
J. reine angew. Math., Ahead of Print Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2014-0144 © De Gruyter 2015

Twisted cubics on cubic fourfolds
By Christian Lehn at Paris, Manfred Lehn at Mainz, Christoph Sorger at Nantes

and Duco van Straten at Mainz

Abstract. We construct a new twenty-dimensional family of projective eight-dimen-
sional irreducible holomorphic symplectic manifolds: the compactified moduli space M3.Y /

of twisted cubics on a smooth cubic fourfold Y that does not contain a plane is shown to be
smooth and to admit a contractionM3.Y /! Z.Y / to a projective eight-dimensional symplec-
tic manifoldZ.Y /. The construction is based on results on linear determinantal representations
of singular cubic surfaces.

Introduction

According to Beauville and Donagi [7], the Fano varietyM1.Y / of lines on a smooth cu-
bic fourfold Y � P5C is a smooth four-dimensional holomorphically symplectic variety which
is deformation equivalent to the second Hilbert scheme of a K3-surface. The symplectic struc-
ture can be constructed as follows: let C � M1.Y / � Y denote the universal family of lines
and let pri be the projection onto the i -th factor of the ambient space. For any generator
˛ 2 H 3;1.Y / Š C one gets a holomorphic 2-form !1 WD pr1�pr�2˛ on M1.Y /.

More generally, one may consider moduli spaces of smooth rational curves of arbitrary
degree d on Y . For d � 2 such spaces are no longer compact, and depending on the purpose
one might consider compactifications in the Chow variety or the Hilbert scheme of Y or in the
moduli space of stable maps to Y . To be specific we let Md .Y / denote the compactification in
the Hilbert scheme HilbdnC1.Y /. The moduli spaces Md .Y / and their rationality properties
have been studied by de Jong and Starr [10]. They showed that any desingularisation ofMd .Y /

carries a canonical 2-form !d which at a generic point ofMd .Y / is non-degenerate if d is odd
and � 5, and has one-dimensional radical if d is even and � 6. For the remaining small values
of d , de Jong and Starr found that the radical of the form has dimension 3, 2 and 3 at a generic
point if d D 2, 3 or 4, respectively.

The geometric reason for the degeneration of !2 can be seen as follows: Any rational
curve C of degree 2 on Y spans a two-dimensional linear space E � P5 which in turn cuts out

The first-named author was supported by the ANR program VHSMOD, Grenoble, the Labex Irmia, Stras-
bourg, and, during the revision of the article, by the DFG through the research grant Le 3093/1-1. The third-named
author would like to thank the SFB Transregio 45 Bonn-Mainz-Essen and the Max-Planck-Institut für Mathematik
Bonn for their hospitality.

Bereitgestellt von | Johannes Gutenberg Universitaet Mainz
Angemeldet

Heruntergeladen am | 03.12.15 16:45



2 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

a plane curve of degree 3 from Y . As this curve contains C , it must have a line L as residual
component. Mapping ŒC � to ŒL� defines a natural morphism M2.Y /! M1.Y /, the fibre over
a point ŒL� 2 M1.Y / being isomorphic to the three-dimensional space of planes in P5 that
contain the line L.

The geometry of M3.Y / is much more interesting. We show first:

Theorem A. Let Y � P5 be a smooth cubic hypersurface that does not contain a
plane. Then the moduli spaceM3.Y / of generalised twisted cubic curves on Y is a smooth and
irreducible projective variety of dimension 10.

Let !3 denote the holomorphic 2-form defined by de Jong and Starr. The purpose of this
paper is to produce a contractionM3.Y /! Z to an eight-dimensional symplectic manifoldZ.
More precisely, we will prove:

Theorem B. Let Y � P5 be a smooth cubic hypersurface that does not contain a
plane. Then there are a smooth eight-dimensional holomorphically symplectic manifoldZ and
morphisms u WM3.Y /! Z and j W Y ! Z with the following properties:

(1) The symplectic structure ! on Z satisfies u�! D !3.

(2) The morphism j is a closed embedding of Y as a Lagrangian submanifold in Z.

(3) The morphism u factors as follows:

M3.Y /
u //

a
##

Z

Z0;

�

>>

where a W M3.Y / ! Z0 is an étale locally trivial P2-bundle and � W Z0 ! Z is the
blow-up of Z along Y .

(4) The topological Euler number of Z is e.Z/ D 25650.

Moreover, Z is simply-connected, and H 0.Z;�2Z/ D C!. In particular, Z is an irreducible
holomorphic symplectic manifold and carries a hyperkähler metric.

Since 25650 is also the Euler number of Hilb4.K3/, it seems likely thatZ is deformation
equivalent to the fourth Hilbert scheme of a K3-surface.

The manifold Z does of course depend on Y and should systematically be denoted by
Z.Y /. In order to increase the readability of the paper we have decided to stick with Z.
Nevertheless, the construction works well for any flat family Y ! T of smooth cubic fourfolds
without planes and yields a family Z! T of symplectic manifolds.

The two-step contraction u W M3.Y / ! Z has an interesting interpretation in terms of
matrix factorisations. Let P D CŒx0; : : : ; x5� and let R D P=f , where f is the equation of a
smooth cubic hypersurface Y � P5. The ideal I � R of a generalised twisted cubic C � Y
is generated by two linear forms and three quadratic forms. As Eisenbud [14] has shown, the
minimal free resolution

0 � I  � R0  � R1  � R2  � � � �
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becomes 2-periodic for an appropriate choice of bases for the free R-modules Ri . Going back
in the resolution, information about I gets lost at each step before stabilisation sets in. One can
show that this stepwise loss of information corresponds exactly to the two phases

M3.Y /! Z0 and Z0 ! Z

of the contraction of M3.Y /. Thus periodicity begins one step earlier for curves that are arith-
metically Cohen–Macaulay than for those that are not. Consequently, Z truly parameterises
isomorphism classes of Cohen–Macaulay approximations in the sense of Auslander and Buch-
weitz [3]. We intend to return to these questions in a subsequent paper.

Structure of the paper. In Section 1, we introduce the basic objects of the discussion:
generalised twisted cubics and their moduli space. The focus lies on describing the possible
degenerations of a smooth twisted cubic space curve and understanding the fundamental dif-
ference between curves that are arithmetically CM and those that are not. Any generalised
twisted cubic C spans a three-dimensional projective space hC i and defines a cubic surface
S D Y \ hC i. In Section 2, we describe the moduli spaces of generalised twisted cubics on
possibly singular cubic surfaces S . Such curves are related to linear determinantal represen-
tations of S . In Section 3, we study this relation in the universal situation of integral cubic
surfaces in a fixed P3. This is the technical heart of the paper. The main tool are methods from
geometric invariant theory. The results obtained in this section will be applied in Section 4 to
the family of cubic surfaces cut out from Y by arbitrary three-dimensional projective subspaces
in P5. With these preparations we can finally prove all parts of the main theorems.

Acknowledgement. This project got launched when L. Manivel pointed out to one of
us that the natural morphism M3.Y / ! Grass.6; 4/ to the Grassmannian admits a Stein fac-
torisation M3.Y / ! ZStein ! Grass.6; 4/ such that ZStein ! Grass.6; 4/ has degree 72. We
are very grateful to him for sharing this idea with us. We have profited from discussions with
C. von Bothmer, I. Dolgachev, E. Looijenga and L. Manivel.

Note added in proof. Since this paper was first submitted, it was shown by N. Adding-
ton and one of us [1] that the eight-dimensional symplectic manifolds Z.Y / are indeed bira-
tional and hence deformation equivalent to Hilb4.S/ if Y is a generic cubic fourfold of Pfaffian
type and S is the associated K3-surface. This result also implies that our family is a locally
complete family of projective irreducible symplectic manifolds.

1. Hilbert schemes of generalised twisted cubics

A rational normal curve of degree 3, or twisted cubic for short, is a smooth curve C � P3

that is projectively equivalent to the image of P1 under the Veronese embedding P1 ! P3 of
degree 3. The set of all twisted cubics is a 12-dimensional orbit under the action of PGL4.
Piene and Schlessinger [31] showed that its closureH0 is a smooth 12-dimensional component
of Hilb3nC1.P3/ and that the full Hilbert scheme is in fact scheme theoretically the union of
H0 and a 15-dimensional smooth variety H1 that intersect transversely along a smooth divisor
J0 � H0. The second component H1 parameterises plane cubic curves together with an
additional and possibly embedded point; it will play no further rôle in our discussion.
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We will refer to any subscheme C � P3 that belongs to a point in H0 as a generalised
twisted cubic and to H0 as the Hilbert scheme of generalised twisted cubics on P3.

There is an essential difference between curves parameterised by H0 n J0 and those
parameterised by J0. This difference is crucial for almost all arguments in this article and
enters all aspects of the construction. We therefore recall the following facts from the articles
of Ellingsrud, Piene, Schlessinger and Strømme [15, 16, 31] in some detail.

(1) Curves C with ŒC � 2 H0nJ0 are arithmetically Cohen–Macaulay (aCM), i.e., their affine
cone in C4 is Cohen–Macaulay at the origin. The homogeneous ideal of such a curve is
generated by a net of quadrics .q0; q1; q2/ that arise as minors of a 3� 2-matrix A0 with
linear entries. There is an exact sequence

(1.1) 0! OP3.�3/˚2
A0
��! OP3.�2/˚3

ƒ2At
0

����! OP3 �! OC �! 0:

Up to projective equivalence there are exactly eight isomorphism types of aCM-curves
represented by the following matrices:

A.1/ D
�
x0 x1
x1 x2
x2 x3

�
; A.2/ D

�
x0 0
x1 x2
x2 x3

�
; A.3/ D

�
x0 0
x1 x2

0 x3

�
; A.4/ D

�
x0 0
x1 x1

0 x3

�
;

A.5/ D
�
x0 0
x1 x0
x2 x3

�
; A.6/ D

�
x0 0
x1 x0

0 x3

�
; A.7/ D

�
x0 0
x1 x0
x2 x1

�
; A.8/ D

�
x0 0
x1 x0

0 x1

�
:

The dimensions of the corresponding strata in H0 are 12, 11, 10, 9, 9, 8, 7 and 4 in
the given order. A.1/ defines a smooth twisted cubic, A.2/ the union of a smooth plane
conic and a line, and A.3/ a chain of three lines. These three types are local complete
intersections. A.4/ defines the union of three lines that meet in a point but do not lie in
the same plane. The matrices in the second row define non-reduced curves that contain a
line with multiplicity � 2, but are always purely 1-dimensional.

(2) Curves C with ŒC � 2 J0 are not Cohen–Macaulay (non-CM). The homogeneous ideal of
such a curve C is generated by three quadrics, which in appropriate coordinates can be
written as x20 ; x0x1; x0x2, and a cubic polynomial

h.x1; x2; x3/ D x
2
1a.x1; x2; x3/C x1x2b.x1; x2; x3/C x

2
2c.x1; x2; x3/:

The latter defines a cubic curve in the plane ¹x0 D 0º with a singularity at the point
Œ0 W 0 W 0 W 1�. Note that the three quadratic generators still arise as minors of a 3 � 2-
matrix, namely

A0 D
�
0 �x0 x1

x0 0 �x2

�t
:

There is an exact sequence

0! OP3.�4/! OP3.�3/3 ˚OP3.�4/

! OP3.�2/3 ˚OP3.�3/! OP3 ! OC ! 0:

Up to projective equivalence there are nine isomorphism types of non-CM curves: The
generic 11-dimensional orbit is represented by a nodal curve with polynomial

h D x31 C x
3
2 C x1x2x3;

and the 6-dimensional unique closed orbit by a line with a planar triple structure defined
by h D x31 .
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In each case, the linear span of C is the ambient space P3. Because of this it is easy
to see that for any m � 3 the Hilbert scheme Hilb3nC1.Pm/ contains a smooth component
Hilbgtc.Pm/ that parameterises generalised twisted cubics and that fibres locally trivially over
the Grassmannian variety of 3-spaces in Pm. The morphism

s W Hilbgtc.Pm/! Grass.CmC1; 4/

maps a generalised twisted cubic in Pm to the projective 3-space hC i spanned by C . Converse-
ly, if Œp� 2 Grass.CmC1; 4/ is a point represented by an epimorphism p W CmC1 ! W onto a
four-dimensional vector space W , or equivalently, by a three-dimensional space P .W / � Pm,
then the fibre s�1.Œp�/ is the Hilbert scheme of generalised twisted cubics in P .W /. Clearly,
dim Hilbgtc.Pm/ D 4m. For any projective scheme X � Pm let

Hilbgtc.X/ WD Hilb3nC1.X/ \ Hilbgtc.Pm/

denote the Hilbert scheme of generalised twisted cubics on X .
Similarly there is a smooth Cartier divisor J.Pm/ � Hilbgtc.Pm/ that parametrises gen-

eralised twisted cubics of non-CM type. Again, it fibres locally trivially over the Grassmannian
with fibres isomorphic to J0. The intersection J.X/ WD Hilbgtc.X/\J.Pm/ is a Cartier divisor
on Hilbgtc.X/.

Let C � Hilbgtc.P5/ � P5 denote the universal family of generalised twisted cubics
and let pr1 and pr2 be the projections to Hilbgtc.P5/ and P5, respectively. It follows from
[16, Corollary 2.4.] that the sheaf A WD pr1�.OC ˝ pr�2OP5.3// is locally free of rank 10
and that the natural restriction homomorphism " W S3C6 ˝ OHilbgtc.P5/ ! A is surjective.
Let f 2 S3C6 be a non-zero homogeneous polynomial of degree 3 and Y D ¹f D 0º the
corresponding cubic hypersurfaces. Then the Hilbert scheme

M3.Y / WD Hilbgtc.Y /

of generalised twisted cubic curves on Y is scheme theoretically isomorphic to the vanishing
locus of the section ".f / 2 H 0.Hilbgtc.P5/;A/. In particular, any irreducible component of
M3.Y / is at least 10-dimensional.

The incidence variety M3 � Hilbgtc.P5/ � P .S3C6/ of pairs .C; Y / of a generalised
twisted cubic C and a cubic fourfold Y containing C is a P45-bundle over the smooth variety
Hilbgtc.P5/ and hence itself smooth. Thus for a general point ŒY � 2 P .S3C6/ the fibreM3.Y /

of the natural projection M3 ! P .S3C6/ is smooth. In fact, we will show something much
stronger:

A simple dimension count shows that the set of cubic polynomials in six variables that
vanish along a plane is 55-dimensional and hence a divisor in the 56-dimensional space of all
cubic polynomials. We will from now on impose the condition that Y is smooth and does not
contain a plane. As we will show in Section 4.3 this implies that M3.Y / is smooth as well.

