
Treatise on the vibration of chords *

Leonhard Euler

1. Even though that, what has been discovered about the vibrational motion
of chords first by Taylor and Bernoulli, then by others, seems to exhaust this
subject, nevertheless, those findings are restricted in such a way that hardly in
any case the true motion of a vibrating chord can ever be determined. For, first
they assumed that the strained chord only performs infinitely small vibrations
so that the chord in this motion, no matter, whether it has a straight or a
curved shape, can always be considered to conserve the same length. Another
restriction is that they assume all vibrations to be regular: In each vibration
they assumed the whole chord to be extended straight once and at one time,
and investigated its curved shape beyond this position, which they found to
be an trochoid curve elongated to infinity.

2. The first restriction, i.e. that the excursions of the vibrating chord are
set to be infinitely small, even though they always have a finite ratio to the
length of the chord, hardly falsifies the conclusions derived from it, since in
most cases the excursions are so small that the can be considered as infinitely
small without any noticeable error. But on the other hand both Mechanics
and Analysis have not been developed so far that the motion can be found
in the case of finite vibrations. But concerning the other restriction, i.e. that
they assumed all vibrations to be regular, they try to argue in favour of this
assumption by saying that, even though initially the vibrations recede from
this law of motion, after a short period of time they become so uniform that
the chord in each vibration is extended into a straight line once and at the
same time, but beyond this position it has the shape of an elongated trochoid.

*Original Title: "De vibratione chordarum exercitatio“, first published in Nova acta eruditorum,
1749, pp. 512-527, reprint in:Opera Omnia: Series 2, Volume 10, pp. 50 - 62, Eneström-
Number E119, translated by: Alexander Aycock for the project „Euler-Kreis Mainz“
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3. It has certainly been confirmed sufficiently often that, if one single vibra-
tion was conform to this rule, then all subsequent ones also have to follow
the same rule. But hence it is understood at the same time, as the state of the
following vibrations depends on the preceding ones and can be determined
from them, that so vica versa from the state of the following the shape of
the preceding ones can be concluded1. Thus, if the following vibrations were
regular, it can not happen by any means that the preceding ones deviate from
this rule; hence it is perspicuous, if the first vibration was irregular, that the
following ones can never become perfectly regular. But the first vibration is
completely arbitrary, while one can give any shape to the chord before it is
released, and thus one can vary the vibrational motion of the same chord
indefinitely, depending on which initial motion is given to it.

4. Therefore, the following question, containing the whole investigation,
arises:

If a chord of given length and given mass is strained by a given force or weight,
and it is transferred from a straight position into any arbitrary shape, which nevert-
heless deviates infinitely less from the straight one, and is then suddenly released, to
determine the whole vibrational motion, it will then perform.

This problem, most difficult so in Mechanics as in Analysis, was first
successfully tackled by d’Alembert, who communicated his most elegant
solution to the Royal Academy. But since in sublime investigations of this
kind always much insight is gained from the comparison of several solutions
of the same problem, I do not hesitate to also present my solution of this
question; even though it deviates quite a lot from d’Alembert’s solution, it
will nevertheless cause a immense development of this subject, so that I think
many remarkable observations will be made while applying more general
formulas.

5. Therefore, first I will carefully propound the problem, so that it becomes
clear, which auxiliary tools so from Analysis as from Mechanics are necessary
for the solution. Therefore, let (Fig. 1)

1This is possible since the wave equation can be reversed in time.
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Scan was taken from the Opera Omnia version.

a chord AB fixed at its ends A and B be propounded, and let it be strained by
an arbitrary force, as it is common in musical instruments, into the direction
AF. Let the chord have the same density everywhere, and call:

its length AB = a

its mass or its weight = M

and the straining force AF be equal to the weight = F.

Then, let this chord from its natural state AB be brought into a curved position
ALlB differing infinitely less from the natural straight state AB, so that the
length ALlb does only non-visibly exceed the length AB; and let this shape
ALlB given to the chord initially be known. Now it is in question, if the chord
is suddenly released from this position, which motion it will undergo and
vibrations of which kind it will perform.

