
Observations on continued

fractions *

Leonhard Euler

§1 After I had started to investigate continued fractions in the last year and
to develop this almost completely new branch of analysis, in the mean time I
made several observations, which will be helpful for expanding this theory
even further. Therefore, because the exploration of this theory seems to be
very useful for all branches of Analysis in general, I will take on this subject
again, and explain everything in more detail. So let this continued fraction be
propounded

A +
B

C +
D

E +
F

G +
H

I + etc.
whose true value will be found by continuing the following series to infinity

A +
B

1P
− BD

PQ
+

BDF
QR

− BDFH
RS

− etc.,

in which series the letters P, Q, R, S etc. obtain the following values

P = C, Q = EP + D, R = GQ + FP, S = IR + HQ etc.

*Original title: “ De fractionibus continuis Observationes“, first published in „Commentarii
academiae scientiarum Petropolitanae 11, 1750, pp. 32-81“, reprinted in „Opera Omnia: Series 1,
Volume 14, pp. 291 - 349 “, Eneström-Number E123, translated by: Alexander Aycock, for
the „Euler-Kreis Mainz“
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But this series always converges, no matter how the letters B, C, D, E, F
etc. either grow or decrease, as long they are all positive; for, any arbitrary
term is smaller than the preceding one, but greater than the following; this is
immediately seen by the rule used to form the values P, Q, R, S etc.

§2 If vice versa this infinite series was propounded

B
P
− BD

PQ
+

BDF
QR

− BDFH
RS

+ etc.,

its sum can conveniently be expressed by the following continued fraction.
Because it is

C = P, E =
Q− D

P
, G =

R− FP
Q

, I =
S− HQ

R
etc.,

one will have this continued fraction equal to that series

B

P +
D

Q− D
P

+
F

R− FP
Q

+
H

S− HQ
R

+
K

etc.
or

B

P +
DP

Q− D +
FPQ

R− FP +
HQR

S− HQ +
KRS
etc.

If this series was given

a
p
− b

q
+

c
r
− d

s
+

e
t
− etc.,

because of
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B = a, D = b : a, F = c : b, H = d : c, K = e : d etc.

and

P = p, Q = q : p, R = pr : q, S = qs : pr, T = prt : qs etc.

the sum of this series

a
p
− b

q
+

c
r
− d

s
+

e
t
− etc.

will be equal to the following continued fraction

a

p +
b : a

aq− bp
app

+
c : b

p2(br− cq)
bqq

+
d : c

q2(cs− dr)
cp2r2 +

e : d

p2r2(dt− es)
dq2s2 + etc.

=
a

p +
bp2

aq− bp +
acqq

br− cq +
bdrr

cs− dr +
cess

dt− es + etc.

§3 To illustrate these things by some examples, let us take this series

1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ etc.,

whose sum is = log 2 or
∫ dx

1+x , if after the integration x is put = 1; therefore,
it will be be

a = b = c = d = etc. = 1, p = 1, q = 2, r = 3, s = 4 etc.
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and

p = 1, aq− bp = 1, br− cq = 1, cs− dr = 1 etc.

Hence it will be

∫ dx
1 + x

=
1

1 +
1

1 +
4

1 +
9

1 +
16

1 + etc.
or the value of this continued fraction is = log 2.

§4 Now let us consider this series

1− 1
3
+

1
5
− 1

7
+

1
9
− etc.,

whose sum is the area of the circle, whose diameter is = 1 or =
∫ dx

1+x2 having
put x = 1 after the integration. Therefore, it will be

a = b = c = d = etc. = 1 and p = 1, q = 3, r = 5, s = 7 etc.,

whence it is

∫ dx
1 + xx

=
1

1 +
1

2 +
9

2 +
25

2 +
49

2 + etc.
which is Brouncker’s continued fraction he exhibited for the quadrature of
the circle.
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§5 In like manner by taking other series of this kind, the following conversi-
ons of integral formulas into continued fractions will result, after having put
x = 1 after the integration:

∫ dx
1 + x3 =

1

1 +
12

3 +
42

3 +
72

3 +
102

3 + etc.

∫ dx
1 + x4=

1

1 +
12

4 +
52

4 +
92

4 +
132

4 + etc.∫ dx
1 + x5 =

1

1 +
12

5 +
62

5 +
112

5 +
162

5 + etc.

∫ dx
1 + x6=

1

1 +
12

6 +
72

6 +
132

6 +
192

6 + etc.

§6 Hence it follows that it will be in general

∫ dx
1 + xm =

1

1 +
12

m +
(m + 1)2

m +
(2m + 1)2

m +
(3m + 1)2

m + etc.
having put x = 1 after the integration. And if m was a fractional number, one
will have

∫ dx
1 + x

m
n
=

1

1 +
n

m +
(m + n)2

m +
(2m + n)2

m +
(3m + n)2

m + etc.
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§7 Now let us consider the formula
∫ xn−1dx

1+xm , which integrated and having
put x = 1 afterwards, gives this series

1
n
− 1

m + n
+

1
2m + n

− 1
3m + n

+ etc.

Hence it will be

a = b = c = d = etc. = 1 and p = n, q = m+n, r = 2m+n, s = 3m+n etc.

Hence one will have

∫ xn−1dx
1 + xm =

1

n +
n2

m +
(m + n)2

m +
(2m + n)2

m + etc.
which continued fraction coincides with the last one found.

§8 Now let this formula be propounded
∫ xn−1dx

(1+xm)
µ
ν

, which integrated and

having put x = 1 afterwards gives this series

1
n
− µ

ν(m + n)
+

µ(µ + ν)

1 · 2ν2(2m + n)
− µ(µ + ν)(µ + 2ν)

1 · 2 · 3ν3(3m + n)
+ etc.,

which compared to the general one yields

a = 1, b = µ, c = µ(µ + ν), d = µ(µ + ν)(µ + 2ν) etc.,

p = n, q = ν(m + n), R = 2ν2(2m + n), s = 6ν3(3m + n),

t = 24ν4(4m + n) etc.

and

aq− bp = νm + (ν− µ)n,

br − cq = µν(3ν− µ)m + µν(ν− µ)n,

cs − dr = 2µν3(µ + ν)(m(5ν− 2µ) + n(ν− µ)),

dt − es = 6µν3(µ + ν)(µ + 2ν)(m(7ν− 3µ) + n(ν− µ))

etc.;
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having substituted these values and after some simplifications one will have

∫ xn−1dx

(1 + xm)
µ
ν

=
1

n +
µn2

νm + (ν− µ)n +
ν(µ + ν)(m + n)2

(3ν− µ) + (ν− µ)n +
2ν(µ + 2ν)(2m + n)2

(5ν− 2µ)m + (ν− µ)n +
3ν(µ + 3ν)(3m + n)2

(7ν− 3µ)m + (ν− µ)n + etc.

