; a8 of Frobp acting on H 2
�et� ~C�2�� are complex numbers

of absolute value p. Since a1 � � � � � a8 � 8p by the previous lemma, we ®nd that
ai � p for i � 1; . . . ; 8.

Remark 2.10. For p1 3 mod 4 one ®nds a~C�2��Fp� � p2 � 6p� 1. Thus the eigen-
values of Frobp acting on H 2

�et� ~C�2�� are p with multiplicity 7 and ÿp with multi-
plicity 1.

Lemma 2.11. If p1 1 mod 4 then the contribution over the unrami®ed part of Fkl to

a ~Y�Fp� is p2 ÿ 2p� 3.

Proof. We claim that the equation of the unrami®ed part of the double cover of Fkl

is y2 � ÿx0x1x2x3 as in Lemma 2.7. In order to see this, we blow up P�0� along Fkl.
The resulting exceptional divisor is P1 � Fkl and one easily checks that the strict
transform of N intersects this divisor in f�1 : ÿ1�g � Fkl with respect to the coor-
dinates on the ®bre P1 given by xk and xl. On f�1 : ÿ1�g � Fkl we have xk � ÿxl,
so restricting x0 . . . x5 and dividing by the square x2

k � x2
l yields the desired

ÿx0 . . . x5=xkxl.
Now we can apply Lemma 2.7. Indeed, the rami®cation locus, which consists of

6 intersecting lines, contains 10pÿ 2 points over Fp, the proper double cover ~Fkl G
~C�2� of Fkl contains p2 � 8p� 1 points, leaving �p2 � 8p� 1� ÿ �10pÿ 2� points for
the unrami®ed part.

Remark 2.12. The corresponding result for p1 3 mod 4, p0 3, is p2 ÿ 4p� 3.

2.3 Counting points on Y and ~Y . We will now show how to count the points of Y

and ~Y over Fp. Recall that D0 � fx0 . . . x5 � 0g. We set

U :� NnD0:

It is easy to count the points of U�Fp� on a computer. For p � 13 one ®nds
aU�F13� � 2140. Together with the following proposition this yields aY�F13� �
11260.
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Proposition 2.13. For pX 5 we have aY �Fp� �aU�Fp� � 50p2 � 50p� 20.

Proof. Recall that N VD0 is the union of the 15 planes Fkl. The map Y ! N replaces
the 10 Segre points by 10 lines, the 20 lines Lklm by quadrics and the 15 points Pklmn

by smooth cubics C�2�G P̂2�6�. The Segre points lie in U, so here we get 10p new
points over Fp. Over R0 :�6Fkln6Lklm nothing happens. Now R0 consists of 15
copies of P2n�4 lines�, hence

aR0�Fp� � 15��p2 � p� 1� ÿ 4�p� 1� � 6� � 15�p2 ÿ 3p� 3�:

Similarly, L0 :�6Lklmn6Pklmn consists of 20 copies of P1n�3 points�. Now

Y ! N replaces L0 by L0 � P1 and its contribution to aY �Fp� is

a�L0 � P1��Fp� � 20�pÿ 2��p� 1�:

Finally, we have a copy of P̂2�6� over each of the 15 points Pklmn, contributing

15�p2 � 7p� 1�:

Hence

aY �Fp� �aU�Fp� � 10p� 15�p2 ÿ 3p� 3�
� 20�pÿ 2��p� 1� � 15�p2 � 7p� 1�

�aU�Fp� � 50p2 � 50p� 20:

Now we count the points of ~Y�Fp�. Let ~U H ~Y be the inverse image of U HY .
One can again easily count the points in ~U�Fp� using

a ~U�Fp� � 2 �afx A U�Fp� j x0 . . . x5 is a square in Fpg

and a computer. Together with the following proposition this yields the desired
a ~Y�F13� � 2� 1720� 9640 � 13080.

Proposition 2.14. If p1 1 mod 4 then a ~Y �Fp� �a ~U�Fp� � 50p2 � 90p� 20.

Proof. Note that the 20 Segre points in ~N�3� lie in ~N�3��Fp�, since 13 � �ÿ1�3 is a
square in Fp. Hence a ~Y �Fp� �a ~N�3��Fp� � 20p and we have to show that
a ~N�3��Fp� �a ~U�Fp� � 50p2 � 70p� 20. Now recall that the branch locus of
~N�3� ! N�3� � N�2� is E

�2�
2 , the union of 20 disjoint quadrics. The intersection of this

branch locus with the resolved Cayley cubic C�2� in N�2� lying over a point Pklmn

consists of the 4 exceptional lines of C�2� ! C�1�. We refer to the complement as
the open Cayley cubic. The contribution of the rami®cation locus E

�2�
2 to a ~N�3��Fp�
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is 20�p� 1�2. By Lemma 2.7 each open Cayley cubic contributes �p2 � 8p� 1�ÿ
4�p� 1� � p2 � 4pÿ 3. Lemma 2.11 implies that the contribution of R0 �
6Fkln6Lklm equals 15�p2 ÿ 2p� 3�. So we ®nd a ~N�3��Fp� ÿa ~U�Fp� �
20�p� 1�2 � 15�p2 � 4pÿ 3� � 15�p2 ÿ 2p� 3� � 50p2 � 70p� 20.