6. Therefore, after the chord had been released from the position ALlB, it
will immediately be forced into the natural position AB by the straining force,
which acts on each of its points either simultaneously or in different moments
of time: Thus, the chord will take on the one and the other shape, and each
point of it will be set into vibrational motion, until each motion is eventually
ended by resistance. But to understand this motion completely, no matter of
what nature it was, it will suffice, to have assigned the state of the chord, i.e.
its shape, at each time. For, while hence the change of the shape is defined
through instantaneous successions, at the same time from this the velocity of
each point of the chord can be defined, and thus the whole motion will become
known: And for this reason in this investigation it will not be necessary to
consider the velocities of each point of the chord, which simplifies the solution
tremendously.
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7. Since we assume the length of the chord to stay the same, i.e. that ALlB =
AL, while it successively takes on all these various shapes, having drawn the
ordinates PL, pl orthogonally to the axis AB, the arcs AL, Al will be equal to
the corresponding abscissas AP, Ap: And the ordinates PL, pl will infinitely
small with respect to the abscissas. Hence, if one calls the abscissa AP = x,
the ordinate PL will be infinitely small with respect to x, and the arc AL will
be = x: Furthermore, it will be Pp = Ll = dx. From this it is understood,
while the chord successively has the one and the other shape, that each point
L of it will always be moved into the direction of the ordinate LP, so that each
ordinate LP represents the way how the point L of the chord moves towards
the natural state AB; but then, because of the fictional motion into the same
direction normal to AB, it will run to the opposite straight direction.

8. Having noted these things in advance, let us put that, after the time t has
passed, the chord got into the position AMmB from the initial position ALlB,
so that the point L moved to M. Therefore, having put the abscissa AP = x,
which at the same time exhibits the length of the arc AM, let the corresponding
ordinate in this curve AMB be PM = y, and, since this curve AMB depends
on the elapsed time = t, y will be a certain function of both variables x and
t, so that, having put x = 0, the value of y exhibits the ordinate of the initial
curve ALB. It is indeed perspicuous that, if the nature of this function of x
and t, by which the ordinate y is expressed, was known, that from it the form
of the chord can be assigned for each time, from the variability of which then
further the motion of the whole chord will then easily be concluded.

9. Therefore, since y is a function of x and t, its differential will have a form
of this kind dy = pdx + qdt, which formula contains the variability of y not
only throughout the curve AMB but also also with respect to the flow of time.
Of course, if the time t is set to be constant or dt = 0, the equation dy = pdx
will express the nature of the curve AMB: But, if the abscissa x is assumed to
be constant, i.e. dx = 0, the equation dy = qdt will define the motion of the
point L, as long as the motion of the chord lasts, whence from it it is possible
to assign the point M the point L gets to for each passed t counted from the
initial point. But p and q will again be functions of x and t, the differentials of
which, having put both, x and t, to be variables, are:

dp = r · dx + s · dt, and dq = s · dx + u · dt.
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For, it is known from the nature of differentials that the element dt in dp and
the element dx in dq must have a common coefficient.

10. Since now the motion of the chord must be defined from the forces
acting on it, let the accelerating force, by which now the point M of the chord
is moved towards the axis AB, be = P, and all these forces, by which each
element of the chord is moved towards the axis AB, taken at the same time
must be equal to the force, by which the chord is actually strained, and which
we want to put AF = F. In other words, if in each point M of the chord we
imagine these forces P opposite to the ordinates ML, then they have to be in
an equilibrium with the staining force AF = F, and from this true property
the accelerating force P, which actually acts on each element Mm of the chord,
can be determined.