Let µ = 1 and ν = 2; it will be

∫ xn−1dx√
1 + xm

=
1

n +
n2

2m + n +
6(m + n)2

5m + n +
20(2m + n)2

8m + n +
42(3m + n)2

11m + n +
72(4m + n)2

14m + n + etc.

§9 But if ν = 1 and µ was an integer, the following continued fractions will
result

∫ xn−1dx
(1 + xm)2 =

1

n +
2n2

m− n +
1 · 3(m + n)2

m− n +
2 · 4(2m + n)2

m− n +
3 · 5(3m + n)2

m− n +
4 · 6(4m + n)2

m− n + etc.
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∫ xn−1dx
(1 + xm)3 =

1

n +
3n3

m− 2n +
1 · 4(m + n)2

−2n +
2 · 5(2m + n)2

−m− 2n +
3 · 6(3m + n)2

−2m− 2n +
4 · 7(4m + n)2

−3m− 2n + etc.
which expressions, as the following ones, because of the negative quantities,
do not converge, but diverge.

§10 All these things follow from the conversion of the general continued
fraction given in § 1 into an infinite series

A +
B

1P
− BD

PQ
+

BDF
QR

− BDFH
RS

+ etc.

But this same series, by adding each two terms, is transformed into this one

A +
BE
1Q

+
BDFI

QS
+

BDFHKN
SV

+ etc.

But it is

C = P =
Q− D

E
, G =

S− HQ
IQ

− F(Q− D)

EQ
, L =

V −MS
NS

− K(S− HQ)

IS
etc.

Therefore, this infinite series

A +
BE
Q

+
BDFI

QS
+

BDFHKN
SV

+ etc.

is converted into the following continued fraction

A+
B

Q− D
E

+
D

E +
F

E(S− HQ)− FI(Q− D)

EIQ
+

H

I +
K

I(V −MS)− KN(S− HQ)

INS
+ etc.

;
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and having cleared all the fractions this expression becomes

A+
BE

Q− D +
D

1 +
FIQ

E(S− HQ)− FI(Q− D) +
EHQ

1 +
KNS

I(V −MS)− KN(S− HQ) +
IMS

1 + etc.

§11 If now vice versa this infinite series is propounded

a
p
+

b
q
+

c
r
+

d
s
+

e
t
+ etc.

and compared to the preceding, it will be

Q = p, S =
q
p

, V =
pr
q

, X =
qs
pr

, Z =
prt
qs

etc.

and similarly

E =
a
B

, I =
b

BDF
, N =

c
BDFHK

etc.,

by means of which values the propounded series is converted into this conti-
nued fraction

a

p− D +
D

1 +
bp : 1

Da
(

q
p
− Hp

)
− b(p− D) +

DHap : 1

1 +
cq : p

Hb
(

pr
q
−

Mq
p

)
− c
(

q
p
− Hp

)
+

HMbq : p

1 +
dp : q

Mc
(

qs
pr − etc.

;

this continued fraction contains innumerable new quantities, which were not
contained in the propounded series.
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§12 But because from § 2 this series

b
p
− bd

pq
+

bd f
qr
− bd f h

rs
+ etc.

is equal to this continued fraction

b

p +
dp

q− d +
f pq

r− f p +
hqr

s− hq +
krs
etc.

,

if this last series is reduced to the preceding, it will be

b = BE, d =
−DFI

E
, f =

−HKN
I

etc.,

p = Q, q = S, r = V, s = X etc.

Hence the continued fraction given in the preceding paragraph is transformed
into this one

A +
BE

Q−
DFI ·Q

ES + DFI −
EHKN ·QS

IV + HKNQ−
IMOR · SV

NX + MORS + etc.
whose structure is easily understood.

§13 But that series

A +
B
P
− BD

PQ
+

BDF
QR

− etc.,

we found from the general continued fraction first is easily transformed into
this form

A +
B

2P
+

BE
2Q
− BDG

2PR
+

BDFI
2QS

− BDFHL
2RT

+ etc.;
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this form, if the letters C, E, G, I etc. are expressed by means of the given
equations, becomes

A +
B

2P
+

B(Q− D)

2PQ
− BD(R− FP)

2PQR
+

BDF(S− HQ)

2QRS
− etc.;

hence the following continued fraction is equal to the series

A +
B

P +
DP

Q− D +
FPQ

R− FP +
HQR

A− HQ + etc.

§14 Therefore, all these things follow directly from the consideration of
continued fractions and I have mentioned the most observations of this kind
already in the preceding dissertation1. But now having treated these things
I will consider others and will explain several ways so to get to continued
fractions as to assign the values of continued fractions of that kind by means
of integrations. Therefore at first, because the expression given by Brouncker

for the quadrature of the circle is not only demonstrated, but was also found
a priori, I want to investigate other similar expressions, either found by
Brouncker himself or by Wallis; for, they were listed up by Wallis, but
it was not indicated clearly enough, whether Brouncker found all of them
or merely that one exhibited for the quadrature of the circle. But after this, I
will also prove those remaining continued fractions, which seem to be more
profound, using completely different principles and will teach how to find a
lot more continued fractions of this kind.

§15 But everything concerning continued fractions in Wallis’s book reduces
to this that the product of the following two continued fractions is = a2:

a− 1 +
1

2(a− 1) +
9

2(a− 1) +
25

2(a− 1) + etc.
1Euler refers to his paper "De fractionibus continuis dissertatio". This is E71 in the Eneström-

Index
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and

a + 1 +
1

2(a + 1) +
9

2(a + 1) +
25

2(a + 1) + etc.

But because likewise it is

(a+ 2)2 = a+ 1+
1

2(a + 1) +
9

2(a + 1) + etc.

× a+ 3+
1

2(a + 3) +
9

2(a + 3) + etc.

by proceeding in this way to infinity one will find

a · a(a + 4)
(a + 2)(a + 2)

(a + 8)(a + 8)
(a + 6)(a + 10)

(a + 12)(a + 12)
(a + 10)(a + 14)

etc.

= a− 1 +
1

2(a− 1) +
9

2(a− 1) +
25

2(a− 1) + etc.

§16 If this product consisting of an infinite number of factors is examined by
the method given in the preceding paper2, one will find

a(a + 4)(a + 4)(a + 8)etc.
(a + 2)(a + 2)(a + 6)(a + 6)etc.