Remark 2.15. For p1 3 mod 4, p0 3, one ®nds ~Y�Fp� �a ~N�3��Fp� �a ~U�Fp��
20�p� 1�2 � 15�p2 � 2pÿ 3� � 15�p2 ÿ 4p� 3� �a ~U�Fp� � 50p2 � 10p� 20.

2.4 Proofs of Propositions 2.4 and 2.6. In the remainder of this section we prove
Propositions 2.4 and 2.6 about the action of Frobenius on H 2

�et�Y� and H 2
�et� ~Y �. We

say that a variety over Z satis®es condition ���p for a prime p if all eigenvalues of
Frobp acting on the second eÂtale cohomology are equal to p. If ���p holds for every
good prime p, then we say that the variety satis®es condition ���; if ���p holds for
every good prime p1 1 mod 4, then we say that the variety satis®es condition ����.
So we have to show that Y and ~Y satisfy ��� and ����, respectively. (Note, however,
that for the proofs of a � b � 0 above, we only used the fact that Y and ~Y satisfy
condition ���p for p � 13.)

We start with Y. Recall the sequence of maps Y !q N�3� � N�2� !q2
N�1� !q1

N�0� �
N HP4. Since q� : H 2

�et�N�3�� ! H 2
�et�Y � is an isomorphism, it su½ces to check that

condition ��� holds for N�3� � N�2�. So the following lemma ®nishes the proof of
Proposition 2.4.

Lemma 2.16. Condition ��� holds for N � N�0�, N�1� and N�2� � N�3�.

Proof. The condition holds for N�0� � N, since H 2
�et�N� � H 2

�et�P4� by the Lefschetz
hyperplane theorem [9, Corollary I.9.4]. In order to lift this result to N�1�, we use the
spectral sequence

E
j;2ÿj

2 � H
j

�et�N�0�;R2ÿjq1;��Ql�� ) H 2
�et�N�1��

associated to q1 : N�1� ! N�0�. Since condition ��� is stable under extensions of
Galois modules, it su½ces to check the analogous condition on the graded parts

E
j;2ÿj

2 of H 2
�et�N�1��. Now we already know that Frobenius acts correctly on E2;0

2 �
H 2

�et�N�0��. For j � 1 we ®nd E1;1
2 � H 1

�et�P;R1q1;��Ql�� � 0, since the support P :�
fPklmng of R1q1;��Ql� has dimension 0. Finally, we have to consider E0;2

2 �
H 0

�et�P;R2q1;��Ql�� � H 2
�et�C�1��l15. So it su½ces to note that C�1� satis®es condition

���. Indeed, H 2�C�1�� is a Galois submodule of H 2�C�2�� and the latter space is gen-
erated by a line and 6 exceptional divisors, all of which are obviously de®ned over Fp.

The step from N�1� to N�2� is similar. Recall that N�2� ! N�1� contracts 20 quadrics
to lines. Hence we have a spectral sequence

E
j;2ÿj

2 � H
j

�et�N�1�;R2ÿjq2;��Ql�� ) H 2
�et�N�2��

with E 2;0
2 � H 2

�et�N�1��, E1;1
2 � 0 and E0;2

2 �0H 2
�et�L�1�klm� � Ql�ÿ1�l20. This proves

the assertion for N�2�.

K. Hulek, J. Spandaw, B. van Geemen and D. van Straten276



Finally, we prove Proposition 2.6, i.e. we check condition ���� for ~Y . Since the
Leray spectral sequence of ~q : ~Y ! ~N�3� induces an exact sequence

0! H 2
�et� ~N�3�� ! H 2

�et� ~Y � ! H 2�P1�l20;

where the P1's are the ®bres over the Segre points, is su½ces to show that ~N�3� satis-
®es ����. (Note that the P1's are de®ned over Fp.) We use a Lefschetz argument relat-

ing H 2
�et� ~N�3�� to H 2

�et�H� for a suitable divisor H H ~N�3�. The complement ~N�3�nH
will contain the 20 Segre points, so we have to modify the hyperplane theorem
to deal with them. This is done in the following lemma, which we will apply to
X � ~N�3�.