Let P .S3C6/0 denote the open subset parametrising smooth cubic hypersurfaces Y that
do not contain a plane. If C is a non-CM curve on such a Y with an embedded point at p 2 Y ,
then the cubic surface S D Y \ hC i cannot be smooth at p. Hence hC i must be contained in
the tangent space to Y at p. Moreover, C defines a plane P in hC i. Conversely, any triple of
a point p 2 Y and 2- and 3-planes P � E in the tangent space of Y at p determine a non-CM
curve C . In this way we obtain a bijective parametrisation Flag.2; 3; TY /! J.Y /, where Flag
denotes the variety of partial flags of subspaces of the indicated dimensions.
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6 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

Lemma 1.1. The natural morphism Flag.2; 3; TY / ! J.Y / is an isomorphism. In
particular, M3.Y / is smooth along J.Y /.

Proof. Let J � J.P5/ � P .S3C6/0 denote the incidence variety of pairs .C; Y / of a
generalised twisted cubic of non-CM type and a smooth cubic fourfold containing it. Then J is
an open subset of a P45-bundle over J.P5/ and hence smooth. On the other hand, we may form
the relative flag variety Flag.2; 3; TY=P.S3C6/0/ for the tautological family Y ! P .S3C6/0 of
hypersurfaces. Clearly, this family is also smooth. Hence the natural morphism

Flag.2; 3; TY=P.S3C6/0/! J

is a bijection of smooth varieties and thus an isomorphism. Consequently, the same must be
true for any fibre of this morphism over a point ŒY � 2 P .S3C6/0. In this way, J.Y / is seen to
be a smooth Cartier divisor in M3.Y /. But then M3.Y / must be smooth along J.Y /.

To simplify the notation we put G WD Grass.C6; 4/. Closed points in G parameterise
epimorphisms p W C6 ! W or, equivalently, three-dimensional linear subspaces P .W / � P5.
Since a smooth cubic hypersurface cannot contain a 3-space, the intersection S D P .W / \ Y
is a cubic surface in P .W /, and since Y does not even contain a plane, the surface S is reduced
and irreducible, i.e., integral.

By construction, M3.Y / D Hilbgtc.Y / comes equipped with a morphism

s W Hilbgtc.Y /! G; ŒC � Y � 7! ŒhC i � P5�;

with fibres
s�1.Œp�/ D Hilbgtc.S/; S D Y \ P .W /:

2. Twisted cubics on cubic surfaces

Since the morphism s W Hilbgtc.Y / ! G constructed at the end of the previous section
has fibres of the form Hilbgtc.S/, where S is an integral cubic surface, we will study these
Hilbert schemes for arbitrary integral cubic surfaces abstractly and quite independently of Y .

Cubic surfaces form a classical subject of algebraic geometry. The classification of the
different types of singularities was given by Schläfli [33] in 1864. A classical source of infor-
mation on cubic surfaces is the book of Henderson [21]. For treatments in modern terminology
see the papers of Looijenga [27] and Bruce and Wall [9]. We refer to the book of Dolgachev
[12, Chapter 9] and the seminar notes of Demazure [11] for further references and all facts not
proved here. A cubic surface S � P3 belongs to one of the following four classes:

(1) S has at most rational double point singularities,

(2) S has a simple-elliptic singularity,

(3) S is integral but not normal, or

(4) S is not integral, i.e., its defining polynomial is reducible.

Let B WD P .S3C4�/ denote the 19-dimensional moduli space of embedded cubic surfaces,
and let Bint � B denote the open subset of integral surfaces. It is stratified by locally closed

Bereitgestellt von | Johannes Gutenberg Universitaet Mainz
Angemeldet

Heruntergeladen am | 03.12.15 16:45



Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds 7

subsets B.†/, where † is a string describing the singularity type of the surfaces ŒS� 2 B.†/.
For example, B.A1 C 2A2/ will denote the 5-codimensional stratum of surfaces with one A1
and two A2-singularities, whereas the 7-codimensional stratum B. QE6/ parameterises surfaces
with a simple-elliptic singularity. For most singularity types, the stratum B.†/ is a single
PGL4-orbit with the exception of † D ;, A1, 2A1, 3A1, A2, A1 C A2 and QE6. In these
cases, the isomorphism type is not determined by the singularity type. The moduli problem
for isomorphism types of cubic surfaces is treated by Beauville in [6] in terms of geometric
invariant theory.

2.1. Cubic surfaces with rational double points. Let S � P3 be a cubic surface
with at most rational double point singularities and let � W QS ! S be its minimal resolution.
The canonical divisors of S and QS are K D �H , if H denotes a hyperplane section, and
QK D ���H , since � is crepant. In fact, � is defined by the complete anti-canonical linear

system j � QKj. The smooth surface QS is an almost (or weak) Del Pezzo surface. The orthog-
onal complement ƒ WD QK? � H 2. QS IZ/ of the canonical divisor is a negative definite root
lattice of type E6. The components E1; : : : ; Em of the exceptional divisor of � are �2-curves
whose classes ˛1; : : : ; ˛m form a subset �0 in the root system R � ƒ that is a root basis for a
subsystemR0 � R. Letƒ0 � ƒ denote the corresponding sublattice. Configurationsƒ0 � ƒ
are classified by subdiagrams of the extended Dynkin diagram QE6 (cf. [8, Exercice 4.4, p. 126]
or [34, Theorem 2B]). That all lattice theoretically admissible configurations also arise geo-
metrically was shown in [27]. (As Looijenga pointed out to us, the equivalent statement is not
true for the other simple elliptic singularities.) The connected components of the Dynkin dia-
gram ofR0 are in bijection with the singularities of S . This limits the possible combinations of
singularity types of S to the following list: A1, 2A1, A2, 3A1, A1 C A2, A3, 4A1, 2A1 C A2,
A1 C A3, 2A2, A4, D4, 2A1 C A3, A1 C 2A2, A5, D5, A1 C A5, 3A2, E6.

It is classically known that there is a close connection between roots in the E6-lattice of
the resolution QS , twisted cubics on S and representations of the cubic equation of S as a linear
determinant, and we will further exploit this connection in Section 3. We refer to the book of
Dolgachev [12] for further information. We could, however, not find a reference for the rôle
of the Weyl group in this context and therefore include a detailed discussion here. We also
take the occasion (cf. Table 1 in Section 3.1) to correct [12, Table 9.2], where this action was
overlooked.

Let W.R0/ denote the subgroup of the Weyl group W.R/ that is generated by the reflec-
tions si in the effective roots ˛i , i D 1; : : : ; m. The root system R decomposes into finitely
many orbits with respect to this action. The orbits contained in R0 are exactly the irreducible
components of R0 and are therefore in bijection with the singularities of S . It is a well-known
property of root systems that every W.R0/-orbit of ƒ0 ˝ Q meets the closed Weyl chamber
C D ¹ˇ j ˇ:˛i � 0º (and the opposite chamber �C ) exactly once (cf. [23, Theorem 1.12]). If
we apply this to the orthogonal projection of any root ˛ to ƒ0 ˝Q, we find in every W.R0/-
orbit B � R unique roots ˛CB and ˛�B that are characterised by the property ˙˛˙B :˛i � 0 for
i D 1; : : : ; m. We will refer to ˛CB and ˛�B as the maximal resp. minimal root of the orbit. Note
that �˛CB equals ˛�B only if B D �B , i.e., if B is a subset of R0. If Rp is the irreducible
subsystem of R0 that corresponds to a singularity p 2 S , then ˛CRp

is the longest root in the
root system Rp with respect to the root basis given by exceptional curves in the fibre of p. It
also equals the cohomology class of the fundamental cycle Zp as defined by Artin [2].

Bereitgestellt von | Johannes Gutenberg Universitaet Mainz
Angemeldet

Heruntergeladen am | 03.12.15 16:45



8 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

Theorem 2.1. Let S be a cubic surface with at most rational double point singularities.
Then

Hilbgtc.S/red Š
a

B2R=W.R0/

jO QS .˛
�
B �

QK/j Š .R=W.R0// � P2:

Moreover, an orbitB corresponds to families of non-CM or aCM-curves depending on whether
B contains effective roots or not. The generic curve in a linear system of aCM curves is smooth.

Some components of Hilbgtc.S/ can be non-reduced, as can be easily seen from the fact
that the morphism Hilbgtc.Y / ! G is ramified along the divisor in G that corresponds to
singular surfaces. For the purpose of this article there is no need to discuss this question in any
detail.

We will prove the theorem in several steps.

Proposition 2.2. (1) Let C � S be a generalised twisted cubic, and let the scheme-
theoretic inverse image be denoted by QC D ��1.C / � QS . Then QC is an effective divisor
such that the class of QC C QK is a root in R. This root is the maximal root in its orbit.
Moreover, ��O QC D OC .

(2) Conversely, let ˛ be a maximal root and let QC 2 j˛ � QKj. Then C WD �. QC/ � S is a
subscheme with Hilbert polynomial 3nC 1.

Proof. (1) Let I � OS and QI � O QS denote the ideal sheaves of C and QC , respectively,
so that ��I � QI and I � �� QI . For any singular point p 2 S , there is an open neighbourhood
U and an epimorphism OnU � I jU . This induces surjective maps OnV ! ��I jV ! QI jV
on a neighbourhood V D ��1.U / of the fibre ��1.p/. As � has at most one-dimensional
fibres, all second or higher direct images of coherent sheaves on QS vanish, and pushing down
the epimorphism OnV !

QI jV along � yields an epimorphism .R1��O QS /
njU ! R1�� QI jU .

Since S has rational singularities, R1��O QS D 0 and so R1�� QI D 0. This implies that in the
following commutative diagram the upper row is exact, too, and that ˇ is surjective:

0 // �� QI // ��O QS
// ��O QC

// 0

0 // I //

˛

OO

OS // OC

ˇ

OO

// 0

The homomorphism ˇ is generically an isomorphism. If C has no embedded points, ˇ is an
isomorphism everywhere. In this case QC cannot have embedded points either, as they would
show up as embedded points in ��O QC . Hence QC is an effective divisor.

If on the other hand C has an embedded point at p then C is a non-CM curve, and it
follows from the global structure of such curves that p is a singular point of S , say with ideal
sheaf m, and that I is of the form m �OS .�H/ for a hyperplane section H through p. Let Zp
denote the fundamental cycle supported on the exceptional fibre ��1.p/. By Artin’s Theorem 4
in [2], ��m � O QS D O QS .�Zp/ and ��O QS .�Zp/ D m, so that QI D O QS .�Zp � �

�H/ and
I D �� QI .

Thus QC is always an effective divisor and ��O QC D OC . Since Ri��O QS D 0 and
Ri�� QI D 0 for i > 0, one also gets Ri��O QC D 0 for i > 0, and �.O QC / D �.OC / D 1.
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Since one has QC :.� QK/ D C:H D 3, an application of the Riemann–Roch-formula gives
. QC/2 D 1 and hence . QC C QK/: QK D 0 and . QC C QK/2 D �2. This shows that ˛ WD QC C QK is a
root in the latticeƒ. Since the ideal sheaf QI D O QS .�

QC/ D O QS .�˛C
QK/ is generated by global

sections in a neighbourhood of every effective .�2/-curveE, one gets ˛:E D � deg. QI jE / � 0.
This shows that ˛ is the maximal root of its orbit.

(2) Taking direct images of 0 ! O QS .�
QC/ ! O QS ! O QC ! 0, one gets an exact

sequence
0! IC ! OS ! ��O QC ! R1��O QS .�

QC/! 0;

where IC is the ideal sheaf of C , and all other higher direct image sheaves vanish. As ˛ is
maximal, the restriction of O QS .�

QC/ to any exceptional curve has non-negative degree. Let Z
denote the sum of the fundamental cycles of all exceptional fibres. According to [2, Lemma
5], one has H 1.Z;O QS .�

QC � mZ// D 0 for all m � 0, and the theorem on formal functions
[18, Proposition III.4.2.1] now yields R1��.O QS .� QC// D 0 and thus ��O QC D OC . It follows
that

�.OC .nH// D �.O QC .�n
QK// D �.O QS .�n

QK// � �.O QS .�
QC � n QK//

D
1
2

�
n.nC 1/ QK2 � .� QC � n QK/.� QC � .nC 1/ QK/

�
D

1
2

�
� QC 2 C .2nC 1/ QC.� QK/

�
D 3nC 1:

The intersection product of an irreducible curve D � QS with � QK can only take the
following values: Either .� QK/ � D D 0, in which case D is an exceptional .�2/-curve, or
.� QK/ � D D 1, which implies that the image of D in S is a line, so that D itself must be a
smooth rational curve with D2 D �1, or, finally, .� QK/ �D � 2 and D2 � 0.

Lemma 2.3. If ˛ is a minimal root, then .˛ � QK/ � F � 0 for every effective divisor F
with F � .� QK/ � 1.

Proof. F is the sum of .�2/-curves and at most one .�1/-curve. As ˛ is minimal it
intersects each .�2/-curve non-negatively. It suffices to treat the case that F is a .�1/-curve.
But then u D 1

3
QK C F lies in ƒ ˝ Q with u2 D �4

3
. Now .˛ � QK/:F D ˛ � u C 1, so by

Cauchy–Schwarz we get

.˛ � QK/:F � 1 �
p
2

q
4
3
> �2

3
:

But the left-hand side is an integer.

Lemma 2.4. Let ˛ be a minimal root. Then the linear system j˛� QKj is two-dimensional
and base point free. In particular, the generic element in j˛ � QKj is a smooth rational curve.

Proof. Let L˛ D O QS .˛ �
QK/. Since .2 QK � ˛/ � .� QK/ D �6 < 0, the divisor 2 QK � ˛

cannot be effective. This shows that h2.L˛/ D h0.O.2 QK � ˛// D 0. Any irreducible curve D
with 0 > deg L.˛/jD D .˛ � QK/D must be a fixed component of the linear system j˛ � QKj
satisfying D2 < 0 and hence D.� QK/ � 1. But this contradicts Lemma 2.3. Hence L˛ is nef
and even big, and a fortiori L˛.� QK/ is as well. The Kawamata–Viehweg Vanishing Theorem
now implies that h1.L˛/ D 0, and Riemann–Roch gives h0.L˛/ D 3.

Suppose that F is the fixed component of j˛ � QKj and M a residual irreducible curve.
Then M is effective and nef, and M � QK is big and nef. This implies that hi .O.M// D 0 for
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10 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

i > 0 and �.O.M// D h0.O.M// D h0.L˛/ D 3. Now Riemann–Roch gives

M 2
D 4 �M.� QK/ D 1C F.� QK/ � 1:

As M cannot be a .�1/- or .�2/-curve, we have M.� QK/ � 2 and F.� QK/ � 1. By Lemma
2.3 we get 1 D .˛ � QK/2 D .˛ � QK/F C FM CM 2 � M 2. This shows in turn M 2 D 1,
FM D 0, F 2 D 0 and F.� QK/ D 0. Since ƒ is negative definite, one has F D 0. This shows
that j˛ � QKj has no fixed component.