=

∫
xa+1dx :

√
1− x4∫

xa−1dx :
√

1− x4
.

Therefore, the value of this continued fraction

= a− 1 +
1

2(a− 1) +
9

2(a− 1) +
25

2(a− 1) + etc.

will become equal to this expression

2This time Euler refers to his paper "De productis ex infinitis factoribus ortis". This is E122 in
the Eneström-Index.
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a
∫

xa+1dx :
√

1− x4∫
xa−1dx :

√
1− x4

having put x = 1 after each integration.

§17 This theorem by which the value of a far-extending continued fraction
is expressed by integrals, is even more remarkable, because its validity is not
obvious at all. Although the case, in which a = 2, was already found before
and its value was given by the quadrature of the circle, the remaining cases
cannot be derived from the same principles. Hence if this continued fraction
in converted into a series in the way described at the beginning of this paper,
one gets to such an intricate series that its sum cannot be calculated by any
means, except in the case a = 2. Therefore, I have already worked quite hard
before to demonstrate the validity of this theorem and find a way to get to
this continued fraction a priori; this investigation seemed the more difficult to
me, the more useful I believed it to be for other investigations. But as long as
all effort was without success concerning this task, I highly regretted that the
method used by Brouncker was never explained and is probably completely
lost.

§18 According to Wallis’s Brouncker was led to this form by interpolation
of this series

1
2
+

1 · 3
2 · 4 +

1 · 3 · 5
2 · 4 · 6 + etc.;

for, Wallis had demonstrated that the intermediate terms of this series give
the quadrature of the circle. And even the beginning of this interpolation, also
considered by Brouncker himself, was given in his book. Then it is said he3

to resolve the single fractions 1
2 , 3

4 , 5
6 etc. into two factors, which all constitute

a continuous progression. So, if it was

AB =
1
2

, CD =
2
3

, EF =
5
6

, GH =
7
8

etc.

and the quantities A, B, C, D, E etc. constitute a continuous progression that
series becomes this one

3By this Euler means Brouncker. In general Euler describes what he read in Wallis’s book,
what Wallis thought, how Brouncker found this continued fraction.
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AB + ABCD + ABCDEF + etc.;

and reduced to this form it is easily interpolated. Hence the term, whose
index is 1

2 , is = A and the term corresponding to the index 3
2 is = ABC and

so forth. Hence this whole interpolation is reduced to the resolution of the
single fractions into two factors each.

§19 But from the law of continuity it will be

BC =
2
3

, DE =
4
5

, FG =
6
7

etc.

Therefore, because it is

A =
1

2B
, B =

2
3C

, C =
3

4D
, D =

4
5E

etc.,

one immediately obtains

A =
1 · 3 · 3 · 5 · 5 · 7
2 · 2 · 4 · 4 · 6 · 6 etc.,

which is indeed the formula given by Wallis first, by which he expressed
the quadrature of the circle, which formula differs from the expression given
by Brouncker a lot. Therefore, because this formula is found so easily by
investigating the interpolation this way, one has to wonder even more that
Brouncker having used the same approach got to such a different expression;
for, there seems to be no other way leading that continued fraction. And
it is indeed not very likely that Brouncker wanted to express the value A
by a continued fraction on purpose, but rather following a certain peculiar
method discovered it by accident, because at that time continued fractions were
completely unknown and were introduced on this occasion for the first time.
From this it is possible to conclude that there is an obvious method leading to
those continued fractions, even though it seems to be rather mysterious now.

§20 Although I spend a lot of time on efforts to rediscover this method
without any success, I nevertheless found another way to interpolate series of
this kind by continued fractions; but it led to expressions very different from
the Brounckerian counterparts. Nevertheless, I think that it will be useful to
explain this method, because applying it one finds continued fractions, whose
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values are known from elsewhere and can be exhibited by quadratures. For,
then I will explain another method, to express the values of any continued
fraction by quadratures. And using the result found by both methods extra-
ordinary comparisons of integral formulas will result, at least in that case,
in which a definite value is attributed to the variable after the integration; I
exhibited many comparisons of such kind in the preceding dissertation4 on
infinite products consisting of constant factors.

§21 To explain this method of interpolation I found, let this very general
series be propounded

p
p + 2q

+
p(p + 2r)

(p + 2q)(p + 2q + 2r)
++

p(p + 2r)(p + 4r)
(p + 2q)(p + 2q + 2r)(p + 2q + 4r)

+ etc.,

whose term corresponding to the index 1
2 is = A, the term corresponding to

the index 3
2 is = ABC, the term corresponding to the index 5

2 is = ABCDE
etc. Hence it will be

AB =
p

p + 2q
, CD =

p + 2r
p + 2q + 2r

, EF =
p + 4r

p + 2q + 4r
etc.

and from the law of continuity

BC =
p + r

p + 2q + r
, DE =

p + 3r
p + 2q + 3r

, FG =
p + 5r

p + 2q + 5r

and so on.

§22 To get rid of the fractions put

A =
a

p + 2q− r
, B =

b
p + 2q

, C =
c

p + 2q + r
, D =

d
p + 2q + 2r

etc.

and it will be

ab = (p + 2q− r)p, bc = (p + 2q)(p + r), cd = (p + 2q + r)(p + 2r),

de = (p + 2q + 2r)(p + 3r) etc.

4Here, Euler again refers to his paper "De productis ex infinitis factoribus ortis".
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Now let be

a = m− r +
1
α

, b = m +
1
β

, c = m + r +
1
γ

,

d = m− 2r +
1
δ

, e = m + 3r +
1
ε

etc.,

in which substitutions the integer parts constitute an arithmetic progression,
whose constant difference is r; this is actually necessary because of the pro-
gression of those factors itself. Therefore, having substituted these values and,
for the sake of brevity, having put

p2 + 2pq− pr−m2 + mr = P

and

2r(p + q−m) = Q

the following equations will result

P αβ−(m−r) α = m β + 1,

(P+ Q)βγ− mβ = (m+r) γ + 1,

(P+2Q)γδ−(m+ r)γ = (m+2r)δ + 1,

(P+3Q)δε −(m+2r)δ = (m+3r)ε + 1,

etc.

§23 Therefore, using these equations the following comparisons of the letters
α, β, γ, δ etc. result:
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α =
mβ + 1

Pβ− (m− r)
=

m
P
+

p(p + 2q− r) : P2

−
m− r

P
+ β

β =
(m + r)γ + 1
(P + Q)γ−m

=
m + r
P + Q

+
(p + r)(p + 2q) : (P + Q)2

−
m

P + Q
+ γ

γ =
(m + 2r)δ + 1

(P + 2Q)δ− (m + r)
=

m + 2r
P + 2Q

+
(p + 2r)(p + 2q + r) : (P + 2Q)2

−
m− r

P + 2Q
+ δ

etc.

