
On Products arising from infinitely

many factors*

Leonhard Euler

§1 If in Analysis one gets to quantities of such a kind, which can neither be
expressed by rational nor irrational numbers, usually infinite expressions are
used to denote the quantities; they are to be considered the more suitable the
faster by means of them one gets to cognition and estimation of the quantities
expressed by them. Therefore, the use of expressions of this kind is greatest
and broadest to represent the values of transcendental quantities, of which
kind logarithms, circular arcs and other quantities determined by quadratures
of curves are, and by means of them we get so to an exact cognition both
of logarithms and circular arcs and even of other transcendental quantities.
Yes, infinite expressions of this kind even have an extraordinary use to define
irrational quantities and roots of algebraic equations approximately; they, if
their use is considered, in most cases are to be preferred to the true expressions
by far.

§2 But of the infinite expressions of this kind several species very different
to each other are to be constituted, the first of which contains all infinite
series, consisting of infinitely many terms affected with the signs + and
−; this doctrine is now certainly developed that far that one not only has
many methods to express so algebraic as transcendental quantities of this
kind by infinite series, but also having propounded an infinite series one has
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methods to investigate a quantity of which kind is indicated by it. For, infinite
expressions of each species must be treated in two ways, the one of which
consists in the conversion of either algebraic or transcendental equations into
infinite expressions, the other on the other hand in the investigation of that
quantity, which the propounded infinite expression denotes.

§3 It is convenient to refer those expression to another other species of
infinite expressions, which consist of innumerable factors; although many
expressions of this kind are already found and known, nevertheless still
neither a way to get to them nor to discover their values was ever explained.
But the expressions of this species seem to be equally worthy to be developed
as the first consisting of an infinite number of terms, and their treatment will
bring a lot of advantages for whole Analysis with them. For, furthermore, since
expressions of this kind show the nature of the quantities, which they describe,
very plainly and are often more than accommodated to find approximate
values, they have a tremendous use to form the logarithms of the quantities
themselves, which is very often immensely useful in calculations. So, if any
arbitrary quantity X was transformed into an expression of this kind

a
α
· b

β
· c

γ
· d

δ
· e

ε
· etc.,

one will immediately have the logarithm of the quantity X

ln
( a

α

)
+ ln

(
b
β

)
+ ln

(
c
γ

)
+ ln

(
d
δ

)
+ etc

which series converges the more, the closer those factors are inclined to the
unity. Therefore, I decided to start the theory of infinite expressions of this
kind, insofar as my observations provide some help, in this dissertation, that
it is easier for other to expand it further some time.

§4 At first Wallis published an expression containing infinitely many factors
of this kind in his book Arithmetica infinitorum, where he showed, if the
diameter of the circle is = 1 that the area of the circle will be

2 · 4 · 4 · 6 · 6 · 8 · 8 · 10 · 10 · 12
3 · 3 · 5 · 5 · 7 · 7 · 9 · 9 · 11 · 11

etc.,

which expression he deduced from the interpolation of this series

2
3
+

2 · 4
3 · 5 +

2 · 4 · 6
3 · 5 · 7 + etc.,
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whose intermediate terms he demonstrated to depend on the quadrature of
the circle.

Therefore, since these expressions must have their origin in the interpolation of
series, it seemed to be appropriate to begin this treatise on products consisting
of infinitely many factors with interpolations. For, after in the fifth tome of
our Commentarii I had given a method to perform the interpolations by
means of quadratures of curves, it was known at the same time, transcendental
quantities of which kind infinite products arising this way exhibit.

§5 Therefore, I consider the following progression

1 2 3 4

( f + g)+( f + g)( f + 2g)+( f + g)( f + 2g)( f + 3g)+( f + g)( f + 2g)( f + 3g)( f + 4g) + etc

whose arbitrary term, whose index is n, is found from the preceding by
multiplying this one by f + ng; but I showed in the mentioned dissertation
that the term, whose index is n, of this series is

=
gn+1

∫
dx(− ln(x))n

( f + (n + 1)g)
∫

x f :gdx(1− x)n

having performed each of both integrations in such a way that the integrals
vanish having put x = 0 and then x = 1. Therefore, this expression will at
the same time indicate, on which quadrature the single intermediate terms
depend. For, although, if n is a fractional number, it is not clear that easy,
which quadrature the quantity

∫
dx(− ln x)n contains, I nevertheless at the

same place showed that having put p
q instead of n the formula

∫
dx(− ln x)

p
q

agrees with

q

√
1 · 2 · 3 · · · p

(
2p
q

+ 1
)(

3p
q

+ 1
)(

4p
q

+ 1
)
· · ·
(

qp
q

+ 1
)

×
∫

dx(x2 − x3)
p
q ·
∫

dx(x3 − x4)
p
q ·
∫

dx(x4 − x5)
p
q · · ·

∫
dx(xq−1 − xq)

p
q

by means of which reduction the value of
∫

dx(− ln(x))
p
q can be expressed by

means of algebraic curves.

§6 If now in the assumed series the term, whose index is = 1
2 , is put z, from

the law of the series the terms, whose indices are 3
2 , 5

2 , 7
2 etc. will behave as
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follows:

z+ z
(

f +
3
2

g
)
+ z

(
f +

3
2

g
)(

f +
5
2

g
)
+ z

(
f +

3
2

g
)(

f +
5
2

g
)(

f +
7
2

g
)
+ etc.

But since the assumed progression is finally confounded with the geometric
progression, these interpolated terms will finally become the arithmetic means
between two contiguous terms of the series. Hence, if the single interpola-
ted terms are considered as the arithmetic means from the beginning, the
following will arise as approximations to the term, whose index is z.

I. z =
√

f + g

I I. z =

√
( f + g)( f + g)( f + 2g)

1
(

f + 3
2 g
) (

f + 3
2 g
)

I I I. z =

√
( f + g)( f + g)( f + 2g)( f + 2g)( f + 3g)
1
(

f + 3
2 g
) (

f + 3
2 g
) (

f + 5
2 g
) (

f + 5
2 g
)

etc.

from which law of progression it is understood that the term of the index 1
2

almost is

= ( f + g)
1
2

√√√√ ( f + g)( f + 2g)( f + 2g)( f + 3g)( f + 3g)( f + 4g)( f + 4g)( f + 5g)( f + 5g)( f + 6g)(
f + 3

2 g
) (

f + 3
2 g
) (

f + 5
2 g
) (

f + 5
2 g
) (

f + 7
2 g
) (

f + 7
2 g
) (

f + 9
2 g
) (

f + 9
2 g
) (

f + 11
2 g
) (

f + 11
2 g
) etc.

§7 Therefore, now it is not only certain that by this infinite expression the
term of the assumed series

1 2 3

( f + g)+( f + g)( f + 2g)+( f + g)( f + 2g)( f + 3g)+ etc

whose index is = 1
2 is exhibited, but also the same found expression is reduced

to quadratures of curves. For, having put n = 1
2 because of p = 1 and q = 2 it

is ∫
dx(− ln(x))

1
2 =

√
1 · 2

∫
dx
√

x− xx;

this expression integrated in the corrected way gives the square root of the area
of the circle, whose diameter is = 1; or having put the ratio of the diameter to
the circumference 1 : π it will be∫

dx(− ln(x))
1
2 =

√
π

2
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Therefore, the same term, whose index is = 1
2 , which we put z, is found as

=
h
√

πg

(2 f + 3g)
∫

x f :gdx
√

1− x
=

√
πg

(2 f + 3g)
∫

y f+g−1dy
√

1− yg

having treated the integral in the same way as it was prescribed before. But
by means of the reduction of integral formulas of this kind it is

∫
y f+g−1dy

√
1− yg =

2 f g
(2 f + g)(2 f + 3g)

∫ y f−1dy√
1− yg

=
2 f

2 f + 3g

∫
y f−1dy

√
1− yg

Having substituted these one finds

(2 f + g)(2 f + 3g)(2 f + 3g)(2 f + 5g)(3 f + 5g)(2 f + 7g)
(2 f + 2g)(2 f + 2g)(2 f + 4g)(2 f + 4g)(2 f + 4g)(2 f + 6g)

etc.