Since .˛� QK/2 D 1, there is at most one base point p. If there were such a point, consider
the blow-up OS ! QS at p with exceptional divisor E. The linear system � OK D � QK � E is
effective, big and nef, and since j˛� QK�Ej has no fixed components either, another application
of the Kawamata–Viehweg Vanishing Theorem gives the contradiction

C D H 0.E;O.˛ � QK/jE / ,! H 1. OS;O.˛ � QK �E// D 0:

The smoothness of a generic curve in the linear system follows from Bertini’s theorem.

Proposition 2.5. Let ˛ 2 R nR0, and let ˛C and ˛� denote the maximal resp. minimal
root of its orbit.

(1) The linear system j˛ � QKj is independent of the choice of ˛ in its W.R0/-orbit. More
precisely, the differences eC D ˛C � ˛ and e� D ˛ � ˛� are sums of .�2/-curves, and
the multiplication by these effective classes gives isomorphisms

j˛� � QKj
e�
��! j˛ � QKj

eC
��! j˛C � QKj:

In particular, dim j˛ � QKj D 2. The linear system j˛� � QKj is base point free.

(2) For every curve QC 2 j˛�� QKj one has C WD �. QC/ D �. QCCe�/, and C is a generalised
twisted cubic.

(3) The image C D �. QC/ of a generic curve QC 2 j˛ � QKj is smooth.

Proof. As before, let L˛ D O QS .˛ �
QK/.

Assume first that ˛� ¤ ˛C, and let ˇ be any root from the orbit of ˛, different from
˛�. Then there is an effective root ˛i such that ˇ:˛i � �1. In fact, ˇ:˛i D �1, since
ˇ:˛i D �2 implies ˇ D ˛i , contradicting the assumption that no root of the orbit of ˛
is effective. Let ˇ0 D ˇ � ˛i D si .ˇ/ be the root obtained by reflecting ˇ in ˛i . Now
multiplication with the equation of the exceptional .�2/-curve Ei gives an exact sequence
0 ! Lˇ 0 ! Lˇ ! Lˇ jEi

! 0. Since Lˇ jEi
D OEi

.�1/ has no cohomology, one gets
hi .Lˇ 0/ D hi .Lˇ / for all i . In particular, jLˇ 0 j ! jLˇ j is an isomorphism. If QC 2 jLˇ 0 j,
there is an exact sequence

0! O QS .�
QC �Ei /! O QS .�C/! OEi

.�1/! 0;

so that the ideal sheaves ��.O QS .� QC � Ei // D ��.O QS .�C// � OS define the same image
curve �. QC C Ei / D �. QC/. Replacing ˇ by ˇ0 subtracts a fixed component from the linear
system jLˇ j. Iterations of this step lead in finitely many steps to the minimal root ˛�. The
argument can be reversed to move in the opposite direction from ˇ to ˛C.
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Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds 11

Hence all roots in the W.R0/-orbit of ˛ define isomorphic linear systems and the same
family of subschemes in S . Of course, if ˛� D ˛C, this is true as well.

Taking ˛ D ˛C, it follows from Proposition 2.2 that these subschemes are generalised
twisted cubics. Taking ˛ D ˛�, it follows from Lemma 2.4 that the linear system is two-
dimensional and that the generic curve QC 2 jL˛� j is smooth. If p 2 S is any singular point
and Rp � R0 � R the corresponding root system, the pre-image ��1.p/ equals the effective
divisor corresponding to the maximal root ˛CRp

. As ˛�:˛CRp
can only take the values 0 or 1, the

curve C WD �. QC/ has multiplicity 0 or 1 at p. Hence p is a smooth point of C or no point of
C at all. As � is birational off the singular locus of S , the scheme C is a smooth curve.

The situation for effective roots is slightly different:

Proposition 2.6. Let p 2 S be a singular point, let Rp � R0 � R denote the cor-
responding irreducible root system with maximal root ˛C and minimal root ˛� D �˛C. Let
˛ 2 Rp be an effective root.

(1) The difference e WD ˛C � ˛ is effective. Multiplication with the effective classes e, ˛,
and e, respectively, induces the following isomorphisms

P2 Š j˛� � QKj
Š
�! j � ˛ � QKj ¨ P3 Š j � QKj

Š
�! j˛ � QKj

Š
�! j˛C � QKj:

(2) For every curve QC 2 j˛� � QKj, the image C D �. QC C 2Zp/ is a generalised twisted
cubic in S with an embedded point at p, and every non-aCM-curve C � S with an
embedded point at p arises in this way.

Proof. As long as ˇ 2 Rp is a non-effective root, the first part of the proof of Propo-
sition 2.5 still holds and shows that ˇ � ˛� is effective, represented, say, by a curve E 0, that
multiplication with E 0 defines an isomorphism j˛� � QKj ! jˇ � QKj and that for every curve
QC 2 j˛�� QKj the divisors QC and QCCE have the same scheme-theoretic image in S . The same

method shows that for every effective root ˇ 2 Rp the linear systems jˇ � QKj and j˛� � QKj
are isomorphic and give the same family of subschemes in S .

Multiplication by the fundamental cycle Zp (of class ˛C) defines an embedding of the
two-dimensional linear system j � ˛� � QKj into the three-dimensional linear system j � QKj
of hyperplane sections with respect to the contraction � W QS ! S � P3. The image of the
embedding is the linear subsystem of hyperplane sections through p. Let QC be any curve in
the linear system j˛� � QKj. Its image C0 D �. QC/ is a hyperplane section C0 D H \ S for
a hyperplane H through p. Then QC and QC C Zp have the same image C , but �.C C 2Zp/
has an additional embedded point at p. By Proposition 2.2, the image is a generalised twisted
cubic, necessarily of non-CM type.

The Propositions 2.5 and 2.6 together imply Theorem 2.1.

2.2. Cubic surfaces with a simple-elliptic singularity. Simple-elliptic singularities
were introduced and studied in general by Saito in [32] and further studied by Looijenga [27].
A cubic surface with a simple-elliptic singularity is a cone over a smooth plane cubic curve
E � P2 � P3 with a vertex p 2 P3 n P2. The type of such a simple-elliptic singularity is
denoted by QE6.
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12 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

In appropriate coordinates x0; : : : ; x3 the surface S is given by the vanishing of

g D x31 C x
3
2 C x

3
3 � 3�x1x2x3

for some parameter � 2 C, �3 ¤ 1. The same equation defines a smooth elliptic curve E in
the plane ¹x0 D 0º, and S is the cone over E with vertex p D Œ1 W 0 W 0 W 0�. The parameter
� determines the j -invariant of the curve E. The Jacobian ideal of g in the local ring OS;p is
generated by the quadrics

x21 � �x2x3; x22 � �x1x3; x23 � �x1x2:

The monomials 1; x1; x2; x3; x1x2; x1x3; x2x3; x1x2x3 form a basis of OS;p=J.g/ and hence
of the tangent space to the deformation space of the singularity. Since the total degree of all
monomials is � 3, all deformations are realised by deformations of g in the space of cubic
polynomials. This shows that B is the base of a versal deformation for the singularity of S .
Note that although the Milnor ring OS;p=J.g/ is eight-dimensional, the stratum B. QE6/ has
codimension 7 since the parameter corresponding to the monomial x1x2x3 only changes the
isomorphism type of the elliptic curve.

Proposition 2.7. Let S � P3 be the cone over a plane elliptic curve E with vertex p.
Then

Hilbgtc.S/red Š Sym3.E/ D E
3=S3;

the third symmetric product ofE. If q D Œq1Cq2Cq3� 2 Sym3.E/ is not a collinear triple, the
corresponding generalised twisted cubic is the union of the three lines connecting p with each
qi . If q D E \H for a hyperplane H through p, the generalised twisted cubic is H \ S with
an embedded point at p. The addition map Sym3.E/ ! E is a P2-bundle, and the non-CM
curves in Hilbgtc.S/ form the fibre over the zero element 0 2 E.

Proof. The only irreducible rational curves on S are lines connecting the vertex p with
a point q 2 E. Let C be the union of three such lines over possibly coinciding points
q1; q2; q3 2 E. The Hilbert polynomial of C is 3n C 1 unless the points are collinear: the
Hilbert polynomial then drops by one to 3n. In this case, one has to augment C by an embed-
ded point at p.

2.3. Non-normal integral cubic surfaces. Assume that the cubic surface S is irre-
ducible and reduced, but not normal. Then S is projectively equivalent to one of four surfaces
given by the following explicit equations:

X6 D
®
t20 t2 C t

2
1 t3 D 0

¯
; X7 D

®
t0t1t2 C t

2
0 t3 C t

3
1 D 0

¯
;

X8 D
®
t31 C t

3
2 C t1t2t3 D 0

¯
; X9 D

®
t31 C t

2
2 t3 D 0

¯
:

The labelling is chosen in such a way that in each case the stratum B.Xn/ is a single PGL4-orbit
of codimension n in B. Moreover, each Xm lies in the closure of the orbit of Xm�1.

In fact, the mutual relation between these strata can be made explicit: Both B.X9/ and
B.X6/ are smooth. A slice F in B.X6/ to B.X9/ through the point X9 is three-dimensional.
One such slice, or more precisely, the family of non-normal surfaces parameterised by it, is

Qf D t31 C t
2
2 t3 C at

2
1 t3 C bt0t1t2 C ct0t

2
1 ; .a; b; c/ 2 C3:
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Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds 13

The discriminant of this family is � D ab2 C c2. One obtains the following stratification:
Qfa;b;c defines a surface isomorphic to8̂̂̂̂

<̂
ˆ̂̂:
X9 if a D b D c D 0;

X8 if a ¤ 0; b D c D 0;

X7 if � D 0; b ¤ 0;

X6 if � ¤ 0:

In particular, there are three different types ofX6 surfaces over the real numbers corresponding
to the components of the complement of the Whitney-umbrella ¹� D 0º.

We will now describe Hilbgtc.X8/; the other cases can be treated similarly. The surface
S D X8 is a cone in P3 over a plane nodal cubic. Its normalisation QS is a cone in P4 over a
smooth twisted cubic B in a hyperplane U � P3. Let v denote the vertex of QS . The normalisa-
tion morphism � W QS ! S is the restriction to QS of a central projection P4Ü P3 with centre
in a point c on a secant line L of B . Finally, let OS ! QS denote the minimal resolution of the
singularity of QS . The exceptional curve E is a rational curve with self intersection �3, and OS
is isomorphic to Hirzebruch surface F3. Lines in QS through the vertex v correspond to fibres F
of the ruling OS ! P1, and both E and B are sections to this fibration. Any generalised twisted
cubic on S when considered as a cycle, arises as the image of a divisor on OS of degree 3 with
respect to E C 3F . Now, the only irreducible curves of degree � 3 on OS belong to the linear
systems jEj, jF j, jEC 3F j (cf. [20]). As E is contracted to a point in QS , it suffices to consider
the curves in jEC3F j DW P Š P4. Note that P is the dual projective space to the P4 contain-
ing QS . The images in QS of the curves in the linear system jE C 3F j are exactly the hyperplane
sections. Let T � P4 denote the plane through the line L and the vertex v, and let T? � P
denote the dual line. The plane T intersects QS in two lines F0 and F1 which are glued to a sin-
gle line F 0 in S by the normalisation map. So far we have identified the underlying cycles of a
generalised twisted cubics on S as images of hyperplane sections of QS : they are parameterised
by P . In order to get the scheme structures as well, we need to blow-up P along T?. The
fibres of the corresponding fibration P 0 WD BlT?.P /! T � have the following description: If
ŒM � 2 T � is represented by a line M � T , the fibre over ŒM � is the P2 of all hyperplanes in
P4 that contain T . It is clear that the families of hyperplanes through the lines F0 and F1 pa-
rameterise the same curves in S . Identifying ŒF0� and ŒF1� in T � and the corresponding fibres
in P 0, we obtain non-normal varieties T � WD T �= � and P �= � with a natural P2-fibration
P � ! T �. It is not difficult to explicitly describe the family of curves parameterised by P �:
We may choose coordinates z0; : : : ; z4 for P4 in such a way that QS is the vanishing locus of the
minors of the matrix

�
z1 z2 z3
z2 z3 z4

�
and c D Œ0 W 1 W 0 W 0 W �1�. Let the central projection be given

by xi D zi for i D 0; 2; 3 and x1 D z1Cz4, so that S D ¹g D 0º with g D x1x2x3�x32�x
3
3 .

For a generic choice of Œa� 2 P , the hyperplane ¹a0z0 C : : :C a4z4 D 0º produces a curve in
QS defined by the equation g D 0 and the vanishing of the minors of 

a0x0 C a4x1 C a2x2 C a3x3 x2
1
2
.a4 � a1/x3

1
2
.a4 � a1/x2 x3 �a0x0 � a1x1 � a2x2 � a3x3

!
:

This fails to give a curve only if a0, a1 and a4 vanish simultaneously, i.e., along T? � P , and
is corrected by the blowing-up of P along T?. The identification in P 0 that produces P � is in
these coordinates given by Œ0 W 0 W a2 W a3 W a4� 7! Œ0 W 2a2 W a3 W

1
2
a4 W 0�, and it is easy to see

that corresponding matrices yield equal subschemes in S . We infer:
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14 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

Proposition 2.8. Hilbgtc.X8/red is isomorphic to the four-dimensional non-normal pro-
jective variety P �.

Similar calculations can be done for the other non-normal surfaces. In fact, for the
proof of the main theorems we only need the dimension estimate dim.Hilbgtc.Xm// � 4 for
m D 6; 7; 8; 9, and this result can be obtained much simpler without studying the Hilbert
schemes themselves using Corollary 3.11.

3. Moduli of linear determinantal representations

This section is the technical heart of the paper. There is a close relation between gener-
alised twisted cubics on a cubic surface and linear determinantal representations of that surface
as we will explain first. This motivates the construction of various moduli spaces using Geo-
metric Invariant Theory as a basic tool.

Fix a three-dimensional projective space P .W /. We will first recall a construction of
Ellingsrud, Piene and Strømme [15] of the Hilbert scheme H0 of twisted cubics in P .W /
in terms of determinantal nets of quadrics. We will then adapt their method to construct a
moduli space of determinantal representations of cubic surfaces in P .W /, and establish the
relation between these two moduli spaces. The main intermediate result is the construction of
a P2-fibration for the Hilbert scheme of generalised twisted cubics for the universal family of
integral cubic surfaces (Theorem 3.13). Every step in the construction will be equivariant for
the action of GL.W / and will therefore carry over to the relative situation for the projective
bundle a W P .W/ ! G where O6G ! W is the tautological quotient of rank 4 over the
Grassmannian variety G D Grass.C6; 4/. The ground is then prepared for passing to the
particular case of the family of cubic surfaces over G defined by the cubic fourfold Y � P5.