So, if for the sake of brevity one puts

p2 + 2pq−mp−mq + qr = R

and

pr + qr−mr = S

and the values of the assumed letters are continuously substituted into each
other, the following continued fraction will result

α =
m
P
+

p(p + 2q− r) : P2

2rR
P(P + Q)

+
(p + r)(p + 2q) : (P + Q)2

2r(R + S)
(P + Q)(P + 2Q)

+
(p + 2r)(p + 2q + r) : (P + 2Q)2

2r(R + 2S)
(P + 2Q)(P + 3Q)

+ etc.

§24 But because it is a = m− r + 1
α , one will have

a = m− r +
P

m +
p(p + 2q− r)(P + Q)

2rR +
(p + r)(p + 2q)P(P + 2Q)

2r(R + S) +
(p + 2r)(p + 2q + r)(P + Q)(P + 3Q)

2r(R + 2S) + etc.
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Hence the term of the propounded series

p
p + 2q

+
p(p + 2r)

(p + 2q)(p + 2q + 2r)
+

p(p + 2r)(p + 4r)
(p + 2q)(p + 2q + 2r)(p + 2q + 4r)

+ etc.

corresponding to the index 1
2 will be

= A =
a

p + 2q− r
.

But because the general term corresponding to the index n of this series is

=

∫
yp+2q−1dy(1− y2r)n−1∫

yp−1dy(1− y2r)n−1

the continued fraction found or the value of the letter a is

= (p + 2q− r)
∫

yp+2q−1dy :
√

1− y2r∫
yp−1dy :

√
1− y2r

,

having put y = 1 after both integrations, of course.

§25 But because the arbitrary letter m is contained in our continued fraction,
one will have innumerable continued fractions, whose value is the same and
hence known; therefore, it will be helpful, to consider the principal continued
fractions. Hence at first let be

m− r = p or m = p + r;

it will be

P = 2p(q− r), Q = 2r(q− r), R = p(q− r) and S = r(q− r),

whence it will be

a = p +
2p(q− r)

p + r +
(p + 2q− r)(p + r)

r +
(p + 2q)(p + 2r)

r +
(p + 2q + r)(p + 3r)

r + etc.
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But if r > q so that the fraction does not become negative, it will be

a =
p

1 +
2(r− q)

p + 2q− r +
(p + 2q− r)(p + r)

r +
(p + 2q)(p + 2r)

r +
(p + 2q + r)(p + 3r)

r + etc.

§26 Now let m be = p + q, in which case Q and S vanish; but it will be

P = q(r− q) and R = q(r− q)

and hence it will result

a = p + q− r +
q(r− q)

p + q +
p(p + 2q− r)

2r +
(p + r)(p + 2q)

2r +
(p + 2r)(p + 2q + r)

2r + etc.

,

which continued fraction is therefore equal to the preceding ones, even though
the forms are different.

§27 Now put m = p + 2q and it will be

P = 2q(r− p− 2q) = −2q(p + 2q− r),

Q = −2qr,

R = −q(p + 2q− r)

and

S = −qr.

Therefore, one will obtain the following continued fraction:
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a = p + 2q− r−
2q(p + 2q− r)

p + 2q +
p(p + 2q)

r +
(p + r)(p + 2q + r)

r +
(p + 2r)(p + 2q + 2r)

r + etc.
Hence innumerable continued fractions result and their value is the same,
namely a, which value was found by means of integral formulas to be

= (p+ 2q− r)
∫

yp+2q−1dy :
√

1− y2r∫
yp−1dy :

√
1− y2r

= (p+ 2q− 2r)
∫

yp+2q−2r−1dy :
√

1− y2r∫
yp−1dy :

√
1− y2r

.

§28 Before we proceed, let us consider some special cases. Let r = 2q and it
will be

a = p
∫

yp+2q−1 :
√

1− y4q∫
yp−1dy :

√
1− y4q

.

Therefore, because it is

P = p2 + 2mq−m2,

Q = 4q(p + q−m),

R = p2 + 2pq + 2qq−mp−mq

and

S = 2q(p + q−m),

it will be in general

a = m− 2q +
P

m +
p2(P + Q)

4qR +
(p + 2q)2P(P + 2Q)

4q(R + S) +
(p + 4q)2(P + Q)(P + 3Q)

4q(R + 2S) + etc.

20



§29 But if we substitute those different values for m, the following determi-
ned continued fraction will result

a = p−
2pq

p + 2q +
p(p + 2q)

2q +
(p + 2q)(p + 4q)

2q +
(p + 4q)(p + 6q)

2q + etc.

or instead of this continued fraction because of r > q

a =
p

1 +
2q

p +
p(p + 2q)

2q +
(p + 2q)(p + 4q)

2q +
(p + 4q)(p + 6q)

2q + etc.

Further, from § 26 one obtains this fraction for this case

a = p− q +
qq

p + q +
pp

4q +
(p + 2q)2

4q +
(p + 4q)2

4q + etc.

But finally, § 27 will give this continued fraction

a = p− 2pq

p + 2q +
p(p + 2q)

2q +
(p + 2q)(p + 4q)

2q +
(p + 4q)(p + 6q)

2q + etc.

which agrees to the one exhibited first here, so that one has only two simpler
continued fractions for this case r = 2q.
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§30 Now further put q = p = 1 that it is

a =

∫
yydy :

√
1− y4∫

dy :
√

1− y4
;

first, it will be

a = −
2

3 +
1 · 3

2 +
3 · 5

2 +
5 · 7

2 + etc.
Then one will have

a =
1

2 +
1

4 +
9

4 +
25

4 +
49

4 + etc.
Hence it follows that it will be∫

dy :
√

1− y4∫
yydy :

√
1− y4

= 2 +
1

4 +
9

4 +
25

4 +
49

4 + etc.
which case is contained in the expression given in § 16; hence that formula,
not rigorously proven yet, is, at least, confirmed a bit more. Then having put
a = 3 there, it will be

3

∫
x4dx :

√
1− x4∫

xxdx :
√

1− x4
=

∫
dx :
√

1− x4∫
xxdx :

√
1− x4

= 2 +
1

4 +
9

4 +
25

4 +
49

4 + etc.

22



so that it is now certain that the formula exhibited in § 16 is true in the cases,
in which it is either a = 2 or a = 3; but it will soon be shown to be true in all
cases.