=
2 f f (2 f + g)

πg

(∫
y f−1dy

√
1− yg

)2

=
2 f f g

π(2 f + g)

(
y f−1dy√

1− yg

)2

Therefore, by means of this equation innumerable quadratures can be trans-
formed into infinite products and vice versa the value of infinite products of
this kind can be transformed in quadratures of curves.

§8 To illustrate this equality by examples, let g = 1 and it will be

∫
y f−1dy

√
1− y =

2 · 2 · 4 · 6 · 8 · 10 · · · (2 f − 2)
3 · 5 · 7 · 9 · 11 · 13 · · · (2 f − 1)

etc.

Hence it will be

2 f f (2 f + 1) · 2 · 2 · 2 · 2 · 4 · 4 · · · (2 f − 2)(2 f − 2)
π · 3 · 3 · 5 · 5 · 7 · 7 · · · (2 f + 1)(2 f + 1)

etc =
(2 f + 1)(2 f + 3)(2 f + 3)
(2 f + 2)(2 f + 2)(2 f + 4)

etc.

which expression ordered or reduced to continuity gives

π = 4 ·
2 · 4 · 4 · 6 · 6 · 8 · 8 · 10 · 10
3 · 3 · 5 · 5 · 7 · 7 · 9 · 9 · 11

etc.,

which is the Wallis formula itself and arises, whatever positive integer number
is substituted for f . This same expression arises, if one puts g = 2 and f = an
arbitrary odd integer.
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§9 Therefore, because it is

f g
π

(∫ y f−1dy√
1− yg

)2

=
(2 f + g)(2 f + g)(2 f + 3g)(2 f + 3g)(2 f + 5g)(2 f + 5g)

2 f (2 f + 2g)(2 f + 2g)(2 f + 4g)(2 f + 3g)(2 f + 6g)
etc.,

in the same way it will be

hk
π

(
yh−1dy√

1− yk

)2

=
(2h + k)(2h + k)(2h + 3k)(2h + 3k)(2h + 5k)(2h + 5k)

2h(2h + 2k)(2h + 2k)(2h + 4k)(2h + 4k)(2h + 6k)
etc.

Hence having divided this expression by that one will obtain the following
equation free from the circumference of the circle π

dg(
∫

y f−1dy :
√

1− yg)2

hk(
∫

yh−1dy :
√

1− yk)2
=

2h(2 f + g)2(2h + 2k)2(2 f + 3g)2(2h + 4k)2(2 f + 5g)2

2 f (2h + k)2(2 f + 2g)2(2 f + 3h)2(2 f + 4g)2(2h + 5k)2 etc.

which having extracted the square root yields this equation∫
y f−1dy :

√
1− yg∫

yh−1dy :
√

1− yk
·

√
g
k
=

2h(2 f + g)(2 f + 2k)(2 f + 3g)(2h + 4k)(2 f + 5g)
2 f (2h + k)(2 f + 2g)(2h + 3k)(2 f + 4g)(2h + 5k)

etc.

§10 But this infinite expression does not have a constant value; for, even
though it is continued to infinity, it nevertheless has one value, if an even
number of factors is taken, another, if an odd number is taken. Therefore, if
it is not k = g, in which case is does not matter, where the multiplication is
interrupted, two factors are to be taken together, having done which one will
obtain two equations, depending on whether an even or an odd number of
factors is taken. But first having expanded the general expression accurately
one will obtain

g
∫

y f−1dy :
√

1− yg

k
∫

yh−1dy :
√

1− yk

=
2h(2 f + g)
2 f (2h + k)

·
(2 f + 2g)(2h + 3k)
(2h + 2k)(2 f + 3g)

·
(2 f + 4g)(2h + 5k)
(2h + 4k)(2 f + 5g)

·
(2 f + 6g)(2h + 7k)
(2h + 6k)(2 f + 7g)

· etc.

But by taking the other pairs of terms it will be

f
∫

y f−1dy :
√

1− yg

h
∫

yh−1dy :
√

1− yk
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=
(2 f + g)(2h + 2k)
(2h + k)(2 f + 2g)

·
(2 f + 3g)(2h + 4k)
(2h + 3k)(2 f + 4g)

·
(2 f + 5g)(2h + 6k)
(2h + 5k)(2 f + 6g)

·
(2 f + 7g)(2h + 8k)
(2h + 7k)(2 f + 8g)

· etc.

in which expressions the spots, where it is possible to interrupt the operation,
are marked by points.

§11 But let us consider the case with more attention, in which it is k = g,
in which the infinite expression can certainly be imagined as consisting of
simple factors, and it will be∫

y f−1dy :
√

1− yg∫
yh−1dy :

√
1− yg

=
2h(2 f + g)(2h + 2g)(2 f + 3g)(2h + 4g)
2 f (2h + g)(2 f + 2g)(2h + 3g)(2 f + 4g)

etc.;

that this expression is less confounded with the preceding because of the same
letters, let us put 2 f = a and 2h = b and y = x2 here, having substituted what
it will arise∫

xa−1dx :
√

1− x2g∫
xb−1dx :

√
1− x2g

=
b(a + g)(b + 2g)(a + 3g)(b + 4g)(a + 5g)
a(b + g)(a + 2g)(b + 3g)(a + 4g)(b + 5g)

etc.,

which expression compared to the first given in § 9, which having equally put
y = x2 goes over into this one

4 f g
π

(
x2 f−1dx
√

1− x2g

)2

=
(2 f + g)(2 f + g)(2 f + 3g)(2 f + 3g)(2 f + 5g)(2 f + 5g)

2 f (2 f + 2g)(2 f + 2g)(2 f + 4g)(2 f + 4g)(2 f + 6g)
etc.,

will manifest extraordinary properties, whose truth can otherwise hardly be
demonstrated.

§12 For, it is immediately plain, if one puts a = 3 f , b = 2 f + g, that that
infinite expression is transformed into this one; therefore, also the expressions
equal to those and containing the quadratures of curves will become equal in
this case, from which the following equality emerges∫

x2 f−1dx :
√

1− y2g∫
x2 f+g−1dx :

√
1− x2g

=
4 f g
π

(∫
x2 f−1dx :

√
1− x2g

)2

,

if after the integration one puts x = 1, of course. Therefore, hence it follows
that it will be

π = 4 f g
∫ x2 f−1dx
√

1− x2g
·
∫ x2 f+g−1dx
√

1− x2g
;
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or having put 2 f = a it will be

π = 2ag
∫ xa−1dx
√

1− x2g
·
∫ xa+g−1dx
√

1− x2g
,

which certainly is a most remarkable theorem, since by means of it one can
assign the product of two integral formulas, of which often none can be
exhibited.

§13 The truth of this theorem is certainly easily demonstrated in the cases,
in which the one integral formula either admits an integration absolutely or
depends on the quadrature of the circle. For, let us put g = 1 and a = 1; of
course, it will be

π = 2
∫ dx
√

1− x2
·
∫ xdx
√

1− x2
,

for,

2
∫ dx
√

1− x2

having put x = 1 after the integration gives the quantity π itself and∫ xdx
√

1− xx
= 1−

√
1− xx

for x = 1 becomes = 1. In similar manner, if it is a = 2 while still g = 1, it is
understood that it will be

π = 4
∫ xdx
√

1− xx
·
∫ xxdx
√

1− xx
;

for, it is ∫ xdx
√

1− xx
= 1 und

∫ xxdx
1− xx

=
π

4
;

in these cases the truth of the theorem is confirmed from elsewhere.