11. Since the mass or the weight of the whole chord is = M and is uniformly
distributed throughout the whole length AB = a, the weight of the portion
AP or AM will be = Mx

a , and thus the infinitesimal weight of the element
Mm = dx will be = Mdx

a ; since it is moved towards ML by the accelerating
force = P, the moving force of this element will be = Mdx

a · P, and the sum of
all moving forces throughout the arc AM will be = M

a

∫
Pdx. Now, since the

point A is put to be fixed, it is possible to conceive a certain force AG = G
acting on it in the direction AG normal to AB, which force shall be so large
that the point A stays at rest. Having constituted all this, from the theory of
the equilibrium of forces applied to a perfectly flexible string the following
equation is deduced:

Fy− Gx +
M
a

∫
dx
∫

Pdx = 0,

where Fy and Gx are the moments of the forces F and G with respect to the
point M and M

a

∫
dx
∫

Pdx is the sum of all moments of elementary forces
with respect to the same point M.

12. Now consider the curve AMB, which the curve forms in this moment,
the nature of which will be expressed by the formulas given before, if the time
t is set to be constant, i.e. dt = 0; therefore, it will be dy = pdx and dp = rdx.
Therefore, differentiate the equation found from the state of equilibrium and,
having written pdx for y, the equation, if divided by dx, will give:
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Fp− G +
M
a

∫
Pdx = 0.

Now differentiate again, and writing rdx for dp, divide by dx, and so it will
result: Fr + M

a · P = 0, whence the accelerating force of the point M into the
direction MP results, namely P = − Far

M . Hence, if the curve AMB would
be known, from its nature the accelerating force of each element could be
determined.

13. Now consider the motion of the point M only, i.e., how it gets to P
acted upon by the accelerating force P, and the abscissa AP = x is to be
considered as invariable. Therefore, since, because of dx = 0, the momentous
increment of the ordinate PM is dy = q · dt and dq = u · dt, in the time interval
dt the point M will get to P through the space = −q · dt, the differential of
which, having put the time element dt to be constant, will be = −dq · dt =
−u · du2 = −ddy. But from the acceleration resulting from the force P from
principles of Mechanics one will obtain this equation: P = − 2ddy

dt2 = −2u,
if the time element dt is explained, as it is common practice, by the spatial
element corresponding to the velocity, but the velocity on the other hand is
represented by the square root of the altitude corresponding to the velocity.
Therefore, since we found P = − Far

M on the one hand, P = −2u on the other
hand, it will be 2u = Far

M or u = Far
2M .

14. By these two conditions, which we reduced to calculus, the whole questi-
on is answered; and hence, if after a certain time t for a point M of the chord
the abscissa is put AP = x and the ordinate PM = y, the latter will by expres-
sed by a function of x and t of such a kind that, having put dy = pdx + qdt,
the nature of the functions p and q is to be derived form:

dp = rdx + sdt and dq = sdx +
Fa
2M

rdt.

Therefore, the propounded mechanical problem is reduced to this analytical
problem that functions r and s of x and t of such a kind are in question that so
this differential formula rdx + sdt as this one sdx + Fa

2M rdt becomes integrable.
For, having found functions of this kind for r and s one will be able to assign
the values

p =
∫
(rdx + sdt) and q =

∫ (
sdx +

Fa
2M

rdt
)

,
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whence further the value of the ordinate y =
∫
(pdx + qdt) will be found.

15. But this analytical problem, considered by itself, is very ill-defined; thus,
to accommodate it to a certain case, the following things are to be mentioned:
First, in the integrations the constants are to be chosen in such a way that
for x = 0, whatever value is just then attributed to t, always y = 0. Further,
the same must happen in the case x = a, so that again, whatever t is, y = 0
results. Thirdly, having observed this, from infinitely many functions r and
s satisfying the conditions mentioned before, for each given case those are
to be chosen that for t = 0 the resulting value of the ordinate y exhibits the
arbitrary curve, which was given to the chord initially. Having provided all
this, there will not remain any undetermined constant in the solution and the
true motion of the chord can be absolutely exhibited.