Lemma 2.17. Let X be a projective threefold. Let H HX be a divisor such that XnH
is a½ne and S :� Sing�XnH� consists of at most ®nitely many A1-singularities. Let

X̂ ! X be the blow up X in S and let Q be the union of the exceptional quadrics.
Consider the natural maps a : H 2�X̂ � ! H 2�H� and b : H 2�X̂ � ! H 2�Q�. Then b is

injective on the kernel of a.

Proof. Note that H 2�H UQ� � H 2�H�lH 2�Q� since H VQ �q. It follows that
H 2�H UQ;H�GH 2�Q� and we have a commutative diagram

H 2�X̂ ;H UQ�???y
H 1�H� ���! H 2�X̂ ;H� ���! H 2�X̂ � ���!a H 2�H�???y ???yb

H 2�H UQ;H� ���!@ H 2�Q�???y
H 3�X̂ ;H UQ�:

In order to prove the claim it is su½cient to show that H 2�X̂ ;H UQ� � 0. By
Alexander duality

H 2�X̂ ;H UQ� � H4�X̂n�H UQ��GH4�WnS�;

where W :� XnH. Since W is a½ne of dimension 3 we know that Hk�W� � 0 for
k X 4. The exact homology sequence for the pair �W ;WnS� gives

H5�W ;WnS� ! H4�WnS� ! H4�W�:
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Since H4�W� � 0 it is enough to prove that H5�W ;WnS� � 0. Let us ®rst assume
that S � fpg. Then by an excision argument H5�W ;WnS�GH5�U ;Un p� where U
is a suitable contractible neighbourhood of the point p. It remains to show that
H5�U ;Unp� � 0. This is a local problem. Let Q 0HC4 be the quadric cone and let
K � Se VQ 0 be the link. Since U is contractible, we ®nd H5�U ;Unp�GH4�K�. The
manifold K is orientable and 1-connected (see [6, p. 76]). Hence H4�K�GH1�K�G 0
where the ®rst isomorphism is by PoincareÂ duality. The general case where S consists
of several points can be done by induction by removing one point at a time.

Remark 2.18. Note that the proof works for arbitrary isolated hypersurface singu-
larities.

As mentioned before, we will apply the lemma to X � ~N�3�. For H we will take the
pull back of

h :� E
�3�
1 � E

�3�
2 � E3:

Lemma 2.19. The pair � ~N�3�;H� satis®es the conditions of Lemma 2.17.

Proof. It su½ces to show that a0

P
S
�3�
k � a1E

�3�
1 � a2E

�3�
2 � a3E3 is very ample on

P�3� for suitable integers a0; a1; a2; a3 > 0. Indeed, its restriction to N�3� has the same

support as h, since S
�3�
k VN�3� �q. Hence its pullback H supports an ample divisor

on ~N�3�, since ~N�3� ! ~N is ®nite. This implies that the complement ~N�3�nH is a½ne.
We also know that ~N�3�nH is non-singular outside the Segre double points.

It remains to prove the claim about a0

P
S
�3�
k � a1E

�3�
1 � a2E

�3�
2 � a3E3. Let H0 :�P

Sk in P�0�. The divisor H1 :� p�1 �n1H0� ÿ E1 is very ample on P�1� for n1 g 0. In
fact it su½ces that IP�6n1 ÿ 1� be globally generated, where P � fPklmng (see [12,
proof of Proposition II.7.10 (b)]). Similarly, H2 :� p�2 �n2H1� ÿ E2 is very ample on
P�2� for n2 g n1 g 0 and H3 :� p�3 �n3H2� ÿ E3 is very ample on P�3� for n3 g n2 g
n1 g 0. Using p�1 �

P
Sk� �

P
S
�1�
k � 4E1, one ®nds that H1 � n1

P
S
�1�
k � �4n1 ÿ 1� �

E1. Continuing in this fashion for H2 and H3, one ®nds H3 � a0

P
S
�3�
k � a1E

�3�
1 �

a2E
�3�
2 � a3E3 with a0 � n3n2n1, a1 � n3n2�4n1 ÿ 1�, a2 � n3�3n2n1 ÿ 1� and a3 �

2n3n2n1 ÿ 1. So H3 is indeed very ample for suitable a0; a1; a2; a3 > 0.

Lemma 2.20. Let Q be an exceptional quadric obtained by blowing up ~N�3� in a Segre

node. Then condition ���� holds for Q.

Proof. We may assume that the node is �1 : 1 : 1 : ÿ1 : ÿ1 : ÿ1�. The tangent cone,
which is a cone over Q, is given by the equation

x0 � � � � � x5 � x2
0 � x2

1 � x2
2 ÿ x2

3 ÿ x2
4 ÿ x2

5 � 0

in P5 (see [1, p. 181]). So the rulings of Q are de®ned over Fp.
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Proposition 2.21. Condition ���� holds for ~N�3�.