§14 But the remaining cases, in which none of both integral formulas can
exhibited either actually or by means of the quadrature of the circle, yield as
many strange and remarkable theorems. So, having put g = 2 and a = 1 it
will be

π = 4
∫ dx
√

1− x4
·
∫ xxdx
√

1− x4
,
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where ∫ xxdx
√

1− x4

exhibits the ordinate in the curva elastica rectangula1,

∫ dx
√

1− x4

on the other hand the arc corresponding to the abscissa x of the elastica.
Therefore, the rectangle of the arc corresponding to the abscissa 1 of the
elastica and the corresponding ordinate will become equal to the area of the
circle, whose diameter is that abscissa 1; this property of the elastica can maybe
hardly or not even hardly be seen and demonstrated by another method.

§15 But before I leave this case of the elastica, it will be helpful to have
expressed the integral by means of an ordinary series at least in the case, in
which it is x = 1. For, since it is

1
√

1− x4
=

(1 + x2)−
1
2

√
1− x2

and

(1 + xx)−
1
2 = 1−

1
2

x2 +
1 · 3
2 · 4x4 −

1 · 3 · 5
2 · 4 · 6x6 + etc.,

the single terms will depend on the quadrature of the circle. But having done
both integrations for the case x = 1 it will be

∫ dx
√

1− x4
=

π

2

(
1−

1
4
+

1 · 9
4 · 16

−
1 · 9 · 25
4 · 16 · 36

+ etc

)

and ∫ x2
√

1− x4
=

π

2

(
1
2
−

1 · 3
4 · 4 +

1 · 9 · 5
4 · 16 · 6−

1 · 9 · 25 · 7
4 · 16 · 36 · 8 + etc

)
But hence by approximation it arises

∫ dx
√

1− x4
=

5
6
·

π

2
and

∫ xxdx
√

1− x4
=

3
5
.

1rectangular elastic curve
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§16 If it was a = 1, it will be

π = 2g
∫ dx
√

1− x2g
·
∫ xgdx
√

1− x2g

which two integral expressions are of such a nature that, if

∫ xgdx
√

1− x2g

the ordinate corresponding to the curve of a certain abscissa x, that

∫ dx
√

1− x2g

will be the length of the same curve. Therefore, if in this curve the abscissa is
taken as x = 1, the product or the rectangle of the ordinate by the length of
the curve to the area of the circle, whose diameter is the abscissa x = 1, will
be in the ratio of 2 to the number g; this proposition holds, as long as g was a
positive number; for, negative values are excluded automatically.

§17 If a− 1 is assumed smaller than g, such that a and g are prime to each
other, one will have the following remarkable theorems; for, if it is

a + g− 1 > 2g,
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then the integration could be reduced to a simpler formula.

π = 2
∫ dx
√

1− x2
·
∫ xdx
√

1− x2
π = 24

∫ x2dx
√

1− x8
·
∫ x6dx
√

1− x8

π = 4
∫ dx
√

1− x4
·
∫ x2dx
√

1− x4
π = 10

∫ dx
√

1− x10
·
∫ x5dx
√

1− x10

π = 6
∫ dx
√

1− x6
·
∫ x3dx
√

1− x6
π = 20

∫ xdx
√

1− x10
·
∫ x6dx
√

1− x10

π = 12
∫ xdx
√

1− x6
·
∫ x4dx
√

1− x6
π = 30

∫ x2dx
√

1− x10
·
∫ x7dx
√

1− x10

π = 8
∫ dx
√

1− x8
·
∫ x4dx
√

1− x8
π = 40

∫ x3dx
√

1− x10
·
∫ x8dx
√

1− x10

π = 12
∫ dx
√

1− x12
·
∫ x6dx
√

1− x12
π = 28

∫ xdx
√

1− x14
·
∫ x8dx
√

1− x14

π = 60
∫ x4dx
√

1− x12
·
∫ x10dx
√

1− x12
π = 42

∫ x2dx
√

1− x14
·
∫ x9dx
√

1− x14

π = 14
∫ dx
√

1− x14
·
∫ x7dx
√

1− x14
π = 56

∫ x3dx
√

1− x14
·
∫ x10dx
√

1− x14

π = 70
∫ x4dx
√

1− x14
·
∫ x11dx
√

1− x14

§18 Therefore, having found this the reduction of integral formulas to simp-
ler ones is also significantly promoted. For, since these two integral formulas∫ xmdx

√
1− x2g

and
∫ xm+n
√

1− x2g

could have still only be reduced to each other, if n was a multiple of the
exponent 2g, so this reduction now also succeeds, if n was only a multiple of
g, in the case x = 1 only, of course. But as, if n is a product of the exponent g
by an even number, the quotient, which results from the division of the one
formula by the other, is easily assigned, so on the contrary, if n is the product
of g by an odd number, then the product of these formulas will be assigned
very easily.

§19 Therefore, all these things reduce to this, that, if the integral of this
formula was known ∫ xmdx

√
1− x2g
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in the case, in which it is x = 1, that in the same case also the integral of this
formula ∫ xm+ndx

√
1− x2g

,

if n is a multiple of g, can be exhibited. For, let A is the integral of the formula∫ xmdx
√

1− x2g

in the case, in which it is x = 1; the integral of the other formula by putting g,
2g, 3g etc. successively for n will behave in the following way∫ xmdx

√
1− x2g

= A

∫ xm+gdx
√

1− x2g
=

π

2(m + 1)gA∫ xm+2gdx
√

1− x2g
=

(m + 1)A
m + g + 1∫ xm+3gdx

√
1− x2g

=
(m + g + 1)π

2(m + 1)(m + 2g + 1)gA∫ xm+4gdx
√

1− x2g
=

(m + 1)(m + 2g + 1)A
(m + g + 1)(m + 3g + 1)∫ xm+5gdx

√
1− x2g

=
(m + g + 1)(m + 3g + 1)π

2(m + 1)(m + 2g + 1)(m + 4g + 1)gA
etc

§20 Further, since this general integral formula∫
xm+igdx(1 + x2)k− 1

2

while i and k denote arbitrary integer numbers can be reduced to this formula∫ xm+igdx
√

1− x2g
,

it is understood that the integral of this very far extending formula
∫

xm+igdx(1−
x2g)k− 1

2 can be assigned from the integral∫ xmdx
√

1− x2g
,
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known at least in the case, in which it is x = 1 after the integration. But these
cases, in which i is an odd number, except for this integral also require the
quadrature of the circle p.

§21 Therefore, as by the term of the index 1
2 of the series assumed above in

§ 5 I was led to the nature of these integral formulas, so it will be worth one’s
while to investigate the other intermediate terms in similar manner. Therefore,
let the term be in question, whose index is p

q , which shall be put = z, from
which the following will behave this way:

p
q

p + q
q

p + 2q
q

z+
z( f q + (p + q))

q
+

z( f q + (p + q)g)( f q + (p + 2q)g)
q2 + etc.