Beauville’s article [5] gives a thorough foundation to the topic of determinantal and
Pfaffian hypersurfaces with numerous references to both classical and modern treatments of
the subject.

3.1. Linear determinantal representations. Let S D ¹g D 0º � P3 D P .W / be an
integral cubic surface and let C � S be a generalised twisted cubic. We saw earlier that the
homogeneous ideal IC of C is generated by the minors of a 3 � 2-matrix A0 with coefficients
in W Š C4 if C is an aCM-curve. As the cubic polynomial g 2 S3W that defines S must
be contained in IC , it is a linear combination of said minors and hence can be written as the
determinant of a 3 � 3-matrix

A D
�
A0

ˇ̌̌
�
�
�

�
:

As any two such representations of g differ by a relation among the minors of A0, it follows
from the resolution (1.1) that the third column is uniquely determined by A0 up to linear com-
binations of the first two columns. Such a matrix A with entries inW and det.A/ D g is called
a linear determinantal representation of S or g. Conversely, given a linear determinantal rep-
resentation A of g, any choice of a two-dimensional subspace in the space generated by the
column vectors of A gives a 3 � 2-matrix A00. We will see in Section 3.4 that A00 is always
sufficiently non-degenerate to define a generalised twisted cubic. In this way every generalised
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twisted cubic of aCM-type sits in a natural P2-family of such curves on S regardless of the
singularity structure of S or C .

If, on the other hand, C is not CM, the situation is similar but slightly different: the ideal
IC is cut out by g and the minors of a matrix

At0 D
�
0 �x0 x1

x0 0 �x2

�
:

This matrix may be completed to a skew-symmetric matrix as follows:

A D
�

0 x0

�x0 0
x1 �x2

ˇ̌̌
�x1
x2

0

�
:

AnyA00 with linearly independent vectors from the space of column vectors ofA defines a non-
CM curve on S as before. In fact, the P2-family is in this case much easier to see geometrically:
Let p D ¹x0 D x1 D x2 D 0º denote the point defined by the entries of A, necessarily a
singular point of S . Then curves in the P2-family simply correspond to hyperplane sections
through the point p.

The P2-families of generalised twisted cubics that arise in this way from 3 � 3-matrices
provide a natural explanation for the appearance of the P2-components of Hilbgtc.S/, if S has
at most rational double points, and for the P2-fibration Hilbgtc.S/ Š Sym3.E/! E, if S has
a simple-elliptic singularity. We will exploit this idea further by constructing moduli spaces of
determinantal representations in the next section.

We end this section by making the connection between the structure of Hilbgtc.S/ and
the set of essentially different determinantal representations of S if S is of ADE-type. Here
two matrices A and A0 are said to give equivalent linear determinantal representations if A can
be transformed into A0 by row and column operations.

Let S be a cubic surface with at most rational double points. According to the previous
discussion, essentially different determinantal representations correspond bijectively to fami-
lies of generalised twisted cubics of aCM-type on S . We have seen in Theorem 2.1 that these
are in natural bijection with W.R0/ orbits on R nR0.

This leads to the data in Table 1: For a surface with at most rational double points the first
column gives the Dynkin type of R0 or, equivalently, the configuration of singularities of S ,
the second column the type notation used by Dolgachev [12, Chapter 9], and the third column
the number ofW.R0/-orbits on RnR0. The table can easily be computed with any all-purpose
computer algebra system.

Here are two examples:

Example 3.1 (3A2 singularities). Let p0; p1; p2 2 P2 denote the points corresponding
to the standard basis in C3. Consider the linear system of cubics through all three points that
are tangent at pi to the line pipiC1 (indices taken mod 3). A basis for this linear system
is z0 D x0x

2
1 , z1 D x1x

2
2 , z2 D x2x

2
0 and z3 D x0x1x2. The image of the rational map

P2 Ü P3 is the cubic surface S with the equation f D z0z1z2 � z
3
3 D 0. It has three

A2-singularities at the points q0 D Œ1 W 0 W 0 W 0�, q1 D Œ0 W 1 W 0 W 0� and q2 D Œ0 W 0 W 1 W 0�.
The reduced Hilbert scheme Hilbgtc.S/red consists of five copies of P2. Three of them are
given by the linear systems jOS .�qi /j, i D 0; 1; 2, and correspond to non-CM curves with
an embedded point at qi . The remaining two components correspond to the two orbits listed
in Table 1. Representatives of these orbits are obtained by taking the strict transforms L and
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R0 Type # R0 Type # R0 Type #

; I 72 4A1 XVI 13 A1 C 2A2 XVII 6
A1 II 50 2A1 C A2 XIII 12 A1 C A4 XIV 4
2A1 IV 34 A1 C A3 X 10 A5 XI 4
A2 III 30 2A2 IX 12 D5 XV 2
3A1 VIII 22 A4 VII 8 A1 C A5 XIX 1
A1 C A2 VI 20 D4 XII 6 3A2 XXI 2
A3 V 16 2A1 C A3 XVIII 5 E6 XX 0

Table 1. Numbers of inequivalent linear determinantal representations of cubic surfaces of given
singularity type.

Q of a general line L0 and a general quadric Q0 through p0, p1 and p2. To be explicit, take
L0 D ¹x0C x1C x2 D 0º and its Cremona transform Q0 D ¹x0x1C x1x2C x2x0 D 0º. The
corresponding ideals then are

IL D
�
z0.z2 C z3/C z

2
3 ; z1.z0 C z3/C z

2
3 ; z2.z1 C z3/C z

2
3

�
;

IQ D
�
z0.z1 C z3/C z

2
3 ; z1.z2 C z3/C z

2
3 ; z2.z0 C z3/C z

2
3

�
and differ only by the choice of a cyclic order of the variables z0, z1 and z2. Both L andQ are
smooth twisted cubics that pass through all three singularities. They lead to the following two
essentially different determinantal representations of the polynomial f :

f D det
�

0 �z3 z0

z1 0 �z3

�z3 z2 0

�
D det

�
0 �z3 z0

z2 0 �z3

�z3 z1 0

�
:

Example 3.2 (4A1 singularities). Let `0; `1; `2; `3 be linear forms in three variables
that define four lines in P2 in general position (i.e., no three pass through one point) and such
that

P
i `i D 0. The linear system of cubics through the six intersection points has a basis

consisting of monomials zi D
Q
j¤i j̀ for i D 0; : : : ; 3. The image of the induced rational

map P2Ü P3 is a cubic surface S with the equation

f D z1z2z3 C z0z2z3 C z0z1z3 C z0z1z2

and with four A1-singularities that result from the contraction of the four lines. An explicit
calculation shows that there are 17 root orbits of different lengths. They correspond to families
of twisted cubics on S as follows: the transformH of a general line in P2 gives a twisted cubic
on S passing through all four singularities. It corresponds to the unique orbit of length 16 and
yields the following determinantal representation:

f D det
�

0 z0Cz3 z0

z1Cz2 0 z1

z2 z3 0

�
:

Despite the apparent asymmetry the matrix is in fact symmetric with respect to all variables up
to row and column operations. Now there are 16 possible choices of non-collinear triples out of
the six intersection points of the four lines. For each triple take a general smooth conic through
these points. There are four triples that form the vertices of a triangle of lines. These yield plane
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Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds 17

curves in S that pass twice through the singularity corresponding to the line not in the triangle:
the associated generalised twisted cubics are non-CM and do not lead to linear determinantal
representations. They account for four orbits of effective roots of length 2. The remaining
12 triples of points yield families of twisted cubics that pass through any two out of the four
singularities. These families account for the remaining 12 inequivalent linear determinantal
representations and correspond to root orbits of length 4.

3.2. Kronecker modules I: Twisted cubics. Let the group GL3 �GL2 act on

U0 WD Hom.C2;C3
˝W /;

with W Š C4, by
.g; h/ � A0 D .g ˝ idW /A0h�1:

We will think of homomorphisms A0 2 U0 as 3 � 2-matrices with values in W and write
simply A0 7! gA0h

�1 for the action. The diagonal subgroup �0 D ¹.tI3; tI2/ j t 2 C�º
acts trivially, so that the action factors through the reductive group G0 D GL3 �GL2 =�0. We
are interested in the invariant-theoretic quotient U ss0 //G0. For an introduction to geometric
invariant theory see any of the standard texts by Mumford and Fogarty [29] or Newstead [30].
In the given context, the conditions for A0 to be semistable resp. stable were worked out by
Ellingsrud, Piene and Strømme. The general case for arbitrary W and arbitrary ranks of the
general linear groups was treated by Drezet [13] and Hulek [22]. We refer to these papers for
proofs of the following lemma and of Lemma 3.4.

Lemma 3.3. A matrix A0 2 U0 is semistable if and only if it does not lie in theG0-orbit
of a matrix of the form �

� �
0 �
0 �

�
or

�
� �
� �
0 0

�
:

In this case, A0 is automatically stable. The isotropy subgroup of any stable matrix is trivial.

Let U s0 D U
ss
0 � U0 denote the open subset of stable points. Then

X0 WD U
s
0 //G0

is a 12-dimensional smooth projective variety, and the quotient map

q0 W U
ss
0 ! X0

is a principal G0-bundle. There is a universal family of maps a0 W F0 ! E0 ˝W , where F0
and E0 are vector bundles of rank 2 and 3, respectively, on X0 with det.F0/ D det.E0/.
Moreover, ƒ2a0 W E0 ! S2W is an injective bundle map and defines a closed embed-
ding X0 ! Grass.3; S2W / into the Grassmannian of nets of quadrics on P .W /, see [15].
Let I0 � P .W / � P .W �/ denote the incidence variety of all pairs .p; V / consisting of a
point p D ¹x0 D x1 D x2º on a hyperplane V D ¹x0 D 0º. Sending .p; V / to the net
.x20 ; x0x1; x0x2/ defines a map I0 ! Grass.3; S2W /. Ellingsrud, Piene and Strømme show
that this map is a closed immersion, that it factors through X0, and that the Hilbert scheme
H0 of twisted cubics on P3 is isomorphic to the blow-up of X0 along I0. Finally, under the
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18 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

isomorphism H0 Š BlI0
.X0/, the divisor J0 D H0 \ H1 is identified with the exceptional

divisor. We let �0 W H0 ! X0 denote the contraction of J0.

J0 //

��

H0

�0

��

I0 // X0:

3.3. Kronecker modules II: Determinantal representations. The reductive group
G D GL3 �GL3 =�, with � D ¹.tI3; tI3/ j t 2 C�º, acts on the affine space

U D Hom.C3;C3
˝W /

with the analogous action by .g; h/:A WD gAh�1. In contrast to the case of 3 � 2-matrices the
notions of stability and semistability differ here. Again, this is a special case of a more general
result of Drezet and Hulek.

Lemma 3.4. A matrix A 2 U is semistable if it does not lie in the G-orbit of a matrix
of the form �

0 � �
0 � �
0 � �

�
or

�
� � �
0 0 �
0 0 �

�
or

�
� � �
� � �
0 0 0

�
;

and is stable if it does not lie in the G-orbit of a matrix of the form�
� � �
0 � �
0 � �

�
or

�
� � �
� � �
0 0 �

�
:

The isotropy subgroup of any stable matrix is trivial.

Consequently, the quotient
X WD U ss //G

is an irreducible normal projective variety of dimension dimX D dimU � dimG D 19. The
stable part Xs D U s //G is a smooth dense open subset, and the quotient qs W U s ! Xs is a
principal G-bundle. The character group of G is generated by

� W G ! C�; �.g; h/ D det.g/= det.h/;

and the trivial line bundle OU .�/, endowed with the G-linearisation defined by �, descends to
the ample generator LX of Pic.X/.

The tautological homomorphism aU W O
3
U ! O3U ˝W induces a map

det.aU / W OU .��/! OU ˝ S
3W

that descends to a homomorphism det W L�1X ! OX ˝ S
3W , which in turn induces a rational

map det W XÜ P .S3W �/. We need to understand the degeneracy locus of this map.

Proposition 3.5. Let A 2 U ss be a semistable matrix and consider its determinant
det.A/ 2 S3W .

(1) If A is semistable but not stable, then det.A/ is a non-zero reducible polynomial.

(2) If det.A/ D 0, then A is stable and is conjugate under the G-action to a skew-symmetric
matrix.
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Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds 19

Lemma 3.6. Let B be a matrix with values in a polynomial ring over a field. If
rk.B/ � 1, i.e., if all 2 � 2-minors of B vanish, there are vectors u and v with values in
the polynomial ring such that B D vut . If all entries of B are homogeneous of the same
degree then the same is true for both u and v.

Proof. We may assume that B has no zero columns. Extracting from each column its
greatest common divisor, we may further assume that each column consists of coprime entries.
As all columns are proportional over the function field, we find for each pair of column vectors
Bi and Bj coprime polynomials gi and gj such that gjBi D giBj . As gi and gj are coprime,
gi must divide every entry of Bi . Hence gi is unit, and for symmetry reasons gj is as well.
Therefore all columns of B are proportional over the ground field. The last assertion follows
easily.

Proof of Proposition 3.5. (1) Assume first that A is semistable but not stable. Replacing
A by another matrix from its orbit, we may assume that

A D
�
� � �
0 � �
0 � �

�
or A D

�
� � �
� � �
0 0 �

�
:

It is clear that det.A/ factors into a linear and a quadric polynomial in S�W . If det.A/ D 0,
either the linear or the quadratic factor must vanish. If the linear factor vanishes, A has a trivial
row or column, which contradicts its semistability. If the quadratic polynomial vanishes, the
lower right respectively upper left 2�2-blockB satisfies det.B/ D 0. According to Lemma 3.6,
appropriate row or column operations will eliminate a row or column of B . This contradicts
again the semistability of A.