Proof. Let X � ~N�3� and let X̂ be the blow up of X in the 20 Segre nodes. The Leray
spectral sequence of X̂ ! X induces an injection H 2�X� ,! H 2�X̂�, so it su½ces to
prove condition ���� for X̂ . By Lemma 2.17, the comparison theorem between eÂtale
and complex cohomology, and the lemma above it would even su½ce to check con-
dition ���� for H. However, we will see in a moment that condition ���� probably
does not hold for H. This is not a serious problem. Indeed, we just restrict our
attention to eigenvalues of absolute value p in the conditions ���p, ��� and ����. Call
the (weaker) modi®ed conditions ���0p, ���0 and ����0, respectively. For smooth
proper varieties the modi®ed conditions are equivalent to the original ones. Further-
more, the modi®ed conditions are again stable under extensions of Galois modules.
So it su½ces to prove that ����0 holds for H.

Note that h � E
�3�
1 UE

�3�
2 UE3 is a divisor with global normal crossings, i.e. its

components are smooth and meet each other transversally. The same holds for the
pull back H. So we can apply the Mayer±Vietoris spectral sequence (cf. [15, p. 103]).
This spectral sequence abuts to H p�q�H�, degenerates at E2 and has E

p;q
1 �

H q�X � p��, where H�i� is the disjoint union of strata of codimension i, i.e. H�0� con-
sists of the triple points, H�1� is the disjoint union of the intersection curves and
H�0� is the disjoint union of the smooth components of H. Now note that the com-
ponents of H�1� are rational curves, hence E1;1

1 � 0. So in our case we get an exact
sequence

H 0�H�1�� ��!d
1; 0
1

H 0�H�2�� ��! H 2�H� ��! H 2�H�0�� ��!d
0; 2
1

H 2�H�1��:

This exact sequence is related to the weight ®ltration on H 2�H�: one has W0�H 2�H��
�W1�H 2�H�� � E2;0

y � Coker�d 1;0
1 � and GrW

2 �H 2�H�� � E0;2
y � Ker�d 0;2

1 � (cf.
[15]). Corollary 2.9 implies that condition ���� holds for GrW

2 JH 2�H�0��. On the
other hand, Frobp � id on W0 (cf. [5, §14]), so condition ���� does not hold on W0 if
W0 0 0! However, as we remarked in the ®rst paragraph of this proof, it su½ces to
note that the weaker condition ����0 clearly holds for W0.

Remark 2.22. Alternatively, one can use the strictness of the weight ®ltration (cf. [5,
§1]). Indeed, we want to show that for p1 1 mod 4 the eigenvalues of Frobp on the
image I of a : H 2�X̂� ! H 2�H� are all equal to p. Strictness of the weight ®ltration
implies that I VW1 � 0, i.e. that I injects into GrW

2 �H 2�H��JH 2�H�0��, where we
know condition ���� by Corollary 2.9.

3 The L-function of Y and ~Y

In this section we will show that the L-functions of H 3
�et�Y� and H 3

�et� ~Y� are modular.
In fact, the L-functions are equal and belong to the modular form
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f �q� :� �h�q�h�q2�h�q3�h�q6��2

� q
Yy
n�1

�1ÿ qn�2�1ÿ q2n�2�1ÿ q3n�2�1ÿ q6n�2

� qÿ 2q2 ÿ 3q3 � 4q4 � 6q5 � 6q6 ÿ 16q7

ÿ 8q8 � 9q9 ÿ 12q10 � 12q11 ÿ 12q12 � 38q13 � � � �

�:
Xy
n�1

anqn:

f is a cusp form of weight 4 with respect to the groups

G0�6� :� a b

c d

� �
A SL2�Z� : c1 0 mod 6

� �
and

G1�6� :� a b

c d

� �
A G0�6� : a1 1 mod 6

� �
:

These groups de®ne the same modular forms of even weight since their images in
PSL2�Z� coincide. For the same reason, the natural map X1�6� ! X0�6� between the
associated modular curves is an isomorphism. We denote the universal elliptic curve
over X1�6� by S1�6�. Standard formulae imply that the space S4�G0�6�� of cusp forms
of weight 4 has dimension 1 and it is well known that f generates this space [18].
Furthermore, it is a (normalized) newform, since there are no cusp forms of weight 4
and level 2 or 3.