Now, by considering in the same way that this progression finally goes over
into the geometric one, the following series of approximations to the term z
will arise:

I. z =1( f + g)
p
q

I I.
z( f q + (p + q)g

q
=( f + g)

q−p
q ( f + g)

p
q ( f + 2g)

p
q

I I I. z
(

f +
p + q

q
g
)(

f +
p + 2q

q
g
)
=( f + g)

p−q
q ( f + g)

p
q ( f + 2g)

q−p
q ( f + 2g)

p
q ( f + 3g)

p
q

therefore, hence the true value of z will be found

( f + g)
p
q ( f + g)

q−p
q ( f + 2g)

p
q ( f + 2g)

q−p
q ( f + 3g)

p
q ( f + 2g)

q−p
q

1 ·
(

f + p+q
q g
) p

q
(

f + p+q
q g
) q−p

q
(

f + p+2q
q g

) p
q
(

f + p+2q
q g

) q−p
q
(

f + p+3q
q g

) p
q

etc.

Or having made some small changes that the infinitesimal factors become
= 1 and the expression can be interrupted at any arbitrary place, it will be

z(
f + p

q g
) p

q
=

( f + g)
p
q(

f + p
q g
) p

q
·

( f + g)
q−p

q(
f + p+q

q g
) q−p

q
·

( f + 2g)
p
q(

f + p+q
q g
) p

q

·
( f + 2g)

q−p
q(

f + p+2q
q g

) q−p
q
·

( f + 3g)
p
q(

f + p+2q
q g

) p
q
· etc.,
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the law of progression, according to which the factors proceed, of which
expression is immediately clear.

§22 But the value of the same intermediate term z can be expressed by means
of the general term of this series

z =
g

p+q
q
∫

dx(− ln(x))
p
q(

f + p+q
q g
) ∫

x f :gdx(1− x)
p
q
.

Hence, if one puts

∫
dx(− ln(x))

p
q = q

√
1 · 2 · 3 · · · p

(
2p
q

+ 1
)(

3p
q

+ 1
)(

4p
q

+ 1
)
· · ·
(

qp
q

+ 1
)

×
∫

dx(x− x2)
p
q ·
∫

dx(x2− x3)
p
q ·
∫

dx(x3− x4)
p
q · · ·

∫
dx(xq−1− xq)

p
q =

q
√

P

and x = yg, in which case it is∫
x f :gdx(1− x)

p
q = g

∫
y f+g−1dx(1− yg)

p
q ,

=
ggp

f q + (p + q)g

∫ y f+g−1dy

(1− yg)
q−p

q
=

p f qq

q
(

f + p
q g
) (

f + p+q
q g
) ∫ y f−1dy

(1− yg)
q−p

q

and further it is put ∫ y f−1dy

(1− yg)
q−p

q
= Q,

it will be

z =
q
(

f + p
q g
)

p
1
q

p f g
q−p

q Q

§23 Now, having substituted the infinite expression for z and having taken
the power of the exponent g, this equation will arise

qqP
pq f pgq−pQq =

f q−p(
f + p

q g
)q−p ·

( f + g)p(
f + p

q g
)p ·

( f + g)q−p(
f + p+q

q

)q−p ·
( f + 2g)p(
f + p+q

q g
)p ·

( f + 2g)q−p(
f + p+2q

q g
)q−p · etc.
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Therefore, if in similar manner it is put

∫ yh−1dy

(1− yg)
q−p

q
= R,

it will be

pqhpgq−pRq

qqP
=

(
h + p

q g
)q−p

hq−p ·

(
h + p

q g
)p

(h + g)p ·

(
h + p+q

q g
)q−p

(h + g)q−p · etc.,

which two expressions multiplied by each other will give

hpRq

f pQq =
f q−p(h + p

q g
)(

f + g
)q(h + p+q

q g
)q( f + 2g

)q(h + p+sq
q

)q

hq−p
(

f + p
q g
)(

h + g
)q( f + p+q

q g
)q(h + 2g

)q( f + p+sq
q

)q etc.

§24 Therefore, if both sides are multiplied by f p

hp and the root of the power q
is taken, one will find

R
Q

=
f
(

h + p
q g
)
( f + g)

(
h + p+q

q g
)
( f + 2g)

(
h + p+2q

q g
)

h
(

f + p
q g
)
(h + g)

(
f + p+q

q g
)
(h + 2g)

(
f + p+2q

q g
) etc

=

∫
yh−1dy(1− yg)

p−q
q∫

y f−1dy(1− yg)
p−q

q
,

in which integrals, since they were taken in such a way that they vanish having
put y = 0, it must be y = 1, having done which one will have the value of
the propounded infinite expression by means of quadratures. Therefore, by
means of this infinite expression the one quadrature can be reduced to the
other, if one puts y = 1, of course.

§25 But that we are hence led to comparisons of integral formulas of this
kind, as from the first case, in which it was p = 1 and q = 2, let us put p = 1
and q = 3 here and it will be

P =
10
3

∫
dx(x− x2)

1
3 ·
∫

dx(x2 − x3)
1
3

15



and

Q =
∫ yh−1dy

(1− yg)
2
3
,

Therefore, it will be

27P
f g2Q3 =

f f ( f + g)( f + g)( f + g)( f + 2g)(
f + 1

3 g
) (

f + 1
3 g
) (

f + 1
3 g
) (

f + 4
3 g
) (

f + 4
3 g
) (

f + 4
3 g
) etc

and
R
Q

=
f
(
h + 1

3 g
)
( f + g)

(
h + 4

3 g
)
( f + 2g)

(
h + 7

3 g
)

h
(

f + 1
3 g
)
(h + g)

(
f + 4

3 g
)
(h + 2g)

(
f + 7

3 g
) etc.,

which two expressions, since in that one a revolution consists of three factors,
but here of two factors, cannot be transformed into each other, whatever is
substituted for h.

§26 Therefore, let it be

S =
∫ yk−1dy

(1− yg)
2
3
;

it will be

S
Q

=
f
(
k + 1

3 g
)
( f + g)

(
k + 4

3 g
)
( f + 2g)

(
k + 7

3 g
)

k
(

f + 1
3 g
)
(k + g)

(
f + 4

3 g
)
(k + 2g)

(
f + 7

3 g
) etc.,

which expression combined with the preceding will give

RS
Q2 =

f f
(
h + 1

3 g
) (

k + 1
3 g
)
( f + g) ( f + g)

(
h + 4

3 g
)

hk
(

f + 1
3 g
) (

f + 1
3 g
)
(h + g) (k + g)

(
f + 4

3 g
) etc.,

which expression will be converted into that one equal to 27P
f g2Q3 by putting

h = f +
1
3

g and k = f +
2
3

g.

Therefore, one will have this equation

27P
f g2 = QRS

or having substituted the true values it will be

90
∫

dx(x− x2)
1
3 ·
∫

dx(x2− x3)
1
3 = f g2

∫ y f−1dy

(1− yg)
2
3
·
∫ y f+ 1

3 g−1dy

(1− yg)
2
3
·
∫ y f+ 2

3 g−1dy

(1− yg)
2
3

.
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§27 But before we prosecute this any further, it will be convenient to attribute
a more beautiful form to the value of P in general. But because having put
x = zq it is∫

dx(xn − xn+1)
p
q =

npq
(n + 1)((n + 1)p + q)

∫ znp−1dz

(1− zq)
q−p

q
,

after the substitution it will arise

P = 1 · 2 · 3 · · · p · pq−1

q

∫ zp−1dz

(1− zp)
q−p

q
·
∫ z3p−1dz

(1− zq)
q−p

q
· · ·

∫ z(q−1)p−1dz

(1− zq)
q−p

q
.

If the root of the power q is extracted from this expression, the value of∫
dx(− ln x)

p
q will arise.

§28 Now having put p = 1 and q = 3 it will arise

P =
1
3

∫ dz

(1− z3)
2
3
·
∫ zdz

(1− z3)
2
3
.