(2) Let A be a stable matrix with det.A/ D 0 and let C D adj.A/ 2 .S2W /3�3 denote
its adjugate matrix. So Cij D .�1/iCj det.Aj i / where Aj i is the matrix obtained from A by
erasing the j -th row and the i -th column. If det.Aj i /were 0, the rows or columns ofAj i would
be C-linearly dependent according to Lemma 3.6, since all entries are linear polynomials.
Row or column operations applied to A would produce a row or a column with at least two
zeros, contradicting the stability of A. This shows that all entries of C are non-zero, and this
holds even after arbitrary row and column operations on C , since such operations correspond
to column resp. row operations on A. In particular, all columns and all rows of C contain
C-linearly independent entries. Since adj.C / D det.A/A D 0, one has rk.C / � 1. By
Lemma 3.6, there are homogeneous column vectors u; v 2 S�W such that C D uvt . Since
the entries of the rows and columns of C are C-linearly independent, u and v must have entries
of degree 1, and these must be linearly independent for each vector. In an appropriate basis
x0; x1; x2; x3 of W we may write u D .x2; x1; x0/

t . Since the entries of u form a regular
sequence, their syzygy module is given by the Koszul matrix

K D

�
0 x0 �x1

�x0 0 x2

x1 �x2 0

�
:

Since AC D 0 implies Au D 0, it follows that A D MK for some M 2 C3�3. Finally, since
the columns of A are C-linearly independent because of the stability of A, the transformation
matrix M must be invertible, and A �G K as claimed.

The proposition allows for a simple stability criterion in terms of the determinant:
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20 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

Corollary 3.7. For any A 2 U the following holds:

(1) If det.A/ ¤ 0, then A is semistable.

(2) If det.A/ is irreducible, then A is stable.

(3) If A is stable, then either det.A/ ¤ 0 or A is in the G-orbit of a skew-symmetric matrix.

We continue the discussion of the rational map det W X Ü P .S3W �/. The following
commutative diagram is inserted here as an optical guide through the following arguments. The
notation will be introduced step by step.

Hom0.C3; W /
Š //

// GL3 ''

T ss

//�
��

// U ss� Hom.C3;C3 ˝W /

//G
��

P .W / // X
det // P .S3W �/

P .N 0/ D J

�

OO

// H

�

OO

ı
::

Consider the splitting U D V ˚ T into the subspaces V D ¹A 2 U j At D Aº of symmetric
and T D ¹A 2 U j At D �Aº of skew-symmetric matrices. According to Proposition 3.5, the
smooth closed subset

T ss WD T \ U ss � U ss

is in fact contained in the open subsetU s of stable points, and itsG-orbitG:T ss is the vanishing
locus of the determinant det.aU / W OU ss .��/ ! OU ss ˝ S3W . An element A 2 T ss is
mapped back to T ss by Œg; h� 2 G if and only if .gAh�1/t D �gAh�1. This is equivalent
to saying that Œhtg; gth� is a stabiliser of A. Hence h D �.gt /�1 for some � 2 C�. In fact,
changing h and g by an appropriate scalar, we get Œg; h� D Œ; . t /�1� for some  2 GL3,
well-defined up to a sign˙1. We conclude that

T ss //� D G:T ss //G � U ss //G D X;

where � WD GL3 = ˙ I acts freely on T ss via :A D A t . Any deformation a 2 U of
A 2 T ss can be split into its symmetric and its skew-symmetric part. The skew-symmetric
part gives a tangent vector to T ss at A. Among the symmetric deformations those of the form
uA � Aut , u 2 gl3 Š Lie.�/, are tangent to the G-orbit of A. The bundle homomorphism

(3.1) � W gl3˝OT ss ! V ˝OT ss ; .A; u/ 7! .A; uA � Aut /;

has constant rank 8 and is equivariant with respect to the natural action of  2 � given by
:u D u�1 for u 2 GL3 and :a D a t for a 2 V . The cokernel of � therefore has
rank 16 and is isomorphic to the restriction to T ss of the normal bundle of G:T ss in U ss . It
descends to the normal bundle of T ss //� in X .

We can look at T ss in a different way that will lead to an isomorphism T ss //� Š P .W /
and to an identification of its normal bundle: Let Hom0.C3; W / denote the open subset of
injective homomorphisms v W C3 ! W . The group GL3 acts naturally on C3, and we
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consider the induced action on Hom0.C3; W / given by g:v WD v ı g�1. The projection
Hom0.C3; W / ! P .W / is a principal fibre bundle with respect to this action. The isomor-
phism

� W Hom0.C3; W /! T ss; v 7!

0B@ 0 v.e3/ �v.e2/

�v.e3/ 0 v.e1/

v.e2/ �v.e1/ 0

1CA
is equivariant for the group isomorphism

GL3 ! � D GL3 =˙ I3; h 7!
hp

det.h/
:

(Here the actions of GL3 on Hom.C3; W / and of � on T are as defined above. There is no
ambiguity in the choice of a local branch of the square root, as � is defined as the quotient of
GL3 by h˙I i.) We conclude that P .W / D Hom0.C3; W / // GL3 Š T ss //� . The pull-back of
the bundle homomorphism � in (3.1) to Hom0.C3; W / via � is a homomorphism

O� W Hom0.C3; W / � gl3 ! Hom0.C3; W / � V; .v; u/ 7! .v; u�.v/ � �.v/ut /;

that is GL3-equivariant with respect to the adjoint representations on gl3 and the representation

h:a D
1

det.h/
haht

of GL3 on V . The trivial bundle Hom0.C3; W / � C3 descends to the kernel K in the tauto-
logical sequence 0 ! K ! W ˝ OP.W / ! OP.W /.1/ ! 0 on P .W /. Accordingly, the
homomorphism O� descends to a bundle homomorphism

Q� W End.K/! S2K ˝W ˝ det.K/�1

on P .W /. Rewriting the first sheaf as End.K/ D K ˝ K� D K ˝ ƒ2K ˝ det.K/�1, this
bundle map is explicitly given by w ˝ w0 ^ w00 ˝ � 7! .ww0 ˝ w00 � ww00 ˝ w0/ ˝ �. In
particular, the cokernel of Q� is isomorphic to N ˝ det.K/�1, where

N WD im.S2K ˝C W ! OP.W / ˝C S
3W /

is the image of the natural multiplication map. From this we conclude:

Proposition 3.8. The morphism i W P .W / Š T ss //� ,! X constructed above is an
isomorphism onto the indeterminacy locus of the rational map det W X Ü P .S3W �/. The
normal bundle of P .W / in X is isomorphic to N ˝ det.K/�1, and

i�.LX / Š det.K/�1 Š det.W /�1 ˝OP.W /.1/:

Proof. Only the last statement has not yet been shown. In fact, the composite character

�0 W GL3
Š
��! � ,! G

�
�! C�

is given by
�0.h/ D det. hp

det.h/
/2 D det.h/�1:

This implies i�LX Š det.K/�1. It follows from the exactness of the tautological sequence
0! K ! OP.W / ˝W ! OP.W /.1/! 0 that det.K/�1 Š det.W /�1 ˝C OP.W /.1/.
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22 Lehn, Lehn, Sorger and van Straten, Twisted cubics on cubic fourfolds

The one-dimensional vector space det.W / appears in the proposition in order to keep all
statements equivariant for the natural action of GL.W /. Let

J //

�
��

H

�

��

P .W / // X

denote the blow-up ofX along P .W /with exceptional divisor J . According to Proposition 3.8,
J D P .N 0/, where N 0 WD .N ˝ det.K/�1/�. Note that the fibre of � W J ! P .W / over a
point p is exactly the P15-family of cubic surfaces that are singular at p. The Picard group of
H is generated by ��LX and OH .J /.

Proposition 3.9. The rational map det W X Ü P .S3W �/ extends to a well-defined
morphism

ı W H ! P .S3W �/:

Moreover, there are bundle isomorphisms

OH .J /jJ Š ON 0.�1/ and ı�OP.S3W �/.1/ Š �
�LX ˝OH .�J /:

In view of this proposition we may call H the universal linear determinantal represen-
tation.

Proof. Let p 2 P .W / be defined by the vanishing of the linear forms x0; x1; x2 2 W .
Its image in X is represented by the skew-symmetric matrix

A D

�
0 x0 �x1

�x0 0 x2

x1 �x2 0

�
2 T ss:

The 16-dimensional vector space

N0 WD ¹a 2 U j a D a
t
º=¹uA � Aut j u 2 gl3º

represents a slice transversal to theG-orbit through A, as we have seen before. The differential
of det W U ! S3W restricted to A C N0 at A equals .DA det/.a/ D tr.a adj.A//, and an
explicit calculation yields

.DA det/.a/ D
�
x2
x1
x0

�t
a
�
x2
x1
x0

�
and shows that DA det W N0 ! S3W is injective. This implies that the morphism

det W X n P .W / D H n J ! P .S3W �/

extends to a morphism ı W H ! P .S3W �/. The restriction ıjJ W J D P .N 0/ ! P .S3W �/
is induced by the bundle epimorphisms

OP.N 0/ ˝C S
3W �� ��N �� ON 0.1/˝ �

� det.K/�1;

so that
ı�OP.S3W �/.1/jP.N 0/ D ON 0.1/˝ �

� det.K/�1:
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There are integersm;m0 such that ı�OP.S3W �/.1/ D �
�LmX ˝OH .J /

m0 . The restriction to J
becomes

ı�OP.S3W �/.1/jJ D �
�.LmX jP.W //˝OH .J /j

m0

J D det.K/�m ˝ON 0.�m
0/:

Comparison of the two expressions for ı�OP.S3W �/.1/jJ shows m D 1 and m0 D �1.

Corollary 3.10. The line bundle OH .J / is ample relative ı W H ! P .S3W �/.

Proof. Let F � H be a subvariety of a fibre of ı. Then

OF Š ı
�OP.S3W �/.1/jF Š �

�LX jF ˝OH .�J /jF ;

so that OH .J /jF Š ��LX jF . Since ı is an embedding on fibres of � , the variety F projects
isomorphically into X . Hence ��LX jF is ample.

Corollary 3.11. For any cubic surface S � P .W / the ı-fibre over the corresponding
point ŒS� 2 P .S3W �/ is finite if S has at most ADE-singularities, and satisfies the estimate

dim ı�1.ŒS�/ � dim Sing.S/C 1;

otherwise.

Proof. The case of surfaces with ADE-singularities was treated in Section 2. Otherwise,
a point in J encodes a point p 2 P .W / together with a cubic surface S that is singular at p.
Hence J \ı�1.ŒS�/ is isomorphic to the singular locus of S through projection to P .W /. Since
J is an effective Cartier divisor that is ample relative ı, the intersection with every irreducible
component of ı�1.ŒS�/ of positive dimension is non-empty and of codimension � 1 in this
component. This implies the asserted inequality.

3.4. The P2-fibration for the universal family of cubic surfaces. Let

R � H0 � P .S3W �/

denote the incidence variety of all points .ŒC �; ŒS�/ such that the generalised twisted cubic C is
contained in the cubic surface S . Of the two projections ˛ W R! H0 and ˇ W R! P .S3W �/
the first is a P9-bundle by [16, Corollary 2.4] so that R is smooth and of dimension 21. We
have arrived at the following set-up:

R

˛

P9
~~

ˇ

$$

H

ı

zz

�

  

H0 P .S3W �/ X:
detoo

Consider the open subset P .S3W �/int � P .S3W �/ of integral surfaces and the corresponding
open subsets

H int
D ı�1.P .S3W �/int/ and Rint

D ˇ�1.P .S3W /int/:

By part (1) of Proposition 3.5, one has H int � H s � H , where H s D ��1.Xs/.
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For any matrix A 2 U let res.A/ 2 U0 denote the submatrix consisting of its first two
columns. A comparison of the Lemmas 3.4 and 3.3 shows immediately that res restricts to a
map res W U s ! U s0 . Let P 0 � GL3 denote the parabolic subgroup of elements that stabilise
the subspace C2�¹0º � C3. The parabolic subgroup P D .GL3 �P 0/=C� � G has a natural
projection  W P ! G0 through its Levi factor, and res W U s ! U s0 is equivariant with respect
to this group homomorphism, i.e., .p/: res.A/ D res.p:A/ for all A 2 U s and p 2 P .

Since qs W U s ! Xs is a principal G-bundle, it factors through maps

U s
qP
���! U s=P

aP
���! U s //G D Xs;

where aP is an étale locally trivial fibre bundle with fibres isomorphic to G=P Š P2. As res is
 -equivariant, it descends to a morphism res W U s=P ! X0 D U

s
0=G0. This provides us with

morphisms

X0
res
 ��� U s=P

aP
���! Xs:

Let �Q W Q ! U s=P denote the blow-up along a�1P .I /. By the universal property of the
blow-up, there is a natural morphism aQ W Q! H s , which is again a P2-bundle.

Q
�Q

//

aQ

��

U s=P

aP

��

H s � // Xs

Let Qint D a�1Q .H int/.

Proposition 3.12. Rint Š Qint as schemes over X0 � P .S3W �/int.

Proof. Qint parameterises via the composite morphism

Qint
! H int

! P .S3W �/

a family of cubic surfaces Sq D ¹gq D 0º, q 2 Qint, and via the composite morphism

Qint
! U s=P ! X0

a family of determinantal nets of quadrics .Q.1/q ;Q
.2/
q ;Q

.3/
q /, q 2 Qint, in such a way that

either the ideal Iq WD .Q
.1/
q ;Q

.2/
q ;Q

.3/
q / defines an aCM generalised twisted cubic on the sur-

face Sq , or Iq is the ideal of a hyperplane with an embedded point on Sq . But in both cases the
ideal I 0q WD Iq C .gq/ defines a generalised twisted cubic Cq on Sq . As the base scheme Qint

of this family is reduced and the Hilbert polynomial of the family of curves Cq is constant, this
family is flat. Since R is the moduli space of pairs .C � S/ of a generalised twisted cubic
on a cubic surface, there is a classifying morphism  W Qint ! R whose image is obviously
contained in Rint. As both Qint and Rint are smooth, it suffices to show that  is bijective.

Let .ŒA�; g/ be a point in Qint. We need to show that A can be reconstructed up to the
action of P from .ŒA0�; g/ where A0 D res.A/. If A0 defines an aCM-curve, it follows from
the presentation (1.1) that any extension ofA0 to a matrixB with det.B/ D g and res.B/ D A0
is unique up to adding multiples of the first two columns to the last. But this is exactly the way
that P acts on the columns of A. If on the other hand A0 (together with g) defines a non-CM
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curve, the point ŒA0� belongs to I0, and the determinant of any B with res.B/ D A0 will split
off a linear factor. As ŒB� is required to lie in Qint, this is only possible when det.B/ D 0

according to part (1) of Proposition 3.5. By part (2) of the same proposition it follows again
that B is in the P -orbit of A. This proves the injectivity of  .

Assume finally that a point n 2 Rint be given. It determines and is determined by a
pair .ŒA0�; g/. If ŒA0� 2 I0, the existence of a stable matrix A with res.A/ D A0 is clear. If
ŒA0� 62 I0, there is a unique matrix A 2 U up to column transformations with res.A/ D A0 and
det.A/ D g. Since g is non-zero and irreducible, A is stable. This shows that  is surjective
as well.

We can summarise the results of this section as follows:

Theorem 3.13. Let Rint denote the moduli space of pairs .C; S/ of an integral cubic
surface S and a generalised twisted cubic C � S in a fixed three-dimensional projective space
P .W /.