The L-function of f is the Mellin transform

L� f ; s� :�
Xy
n�1

annÿs

of f. Since an � O�n3=2� for n!y, it converges for <�s� > 5=2. It has an analytic
continuation to an entire function. Furthermore, there is a functional equation re-
lating L� f ; s� and L� f ; 4ÿ s�. Since f is a Hecke eigenform, its L-function is an Euler
product

L� f ; s� �
Y

p prime

Lp� f ; s�

with Euler factors

Lp� f ; s� � 1

1ÿ appÿs � p3 � pÿ2s
for pX 5

and Lp� f ; s� � �1� p � pÿs�ÿ1 for p < 5.

K. Hulek, J. Spandaw, B. van Geemen and D. van Straten280



The L-function of the Galois module H 3
�et�Y � is also an Euler product. Its Euler

factor at a prime pX 5 is

Lp�H 3
�et�Y�; s� �

1

1ÿ ap�Y �pÿs � p3 � pÿ2s
;

where ap�Y� :� t3 :� tr�Frob�p ; H 3
�et�Y ��. The L-function of H 3

�et� ~Y � is de®ned analo-
gously.

Our proof of the modularity of L�H 3
�et�Y�; s� will follow the lines of [21, §3.5]. The

main point is that a theorem due to Serre (see also [17]), based on Faltings work
and recast by LivneÂ, essentially reduces the proof to checking equality of the Fourier
coe½cients for only ®nitely many primes! To make this precise we recall LivneÂ's
theorem [14, Theorem 4.3].

Theorem 3.1. Let S be a ®nite set of prime numbers and let r1; r2 be continuous

2-dimensional 2-adic representations of Gal�Q=Q� unrami®ed outside S. Let QS

be the compositum of all quadratic extensions of Q which are unrami®ed outside S. Let

T be a set of primes, disjoint from S, such that Gal�QS=Q� � fFrobpjQS
: p A Tg.

Suppose that

(a) tr r1�Frobp� � tr r2�Frobp� for all p A T ;

(b) det r1�Frobp� � det r2�Frobp� for all p A T ;

(c) tr r1 1 tr r2 1 0 mod 2 and det r1 1 det r2 mod 2.

Then r1 and r2 have isomorphic semisimpli®cations, whence L�r1; s� � L�r2; s�. In

particular, the good Euler factors of r1 and r2 coincide.

Theorem 3.2. We have L�H 3
�et�Y�; s� �� L�H 3

�et� ~Y �; s� �� L� f ; s�, i.e. the Euler factors for

pX 5 coincide.

Proof. Note that L�H 3
�et� ~Y �; s� �� L�H 3

�et�Y�; s�, since ~Y ! Y is a ®nite map inducing

an isomorphism on H 3;0. So it su½ces to show that L�H 3
�et�Y�; s� �� L� f ; s�.

We work with 2-adic cohomology (because of LivneÂ's theorem). Recall that
L� f ; s� � L�rf ; s�, where rf : Gal�Q=Q� ! Aut�F � is the 2-dimensional 2-adic rep-
resentation associated to f by Deligne [4]. The L-series L�H 3

�et�Y �; s� also depends on
the Galois module structure of H 3

�et�Y�, so L�rY ; s� would be a more appropriate
notation, where rY denotes the action of Gal�Q=Q� on H 3

�et�Y�. We apply LivneÂ's
theorem to r1 � rY , r2 � rf and S � f2; 3g. We can take T � f5; 7; 11; 13; 17; 19;

23; 73g, since QS � Q� �������ÿ1
p

;
���
2
p

;
���
3
p � � Q�e2pi=24� and the image of FrobpjQS

under
Gal�QS=Q� !@ �Z=24Z�� is simply p mod 24.

We claim that the conditions (a), (b) and (c) of LivneÂ's theorem follow from

(i) the p-th Fourier coe½cient of f coincides with the trace t3�p� of Frobp acting
on H 3

�et�Y�� for p A f5; 7; 11; 13; 17; 19; 23; 73g � T ;
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(ii) det�Frobp; H 3
�et�Y�� � �p3 for all p A T ;

(iii) t3�p� is even for all pX 5.

Indeed, LivneÂ's conditions (a) and (b) specialize to (i) and (ii) respectively, since
det�rf �Frobp�� � p3 by Deligne or by inspection of the p-th Euler factor of L� f ; s�.
By Chebotarev's density theorem it su½ces to check condition �c� in Frobp for almost
all p. Since for pX 5 each determinant equals Gp3, we have det rY �Frobp�1 11
det rf �Frobp�mod 2. Finally, the evenness of tr rf �Frobp� for pX 5 was proved [21,
Lemma 3.12], so condition (c) indeed reduces to condition (iii).