But having put y = z3 one will obtain the following equation

∫ dz

(1− z3)
2
3
·
∫ zdz

(1− z3)
2
3
= 3 f g2

∫ z3 f−1dz

(1− z3g)
2
3
·
∫ z3 f+g−1dz

(1− z3g)
2
3
·
∫ z3 f+2g−1dz

(1− z3g)
2
3

.

If one now puts 3 f = a, the following remarkable equation will arise

∫ dz

(1− z3)
2
3

∫ zdz

(1− z3)
2
3
= ag2

∫ za−1dz

(1− z3g)
2
3
·
∫ za+g−1dz

(1− z3g)
2
3

∫ za+2g−1dz

(1− z3g)
2
3
.

This one compared to the superior one

∫ dz
√

1− z2
= ag

∫ za−1dz
√

1− z2g
·
∫ za+g−1dz
√

1− z2g

already indicates clearly enough, how the following equations of this kind
will behave.
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§29 But before I risk it to conclude anything by induction, I want to actually
expand some cases. Therefore, let p = 2 and q = 3 and hence it will be found

P =
8
3

∫ zdz

(1− z3)
1
3
·
∫ z3dz

(1− z3)
1
3
=

8
9

∫ dz

(1− z3)
1
3
·
∫ zdz

(1− z3)
1
3

,

Q =
∫ y f−1dy

(1− yg)
1
3

, R =
∫ yh−1dy

(1− yg)
1
3
.

But the infinite expression will behave this way:

27P
8 f 2gQ3 =

f ( f + g)( f + g)( f + g)( f + 2g)( f + 2g)(
f + 2

3 g
) (

f + 2
3 g
) (

f + 2
3 g
) (

f + 5
3 g
) (

f + 5
3 g
) (

f + 5
3 g
) etc.

and
R
Q

=
f
(
h + 2

3 g
)
( f + g)

(
h + 5

3 g
)
( f + 2g)

(
h + 8

3 g
)

h
(

f + 2
3 g
)
(h + g)

(
f + 5

3 g
)
(h + 2g)

(
f + 8

3 g
) etc.

Furthermore, let it be

S =
∫ ym−1dy

(1− yg)
1
3

and T =
∫ yn−1dy

(1− yg)
1
3

it will be
T
S
=

m
(
n + 2

3 g
)
(m + g)

(
n + 5

3 g
)
(m + 2g)

n
(
m + 2

3 g
)
(n + g)

(
m + 5

3 g
)
(n + 2g)

etc.

which two expression multiplied by each other give

RT
QS

=
f m
(
h + 2

3 g
) (

n + 2
3 g
)
( f + g) (m + g)

(
h + 5

3 g
) (

n + 5
3 g
)

hn
(

f + 2
3 g
) (

m + 2
3 g
)
(h + g) (n + g)

(
f + 5

3 g
) (

m + 5
3 g
) etc

§30 But this expression cannot be reduced to that one, to which 27P
8 f 2gQ3 was

found to be equal, if that one is not multiplied by f
f− 1

3 g
, such that it is

27P

8 f g
(

f − 1
3 g
)

Q3
=

f f ( f + g) ( f + g) ( f + g) ( f + 2g)(
f − 1

3 g
) (

f + 2
3 g
) (

f + 2
3 g
) (

f + 2
3 g
) (

f + 5
3 g
) (

f + 5
3 g
) etc.;

for, now the reduction will happen by putting

m = f , h = f − 1
3

g and n = f +
1
3

g.
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Therefore, having substituted these values it will be

27P

8 f g
(

f − 1
3 g
)

Q3
=

RT
QS

.

But since it is S = Q and

R =
∫ y f− 1

3 g−1dy

(1− yg)
1
3
=

f + 1
3 g

f − 1
3 g

∫ y f+ 2
3 g−1dy

(1− yg)
1
3

and

T =
∫ y f+ 1

3 g−1dy

(1− yg)
1
3

,

one will obtain this equation by putting y = z3

∫ dz

(1− z3)
1
3
·
∫ zdz

(1− z3)
1
3
= 3 f g(3 f + g)

∫ z3 f−1dz

(1− z3g)
1
3
·
∫ z3 f+g−1dz

(1− z3g)
1
3
·
∫ z3 f+2g−1dz

(1− z3g)
1
3

.

And if one puts 3 f = a, it will be

∫ dz

(1− z3)
1
3
·
∫ zdz

(1− z3)
1
3
= ag(a+ g)

∫ za−1dz

(1− z3g)
1
3
·
∫ za+g−1dz

(1− z3g)
1
3
·
∫ za+2g−1dz

(1− z3g)
1
3
.

§31 Let us put p = 1 and q = 4 and one will have

44P
f g3Q4 =

f f f ( f + g) ( f + g) ( f + g)(
f + 1

4 g
) (

f + 1
4 g
) (

f + 1
4 g
) (

f + 1
4 g
) (

f + 5
4 g
) (

f + 5
4 g
) etc.

and
R
Q

=
f
(
h + 1

4 g
)
( f + g)

(
h + 5

4 g
)
( f + 2g)

h
(

f + 1
4 g
)
(h + g)

(
f + 5

4 g
)
(h + 2g)

etc.

But let as before

S =
∫ ym−1dy

(1− yg)
q−p

q
, T =

∫ yn−1dy

(1− yg)
q−p

q
;

it will be

RST
Q3 =

f f f
(
h + 1

4 g
) (

m + 1
4 g
) (

n + 1
4 g
)
( f + g)

hmn
(

f + 1
4 g
) (

f + 1
4 g
) (

f + 1
4 g
)
(h + g)

etc
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6 factors of which expression are to be transformed into four of that one, what
will happen by putting

h = f +
1
4

, m = f +
2
4

g and n = f +
3
4

g,

having done which one will have

44P = f g3QRST.

Hence, because it is

P =
1
4

∫ dz

(1− z4)
3
4
·
∫ zdz

(1− z4)
3
4
·
∫ zzdz

(1− z4)
3
4
,

if on puts y = z4 and 4 f = a, this equation will arise

∫ dz

(1− z4)
3
4
·
∫ zdz

(1− z4)
3
4

∫ zzdz

(1− z4)
3
4

= ag3
∫ za−1dz

(1− z4g)
3
4
·
∫ za+g−1dz

(1− z4g)
3
4
·
∫ za+2g−1dz

(1− z4g)
3
4
·
∫ za+3g−1dz

(1− z4g)
3
4
,

whose connection with the preceding cases, in which it was p = 1, q = 2 and
p = 1, q = 3, is easily seen.

§32 From these it will therefore be possible to form all equations of this kind,
which will arise, if one puts p = 1 and q = an arbitrary positive integer; Of
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course, it will be

I.
∫ dz
√

1− z2

= ag
∫ za−1dz
√

1− z2g
·
∫ za+g−1dz
√

1− z2g

I I.
∫ dz

(1− z3)
2
3
·
∫ zdz

(1− z3)
2
3

= ag2
∫ za−1dz

(1− z3g)
2
3
·
∫ za+g−1dz

(1− z3g)
2
3
·
∫ za+2g−1dz

(1− z3g)
2
3

I I I.
∫ dz

(1− z4)
3
4
·
∫ zdz

(1− z4)
3
4
·
∫ z2dz

(1− z4)
3
4

= ag3
∫ za−1dz

(1− z4g)
3
4
·
∫ za+g−1dz

(1− z4g)
3
4
·
∫ za+2g−1dz

(1− z4g)
3
4
·
∫ za+3g−1dz

(1− z4g)
3
4

IV.
∫ dz

(1− z5)
4
5
·
∫ zdz

(1− z5)
4
5
·
∫ z2dz

(1− z5)
4
5
·
∫ z3dz

(1− z5)
4
5

= ag4
∫ za−1dz

(1− z5g)
4
5
·
∫ za+g−1dz

(1− z5g)
4
5
·
∫ za+2g−1dz

(1− z5g)
4
5
·
∫ za+3g−1dz

(1− z5g)
4
5
·
∫ za+4g−1dz

(1− z5g)
4
5

etc.