§31 Let q = 1
2 and p = 1; while it still is r = 2q = 1, it will be

a =

∫
ydy :

√
1− y2∫

dy :
√

1− y2
=

2
π

,

where π denotes the circumference of the circle, whose diameter is = 1.
Therefore, it will be in general

P = 1 + m−m2, Q = 2− 2m,

R =
5− 3m

2
and S =

3− 2m
2

and therefore

a = m− 1 +
1 + m−m2

m +
12(4−m + m2)

5− 3m +
22(1 + m−m2)(7− 3m−m2)

8− 5m +
32(4−m−m2)(10− 5m−m2)

11− 7m + etc.

But in the special cases expanded above it will be

π

2
=

1

1−
1

2 +
1 · 2

1 +
2 · 3

1 +
3 · 4

1 + etc.

= 1 +
1

1 +
1 · 2

1 +
2 · 3

1 +
3 · 4

1 + etc.
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and

π

2
=

1

1
2 +

1 : 4

3
2 +

12

2 +
22

2 +
32

2 + etc.

= 2−
1

2 +
12

2 +
22

2 +
32

2 + etc.

§32 To understand the use of these formulas for interpolations, let this series
be propounded

2
1
+

2 · 4
1 · 3 +

2 · 4 · 6
1 · 3 · 5 + etc.

whose term corresponding to the index 1
2 has to be found; set this term = A;

therefore, it will be

p = 2, r = 1 and q = −1
2

.

Now put

A =
a

p + 2q− r
;

it will be

A =
a
0

,

whence the inconvenience of the given formulas, if p + 2q− r = 0, is seen
clearly. It nevertheless is possible to complete this task by finding the term
corresponding to the index 3

2 ; if this term was = Z, it will be A = 2
3 Z; but 1

2 Z
will be the term corresponding to the index 1

2 of this series

4
3
+

4 · 6
3 · 5 +

4 · 6 · 8
3 · 5 · 7 + etc.,

which compared to the general series gives

p = 4, r = 1, q = −1
2

,

so that it is
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Z =
2
∫

y2dy :
√

1− y2∫
y3dy :

√
1− y2

=
3
∫

dy :
√

1− y2

2
∫

dy :
√

1− y2
=

3
4

π

and A = π
2 . But because by § 24 it is

Z = a and A =
2
3

Z =
2
3

a,

at first, because of

P = 8 + m−m2, Q = 7− 2m

R =
23− 7m

2
and S =

7− 2m
2

it will be in general

A =
3
2

a =
π

2

=
2(m− 1)

3
+

2(8 + m−m2)

3m +
2 · 4 · 3(15−m−m2)

23− 7m +
3 · 5(8 + m−m2)(22− 3m−m2)

30− 9m +
4 · 6(15−m−m2)(29− 5m−2)

37− 11m + etc.

§33 But by expanding the particular cases it will be

a =
3
4

π = 4−
12

5 +
2 · 5

1 +
3 · 6

1 +
4 · 7

1 + etc.

=
4

1 +
1 · 3

2 +
2 · 5

1 +
3 · 6

1 +
4 · 7

1 + etc.
or also
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3
4

π = 1 +
3

1 +
1 · 4

1 +
2 · 5

1 +
3 · 6

1 +
4 · 7

1 + etc.
In like manner by § 26 one will find

a =
3
4

π =
5
2
−

3 : 4

7
2 +

2 · 4

2 +
3 · 5

2 +
4 · 6

2 +
5 · 7

2 + etc.

= 2 +
1

2 +
1 · 3

2 +
2 · 4

2 +
3 · 5

2 +
4 · 6

2 + etc.

Finally, the case considered in § 27 will give

a =
3
4

π = 2 +
2

3 +
3 · 4

1 +
4 · 5

1 +
5 · 6

1 + etc.
or

π

2
= 1 +

1

1 +
1 · 2

1 +
2 · 3

1 +
3 · 4

1 +
4 · 5

1 + etc.
which expression agrees with the one exhibited in § 31.
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§34 Hence we obtained innumerable continued fractions from this method of
interpolation; and the values of these fractions can be assigned by quadratures
of curves or integral formulas. But because these continued fractions are
irregular at the beginning, just truncate them in such a way, that the continued
fractions proceed regularly. Therefore, using § 25 and putting

p + 2q− r = f and p + r = h

the following equation will result

r +
f h

r +
( f + r)(h + r)

r +
( f + 2r)(h + 2r)

r + etc.

=
h( f − r)

∫
yh+r−1dy :

√
1− y2r − f (h− r)

∫
y f+r−1dy :

√
1− y2r

f
∫

y f+t−1dy :
√

1− y2r − h
∫

yh+r−1dy :
√

1− y2r
,

which equation is always correct, except for the case f = h. But in order to
treat the case, in which f = h, just put f = h + dw and one will find∫

yh+r+dw−1dy :
√

1− y2r∫
yh+r−1dy :

√
1− y2r

= 1− rdw
∫ dx

xr+1

∫ xh+2r−1dx
1− x2r

after having put x = 1 after the integration. Hence it will be

r +
hh

r +
(h + r)2

r +
(h + 2r)2

r + etc.

=
r + hr(h− r)

∫ dx
xr+1

∫ xh+2r−1dx
1−x2r

1− hr
∫ dx

xr+1

∫ xh+2r−1dx
1−x2r

=
r(h− r)2

∫ dx
xr+1

∫ xh−1dx
1−x2r

1− r(h− r)
∫ dx

xr+1

∫ xh−1dx
1−x2r

.

But from the nature of the integrals one has

∫ dx
xr+1

∫ xh+2r−1dx
1− x2r =

−1
rxr

∫ xh+2r−1dx
1− x2r +

1
r

∫ xh+r−1dx
1− x2r =

1
r

∫ xh+r−1dx
1 + xr

having put x = 1. Therefore, one will have
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r +
hh

r +
(h + r)2

r + etc.

=
r + h(h− r)

∫ xh+r−1dx
1+xr

1− h
∫ xh+r−1dx

1+xr

=
1− (h− r)

∫ xh−1dx
1+xr∫ xh−1dx

1+xr

;

this formula agrees with the one given in § 7.

§35 In like manner it follows from § 26 by putting p = f and p + 2q− r = h
that it will be

2r +
f h

2r +
( f + r)(h + r)

2r +
( f + 2r)(h + 2r)

2r + etc.