It remains to prove the conditions (i), (ii) and (iii). Recall that

t3 � �1� t2 � t4 � p3� ÿaY�Fp�
� �1� 50p� 50p2 � p3� ÿaY �Fp�

(cf. Theorem 2.1 and Proposition 2.4). By the formula aY�Fp� �aU�Fp� � 50p2�
50p� 20 this boils down to

t3 � p3 ÿ 19ÿaU�Fp�:

Using a computer to determine aU�Fp� we get the following table.

p aU�Fp� aY �Fp� t3

5 100 1620 6
7 340 3160 ÿ16

11 1300 7920 12
13 2140 11260 38
17 5020 20340 ÿ126
19 6820 25840 20
23 11980 39600 168
73 388780 658900 218

We wrote a straightforward Maple program to compute these numbers. The com-
putation of aU�F23� took less than a minute on a Macintosh G4 with a 350 MHz
processor; the computation of aU�F73� took about 80 minutes. Using more advanced
techniques one can speed up these calculations considerably. Note that t3 indeed co-
incides with the corresponding Fourier coe½cient of f for these primes. This proves
condition (i).

Condition (ii) follows from the observation that t3 0 0 for the 8 primes above.
Indeed, if a and b denote the eigenvalues of Frobenius on H 3

�et, then det�Frobp� � ab

is an integer of absolute value p3 and we only have to exclude the case fa; bg �
fÿp3=2; p3=2g. However, in that case we would have t3 � a� b � 0.

Finally, we have to check that aU�Fp� is even for every prime pX 5. Consider
the involution �x0 : � � � : x5� 7! �xÿ1

0 : � � � : xÿ1
5 � on U � fx A N : x0 . . . x5 0 0g. Its

®xpoints are the 10 Segre points. Since the number of ®xpoints is even, so is aU�Fp�.
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Remark 3.3. This implies that ap � �1� 60p� 60p2 � p3� ÿa ~Y�Fp� for p1 1 mod
4, since t2 :� tr�Frobp; H 2

�et� ~Y�� � 60p and t4 :� tr�Frobp; H 4
�et� ~Y �� � 60p2 in this case.

Conversely, one can use Theorem 3.2 to determine t2 and t4 on ~Y for p1 3 mod 4.
Indeed, our proof of condition ���� also shows that the eigenvalues of Frobp on
H 2

�et� ~Y� are Gp for p1 3 mod 4. Hence �t2; t4� � k�p; p2� for some integer k. The
inequality

j�1� kp� kp2 � p3� ÿa ~Y�Fp�j < 2p3=2

and a computer computation of a ~Y�Fp� then shows that k � 40 for p � 7; 11;
19; . . . ; 59. (In particular, for these primes the variety ~Y does not satisfy condition
���p.) Of course, we expect that k � 40 for all primes p satisfying p1 3 mod 4, p0 3,
but we did not try to prove this.

4 Correspondences with relatives

We proved in Section 3 that

L�H 3
�et�Y�; s� �� L�H 3

�et� ~Y ; s� �� L� f ; s�

where f �q� � �h�q�h�q2�h�q3�h�q6��2 is the normalized generator of S4�G0�6�� �
S4�G1�6��. The Tate conjecture then says that there should be a correspondence be-
tween Y and W � S1�6� �X1�6� S1�6�. We shall in fact see that there is a birational
equivalence between Y and W which is de®ned over Q.

Recall from [3] that the universal elliptic curve S1�6� ! X1�6�GP1 is given by the
pencil

�X � Y ��Y � Z��Z � X� � tXYZ � 0:

Theorem 4.1. There exists a birational equivalence between S1�6� �X1�6� S1�6� and Y

which is de®ned over Q.

Proof. One ®nds immediately from the de®ning equations of the Barth±Nieto quintic
that

x0 � x1 � x2 � ÿ�x3 � x4 � x5�; 1

x0
� 1

x1
� 1

x2
� ÿ 1

x3
� 1

x4
� 1

x5

� �
:

By multiplying these two equations we obtain two pencils of cubics, namely

�x0 � x1 � x2� 1

x0
� 1

x1
� 1

x2

� �
� �x3 � x4 � x5� 1

x3
� 1

x4
� 1

x5

� �
�: t 0:
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The ®rst (and similarly the second) pencil can also be written in the form

�x0 � x1 � x2��x1x2 � x2x0 � x0x1� � t 0x0x1x2

or equivalently

�x0 � x1��x1 � x2��x2 � x0� � �1ÿ t 0�x0x1x2 � 0:

Setting t � 1ÿ t 0 this is precisely Beauville's pencil. Hence the rational map given by

�x0 : � � � : x5� 7! ��x0 : x1 : x2�; t; �x3 : x4 : x5��
de®nes a rational equivalence between Y HP5 and W HP2 � P1 � P2.