§33 But that we can also calculate the equations, which arise, if p is not
= 1, let us put p = 2 and q = 4; having done this and while everything else
remains the same as above it will be

44P
34 f 3gQ4 =

f ( f + g) ( f + g) ( f + g)(
f + 3

4 g
) (

f + 3
4 g
) (

f + 3
4 g
) (

f + 3
4 g
) etc.,

where the remaining terms consisting of four factors are formed from these
by augmenting the single factors by the quantity g. In similar manner, it will
on the other hand be

RST
Q3 =

f f f
(
h + 3

4 g
) (

m + 3
4 g
) (

n + 3
4 g
)

hmn
(

f + 3
4 g
) (

f + 3
4 g
) (

f + 3
4 g
) etc.,
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where six factors each constitute one revolution or period. But to make the
comparison it is necessary that both series are contemplated this way

44P

34 f 2g
(

f − 1
4 g
)

Q4
=

f f ( f + g) ( f + g)(
f − 1

4 g
) (

f + 3
4 g
) (

f + 3
4 g
) (

f + 3
4 g
) etc.

hRST
f Q3 =

f f
(
h + 3

4 g
) (

m + 3
4 g
) (

n + 3
4 g
)
( f + g)

mn
(

f + 3
4 g
) (

f + 3
4 g
) (

f + 3
4 g
)
(h + g)

etc.,

of which this one is transformed in that one, such that it is

44P

34 f gh
(

f − 1
4 g
)

Q4
= QRST,

if it is
h = f +

1
4

g , m = f − 1
4

g and n = f +
2
4

g.

§34 Therefore, because it is

P =
34

2

∫ z2dz

(1− z4)
1
4
·
∫ z5dz

(1− z4)
1
4

∫ z8dz

(1− z4)
1
4

=
34

32

∫ dz

(1− z4)
1
4
·
∫ zdz

(1− z4)
1
4
·
∫ zzdz

(1− z4)
1
4

and

Q =
∫ y f−1dy

(1− yg)
1
4

, R =
∫ y f+ 1

4 g−1dy

(1− yg)
1
4

S =
∫ y f− 1

4 g−1dy

(1− yg)
1
4
=

f + 2
4 g

f − 1
4 g

∫ y f+ 3
4 g−1dy

(1− yg)
1
4

and

T =
∫ y f+ 2

4 g−1dy

(1− yg)
1
4

,

from these having put y = z4 and 4 f = a the following equation is set up∫ dz

(1− z4)
1
4
·
∫ zdz

(1− z4)
1
4
·
∫ zzdz

(1− z4)
1
4

= ag
(a + g)(a + 2g)

1 · 2

∫ za−1dz

(1− z4g)
1
4
·
∫ za+g−1dz

(1− z4g)
1
4

∫ za+2g−1dz

(1− z4g)
1
4
·
∫ za+3g−1dz

(1− z4g)
1
4
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§35 By proceeding this way one will find all following equations, whenever
p is not = 1; and, if p = 2, it will be found

I.
∫ dz

(1− z3)
1
3
·
∫ zdz

(1− z3)
1
3
= ag(a + g)

∫ za−1dz

(1− z3g)
1
3
·
∫ za+g−1dz

(1− z3g)
1
3
·
∫ za+2g−1dz

(1− z3g)
1
3

I I.
∫ dz

(1− z4)
2
4
·
∫ zdz

(1− z4)
2
4
·
∫ zzdz

(1− z4)
2
4

= ag2(a + g)
∫ za−1dz

(1− z4g)
2
4
·
∫ za+g−1dz

(1− z4g)
2
4
·
∫ za+2g−1dz

(1− z4g)
2
4
·
∫ za+3g−1dz

(1− z4g)
2
4

But in general, whatever q is, if one puts

dz

(1− zq)
q−2

q

= Xdz and
za−1dz

(1− zqg)
q−2

q

= Ydz,

it will be ∫
Xdz ·

∫
zXdz ·

∫
z2Xdz · · ·

∫
zq−2Xdz

= agq−2(a + g)
∫

Ydz ·
∫

zgYdz ·
∫

z2gYdz · · ·
∫

z(q−1)gYdz.

§36 In similar manner, if it is p = 3 and one puts

dz

(1− zq)
q−3

q

= Xdz und
za−1dz

(1− zqg)
q−3

q

= Ydz

the following general equation will arise∫
Xdz ·

∫
zXdz ·

∫
z2Xdz · · ·

∫
zq−2Xdz

= agq−3 (a + g)(a + 2g)
1 · 2

∫
Ydz ·

∫
zgYdz

∫
z2gYdz · · ·

∫
z(q−1)gYdz.

And hence it is possible to collect all these formulas into one very far extending
one. For, let p and q be arbitrary positive numbers and put

dz

(1− zq)
q−p

q
= Xdz and

za−1dz

(1− zqg)
q−p

q
= Ydz,
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one will have ∫
Xdz · zXdz ·

∫
z2Xdz · · ·

∫
zq−2Xdz

= agq−p (a + g)(a + 2g)(a + 3g) · · · (a + (p− 1)q)
1 · 2 · 3 · · · (p− 1)

∫
Ydz ·

∫
zgYdz ·

∫
z2gYdz · · ·

∫
z(q−1)gYdz.

§37 But because it is ∫
zq−1Xdz =

1
p

,

if both sides are multiplied by this factors, the following elegant equation will
arise

a(a + g)(a + 2g)(a + 3g) · · · (a + (p− 1)g)
1 · 2 · 3 · 4 · · · p gq−p

=

∫
Xdz∫
Ydz
·
∫

zXdz∫
zgYdz

·
∫

z2Xdz∫
z2gYdz

·
∫

z3Xdz∫
z3gYdz

· · ·
∫

zq−1Xdz∫
z(q−1)gYdz

,

which expression contains all the ones found until this point and because of
the extraordinary structure is remarkable.

§38 Now I will proceed to another method, by means of which it is possible
to get to expressions of this kind consisting of innumerable factors, which
method is more accommodated to analysis. For, I observed that from the
reduction of integral formulas to others one can obtain expressions of this
kind. For, let this integral formula be propounded∫

xm−1dx(1− xnq)
p
q ,

which is easily transformed in this expression

xm(1− xnq)
p+q

q

m
+

m + (p + q)n
m

∫
xm+nq−1dx(1− xnq)

p
q .

Therefore, if m and p+q
q are positive numbers and the integrals are taken in

such a way, that they vanish for x = 0, and then one puts x = 1, it will be

∫
xm−1dx(1− xnq)

p
q =

m + (p + q)n
m

∫
xn+nq−1dx(1− xnq)

p
q .
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§39 Further, since it similar manner it is∫
xm+nq−1dx(1− xnq)

p
q =

m + (p + 2q)n
m + nq

∫
xn+2nq−1dx(1− xnq)

p
q ,

it will also be∫
xm−1dx(1− xnq)

p
q =

(m + (p + q)n)(m + (p + 2q)n)
m(m + nq)

∫
xm+2nq−1dx(1− xnq)

p
q .