(1) The projection Rint ! H0 to the first component is a surjective smooth morphism whose
fibres are open subsets in P9. In particular, Rint is smooth.

(2) The projection Rint ! P .S3W �/int is projective and factors as follows:

Rint aR
���! H int ı

�! P .S3W �/int;

where aR is a P2-bundle and ı is generically finite.

4. Twisted cubics on Y

In the previous Section 3, we have discussed the geometry of generalised twisted cu-
bics on cubic surfaces for the universal family of cubic surfaces in a fixed three-dimensional
projective space P .W /, the main result being the construction of maps

H0  � R
int
�! H

ı
�! P .S3W �/:

The cubic fourfold Y has played no rôle in the discussion so far. The intersections of
Y with all 3-spaces in P5 form a family of cubic surfaces parameterised by the Grassmannian
G D Grass.C6; 4/. All schemes discussed in the previous section come with a natural GL.W /-
action, and all morphisms are GL.W /-equivariant. This allows us to generalise all results to
this relative situation over the Grassmannian.

In this section, we will construct the morphisms Hilbgtc.Y / ! Z0 ! Z and prove that
Z is an eight-dimensional connected symplectic manifold.

4.1. The family over the Grassmannian. Let G WD Grass.C6; 4/ denote as before the
Grassmannian of three-dimensional linear subspaces in P5, let O6G ! W denote the universal
quotient bundle of rank 4. The projectivisation P .W/ is a partial flag variety and comes with
two natural projections � W P .W/! G and q W P .W/! P5. Let

0! K ! ��W ! O� .1/! 0
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denote the tautological exact sequence. Then det.K/�1 D O� .1/˝�
� det.W/�1. Furthermore,

let S WD P .S3W�/ denote the space of cubic surfaces in the fibres of � , let Sint � S denote
the open subset corresponding to integral surfaces, and let c W S ! G denote the natural
projection.

We will build up the following commutative diagram of morphisms step by step:

(4.1) P .N 0/ �
� j

//

�

��

H

Q�
��

ı

��

P .W/

�
""

� � i //

q
��

X

b
��

det // S
c

��

P5 G

Generalising the results of Section 3.3 to the relative case, we consider the vector bundle
Hom.C3;C3 ˝W/ on G and the quotient X of its open subset of semistable points by the
group G D .GL3 �GL3/=C�. The natural projection b W X ! G is a projective morphism
and a Zariski locally trivial fibre bundle with fibres isomorphic to X . There is a canonical
embedding i W P .W/ ! X of G-schemes such that the normal bundle of P .W/ in X is given
by

(4.2) �P.W/=X Š N ˝ det.K/�1 Š N ˝O� .1/˝ �
� det.W/�1;

where N is the image of the natural multiplication map S2K ˝ ��W ! ��S3W . Let
Q� W H! X denote the blow-up of X along P .W/. The exceptional divisor of Q� can be identi-
fied with P .N 0/, where N 0 WD ��P.W/=X, and we let � W P .N 0/! P .W/ and j W P .N 0/! H
denote the canonical projection and inclusion, respectively. As we have seen in previous sec-
tions, the rational map det W XÜ S extends to a well-defined morphism ı W H! S.

Finally, let H0 ! G denote the relative Hilbert scheme of generalised twisted cubics in
the fibres of � W P .W/ ! G, and let Rint denote the moduli space of pairs .C; S/ where S is
an integral cubic surface in a fibre of � and C is a generalised twisted cubic in S . Generalis-
ing Theorem 3.13 to the relative situation over the Grassmannian, we obtain the commutative
diagram

H

��

Hintoo

��

Rintaoo

��

S

!!

Sintoo H0

||

G

where a is a P2-bundle.
Let Y � P5 be a smooth cubic hypersurface defined by a polynomial f 2 S3C6 and

assume that Y does not contain a plane. Then f defines a nowhere vanishing section in S3W
and hence a section f W G ! S to the bundle projection c. For a point ŒP .W /� 2 G, its image
ŒS� D f .ŒP .W /�/ is the surface S D P .W / \ Y . Since Y does not contain a plane, f takes
values in the open subset Sint � S of integral surfaces.
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We define a projective scheme Z0 with a Cartier divisor D � Z0 by the following pull-
back diagram:

P .N 0/ �
�
// H // S

[ [ [

D
� � // Z0 // f .G/

As f .G/ is contained in Sint, the scheme Z0 is in fact contained in the open subset Hint � H.

Proposition 4.1. a�1.Z0/ Š Hilbgtc.Y /, and a�1.D/ Š J.Y / is the closed subscheme
of non-CM curves.

Proof. The natural projection Hilbgtc.Y /! G lifts both to a closed immersion

Hilbgtc.Y /! H0

and to a morphism
Hilbgtc.Y /! Sint;

sending a curve C with span hC i D P .W / to the point ŒC � 2 Hilbgtc.P .W // � H0 and the
point ŒP .W / \ Y �, respectively. By the definition of Rint, these two maps induce a closed
immersion Hilbgtc.Y / ! Rint, whose image equals a�1.Z0/ by Theorem 3.13. The second
assertion follows similarly.

We have proved the first part of Theorem B: the existence of a natural P2-fibration

Hilbgtc.Y /
a
��! Z0

relative to G.

Proposition 4.2. Let Y be a smooth cubic fourfold. Then the closure of the set of points
ŒP .W /� 2 G such that S D P .W / \ Y is a non-normal integral surface is at most four-
dimensional.

Proof. Let L � Y D ¹f D 0º be a line, and let U � C6 denote the four-dimensional
space of linear forms that vanish on L, so that L D P .V / for V D C6=U . By assump-
tion, the cubic polynomial f 2 S3C6 vanishes on L and hence is contained in the kernel of
S3C6 ! S3V . Its leading term is a polynomial Nf 2 U ˝S2V D Hom.U �; S2V /. That Y is
smooth along L is equivalent to saying that the four quadrics in the image of Nf W U � ! S2V

must not have a common zero on L. Hence Nf has at least rank 2. On the other hand, if L is
the line of singularities of a non-normal surface Y \ P .W /, then Nf has at most rank 2, and
W � � C6� is determined as the preimage of ker. Nf / under the projection C6� ! U �. In
particular, every line L � Y is the singular locus of at most one non-normal integral surface of
the form S D Y \P .W /. As the space of lines on a smooth cubic fourfold is four-dimensional,
the assertion follows.

Since non-normal surfaces form a stratum of codimension 6 in P .S3C4/, the ‘non-
normal’ locus in G is in fact only two-dimensional for a generic fourfold Y .
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Proposition 4.3. Let Y be a smooth cubic fourfold not containing a plane. Then the
closure of the set of points ŒP .W /� 2 G such that S D P .W / \ Y has a simple-elliptic
singularity is at most four-dimensional.

Proof. Let p 2 Y D ¹f D 0º be a point. Any 3-space P .W / with the property that
S D Y \P .W / is a cone with vertex p must be contained in the tangent space to Y at p. Then
one may choose coordinates x0; : : : ; x5 in a way that x0; : : : ; x4 vanish at p, that x0 D 0 de-
fines the tangent space and that f takes the form f D x25x0Cx5q.x1; : : : ; x4/Cc.x0; : : : ; x4/

for a quadric polynomial q and a cubic polynomial c. If q vanishes identically, we may choose
a line L in ¹x0 D 0 D cº � P4. As the plane spanned by L and p would be contained in Y ,
this case is excluded. A 3-space through p intersects Y in a cone if and only if it is the span of
p and a plane in the quadric surface ¹x0 D 0 D qº. Clearly, for any point p 2 Y there are at
most two such planes. Thus the family of such 3-spaces is at most four-dimensional.

Again, the expected dimension of the ‘simple-elliptic’ locus is much smaller. We may
restate the argument in a coordinate-free form as follows: Let f 2 S3C6 denote the cubic
polynomial that defines a smooth fourfold Y � P5 as before. The restriction to Y of the
Jacobi map Jf W OY .�2/ ! O6Y takes values in �P5.1/jY . Since Y is smooth, this map
vanishes nowhere, giving rise to a short exact sequence 0 ! �Y .1/ ! F ! OY .1/ ! 0

with F D O6Y =OY .�2/. By construction, the image of f under the canonical map

S3C6
! H 0.Y; S3F /

takes values in the subbundle F � S2.�Y .1// with leading term

Qf 2 H 0
�
Y; S2.�Y .1//˝OY .1/

�
D HomY .OY .�3/; S2�Y /:

Considering Qf as a symmetric map OY .�3/˝�
�
Y ! �Y , we may ask for the locus where its

rank is � 2. Standard intersection-theoretic methods [19] allow to calculate the expected cycle
class as 35h3, where h is the class of a hyperplane section in Y . This implies:

Corollary 4.4. Let Y be a smooth cubic fourfold not containing a plane. Then there is
a 3-space P .W / � P5 such that Y \ P .W / has a simple-elliptic singularity.

4.2. The divisor D � Z 0. A closed point ŒC � in D � Z0 corresponds to a family
of non-CM curves on a surface S D P .W / \ Y for some three-dimensional linear subspace
P .W / � P5. In fact, such a family is obtained by intersecting S with all planes in P .W /
through a fixed singular point p 2 S (and adding the unique non-reduced structure at p).

On the other hand, if p 2 Y is any point, a three-dimensional linear space P .W / through
p intersects Y in such a way that p becomes a singular point of S D P .W / \ Y if and only if
P .W / is contained in the projective tangent space of Y at p. This defines a bijective morphism
j W P .TY / ! D � Z0. We know from Lemma 1.1 that the P2-bundles over these spaces are
isomorphic, which proves the first part of the following proposition.

Proposition 4.5. Let � W P .TY /! Y denote the projectivisation of the tangent bundle
of Y . The morphism j W P .TY /! D is an isomorphism, and j �OZ0.D/ D O�.�1/.
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Proof. Let 0 ! U ! ��TY ! O�.1/ ! 0 denote the tautological bundle sequence
on P .TY /. Starting from the Euler sequence on P5, we obtain the following pull-back diagram
of short exact sequences of sheaves on P .TY /.

0 // ��OY .�1/ // C6 ˝OP.TY /
// ��.TP5 jY ˝OY .�1// // 0

0 // ��OY .�1/ // V 0 //

OO

��.TY ˝OY .�1// //

OO

0

0 // ��OY .�1/ // V //

OO

U ˝ ��OY .�1/ //

OO

0

The bundle inclusions
��OY .�1/ � V � C6

˝OP.TY /

induce a closed immersion u W P .TY /! P .W/with V �D u���W and u�O� .1/D ��OY .1/.
Moreover, the composite map

OP.TY /

f
��! S3O6P.TY /

! u���S3W

takes values in the subbundle u�N (cf. (4.2)), inducing a bundle monomorphism

u�
�
O� .1/˝ �

� det.W/�1
�
! u�.N 0/�

and hence a morphism v W P .TY /! P .N 0/ with � ı v D u and

v�O� .�1/ D u
�
�
O� .1/˝ �

� det.W/�1
�
D ��OY .1/˝ .� ı u/

� det.W/�1:

Adding u and v to diagram (4.1), we get

P .N 0/ �
� j

//

�

��

H

Q�
��

P .TY / u
//

�

��

v
::

P .W/

�
""

� � i //

q
��

X

b
��

Y
� � // P5 G

Since
.� ı u/� det.W/�1 D det.V / D ��OY .�1/˝4 ˝ det.U /;

we may simplify this as follows:

(4.3) v�O� .�1/ Š �
�
�
det.TY /˝OY .�3/

�
˝O�.�1/ Š O�.�1/

Since u is a closed immersion, so is v. By construction, the image of v equals D. But the
pull-back of the normal bundle OH.J/jJ D O� .�1/ to P .TY / equals O�.�1/ according to
equation (4.3). This implies that OZ0.D/jD D O�.�1/ with respect to the identification
D D P .TY /.

Corollary 4.6. Z0 is smooth along D.

Proof. SinceD is smooth and a complete intersection inZ0, the ambient spaceZ0 must
be smooth along D as well.
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4.3. Smoothness and irreducibility. Let Y D ¹f D 0º � P5 be a smooth cubic
hypersurface that does not contain a plane. In this section, we prove that Hilbgtc.Y / is smooth
and irreducible. Due to the P2-bundle map a W Hilbgtc.Y /! Z0 both assertions are equivalent
to the analogous statement about Z0.

Theorem 4.7. Hilbgtc.Y / is smooth of dimension 10.

Proof. 1. Since Hilbgtc.Y / is the zero locus of a section in a vector bundle of rank 10 on a
20-dimensional smooth variety H0 D Hilbgtc.P5/, every irreducible component of Hilbgtc.Y /

has dimension � 10. In order to proof smoothness, it suffices to show that all Zariski tangent
spaces are 10-dimensional.

Due to the existence of a P2-fibre bundle map a W Hilbgtc.Y /! Z0, the Hilbert scheme
is smooth at a point ŒC � if and only if Z0 is smooth at a.ŒC �/, or equivalently, if Hilbgtc.Y / is
smooth at some point of the fibre a�1.a.ŒC �//. And due to Corollary 4.6 which takes care of the
non-CM-locus, it suffices to consider aCM-curves, for which there is a functorial interpretation
of tangent space: TŒC � Hilbgtc.Y / Š Hom.IC=Y ;OC /.

Thus it remains to prove that hom.IC=Y ;OC / D 10 for any generalised twisted cubic
C � Y of aCM-type whose isomorphism type is generic within the family a�1.a.ŒC �//.

2. Given an aCM-curve C � Y we may choose coordinates x0; : : : ; x5 in such a way
that the ideal sheaf IC=P5 is defined by the linear forms x4 and x5 and the quadratic mi-
nors of a 3 � 2-matrix A0 with linear entries in the coordinates x0; : : : ; x3. The surface
S D Y \ ¹x4 D x5 D 0º is cut out by a cubic polynomial g 2 CŒx0; x1; x2; x3�. There
are quadratic polynomials q4 and q5 such that f D g C x4q4 C x5q5 and linear forms `0, `1,
`2 in x0; : : : ; x3 such that

g D det.A/ for A D
�
A0

ˇ̌̌ `0

`1

`2

�
:

The ideal sheaf IC=P5 has a presentation

OP5.�3/2 ˚OP5.�3/6 ˚OP5.�2/
M
��! OP5.�2/3 ˚OP5.�1/2 �! IC=P5 �! 0;

with

M D

 
A0 � 0

0 � �

!
;

where the entries denoted by � give the tautological relations between the quadrics and the
linear forms defining IC=P5 . They vanish identically when restricted to C . Therefore,

Hom.IC=P5 ;OC / D F ˚OC .1/
2 with F D ker

�
OC .2/

3
At

0
��! OC .3/

2
�
:

Since Y is smooth along C , the natural homomorphism

' W Hom.IC=P5 ;OC /! NY=P5 jC D OC .3/

is surjective, and
ker.'/ D Hom.IC=Y ;OC /:
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The homomorphism ' can be lifted to OC .2/
3 ˚ OC .1/

2 in such a way that there is an exact
sequence

0 �! Hom.IC=Y ;OC / �! OC .2/
3
˚OC .1/

2 B
��! OC .3/

3

with

B D

 
At0 0 0

`0 `1 `2 q4 q5

!
:

Note that 'jF vanishes at a point of C if and only if the surface S is singular at this point. We
will now analyse B for the four reduced types of aCM-curves. In the first three cases, the curve
C is in fact locally a complete intersection, and NC=Y D Hom.IC=Y ;OC / is locally free of
rank 3.