Remark 4.2. The analogous procedure using the equations

x0 � x1 � ÿ�x2 � x3 � x4 � x5� and
1

x0
� 1

x1
� ÿ 1

x2
� 1

x3
� 1

x4
� 1

x5

� �
gives rise to a pencil of K3-surfaces on Y.

H. Verrill has studied in [21] a Calabi±Yau variety ZA3
which is the smooth model

of the variety V given in inhomogeneous coordinates by

V : �1� x� xy� xyz��1� z� yz� xyz� � �t� 1�2
t

xyz:

She has shown that L�H 3
�et�ZA3

�; s� �� L� f ; s� and hence one also expects a corre-
spondence between Y and ZA3

, resp. N and V.

Theorem 4.3. There exists a birational equivalence between N and V which is de®ned

over Q.

Proof. The variety V is ®bred by a pencil of K3-surfaces. In order to ®nd a suitable
®bration of Y we consider the pencil Ht � fx0 � tx1g containing the plane F01 �
fx0 � x1 � 0g and a residual quartic surface Xt, i.e.

Ht VN � F01 UXt:

Combining the equations x0 � tx1 and x0 � � � � � x5 � 0 we obtain

x1 � ÿ 1

t� 1
�x2 � x3 � x4 � x5� and x0 � ÿ t

t� 1
�x2 � x3 � x4 � x5�:

Substituting this into the second de®ning equation of N we get

X5

i�0

x0 . . . x̂i . . . x5 � �x2 � x3 � x4 � x5�
�

t

�t� 1�2 e1e3 ÿ e4

�
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where ej � ej�x2; x3; x4; x5� is the j-th elementary symmetric function. Hence the
residual quartic Xt is given by

Xt : e1e3 ÿ �t� 1�2
t

e4 � 0:

We consider the Cremona transformation of P3 given by

�x2 : x3 : x4 : x5� � �1 : x : xy : xyz�:

Note that under this transformation

e1 � 1� x� xy� xyz

e3 � x2y � �1� z� yz� xyz�
e4 � x2y � xyz:

Comparing this with the equations de®ning V shows that the rational map
�x2 : x3 : x4 : x5� 7! �1 : x : xy : xyz� : N d V gives the desired birational equiva-
lence.

Remark 4.4. 1. Combining the maps from Theorems 4.1 and 4.3 one obtains a bira-
tional equivalence between V and W. Saito and Yui have also found an explicit
birational equivalence between these varieties (cf. [23, p. 542]). Their map, however,
di¨ers from ours.

2. By a result of Batyrev [2] the two smooth Calabi±Yau varieties Y and ZA3
must

have the same Betti numbers and hence also the same Hodge numbers. This agrees
with our computations. Note however, that we still need the calculation of Section 2
to compute the Hodge numbers of Z.

The birational equivalence between N and W means that one can associate to each
general pair of points �P;Q� on the same ®bre E of S1�6� ! X1�6� an H2;2-invariant
Kummer surface, resp. two abelian surfaces with a �1; 3�-polarization and a level-2
structure. This can be made explicit in the following sense. Let �P;Q� A W . Then we
can choose homogeneous coordinates P � �x0 : x1 : x2� and Q � �x3 : x4 : x5� such
that x0 � � � � � x5 � 0. Then x0; . . . ; x5 de®ne a quartic surface

X �
�X5

i�0

xiti � 0

�
HP3

where the ti are the H2;2-invariant quartic polynomials given in [1, p. 189]. The sur-
face X contains 2 sets of 16 disjoint lines and taking the branched cover along these
sets of 16 lines we obtain after blowing down the �ÿ1�-curves two abelian surfaces A
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and A 0. The line bundle OX �1� de®nes a �2; 6�-polarization, and hence also a �1; 3�-
polarization on A and A 0 and the action of the Heisenberg group H2;2 gives a level-2
structure.

Conversely, given a period matrix t � t1 t2

t2 t3

� �
in Siegel upper half space we can

associate to it an abelian surface A together with a �1; 3�-polarization and a level-2
structure. These data de®ne 4 explicitely known theta functions y0; y1; y2; y3 such that
the map de®ned by these functions embed the Kummer surface X of A as an H2;2-
invariant quartic surface (see [13]). Using the derivatives of y0; y1; y2; y3 and Heisen-
berg symmetry one can, at least in principle, compute the 16 lines on X in P3. There
is then a unique H2;2-invariant quartic of the form fP xiti � 0g containing these
lines and one obtains X � fP xiti � 0g. The pair �P;Q� A W with P � �x0 : x1 : x2�
and Q � �x3 : x4 : x5� is then the element of W associated to the point �t� A A1;3�2�.
The latter variety has Z and ~Y as smooth models.