16. Therefore, to constitute the initial shape of the chord arbitrarily, the
solution must extend very far. Thus, while one has to start the investigation
from these formulas:

dp = rdx + sdt and dq = sdx +
Fa
2M

rdt,

in general all possible values for r and s must be found, which render both
formulas integrable at the same time. To this end, let us multiply these by the
constants m and n respectively and add the products, that we find:

mdp + ndq = dx(mr + ns) + dt
(

ms +
Fa
2M

nr
)

,

and this formula must again be integrable, whatever constant values are
attributed to the letters m and n. Therefore, let:

m : n =
Fa
2M

n : m or mm =
Fa
2M

nn, that m = 1 and n = ±
√

2M
Fa

,

and it will be

dp± dq

√
2M
Fa

=

(
dx± dt

√
Fa
2M

)(
r± s

√
2M
Fa

)
.
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17. For the sake of brevity, let Fa
2M = b and one will have:

dp± dq

√
1
b
= (dx± dt

√
b)

(
r± s

√
1
b

)
,

or

dp
√

b± dq = (dx± dt
√

b)(r
√

b± s),

or even

dq± dp
√

b = (dx± dt
√

b)(s± r
√

b).

Therefore, since this formula (dx +±dt
√

b)(s± r
√

b) must be integrable, it is
necessary that s± r

√
b is a function of x± t

√
b. Let us, in order to take into

account both signs, put:

x + t
√

b = v x =
v + u

2
it will be

x − t
√

b = u t
√

b =
v− u

2
and we will have these equations:

dq + dp
√

b = dv(s + r
√

b) and dq− dp
√

b = du(s− r
√

b), in which s + r
√

b
must be a function of v and s− r

√
b must be a function of u, since otherwise

the integration would not succeed.

18. Thus, having done each integration, q + p
√

b will be = a certain function
of v and q− p

√
b will be = a certain function of u. Therefore, for the solution

to extend as far as possible, let:

V be a certain function of V = x + t
√

b

U be a certain function of u = x− t
√

b

and the mentioned conditions will be satisfied by putting:
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q + p
√

b = V q =
V + U

2
whence

q − p
√

b = U p =
V −U
2
√

b
.

Therefore, since dy = pdx + qdt, having substituted the values for p, q, dx and
dy, it will be:

dy =
(dv + du)(V −U)

4
√

b
+

(dv− du)(V + U)

4
√

b
,

which after expansion yields:

dy =
Vdv−Udu

2
√

b
and y =

1

2
√

b

(∫
Vdv−

∫
Udu

)
.

19. But
∫

Vdv will be a function of v = x + t
√

b and
∫

Udu will be a function
of u = x− t

√
b, while b = Fa

2M . Hence, if one uses the characters f and ϕ to
indicate arbitrary functions of the quantities they are written in front of, then
we will have the following general expression for the ordinate y, by which its
quantity at each time t and for each abscissa x is exhibited:

y = f : (x + t
√

b) + ϕ : (x− t
√

b).

For, trying to go backwards, in the formula dy = pdx + qdt the values p and q
will be as follows:

p = f ′ : (x + t
√

b) + ϕ′ : (x− t
√

b)

q =
√

b
[

f ′ : (x + t
√

b)− ϕ′ : (x− t
√

b)
]

and for the formula dp = rdx + sdt and dq = sdx + brdt, as the nature of the
question requires it, it will be

r = f ′′ : (x + t
√

b) + ϕ′′ : (x− t
√

b)

s =
√

b[ f ′′ : (x + t
√

b)− ϕ′′ : (x− t
√

b)],

if we denote the differential of the function f : z by dz f ′ : z and the differential
of the function f ′ : z by dz f ′′ : z.
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20. Up to this point the characters f and ϕ in the equation:

y = f : (x + t
√

b) + ϕ : (x− t
√

b)

denote arbitrary functions in regard of the composition, but their mutual
relation is more determined by the remaining conditions. For, since, having
put x = 0, it always has to be y = 0, it will be f : +t

√
b + ϕ : −t

√
b = 0,

and thus ϕ : −t
√

b = − f : t
√

b. But on the other hand, since, having put
x = a, the value of y likewise has to vanish, it will also be f : (a + t

√
b) + ϕ :

(a− t
√

b) = 0, and so the nature of the functions f and ϕ must be determined
in such a way that these conditions are satisfied:

ϕ : −t
√

b = − f : t
√

b

ϕ : (a− t
√

b) = − f : (a + t
√

b).