3. Assume that C is a smooth twisted cubic. For an appropriate choice of coordinates we
have At0 D

�
x0 x1 x2
x1 x2 x3

�
, and we parameterise the curve by

� W P1 ! C; Œs W t �! Œs3 W s2t W st2 W t3 W 0 W 0�:

Then ��At0 D .
s
t / � .s

2; st; t2/ has kernel ��F D OP1.5/2, and

NC=Y Š ker
�
ˇ W OP1.5/2 ˚OP1.3/2 ! OP1.9/

�
with ˇ WD .t`0 � s`1; t`1 � s`0; q4; q5/. The kernel of ˇ has rank 3 and degree 7. Writing it
in the form OP1.a/ ˚ OP1.b/ ˚ OP1.c/ with 5 � a � b � c, it follows that either b � 3

(and hence c � �1) or a � b � 4. In the first case, h1.NC=Y / D 0 and h0.NC=Y / D 10,
as desired. In the second case, we must have OP1.5/2 � NC=Y , since the kernel is saturated.
But this implies that S is singular along C , which is impossible. Hence Hilbgtc.Y / is smooth
at any point ŒC � whose corresponding curve C is smooth.

4. Assume that C is the union of a line L and a quadric Q. We may take

At0 D
� x0 x1 x2

0 x2 x3

�
;

so that L D ¹x2 D x3 D 0º and Q D ¹x0 D x1x3 � x
2
2 D 0º. Then At0jL D

�
x0 x1 0
0 0 0

�
has

kernel OL.1/˚OL.2/ and

NC=Y jL D ker
�
ˇ W OL.1/˚OL.2/˚OL.1/

2
! OL.3/

�
with ˇ WD .x1`0 � x0`1; `2; q4; q5/. Since NC=X jL has rank 3 and degree 2 and is a sub-
sheaf of OP1.2/ ˚ OP1.1/3, it cannot have a direct summand of degree �2. This implies
h1.NC=Y jL/ D 0 and hence h0.NC=Y jL/ D 5. We parameterise the second component of C
by � W P1 ! Q, Œs W t �! Œ0 W s2 W st W t2 W 0 W 0�. The kernel of

��At0 D
�
0 s2 st
0 st t2

�
is isomorphic to OP1.4/˚OP1.3/, and

NC=Y jQ D ker
�
ˇ W OP1.4/˚OP1.3/˚OP1.2/2 ! OP1.6/

�
with ˇ WD .`0; t`1� s`0; q4; q5/. The sheaf OP1.4/ can lie in the kernel only if `0jQ D 0, i.e.,
if `0 is a multiple of x0, which is impossible since x0 must not divide det.A/. If two copies of
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OP1.3/ were contained in the kernel, they would have to lie in OP1.4/ ˚ OP1.3/, and since
the kernel is saturated, this would imply that OP1.4/ is contained in the kernel as well, a case
we just excluded. Therefore we haveNC=Y jQ D OP1.a/˚OP1.b/˚OP1.c/ with a � b � c
and a � 3 and b � 2. Since a C b C c D 5, this implies c � 0. Now NC=Y jQ not only has
vanishing H 1 but is in fact globally generated, so that H 0.NC=Y jQ/ ! H 0.NC=Y jL\Q/ is
surjective. Hence it follows from the exact sequence

0! H 0.NC=Y / �! H 0.NC=Y jL/˚H
0.NC=Y jQ/ �! H 0.NC=Y jL\Q/

that h0.NC=Y / D 5C 8 � 3 D 10.
5. Assume that C is the union of three lines L1, M and L2 that intersect in two distinct

points p1 D L1 \M and p2 D M \ L2. In appropriate coordinates, C is defined by the
minors of

At0 D
�
x0 x1 0
0 x2 x3

�
;

and L1 D ¹x0 D x1 D 0º, M D ¹x0 D x3 D 0º and L2 D ¹x2 D x3 D 0º. Then
At0jL1

D
�
0 0 0
0 x2 x3

�
has kernel F jL1

D OL1
.2/˚OL1

.1/, so that

NC=Y jL1
D ker

�
ˇ W OL1

.2/˚OL1
.1/3 ! OL1

.3/
�

with ˇ WD .`0; x3`1 � x2`2; q4; q5/. Assume first that `0jL1
D 0. Then `0 must be a linear

combination of x0 and x1. If it were a multiple of x0, the determinant det.A/would be divisible
by x0, contradicting the assumptions on Y . Hence `0 D ˛0x0 C ˛1x1 with ˛1 ¤ 0. Then for
any " 2 C the matrix

At" D
�
x0 x1 0
"`0 x2C"`1 x3C"`2

�
defines a curve C" in the P2-family of C , which for generic choice of " is the union of a
quadric and a line. Hence the isomorphism type of C is not generic in the family, and we need
not further consider this case. If on the other hand `0jL1

¤ 0, then the maximal degree of a
direct summand of the kernel of ˇ is 1, so that NC=Y jL1

is isomorphic to OL1
.1/2˚OL1

, has
exactly 5 global sections and is even globally generated. By symmetry, the same is true for L2.

Similarly, At0jM D
�
0 x1 0
0 x2 0

�
has kernel F jM D OM .2/

2, and

NC=Y jM D ker
�
ˇ W OM .2/

2
˚OM .1/

2
! OM .3/

�
with ˇ WD .`0; `2; q4; q5/. Hence NC=Y jM has degree 3, and any direct summand has degree
� 2. The only possibility for NC=Y not to be globally generated is

NC=Y jM D OM .2/
2
˚OM .�1/;

but even then it has vanishing H 1 and hence h0 D 6. Since the restrictions of NC=Y to the
lines L1 and L2 are globally generated, we conclude as in the previous step that the map

H 0.NC=Y jL1
/˚H 0.NC=Y jM /˚H

0.NC=Y jL2
/ �! H 0.NC=Y jp1

/˚H 0.NC=Y jp2
/

is surjective, and that h0.NC=Y / D 5C 6C 5 � 3 � 3 D 10.
6. Assume that C is the union of three lines L1, L2 and L3 that meet in a point p but are

not coplanar. We may take
At0 D

�
x0 0 �x2

0 �x1 x2

�
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and index the lines so that xi and x3 are the only non-zero coordinates on Li . In particular,
every column of At0 vanishes on two of the lines identically. We obtain F D

L2
iD0 Fi with

Fi D ker
�
OC .2/

xi
��! OC .3/

�
Š OLiC1

.1/˚OLiC2
.1/

(indices taken mod 3) and need to analyse the exact sequences of the form

(4.4) 0 �! N �!
M
i

OLi
.1/2 ˚OC .1/

2
�! OC .3/! 0:

At most one line is contained in the singular locus of S . Should this be the case, we may
renumber the coordinates so that this line is L0. In any case, we may restrict sequence (4.4) to
L0 and divide out the zero-dimensional torsion. We obtain a commutative diagram of purely
one-dimensional sheaves with exact columns and rows:

0

��

0

��

0

��

0 // N 0 //

��

L
iD1;2

�
OLi

.1/2 ˚O2Li

�
//

��

L
iD1;2OLi

.2/ //

��

0

0 // N //

��

L2
iD0OLi

.1/2 ˚OC .1/
2 //

��

OC .3/ //

��

0

0 // N 00 //

��

OL0
.1/2 ˚OL0

.1/2 //

��

OL0
.3/ //

��

0

0 0 0

Now N 0 D N 01 ˚ N
0
2 where each summand N 0i D ker.OLi

.1/2 ˚ O2Li
! OLi

.2// is a vector
bundle of rank 3 and degree 0 on Li . Since S is not singular along Li for i D 1; 2, the two
summands OLi

.1/ cannot both be contained in N 0. Necessarily, we have

N 0i Š OLi
.a/˚OLi

.b/˚OLi
.c/

with .a; b; c/ D .1; 0;�1/, .0; 0; 0/. In any case, N 0 has vanishing H 1 and 6 global sections.
On the other hand,N 00 is locally free onL0 of rank 3 and degree 1. Admissible decompositions
N 00 D OL0

.a/ ˚ OL0
.b/ ˚ OL0

.c/ are .a; b; c/ D .1; 1;�1/ and .1; 0; 0/. In any case,
H 1.N 00/ D 0 and h0.N 00/ D 4. It follows that h0.N / D h0.N 0/C h0.N 00/ D 10.

7. Assume that C is the first infinitesimal neighbourhood of a line in P3, defined by, say,

At0 D
�
x0 x1 0
0 x0 x1

�
:

We will show that the corresponding P2-family contains a reduced curve, so that this case
is reduced to those treated before. The curve C necessarily forms the singular locus of S ,
and S must be one of the four types of non-normal surfaces. In each case there is only one
determinantal representation up to equivalence and coordinate change, namely

A D

�
x0 0 x2

x1 x0 0
0 x1 x3

�
;

�
x0 0 x1

x1 x0 x2

0 x1 x3

�
;

�
x0 0 x1

x1 x0 x2

0 x1 x0

�
; and

�
x0 0 x2

x1 x0 0
0 x1 x0

�
:
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A reduced curve in the corresponding P2-family is provided for example by the matrices

A00 D
� x0 x2

x1 0
0 x3

�
;
� x0 x1
x1 x2

0 x3

�
;
� x0 x1

x0Cx1 x2
x1 x0

�
; and

� x0 x2

x0Cx1 0
x1 x0

�
;

respectively.
8. The remaining three types of non-reduced aCM-curves (corresponding to matrices

A.5/, A.6/ and A.7/ in the enumeration of Section 1) are each the union of two lines L and
M , of which one, say L, has a double structure. Since we have already shown that any P2-
family containing the most degenerate type also contains a non-reduced curve, it suffices to
show that there is no P2-family parameterising only non-reduced curves with two components.
Assume that A 2 W 3�3 defines such a family. The corresponding bundle homomorphism is
the composite map

�P2.1/ �! O3P2

A
��! O3P2 ˝W:

We form
ƒ2�P2.2/ Š OP2.�1/! ƒ2.O3P2/˝ S

2W

and obtain the associated family of nets of quadrics OP2.�1/3 ! OP2˝S2W . To each param-
eter � 2 P2 in the family there are associated subspaces B� � U� � W , where B� defines the
plane spanned by the lines L� andM�, and U� defines the line L�. Let B � U � OP2˝CW

denote the corresponding vector bundles. Then there are inclusions

B �U � OP2.�1/3 � OP2 ˝ S2W:

But such a configuration of vector bundles is impossible: Both inclusions B � U and
BU � OP2.�1/3 would have to split, say B D OP2.a/, U D OP2.a/ ˚ OP2.b/ and
finally OP2.�1/3 Š OP2.2a/˚OP2.aC b/˚OP2.c/, and the latter isomorphism is clearly
impossible.

Theorem 4.8. Z0 is an eight-dimensional smooth irreducible projective variety.

Proof. Due to the existence of the P2-fibration Hilbgtc.Y / ! Z0, the smoothness of
Hilbgtc.Y / implies that Z0 is smooth as well and of dimension 8. The morphism Z0 ! G
is finite over the open subset of ADE-surfaces, and has fibre dimension � 1 resp. � 2 over
the strata of simple-elliptic and non-normal surfaces, respectively, due to Corollary 3.11. By
Proposition 4.3 and Proposition 4.2, simple-elliptic and non-normal surfaces form strata in G
of dimension � 4. It follows that every irreducible component of Z0 must dominate G. The
stratum of simple-elliptic surfaces in G is non-empty by Corollary 4.4. Since Hilbgtc.S/ is
connected for a simple-elliptic surface, Z0 must be connected as well. Being smooth, Z0 is
irreducible.

Again, due to the existence of the P2-fibre bundle map Hilbgtc.Y /! Z0, this theorem is
equivalent to Theorem A.

4.4. Symplecticity. We continue to assume that Y � P5 is a smooth hypersurface that
does not contain a plane.

De Jong and Starr [10] showed that any smooth projective model of the coarse moduli
space associated to the stack of rational curves of degree d on a very general cubic fourfold
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carries a natural 2-form !d . In our context, !3 can be defined directly as follows: Let

� D

5X
iD0

.�1/ixidx0 ^ : : : ^bdxi ^ : : : ^ dx5:

An equation f for Y determines a generator ˛ 2 H 3;1.Y / as the image of Œ�=f 2� under
Griffiths’s residue isomorphism

Res W H 5.P5 n Y;C/! H 4
prim.Y /:

The cycle ŒC � 2 H22.Hilbgtc.Y / � Y IZ/ of the universal curve C � Hilbgtc.Y / � Y defines a
correspondence

ŒC �� W H
4.Y;C/! H 2.Hilbgtc.Y /;C/

via ŒC ��.u/ D PD�1 pr1�.pr�2.u/ \ ŒC �/, where pr1 and pr2 denote the projections from
Hilbgtc.Y / � Y to its factors. Since the homology class ŒC � is algebraic, the map ŒC �� is of
Hodge type .�1;�1/ and maps H 3;1.Y / Š C to H 2;0.Hilbgtc.Y //. Let the 2-form !3 be the
image of ˛ 2 H 3;1.Y /. More importantly, de Jong and Starr showed that the value of !3 on
the tangent space TŒC � Hilbgtc.Y / D H 0.C;NC=Y / at a smooth rational curve C � Y has the
following geometric interpretation:

There is a short exact sequence of normal bundles

(4.5) 0! NC=Y ! NC=P5 ! NY=P5 jC ! 0:

To simplify the notation let A WD NC=Y , N WD NC=P5 and F WD NY=P5 . The fact that Y is a
cubic contributes the relation

detA
F
Š

detN
F 2

Š
!C

!P5 ˝ F 2
Š !C :

Taking the third exterior power of (4.5) and dividing by F , one obtains a short exact sequence

0!
detA
F
!