Therefore, having continued this reduction to infinity it will arise∫
xm−1dx(1− xnq)

p
q

=
(m + (p + q)n)(m + (p + 2q)n)(m + (p + 3q)n) · · · (m + (p + ∞q)n)

m(m + nq)(m + 2nq) · · · (m + ∞nq)

∫
xm+∞nq−1dx(1− xnq)

p
q .

and in similar manner it is ∫
xµ−1dx(1− xnq)

p
q

=
(µ + (p + q)n)(µ + (p + 2q)n)(µ + (p + 3q)n) · · · (µ + (p + ∞q)n)

µ(µ + nq)(µ + 2nq) · · · (µ + ∞nq)

∫
xµ+∞nq−1dx(1− xnq)

p
q ,

as long as m and µ and nq and p+q
q are positive integer numbers or greater

than zero.

§40 But since, if m is infinite, it is∫
xmdx(1− xnq)

p
q =

∫
xm+αdx(1− xnq)

p
q ,

whatever finite number is assumed for α, as it was concluded in paragraph 38,
it will also be∫

xm+∞nq−1dx(1− xnq)
p
q =

∫
xµ+∞nq−1dx(1− xnq)

p
q .

Therefore, if the one of the preceding expressions is divided be the other one,
this equation will arise ∫

xm−1dx(1− xnq)
p
q∫

xµ−1dx(1− xnq)
p
q

=
µ(m + (p + q)n)(µ + nq)(m + (p + 2q)n)(µ + 2nq)(m + (p + 3q)n)(µ + 3nq)
m(µ + (p + q)n)(m + nq)(µ + (p + 2q)n)(m + 2nq)(µ + (p + 3q)n)(m + 3nq)

etc. to infinity,
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by means of which expressions innumerable products consisting of infinitely
many factors, whose values can be assigned by means of quadratures of
curves.

§41 If the one integral formula admits an integration, then one will have a
nice infinite expression for the other integral formula. For, let is be µ = nq; it
will be ∫

xµ−1dx(1− xnq)
p
q =

1
(p + q)q

,

having substituted this value it will arise

∫
xm−1dx(1− xnq)

p
q =

1
(p + q)n

·
nq(m + (p + q)n)2nq(m + (p + 2q)n)3nq
m(p + 2q)n(m + nq)(p + 3q)n(m + 3nq)

etc.,

by means of which for innumerable integrals expressions by means infinite
products can be found; at least in the case, in which x = 1, which is mainly
desired in most cases, of course.

§42 Put n instead of nq and it will arise

∫
xm−1dx(1− xn)

p
q =

q
(p + q)n

·
n(mq + (p + q)n)2n(mq + (p + 2q)n)3n(mq + (p + 3q)n)

m(p + 2q)n(m + n)(p + 3q)n(m + 2n)(p + 4q)n
etc.,

which resolved into two factors becomes simpler and it is∫
xm−1dx(1− xn)

p
q

=
q

(p + q)n
·

1(mq + (p + q)n)
m(p + 2q)

·
2(mq + (p + 2q)n)
(m + n)(p + 3q)

·
3(mq + (p + 3q)n)
(m + 2n)(p + 4q)

· etc.,

26



whence the following more notable examples are deduced:

∫ dx
√

1− xx
=1 ·

1 · 4
1 · 3 ·

2 · 8
3 · 5 ·

3 · 12
5 · 7 · etc =

2 · 2 · 4 · 4 · 6 · 6
1 · 3 · 3 · 5 · 5 · 7 etc.,

∫ xdx
√

1− xx
=1 ·

1 · 6
2 · 3 ·

2 · 10
4 · 5 ·

3 · 14
6 · 7 · etc. = 1,

∫ x2dx
√

1− xx
=1 ·

1 · 8
3 · 3 ·

2 · 12
5 · 5 ·

3 · 16
7 · 7 · etc =

2 · 4 · 4 · 6 · 6 · 8
3 · 3 · 5 · 5 · 7 · 7 etc.,

∫ dx
√

1− x3
=

2
3
·

1 · 5 · 2 · 11 · 3 · 17 · 4 · 23 · 5 · 29
1 · 3 · 4 · 5 · 7 · 7 · 10 · 9 · 13 · 11

etc.,

∫ xdx
√

1− x3
=

2
3
·

1 · 7 · 2 · 13 · 3 · 19 · 4 · 25 · 5 · 31
2 · 3 · 5 · 5 · 8 · 7 · 11 · 9 · 14 · 11

etc

∫ dx
√

1− x4
=

1
2
·

1 · 6 · 2 · 14 · 3 · 22 · 4 · 30
1 · 3 · 5 · 5 · 9 · 7 · 13 · 9 etc =

1
2
·

2 · 3 · 4 · 7 · 6 · 11 · 8 · 15
1 · 3 · 5 · 5 · 9 · 7 · 13 · 9 etc.,

∫ xxdx
√

1− x4
=

1
2
·

1 · 10 · 2 · 18 · 3 · 26 · 4 · 34
3 · 3 · 7 · 5 · 11 · 7 · 15 · 9 etc.,

∫ dx
3
√

1− x3
=

1
2
·

3 · 3 · 6 · 6 · 9 · 9 · 12 · 12
1 · 5 · 4 · 8 · 7 · 11 · 10 · 14

etc.,

∫ dx
4
√

1− x4
=

1
3
·

4 · 4 · 8 · 8 · 12 · 12 · 16 · 16
1 · 7 · 5 · 11 · 9 · 15 · 13 · 19

etc.

Furthermore, these expressions deserve it to be noted

∫
xm−1dx(1− xn)−

m
n =

1
n−m

·
n · n · 2n · 2n · 3n · 3n

m(2n−m)(m + n)(2n−m)(m + 2n)(4n−m)
etc.,∫

xm−1dx(1− xn)
m−n

n

=
1
m
·

n · 2m · 2n(2m + n)3n(2m + 2n)4n(2m + 3n)
m(m + n)(m + n)(m + 2n)(m + 2n)(m + 3n)(m + 3n)(m + 4n)

etc.

§43 But because in the same way it is

∫
xµ−1dx(1− xϑ)

r
s =

s
(r + s)ϑ

·
1(µs + (r + s)ϑ)2(µs + (r + 2s)ϑ)3(µs + (r + 3s)ϑ)

µ(r + 2s)(µ + ϑ)(r + 3s)(µ + 2ϑ)(r + 4s)
etc.,
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by dividing the first expression by this one it will be∫
xm−1dx(1− xn)

p
q∫

xµ−1dx(1− xϑ) r
s

=
(r + s)qϑ

(p + q)sn
·

µ(r + 2s)(mq + (p + q)n)
m(p + 2q)(µs + (r + s)ϑ)

·
(µ + ϑ)(r + 3s)(mq + (p + 2q)n)
(m + n)(p + 3q)(µs + (r + 2s)ϑ)

· etc.

Therefore, as often as this infinite expression has a finite value, so often the
summation of the one integral formula can be reduced to the other one. But
cases of this kind exist, whenever the factors of the numerator cancel the
factors of the denominator, such that after the cancellation a finite number of
factors remains. For, in this expression completely all reductions of integral
formulas to other ones are contained.

§44 But that more expressions of this kind can be compared to each other, it
is advisable to assume them this way

∫
xa−1dx(1− xb)c∫
x f−1dx(1− xg)h =

(h + 1)g
(c + 1)b

·
f (h + 2)(a + (c + 1)b)
a(c + 2)( f + (h + 1)g)

·
( f + g)(h + 3)(a + (c + 2)b)
(a + b)(c + 3)( f + (h + 2)g)

· etc.,

In similar manner, it will be∫
xα−1dx(1− xβ)γ∫
xξ−1dx(1− xη)Θ =

(Θ + 1)η
(γ + 1)β

·
ξ(Θ + 2)(α + (γ + 1)β)

α(γ + 2)(ξ + (Θ + 1)η)
·
(ξ + η)(Θ + 3)(α + (γ + 2)β)

(α + β)(γ + 3)(ξ + (Θ + 2)η)
· etc.,

which expressions, even though they do not differ in principle, nevertheless,
since they have a different form, can be compared to each other.