21. Since in general f : z can be represented by an ordinate of a curve, the
abscissa of which is z, let (Fig. 2) AMB be a curve, the ordinates PM of which
exhibit functions of the abscissas AP, which ordinates are denoted by the
character f :.

Scan was taken from the Opera Omnia version

so that PM = f : AP. If now one takes AP = t
√

b, it will be PM = f : t
√

b,
since to which taken negatively ϕ : −t

√
b is equal, take Ap = AP, that

AP = −t
√

b, and, having positioned the curve Amb below the axis similar
to the curve AMB, it will be pm = − f : t

√
b = ϕ : −t

√
b. Therefore, the

curve Amb similar to the curve AMB represents the nature of the other
function ϕ. But then continue the curve AMB in like manner beyond B, while
AB = a, below the axis, that the portion BNa is similar and equal to the
curve BnA, and, having taken BQ = Bq = t

√
b, it will be AQ = a + t

√
b and

QN = − f : (a+ t
√

b) = ϕ : (a− t
√

b), and likewise, because of Aq = a− t
√

b,
it will be qn = f : (a− t

√
b): Hence it is plain that the curve of this form
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AMB, which repeats periodically similar and equal to Amb over and BNa
under the axis to both directions, is apt to represent the nature of each of the
functions f and ϕ.

22. Therefore, having described a snake-shaped or mechanical curve of this
kind, contained in a either regular or irregular equation, each ordinate PM
will yield the functions we need to solve the problem; for, if to a certain
abscissa z the values x + t

√
b and x − t

√
b are attributed, it will be y = f :

(x + t
√

b) + f : (x − t
√

b), whence for each time in the vibrating chord for
each abscissa the corresponding ordinate y can be assigned. But let us put
t = 0, so that we obtain the initial curve of the chord, and, having taken
AP = x, the ordinate in the vibrating chord will be y = f : x + f : x = 2PM;
or, since it is possible to take the halves of the above functions that:

y =
1
2

f : (x + t
√

b) +
1
2

f : (x− t
√

b).

The curve AMB will exhibit the shape of the chord which it has at the
beginning of the motion.

23. Therefore, vice versa, if a curve or the shape the chord has at the begin-
ning of the motion is given, hence one will be able to determine the shape of
the chord after each time t. For, having described the initial shape AMB of
the chord over the axis AB = a, which is equal to the length of the chord, and
this shape is iterated to both directions in inverse position, that Amb = AMB
and BNa = BnA, and in like manner imagine this iteration to be continued to
both directions to infinity. Then, if this curve is applied to express the found
functions, after a time = t, to the abscissa x in the vibrating chord this ordinate
will correspond:

y =
1
2

f : (x + t
√

b) +
1
2

f : (x− t
√

b),

whence a simple construction of the curve, which the chord describes at a
certain time, can be deduced.

24. But for this formula not to involve heterogeneous quantities, it is to be
noted that t

√
b is represented by a straight line and hence is homogeneous to

x. For, let z be the altitude, from which a heavy body falls down in the time
t, and, if the expression of time is treated in the way explained above, it will

11



be t = 2
√

z, and hence one can write 2
√

z for t and from the altitude z vice
versa the time t passed since the beginning of the fall will be found. Therefore,

it will be t
√

b = 2
√

bz = 2
√

Faz
2M =

√
2Faz

M , and will hence be expressed by a

straight line. For the sake of brevity, let us put
√

2Faz
M = v, so that the value of

v can be assigned for each time, and after the time, in which the heavy body
has fallen down from the altitude = z, it will be:

y =
1
2

f : (x + v) +
1
2

f : (x− v).