ƒ3N

F
! ƒ2A! 0;

whose boundary operator defines a skew-symmetric pairing

ı W ƒ2H 0.A/! H 0.C;ƒ2A/! H 1.C; det.A/˝ F �/ D H 1.C; !C / Š C:

By [10, Theorem 5.1], one has
!3.u; v/ D ı.u ^ v/

for any two tangent vectors u; v 2 H 0.C;NC=Y /, up to an irrelevant constant factor. By a
rather involved calculation, de Jong and Starr show that !3 generically has rank 8. We will
need the following minimally sharper result:

Proposition 4.9. !3 has rank 8 at ŒC � 2 Hilbgtc.Y / whenever C is smooth.

Proof. Consider the second exterior power of (4.5) and divide again by F :

(4.6) 0!
ƒ2A

F
!

ƒ2N

F
! A! 0:
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Note that ƒ2A=F Š A� ˝ detA=F Š A� ˝ !C . The associated boundary operator defines a
map

ı0 W H 0.C;A/! H 1.C;ƒ2A˝ F �/ Š H 0.C;A/�:

The commutative diagram

H 0.A/˝H 0.A/ //

��

H 0.A/˝H 1.ƒ2A=F / //

��

H 0.A/˝H 1.A� ˝ !C /

��

H 0.ƒ2A/ // H 1.detA=F / Š // H 1.!C /

shows that ı0 is the associated linear map of the pairing ı.
Though it is less clear from ı0 that the pairing on H 0.A/ is skew symmetric, it makes

it easier to compute the radical of !3 at ŒC �, which is simply the kernel of ı0 and hence the
cokernel of the injective homomorphism

 W H 0.C;ƒ2A˝ F �/! H 0.C;ƒ2N ˝ F �/

induced by (4.6). Using an identification C Š P1, we have isomorphisms F Š OP1.9/ and
N Š OP1.5/2 ˚ OP1.3/2. The bundle ƒ2N ˝ F � Š OP1.1/˚ OP1.�1/4 ˚ OP1.�3/ has
exactly two sections. If we write A D OP1.a/ ˚ OP1.b/ ˚ OP1.c/ with a � b � c then
aC b C c D deg.A/ D 7, and we know from step 3 in the proof of Theorem 4.7 that c � �1
and aC b � 8. Thus the maximal degree of a direct summand of ƒ2A=F is aC b � 9 � �1.
This shows h0.ƒ2A=F / D 0 and dim rad!3.ŒC �/ D dim coker./ D h0.ƒ2N=F / D 2.

Theorem 4.10. Let a W Hilbgtc.Y /! Z0 be the P2-fibration constructed before.

(1) There is a unique form !0 2 H 0.Z0; �2Z0/ such that a�!0 D !3.

(2) !0 is non-degenerate on Z0 nD.

(3) KZ0 D mD for some m > 0.

Proof. 1. From the exact sequence 0 ! a��Z0 ! �M3
! �M3=Z0 ! 0 one gets a

filtration by locally free subsheaves 0 � a��2Z0 � U � �
2
M3

with factors

U=a��2Z0 Š a
��Z0 ˝�M3=Z0 and �2M3

=U Š �2M3=Z0
:

This in turn yields exact sequences

0 �! H 0.M3; U / �! H 0.M3; �
2
M3
/ �! H 0.M3; �

2
M3=Z0

/

and
0 �! H 0.M3; a

��2Z/ �! H 0.M3; U / �! H 0.M3; a
��Z0 ˝�M3=Z0/:

Since neither �P2 nor �2
P2 have non-trivial sections, a��M3=Z0 and a��2M3=Z0

vanish. It
follows that

H 0.M3; �
2
M3=Z0

/ D H 0.Z0; a��
2
M3=Z0

/ D 0

and
H 0.M3; a

��Z0 ˝�M3=Z0/ D H
0.Z0; �Z0 ˝ a��M3=Z0/ D 0:
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We are left with isomorphisms

H 0.Z0; �2Z0/ Š H
0.M3; a

��2Z0/ Š H
0.M3; U / Š H

0.M3; �
2
M3
/:

This shows that !3 descends to a unique 2-form !0 on Z0.
2. It follows from Proposition 4.9 that !0 is non-degenerate at all points z 2 Z0 for which

the fibre a�1.z/ contains a point corresponding to a smooth rational curve. By Theorem 2.1,
this is the case for all points corresponding to fibres with aCM-curves on a surface with at most
ADE-singularities. The dimension argument in the proof of Theorem 4.8 shows that the locus
of points in Z0 nD that do not satisfy this condition has codimension � 2. But the degeneracy
locus of a 2-form is either empty or a divisor. Thus !0 is indeed non-degenerate on Z0 nD.

3. Since !0 is non-degenerate on Z0 nD, its 4th exterior power defines a non-vanishing
section in the canonical line bundle of Z0 over Z0 n D, showing that KZ0 D mD for some
m � 0. To see that m > 0, it suffices to note that Y has no non-trivial holomorphic 2-form,
so that the restriction of !0 to D D P .TY / must vanish identically. Consequently, !0 must be
degenerate along D.

A calculation of the topological Euler characteristic of the preimage curve in Z0 of a
generic line L � Grass.C6; 4/ shows that KZ0 � 3D. We will not need this explicit number
and hence omit the calculation. In fact, m D 3 easily follows a posteriori once we have shown
the existence of a contraction Z0 ! Z to a manifold Z that maps D to Y .

4.5. The extremal contraction.

Theorem 4.11. There exists an eight-dimensional irreducible projective manifold Z
and a morphism ˆ W Z0 ! Z with the following properties:

(1) ˆ maps Z0 nD isomorphically to Z nˆ.D/.

(2) ˆjD factors through the projection � W D D P .TY / ! Y and a closed immersion
j W Y ! Z.

(3) There is a unique holomorphic 2-form ! 2 H 0.Z;�2Z/ such that !0 D ˆ�!.

(4) ! is symplectic.

We will prove the theorem in several steps:

Lemma 4.12. The line bundle OZ0.D/ is ample relative to s W Z0 ! G.

Proof. As the statement is local with respect to the Grassmannian, it suffices to prove
the analogous statement for the divisor J � H relative to the morphism H ! P .S3W �/.
This is the content of Corollary 3.10.

Let W denote the universal rank-4 bundle on G. Then det.W/ is very ample, and its
pull-back B WD s� det.W/ to Z0 is a nef line bundle. The linear system of the line bundle

L WD OZ0.D/˝ B
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will produce the contraction ˆ W Z0 ! Z. It follows from Proposition 4.5 that with respect to
the identification D D P .TY / we have

(4.7) O.D/jD D O�.�1/ and LjD Š �
�OY .1/:

Lemma 4.13. L is nef, and all irreducible curves † � Z0 with deg.Lj†/ D 0 are
contained in D, and more specifically, in the fibres of � W D D P .TY /! Y .

Proof. Assume first that† is an irreducible curve not contained inD. SinceD is effec-
tive, one has D:† � 0. As B is nef, one has deg.Lj†/ � 0. Moreover, deg.Lj†/ > 0 unless
deg.Bj†/ D 0, which is only possible when† is contained in the fibres ofZ0 ! Grass.C6; 4/.
But since D is relatively ample over the Grassmannian, one would have D:† > 0.

Conversely, if † � D, we have deg.Lj†/ D deg.OY .1/j�.†// � 0 by the previous
lemma. This number is > 0 unless † lies in the fibre of � W D ! Y .

Lemma 4.14. For all p; q > 0 the line bundle Lp ˝ Bq is ample.

Proof. As B is the pull-back of an ample line bundle on G and L is ample relative G, it
follows thatL˝B` is ample for some large `. Since bothL and B are both nef, L1Cm˝B`Cn

is ample for all m; n � 0 by Kleiman’s numerical criterion for ampleness [24].

Lemma 4.15. The classes Œ†� of curves with deg.Lj†/ D 0 form a KZ0-negative ex-
tremal ray.

Proof. According to the previous lemma, curves with deg.Lj†/ D 0 are contained in
the fibres of a projective bundle D D P .TY /! Y . Any such curve is numerically equivalent
to a multiple of a line in any of these fibres. Such classes Œ†� generate a ray. Moreover, as
OD.D/ is negative on the fibres of � by (4.7) and KZ0 � mD, the restriction of KZ0 to this
ray is strictly negative.

Using the Contraction Theorem (see [25, Theorem 3.7] or [28, Theorem 8-3-1]), we
conclude: There is a morphism Z0 ! Z with the following properties:

(1) Z is normal and projective, ˆ has connected fibres, and ˆ�OZ0 D OZ .

(2) A curve † � Z0 is contracted to a point in Z0 if and only if its class is contained in the
extremal ray.

(3) There is an ample line bundle L0 on Z such that L Š ˆ�L0.

Let Y 0 � Z denote the image of D. By Lemma 4.13 and Lemma 4.15, the morphism ˆ

contracts exactly the fibres of � W P .TY /! Y . Since the fibres of � and of ˆ are connected,
ˆ induces bijections Z0 nD ! Z n Y 0 and Y ! Y 0. As both Z0 nD and Z n Y 0 are normal,
the restriction ˆ W Z0 nD ! Z n Y 0 is an isomorphism.

Lemma 4.16. For sufficiently large ` the natural map H 0.Z0; L`/! H 0.D;L`jD/ is
surjective.
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Proof. By Lemma 4.14,

L`.�D/˝O.�KZ0/ D L
`.�.mC 1/D/ D BmC1 ˝ L`�m�1

is ample for ` > m C 1. Hence an application of the Kodaira Vanishing Theorem gives
H 1.Z0; L`.�D// D 0, so that H 0.Z0; L`/! H 0.D;L`jD/ is surjective.

Since LjD Š ��OY .1/, it follows from the previous lemma that Y ! Y 0 is an isomor-
phism.

Proposition 4.17. Z is smooth.

Proof. It remains to show that Z is smooth along Y . The system of ideal sheaves
In WD ˆ

�1.In
Y=Z

/OZ0 and OZ0.�nD/ are cofinal. Moreover, there are exact sequences

0 �! OD.�nD/ �! O.nC1/D �! OnD �! 0

and
0 �! SnTY �! ˆ�O.nC1/D �! ˆ�OnD �! 0;

since OD.�nD/ D O�.n/ and thus ˆ�OD.�nD/ D SnTY and Riˆ�OD.�nD/ D 0 for
all i > 0. It follows from Grothendieck’s version of Zariski’s Main Theorem [18, Theo-
rem III.4.1.5] that the completion of Z along Y can be computed by

OOZ D lim
 �
ˆ�.OZ0=In/ D lim

 �
ˆ�.OnD/ D OS.TY /:

This shows that Z is smooth along Y .

Proposition 4.18. The form !0 on Z0 descends to a symplectic form ! on Z.

Proof. As Y � Z has complex codimension 4, the pull-back of !0 via the isomorphism
Z n Y ! Z0 nD extends uniquely to a holomorphic 2-form ! that is necessarily symplectic
since the degeneracy locus of a 2-form is either empty or a divisor.

This finishes the proof of Theorem 4.11.

4.6. Simply connectedness.

Proposition 4.19. Z is irreducible holomorphic symplectic, i.e., Z is simply-connected
and H 0.!Z/ D C!. In particular, Z carries a Hyperkähler metric.

Proof. The first Chern class of Z is trivial. By Beauville’s Théorème 1 in [4], there
is a finite étale covering f W QZ ! Z such that QZ Š

Q
i Zi , where each factor Zi is either

irreducible holomorphic symplectic, a torus or a Calabi–Yau manifold. In fact, since QZ carries a
non-degenerate holomorphic 2-form, factors of Calabi–Yau type are excluded. As Y is simply-
connected, the inclusion i W Y ! Z lifts to an inclusion a W Y ! QZ. Let k be an index
such that the projection ak W Y ! Zk is not constant. Since Pic.Y / D Z, the morphism
ak must be finite. Since H 0.�1Y / D 0, Zk cannot be a torus. And since H 0.�2Y / D 0, the
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tangent space TyY of any point y 2 Y must map to an isotropic subspace of Tak.y/Zk , which
requires dim.Zk/ � 2 dim.Y / D 8. This shows that there is only one factor in the product
decomposition and that QZ is itself irreducible holomorphic symplectic. Moreover, since f is
étale, we have H 0.�iZ/ � H

0.�i
QZ
/ and get inequalities

h0.�2i�1Z / � h0.�2i�1
QZ

/ D 0 for i D 1; : : : ; 4;

1 � h0.�2iZ / � h
0.�2i

QZ
/ D 1 for i D 0; : : : ; 5:

In particular,

�.OZ/ D

8X
iD0

.�1/ih0.�iZ/ D 5

and similarly �.O QZ/ D 5. On the other hand, it follows from the Hirzebruch–Riemann–Roch
theorem that

�.O QZ/ D

Z
QZ

td.T QZ/ D
Z
QZ

td.f �TZ/ D deg.f /
Z
Z

td.TZ/ D deg.f /�.OZ/:

We conclude that deg.f / D 1 and that Z is irreducible holomorphic symplectic.

4.7. The topological Euler number.

Theorem 4.20. The topological Euler number of Z is 25650.

This number equals the Euler number of the Hilbert scheme Hilb4.K3/ of zero-dimensio-
nal subschemes of length 4 on a K3-surface [17]. This and the fact that the Beauville–Donagi
moduli space of lines on Y is isomorphic to Hilb2 of a K3-surface if Y is of Pfaffian type make
it very hard not to believe that Z is isomorphic to some Hilb4.K3/ for special choices of Y or
is at least deformation equivalent to such a Hilbert scheme.

For this reason we will not give a detailed proof of the theorem here. Our method imitates
the pioneering calculations of Ellingsrud and Strømme [16]. Note first that

e.Z0/ D e.Z/C e.Y /.e.P3/ � 1/ D e.Z/C 81;

e.Hilbgtc.Y // D e.Z0/e.P2/ D 3e.Z0/:

Hence the assertion is equivalent to e.Hilbgtc.Y // D 77193. Now Hilbgtc.Y / is the zero locus
of a regular section in a certain 10-dimensional tautological vector bundle A on Hilbgtc.P5/
(cf. Section 1). It is therefore possible to explicitly express both the class of Hilbgtc.Y / and
the Chern classes of its tangent bundle in terms of tautological classes in the cohomology ring
H�.Hilbgtc.P5/;Q/. Two options present themselves for the calculation:

1. Follow the model of Ellingsrud and Strømme and write down a presentation of the
rational cohomology ring of Hilbgtc.P5/ in terms of generators and relations and calculate
using Gröbner base techniques. This is the option we chose. We wrote pages of code first in
SINGULAR and then in SAGE [26].

2. Take a general linear C� action on P5 and determine the induced local weights at any
of the 1950 fixed points for the induced action on Hilbgtc.P5/. Fortunately there are only nine
different types of fixed points. The relevant calculations can then be executed by means of the
Bott-formula.
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