§45 But that we now from these expressions find the same theorems, which
found above, let it be

θ = γ = h = c, η = β = g = b;

it will be

∫
xa−1dx(1− xb)c∫
x f−1dx(1− xb)c =

f (a + c + 1)b)( f + b)(a + (c + 2)b)( f + 2b)(a + (c + 3b))
a( f + c + 1)b)(a + b)( f + (c + 2)b)(a + 2b)( f + (c + 3b))

etc.
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and the other form

∫
xα−1dx(1− xb)c∫
xζ−1dx(1− xb)c =

ζ(α + c + 1)b)(ζ + b)(α + (c + 2)b)(ζ + 2b)(α + (c + 3b))
α(ζ + c + 1)b)(α + b)(ζ + (c + 2)b)(α + 2b)(ζ + (c + 3b))

etc.

If the product of these expressions is put = f
a , it must be

(a + (c + 1)b)( f + b)ξ(a + (c + 1)b)
( f + (c + 1)b)(a + b)α(ξ + (c + 1)b)

= 1;

for, if this was the case, the product of the whole infinite expressions will
become = f

a . But this will be obtained by putting

α = a + (c + 1)b , ξ = f + (c + 1)b

and it will be

c = −
1
2
,

such that it is
α = a +

1
2

b , ξ = f +
1
2

b,

and it will hence be∫ xa−1dx
√

1− xb
·
∫ xa+ 1

2 b−1dx
√

1− xb
=

f
a

∫ x f−1dx
√

1− xb
·
∫ xa 1

2 b−1dx
√

1− xb
;

or, if one puts x = z2, it will be

∫ za−1dz
√

1− z2b
·
∫ za+b−1dz
√

1− z2b
=

f
a

∫ z f−1dz
√

1− z2b
·
∫ z f+b−1dz
√

1− z2b

having put a and f instead of 2a and 2 f . But this equation is nothing else but
the theorem found above in § 12; for, having put f = b it is

∫ z2b−1dz√
1− z2b

=
1
b

and
∫ zb−1dz√

1− z2b
=

π

2b
,

whence it will be

π = 2ab
∫ za−1dz
√

1− z2b
·
∫ za+b−1dz
√

1− z2b
.
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§46 In similar manner other theorems of this kind can be found; for, let it be

g = b , h = c , η = β = b and Θ = γ

and let the case be in question, in which the product of the two expressions
becomes = 1. But this will be obtained, if it is

f (a + (c + 1)b)ξ(α + (γ + 1)b)
a( f + (c + 1)b)α(ξ + (γ + 1)b)

= 1,

what will happen by taking

α = a + (c + 1)b , f = a + (γ + 1)b , ξ = a.

Therefore, having substituted these values the following rather elegant theo-
rem will arise.∫

xa−1dx(1− xb)c∫
xa−1dx(1− xb)γ

·
∫

xa+(c+1)b−1dx(1− xb)γ∫
xa+(γ+1)b−1dx(1− xb)c

= 1;

or, if one puts
c + 1 = m and γ + 1 = n,

one will have∫ xa−1dx
(1− xb)1−m ·

∫ xa+mb−1dx
(1− xb)1−n =

∫ xa−1dx
(1− xb)1−n ·

∫ xa+nb−1dx
(1− xb)1−m.

§47 Additionally, in another way one can find a nice theorem by putting
γ = h and θ = c while it remains η = β = g = h and by causing that the
product of the integral expressions becomes = f

a ; that this happens, it must
necessarily be

( f + (c + 1)b)( f + b)ξ(α + (h + 1)b)
( f + (h + 1)b)(a + b)α(ξ + (c + 1)b)

= 1.

But this will be caused by taking

α = a + (c + 1)b , ξ = f + (h + 1)b,

whence one will find

c + h + 1 = 0 oder h = −1− c;
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hence take
c = −1

2
+ n und h = −1

2
− n,

and the following theorem will arise

f
a
=

∫
xa−1dx(1− xb)−

1
2+n ·

∫
xa+( 1

2+n)b−1dx(1− xb)−
1
2−n∫

x f−1dx(1− xb)−
1
2−n ·

∫
x f+( 1

2−n)b−1dx(1− xb)−
1
2+n

§48 Now let all exponents c, h, γ and θ be different, but g = β = η = b, and
let the cases be in question, in which the product of both expressions becomes
= (h+1)(θ+1)

(c+1)(γ+1) . But this will happen, if it is

f (bh + 2b)(a + (c + 1)b)ξ(bΘ + 2b)(α + (γ + 1)b)
a(bc + 2b)( f + (h + 1)b)α(bγ + 2b)(ξ + (Θ + 1)b)

= 1,

which factors I expressed in such a way, that the single one grow by the
quantity b in the following terms. Now put

ξ + (Θ + 1)b = bh + 2b or ξ = b(1 + h−Θ)

and
α + (γ + 1)b = bc + 2b or α = b(1 + c− γ).

Further, let

f + (h + 1)b = bΘ + 2b or f = b(1 + Θ− h)

and
a + (c + 1)b = bγ + 2b or a = b(1 + γ− c).

Finally, it must be α = f and ζ = a, which two equations require that it is

c− γ = Θ− h or c + h = γ + Θ.

Hence the following theorem will arise

(h + 1)(Θ + 1)
(c + 1)(γ + 1)

=

∫
xb(1+γ−c)−1dx(1− xb)c ·

∫
xb(1+c−γ)−1dx(1− xb)γ∫

xb(1+θ−h)−1dx(1− xb)h ·
∫

xb(1+h+Θ)−1dx(1− xb)Θ
,

as long as it is c + h = γ + Θ.
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§49 But additionally another way the rendered = 1, by putting

α = a + (c + 1)b andζ = f + (h + 1)b, f = b(γ + 2), a = b(θ + 2),

such that it is

α = b(3 + c + Θ) and ξ = b(3 + h + γ).

But further it must be

ξ + (Θ + 1)b = bh + 2b and α + (γ + 1)b = bc + 2b,

by which it is postulated that it is

γ + Θ + 2 = 0.

Therefore, put
γ = −1 + n and Θ = −1− n

But if it is required that the product of both expressions is = f (h+1)(θ+1)
a(c+1)(γ+1) , it

will be obtained by putting

α = a + (c + 1)b , ξ = f + (h + 1)b , f = b(γ + 1) , a = b(Θ + 1),

whence it will be

α = b(2 + c + Θ) and ξ = b(2 + h + γ).

Finally, it must be
γ + Θ + 1 = 0.

Put
γ = −1

2
+ n und Θ = −1

2
+ n

and one will have this theorem

h + 1
c + 1

=

∫
xb( 1

2−n)−1dx(1− xb)c∫
xb( 1

2+n)−1dx(1− xb)h
·
∫

xb( 3
2+c−n)−1dx(1− xb)−

1
2+n∫

xb( 3
2+h+n)−1dx(1− xb)−

1
2−n

;

in this it is to be noted that the exponents c, h, − 1
2 + n, − 1

2 − n can certainly
be negative numbers, but such one, that together with the unity the go over
into positive ones; for, otherwise the integrals would not obtain a finite value
in the case x = 1.
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§50 Therefore, as I not only detected the theorem found above on products
of two integrals formulas by this more direct method, but also found new not
less remarkable ones, so, if in similar manner three expressions of this kind
are multiplied by each other, many theorems on the products of three integral
formulas will arise and it will be possible to proceed further to an arbitrary
number of factors; but since this investigation requires very cumbersome
calculations, that even the letters hardly suffice, I will be contented both with
the main theorems given and the way of proving them.
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