=
2(r− f )(r− h)

∫ y f−1dy√
1−y2r

− h( f + h− 3r)
∫ yh+r−1dy√

1−y2r

2h
∫ yh+r−1dy√

1−y2r
− ( f + h− r)

∫ y f−1dy√
1−y2r

But because this formula remains the same, if f and h are commuted, it is
manifest that is has to be

h
∫

yh+r−1dx :
√

1− y2r

y f−1dy :
√

1− y2r
=

f
∫

y f+r−1dy :
√

1− y2r∫
yh−1dy :

√
1− y2r

after having put y = 1 after every integration. But this theorem is already
contained in those I exhibited in the preceding dissertation5 on products
consisting of infinitely many factors; for, there I produced many theorems of
this kind and proved them.

§36 But here in like manner the case, in which it f = h + r, is worth one’s
attention; for, in this case so the numerator as the denominator of the found
continued fraction vanishes. But having put f = h + r + dw as before and
having done the calculation it will result

5Euler refers to his paper E122 again.
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2r +
h(h + r)

2r +
(h + r)(h + 2r)

2r +
(h + 2r)(h + 3r)

2r + etc.

=
h + 2h(r− h)

∫ xh−rdx
1+xr

−1 + 2h
∫ xh−rdx

1+xr

.

Hence if one puts h = r = 1, one will have

2 +
1 · 2

2 +
2 · 3

2 +
3 · 4

2 +
4 · 5

2 + etc.

=
1

2 log 2− 1
.

If additionally the equation in § 27 is treated in the same way, a form very
similar to that one I found § 25, will result.

§37 Having explained how the interpolation of series is reduced to continued
fractions, I return to Brounckerian expressions and will give a natural me-
thod not only to get to those, but also a method probably used by Brouncker

himself. But the continued fractions found up to this point differ from the ones
given by Brouncker a lot, because the values of the letters A, B, C, D etc.,
using the method explained, depend on each other in such a way that they
can easily be compared to each other, but using the Brouckerian method
they turned out to be so different to each other such that their relation is not
seen. This difference itself finally led me to the invention of another method I
will explain now.

§38 But before I explain this method of interpolation, it will be convenient
to mention the following very general lemma in advance. If there were innu-
merable quantities α, β, γ, δ, ε etc., which depend on each other in such a way,
that it is
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αβ −mα − nβ −κ = 0,

βγ− (m + s)β − (n + s)γ −κ = 0,

γδ − (m + 2s)γ− (n + 2s)δ−κ = 0,

δε − (m + 3s)δ − (n + 3s)ε −κ = 0

etc.,

and the letters α, β, γ, δ etc. obtain the following values

α = m + n− s − ss−ms + ns +κ
a

,

β = m + n + s − ss−ms + ns +κ
b

,

γ = m + n + 3s− ss−ms + ns +κ
c

,

δ = m + n + 5s− ss−ms + ns +κ
d

etc.

the upper equations will be transformed into the following similar ones

ab− (m− s)a − (n + s)b − ss + ms− ns−κ = 0,

bc −mb − (n + 2s)c − ss + ms− ns−κ = 0,

cd− (m + s)c − (n + 3s)d− ss + ms− ns−κ = 0,

de − (m + 2s)d− (n + 4s)4− ss + ms− ns−κ = 0

etc.

This fact itself that formulas of the same structure arose was the origin of
those substitutions.

§39 If now in like manner these last equations are transformed into similar
ones by means of suitable substitutions, one will find the following substituti-
ons for a, b, c, d etc.
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a = m + n− s +
4ss− 2ms + 2ns +κ

a1
,

b = m + n + s +
4ss− 2ms + 2ns +κ

b1
,

c = m + n + 3s +
4ss− 2ms + 2ns +κ

c1
,

d = m + n + 5s +
4ss− 2ms + 2ns +κ

d1

etc.

having substituted these values the following equations will result

a1b1 − (m− 2s)a1 − (n + 2s)b1 − 4ss + 2ms− 2ns−κ = 0,

b1c1 − (m− s) b1 − (n + 3s)c1 − 4ss + 2ms− 2ns−κ = 0,

c1d1 −m c1 − (n + 4s)d1 − 4ss + 2ms− 2ns−κ = 0,

d1e1 − (m + s) d1 − (n + 5s)e1 − 4ss + 2ms− 2ns−κ = 0

etc.

§40 Proceeding further one will have to put

a1 = m + n− s +
9ss− 3ms− 3ns +κ

a2
,

b1 = m + n + s +
9ss− 3ms− 3ns +κ

b2
,

c1 = m + n + 3s +
9ss− 3ms− 3ns +κ

c2
,

etc.

And from those substitutions these equations result

a2b2 − (m− 3s)− (n + 3s)b2 − 9ss + 3ms− 3ns−κ = 0,

b2c2 − (m− 2s)− (n + 4s)c2 − 9ss + 3ms− 3ns−κ = 0,

c2d2 − (m− s) − (n + 5s)d2 − 9ss + 3ms− 3ns−κ = 0

etc.
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§41 If these substitutions are now continued to infinity and the following
values are always substituted in the preceding ones, the values of the letters α,
β, γ, δ etc. are expressed by the following continued fractions

α = m + n− s +
ss−ms + ns−κ

m + n− s +
4ss− 2ms + 2ns +κ

m + n− s +
9ss− 3ms + 3ns +κ

m + n− s +
16ss− 4ms + 4ns +κ

m + n− s + etc.

β = m + n + s +
ss−ms + ns−κ

m + n + s +
4ss− 2ms + 2ns +κ

m + n + s +
9ss− 3ms + 3ns +κ

m + n + s +
16ss− 4ms + 4ns +κ

m + n + s + etc.

γ = m + n + 3s +
ss−ms + ns−κ

m + n + 3s +
4ss− 2ms + 2ns +κ

m + n + 3s +
9ss− 3ms + 3ns +κ

m + n + 3s +
16ss− 4ms + 4ns +κ

m + n + 3s + etc.
etc.

which continued fractions are similar enough to those Brouncker gave, while
the following are not contained in the preceding ones.

§42 But that the use of these formulas for interpolations becomes more
apparent, let this series be propounded

p
p + 2q

+
p(p + 2r)

(p + 2q)(p + 2q + 2r)
+

p(p + 2r)((p + 4r)
(p + 2q)(p + 2q + 2r)(p + 2q + 4r)

+ etc.

and let the term corresponding to the index 1
2 be = A, the term corresponding

to the index 3
2 = ABC, the term corresponding to the index 5

2 = ABCDE and
so on. Hence it will be

AB =
p

p + 2q
, CD =

p + 2r
p + 2q + 2r

, EF =
p + 4r

p + 2q + 4r
etc.
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and it will be

ab = p(p + 2q− r),

bc = (p + r)(p + 2q),

cd = (p + 2r)(p + 2q + r),

de = (p + 3r)(p + 2q + 2r)

etc.