Remark 4.5. Threefolds which have a two dimensional Galois representation in H 3
�et

which is known or conjectured to be associated to an elliptic modular form of weight
4 are not easy to ®nd. Here we list, in order of the level N of the corresponding
modular form, the ones we are aware of. Note that in several cases correspondences
between relatives are not (yet) known.

1. N � 6. There is a unique newform, see Section 3. This family of threefolds con-
tains the ones discussed in this paper, the Barth±Nieto quintic N, its double cover
~Y which is birational to the moduli space A1;3�2�, Verrill's threefold ZA3

and the
®bred square W of the universal universal curve over G1�6�. These relatives are
in correspondence with each other. Two other relatives were found in [20]: they
are given by s1 � as5 � bs2s3 � 0 for �a : b� � �1 : 1�; �ÿ2 : 1�, where the si are
the elementary symmetric functions in 6 variables. No correspondences between
any of these two and the other relatives are known. Note that the Barth±Nieto
quintic corresponds to �1 : 0�.

2. N � 8. There is a unique newform in S4�G0�8��. In this family we have the de-
singularization X 0 of a Siegel modular threefold, denoted by X in [19, p. 56]. The
variety X is a complete intersection of four quadrics in P7

Y 2
0 � X 2

0 � X 2
1 � X 2

2 � X 2
3

Y 2
1 � X 2

0 � X 2
1 ÿ X 2

2 ÿ X 2
3

Y 2
2 � X 2

0 ÿ X 2
1 � X 2

2 ÿ X 2
3

Y 2
3 � X 2

0 ÿ X 2
1 ÿ X 2

2 � X 2
3 :

(There is a misprint in the equations in [19]; these equations agree with those given
in the appendix of [22], where X is denoted by W and the variables Y1 and Y2 are
interchanged.) A relative of X is the ®bred square W of the universal universal
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curve over G0�8�. Using the moduli interpretation of X and W, a correspondence
between them was found in [7]. Using the explicit equation for (an open part of ) W

U0 �Uÿ1
0 �U1 �Uÿ1

1 �U2 �Uÿ1
2 �U3 �Uÿ1

3 � 0

(cf. [19, p. 60]), J. Stienstra found a dominant rational map X !W given by

Ui :� �Yi �
���
2
p

Xi�=�Yi ÿ
���
2
p

Xi�

(there are unfortunately also misprints in the formulae given in [19, p. 60] for this
map).

3. N � 9. There is a unique newform in S4�G0�9�� which is de®ned by a Hecke
character of the ®eld Q� �������ÿ3

p �. A threefold (a desingularization of the intersection
of two cubics in P5) with this L-series is given in the appendix of [22]. Relatives
are the ®bred square of the universal universal curve over G0�9� and a product of
3 elliptic curves, de®ned over Q, with j-invariant 0. No correspondences between
these relatives seem to be known.

4. N � 12. There is a unique newform in S4�G0�12��. In the appendix of [22] a
complete intersection of a quadric and a quartic in P5 having this L-series is given.

5. N � 21. The threefold de®ned by an equation with �a : b� � �ÿ3 : 1� as in the
N � 6 case has an L-series which corresponds to a newform in S4�G0�21��, see [20].

6. N � 25. There is a newform in S4�G0�25�� characterized by the ®rst 5 Fourier
coe½cients �a1; . . . ; a5� � �1; 1; 7;ÿ7; 0�. The Schoen quintic, the 3-fold in P5

de®ned by

X 5
0 � X 5

1 � X 5
2 � X 5

3 � X 5
4 ÿ 5X0X1X2X3X4X5 � 0

has this L-series (see [17, Proposition 5.3]). A relative is indicated in Remark 5.6
of that paper (again a ®bred square of a universal elliptic curve), but no corre-
spondence is known.

7. N � 50. The Hirzebruch quintic 3-fold in P4, which has 126 nodes, has an
L-function which corresponds to the newform in S4�G0�50�� characterized by
�a1; . . . ; a5� � �1; 2;ÿ2; 4; 0� (see [22]). No relatives are (explicitly) known, but
there is of course the usual ®bred square of the universal curve.

Remark 4.6. Since Z is birationally isomorphic to the Siegel modular threefold
A1;3�2�, the holomorphic three form on Z corresponds to a Siegel modular cusp
form of weight 3 for the paramodular group G1;3�2�H Sp�4;Q�. In [11], this cusp
form was identi®ed as D3

1 . One might expect that D3
1 is the Saito±Kurokawa lift of the

elliptic modular form f, but we do not know whether this is indeed the case. In [19]
(see also the previous remark for N � 8) a similar situation occurred.
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