25. Therefore, if the initial shape (Fig. 3) AMN had been given to chord of
the length AB = a and hence by repetition of that shape the snake-shaped
curve n′AMBaN′ had been formed, the shape the chord will have after a time
t, in which a heavy body falls down from an altitude = z, will be defined

this way. From the known altitude z find the value v =
√

2Faz
M , and, having

propounded a certain abscissa AP = x, take PQ = Pq = v to both directions,
and having drawn the ordinates QN and qn to the points Q and q, because
of QN = f : (x + v) and qn = f : (x− v), the ordinate corresponding to the
abscissa AP = x will be y = 1

2 QN + 1
2 qn, or take Pm = QN+qn

2 , and m will be
the location of the point M, and if this construction is repeated for each point
of the axis AB, the points m will give the present shape of the chord AmB.
And this way for each moment in time the shape of the chord it has while
vibrating will easily be described.

26. Let us (Fig. 3) find the shape of the chord, after only some time has
passed, more precisely, that v = a or z = Ma

2F , and it will be

y =
1
2

f : (x + a) +
1
2

f : (x− a).

Scan was taken from the Opera Omnia version
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But from the nature of the described curve it will be

f : (x− a) = − f : (a− x) and f : (a + x) = − f : (a− x),

whence it will be

y = − f : (a− x).

Thus, it is seen that at this time the whole chord will be bent below the axis
and it will have the shape AM′B, equal to the given shape AMB, but just
inverse position, so that, having taken the abscissa BP′ = AP, the ordinate
will be P′M′ = PM. And hence vice versa, if again the same time t, whence
v = a, passes, the whole chord will return to the shape AMB it had initially;
this is also clear considering that, after a certain time has passed from the
initial motion, whence v = 2a, it results:

y =
1
2

f : (x + 2a) +
1
2

f : (x− 2a).

But, having taken PQ′ = Pq′ = 2a, from the nature of the curve it will be
Q′N′ = PM = q′n′, and hence y = PM, as at the beginning of the motion.

27. Therefore, whatever shape was initially attributed to the chord, the chord
will get into the same shape again during the vibrations, if its excursions
are not decreased by resistance: From this it is perspicuous that the opinion
mentioned above, according to which the vibrations of the chord, no matter
how irregular they were, are believed to become uniform by itself in such a
way that the shape goes over into an elongated trochoid, is not true at all.
Nevertheless, it is plain, whatever the shape of the vibrating string was, that
the vibrations will nevertheless be sufficiently regular; for, since, having put
v = 2a, the chord returns to the initial state, it is nevertheless to be considered
to have performed two full vibrations in between; and hence from the value
v = a the time of one vibration will be defined, which will be equal to the
time, in which a heavy body falls down from the altitude Ma

2a , or if the length
of the chord AB = a is expressed in thousandth parts of Rhenanian feet, the

time expressed in seconds of one vibration will be = y
125

√
Ma
2F , or the chord

in that time will perform so many vibrations as this expression 125
√

2F
Ma will

contain units, precisely as if the chord would perform its vibrations according
to the law of uniformity, described by Taylor.
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28. As the shape AMB given to the chord initially yields its first maximal
excursion, so, having done one vibration, the chord will be found in another
maximal excursion AM′B, which was shown to be equal to the first just
inversed. Therefore, let us now see, whether in the mean time between these
vibrations the chord is extended perfectly straight that it obtains its natural
position or not; since from the time of one single vibration v = a results, let
us put v = 1

2 a for the mean time, and from the general form it will be:

y =
1
2

f :
(

x +
1
2

a
)
+

1
2

f :
(

x− 1
2

a
)

,

the value of which will vanish, if f : ( 1
2 a− x) = f : ( 1

2 a + x) (Fig. 1), i.e., if
the shape ADB, attributed to the chord initially, was of such a nature that to
the abscissas 1

2 a + x and 1
2 a− x equal ordinates correspond: This happens,

if in the length AB the ordinate CD drawn from the middle point C was
the diameter of the curve, and the portion DB was similar and equal to the
portion DA. Therefore, as often as the curve attributed to the chord initially
had this property, the chord will be extended straight in the middle of each
vibration; since this can happen in infinitely many ways, it is manifest that not
even this condition requires that the chord always has a shape of an elongated
trochoid during the vibrations.