Now further let it be

a = p + q− r +
g
α

,

b = p + q +
g
β

,

c = p + q + r +
g
γ

,

d = p + q + 2r +
g
δ

etc.;

having substituted and having put g = q(r− q) these values the following
equations will emerge

αβ (p + q− r) α − (p + q) β − q(r− q) = 0,

βγ (p + q) β − (p + q + r) γ− q(r− q) = 0,

γδ (p + q + r) γ− (p + q + 2r)δ − q(r− q) = 0,

δε (p + q + 2r)δ − (p + q + 3r)ε − q(r− q) = 0,

etc.

Having substituted all these values one will obtain the following continued
fractions expressing the letters a, b, c, d etc.:
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a = p + q− r +
qr− qq

2(p + q− r) +
2rr + qr− qq

2(p + q− r) +
6rr + qr− qq

2(p + q− r) +
12rr + qr− qq

2(p + q− r) + etc.

b = p + q +
qr− qq

2(p + q) +
2rr + qr− qq

2(p + q) +
6rr + qr− qq

2(p + q) +
12rr + qr− qq
2(p + q) + etc.

c = p + q + r +
qr− qq

2(p + q + r) +
2rr + qr− qq

2(p + q + r) +
6rr + qr− qq

2(p + q + r) +
12rr + qr− qq

2(p + q + r) + etc.

etc.

§44 But because the term of the propounded series corresponding to the
index n, is

=

∫
yp+2q−1dy(1− y2r)n−1∫

yp−1dy(1− y2r)n−1 ,

it will be

A =
q

P + 2q− r
=

∫
yp+2q−1dy :

√
1− y2r∫

yp−1dy :
√

1− y2r

or

a = (p + 2q− r)
∫

yp+2q−1dy :
√

1− y2r∫
yp−1dy :

√
1− y2r

.

Then, because of ab = p(p + 2q− r), it will be

b =
b
∫

yp−1dy :
√

1− y2r∫
yp+2q−1dy :

√
1− y2r

.
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But because by a theorem shown in the preceding dissertation6 it is

p
∫

yp−1dy :
√

1− y2r∫
y f+r−1dy :

√
1− y2r

=
f
∫

y f−1dy :
√

1− y2r∫
yp+r−1dy :

√
1− y2r

=
( f + r)

∫
y f+2r−1dy :

√
1− y2r∫

yp+r−1dy :
√

1− y2r
,

just put f = p + 2q− r; having done so it will be

b =
(p + 2q)

∫
yp+2q+r−1dy :

√
1− y2r∫

yp+r−1dy :
√

1− y2r
.

Proceeding in the same way it will indeed be

c =
(p + 2q + r)

∫
yp+2q+2r−1dy :

√
1− y2r∫

yp+2r−1dy :
√

1− y2r

and

d =
(p + 2q + 2r)

∫
yp+2q+3r−1dy :

√
1− y2r∫

yp+3r−1dy :
√

1− y2r

etc.

§45 Therefore, since it is known how these integral formulas proceed, one
can deduce that the value of this continued fraction

p + q + mr +
qr− qq

2(p + q + mr) +
2rr + qr− qq

2(p + q + mr) +
6rr + qr− qq

2(p + q + mr) + etc.

is

= (p + 2q + mr)
∫

yp+2q+(m+1)r−1dy :
√

1− y2r∫
yp+(m+1)r−1dy :

√
1− y2r

.

Therefore, if one puts p + q + mr = s, so that p = s− q−mr, the following
continued fraction will result

6This means E122 again.
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s +
qr− qq

2s +
2rr + qr− qq

2s +
6rr + qr− rr

2s +
12rr + qr− qq

2s +
20rr + qr− qq

2s + etc.
whose value will therefore be this expression

(q + s)
∫

yq+r+s−1dy :
√

1− y2r∫
yr+s−q−1dy :

√
1− y2r

.

§46 Because in like manner the value of this continued fraction

s + r +
qr− qq

2(s + r) +
2rr + qr− qq

2(s + r) +
6rr + qr− qq
2(s + r) + etc.

is

= (q + r + s)
∫

yp+2r+q−1dy :
√

1− y2r∫
yp+2r−q−1dy :

√
1− y2r

,

the product of this two continued fractions will hence be

= (s + q)(s + r− q),

as the product of the integral formulas reveals. Hence by the theorem given
in the preceding dissertation7 it is

f
a
=

∫
xa−1dx :

√
1− x2r ·

∫
xa+r−1dx :

√
1− x2r∫

x f−1dx :
√

1− x2r ·
∫

x f+r−1dx :
√

1− x2r
;

the product of integral formulas is easily reduced to this form.

7This also refers to E122.
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§47 The continued fraction found can be transformed into another more
convenient form such that the single numerators can be resolved into factors;
so one will have this continued fraction

s +
q(r− q)

2s +
(r + q)(2r− q)

2s +
(2r + q)(3r− q)

2s +
(3r + q)(4r− q)

2s + etc.
whose value will therefore be

= (q + s)
∫

yr+s+q−1dy :
√

1− y2r∫
yr+s−q−1dy :

√
1− y2r

.

Therefore, if s is added to the continued fraction, so that the structure is the
same everywhere, it will be

(q + s)
∫

yr+s+q−1dy :
√

1− y2r +
∫

yr+s−q−1dy :
√

1− y2r∫
yr+s+q−1dy :

√
1− y2r

= 2s +
q(r− q)

2s +
(r + q)(2r− q)

2s +
(2r + q)(3r− q)

2s +
(3r + q)((4r− q)

2s + etc.

§48 If now one puts r = 2 and q = 1, all continued fractions exhibited
by Brouncker will result; for, those fractions will all be contained in this
continued fraction

s +
1

2s +
9

2s +
25

2s +
49

2s +
81

2s + etc.
whose value will therefore be

37



= (s + 1)

∫
ys+2dy :

√
1− y2∫

ysdy :
√

1− y2
,

which expression agrees perfectly with that one we gave above, before its
truth was absolutely certain; see § 16.