29. Although, considering the subject in general, the times of the vibrations
do not depend on the shape the chord (Fig. 3) has during the vibrations, but
they are only determined by the quantities a, M and F, the first of which a
denotes the length of the chord, M the weight of the chord, and F the weight
equal to the straining force, nevertheless there are singular cases, in which
the times of the vibrations can be contracted into half, third or fourth or any
arbitrary part of the whole duration. For, if the total length of the chord was
Aa = a, and it is initially curved in such a way, that it has the two parts AMB
and Ba, which are perfectly similar and equal, then it will go through the
vibrations, as if it would have only the length of the half AB, and thus the
vibrations will be twice as fast. In like manner, if the initial shape of the chord
had three similar and equal parts bABa, as they are represented in the figure,
then it will perform vibrations, as if its length would be three times smaller,
and each vibration will become three times as short. From this it is seen, how
even four times or five times as short vibrations are possible.
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30. Having given the general solution, let us expand some cases, in which the
snake-shaped curve of figure 3 is connected by the law of continuity, so that
its nature can be comprehended in an equation. And first it is immediately
clear that these curves, since they are intersected by the axis in infinitely many
points, will be transcendental. Having put the length of the chord AB = a, the
abscissa AP = u, let 1 : π be the ratio of the diameter to the circumference of
a circle, and it is manifest that the following equation, expressed by sines, will
yield such a curve as it is required:

PM = α sin
πu
a

+ β sin
2πu

a
+ γ sin

3πu
a

+ δ sin
4πu

a
+ etc.

For, if one writes either a or 2a or 3a or 4a for u, the ordinate PM vanishes.
And for negative u the ordinate will go over into its negative. Therefore, if
the curve AMB was the initial shape of the chord, after the time t, in which a

heavy body falls down from the altitude = z, having put v =
√

2Faz
M , to the

abscissa x in the shape of the chord such an ordinate y will correspond that:

y = +
1
2

α sin
π

a
(x + v) +

1
2

β sin
2π

a
(x + v) +

1
2

γ sin
3π

a
(x + v) + etc.

+
1
2

α sin
π

a
(x− v) +

1
2

β sin
2π

a
(x− v) +

1
2

γ sin
3π

a
(x− v) + etc.

31. But since sin(a + b) + sin(a − b) = 2 sin a cos b, this equation will be
transformed into this form:

y = α sin
πx
a
· cos

πv
a

+ β sin
2πx

a
cos

2πv
a

+ γ sin
3πx

a
cos

3πv
a

+ etc.

and the initial shape of the chord will be expressed by this equation:

y = α sin
πx
a

+ β sin
2πx

a
+ γ sin

3πx
a

+ etc.,

which reduces to the same, if v becomes either 2a or 4a or 6a etc. But if v is
either a or 3a or 5a, the shape of the chord will be

y = −α sin
πx
a

+ β sin
2πx

a
− γ sin

3πx
a

+ etc.
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There, it is to be noted, if β = 0, γ = 0, δ = 0 etc., that the case arises,
which is usually the only believed to occur in the vibrations of chords, namely
y = a sin πx

a · cos πv
a , in which the curvature of the chord is always a line of

sines, or a throchoid elongated to infinity. But if only the term β or γ or δ

etc. appears, one has cases, in which the duration of the vibration is rendered
twice or trice or four times etc. as small.

16