§49 Whereas up to now I gave many continued fractions, whose values
can be expressed by integral formulas, I will now explain a direct method
how to get vice versa from integral formulas to continued fractions. But this
method is based on a reduction of one integral formula to two others, which
reduction is quite similar to that usual one, by which the integration of a
certain differential formula is reduced to the integration of another8. Let the
infinitely many integral formulas be of this kind∫

Pdx,
∫

PRdx,
∫

PR2dx,
∫

PR3dx,
∫

PR4dx etc.,

and further let them be of such a nature that, if they are integrated, they
vanish for x = 0, and then x is put = 1; hence it is as follows

a
∫

Pdx = b
∫

PRdx + c
∫

PR2dx,

(a + α)
∫

PRdx = (b + β)
∫

PR2dx + (c + γ)
∫

PR3dx,

(a + 2α)
∫

PR2dx = (b + 2β)
∫

PR3dx + (c + 2γ)
∫

PR4dx,

(a + 3α)
∫

PR3dx = (b + 3β)
∫

PR4dx + (c + 3γ)
∫

PR5dx

and in general

(a + nα)
∫

PRndx = (b + nβ)
∫

PRn+1dx + (c + nγ)
∫

PRn+2dx.

§50 Therefore, if one has integral formulas of this kind one can easily con-
struct a continued fraction from them. Because it is

8By this Euler means integration by parts.
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∫
Pdx∫

PRdx
=

b
a

+
c
∫

PR2dx
a
∫

PRdx
,∫

PRdx∫
PR2dx

=
b + β

a + α
+

(c + γ)
∫

PR3dx
(a + α)

∫
PR2dx

,∫
PR2dx∫
PR3dx

=
b + 2β

a + 2α
+

(c + 2γ)
∫

PR4dx
(a + 2α)

∫
PR3dx

,∫
PR3dx∫
PR4dx

=
b + 3β

a + 3α
+

(c + 3γ)
∫

PR5dx
(a + 3α)

∫
PR4dx

etc.,

by substituting each value in the preceding equation it will be∫
Pdx∫

PRdx
=

b
a
+

c : a

b + β

a + α
+

(c + γ) : (α + a)

b + 2β

a + 2α
+

(c + 2γ) : (a + 2α)

b + 3β

a + 3α
+

(c + 3γ)(: (a + 3α)

b + 4β

a + 4α
+ etc.

But having inverted this expression and having cleared the partial fractions
one will have this expression

∫
PRdx∫
Pdx

=
a

b +
(a + α)c

b + β +
(a + 2α)(c + γ)

b + 2β +
(a + 3α)(c + 2γ)

b + 3β +
(a + 4α)(c + 3γ)

b + 4β
+ etc.

§51 If, while n was a negative integer, it was

(a + nα)
∫

PRndx = (b + nβ)
∫

PRn+1dx + (c + nγ)
∫

PRn+2dx,

one will have the following equations:
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(a− α)
∫ Pdx

R
= (b− β)

∫
Pdx + (c− γ)

∫
PRdx,

(a− 2α)
∫ Pdx

R2 = (b− 2β)
∫ Pdx

R
+ (c− 2γ)

∫
Pdx,

(a− 3α)
∫ Pdx

R3 = (b− 3β)
∫ Pdx

R2 + (c− 3γ)
∫ Pdx

R
,

(a− 4α)
∫ Pdx

R4 = (b− 4β)
∫ Pdx

R3 + (c− 3γ)
∫ Pdx

R2

etc.

Hence in like manner it is deduced

∫
PRdx∫
Pdx

=
−(b− β)

c− γ
+

(a− α)
∫

Pdx : R
(c− γ)

∫
Pdx

,∫
Pdx∫

Pdx : R
=
−(b− 2β)

c− 2γ
+

(a− 2α)
∫

Pdx : R2

(c− 2γ)
∫

Pdx : R
,∫

Pdx : R∫
Pdx : R2 =

−(b− 3β)

c− 3γ
+

(a− 3α)
∫

Pdx : R3

(c− 3γ)
∫

Pdx : R2

etc.

But from these equations one gets to

∫
Prdx
Pdx

=
−(b− β)

c− γ
+

(a− α) : (c− γ)

− (b− 2β)

c− 2γ
+

(a− 2α) : (c− 2γ)

− (b− 3β)

c− 3γ
+

(a− 3α) : (c− 3γ)

− (b− 4β)

c− γ
+ etc.

or having removed the partial fractions one finds

(c− γ)
∫

PRdx∫
Pdx

= −(b− β) +
(a− α)(c− 2γ)

−(b− 2β) +
(a− 2α)(c− 3γ)

−(b− 3β) +
(a− 3α)(c− 4γ)

−(b− 4β) + etc.

So one has two continued fractions, whose value is the same, namely
∫

PRdx∫
Pdx .
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§52 But it is especially important here to define suitable functions P and R
of x, that it it

(a + nα)
∫

PRndx = (b + nβ)
∫

PRn+1dx + (c + nγ)
∫

PRn+2dx,

at least in that case, in which after each integration one puts x = 1. Now let
us put that it is in general

(a + nα)
∫

PRndx + Rn+1S = (b + nβ)
∫

PRn+1dx + (c + nγ)
∫

PRn+2dx

and that Rn+1S is a function of such a kind of x that vanishes so for x = 0 as
for x = 1. Having taken differentials and having divided by Rn it will be

(a + nαPdx + RdS + (n + 1)SdR = (b + nβ)PRdx + (c + nγ)PR2dx;

this equation, because it has to hold in every case, no matter what n is, is
resolved into these two equations

aPdx + RdS + SdR = bPRdx + cPR2dx

and

αPdx + SdR = βPRdx + γPR2dx.

From these equations one finds

Pdx =
RdS + SdR

bR + cR2 − a
=

SdR
βR + γR2 − α

,

whence it is

dS
S

=
(b− β)RdR + (c− γ)R2dR− (a− α)dR

βR2 + γR3 − αR

=
(a− α)dR

αR
+

(αb− βa)dR + (αc− γa)RdR
α(βR + γR2 − α)

.

Hence S is defined by R from this equation; but having found S, it will be

P =
SdR

(βR− γR2 − α)dx
and hence the formulas

∫
Pdx and

∫
PRdx will be found, and these in turn

determine the value of continued fraction given above.
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§53 Therefore, because the quantity R is not defined by x, one can take any
function of x for it. But because the nature of the question requires Rn+1S to
vanish so for x = 0 as for x = 1, these conditions actually define the properties
of the function of R. Further, one has to take into account that the integrals∫

PRndx, having put x = 1 after the integration, should obtain a finite value;
hence if these integrals would become either 0 or ∞ in this case, then it would
be difficult to calculate the value of

∫
PRdx∫
Pdx . The first inconvenience is avoided

by assuming a function of such a kind for R that PRn is a strictly positive
function for 0 < x < 1. But it is more difficult to achieve that

∫
PRndx does

not become infinite for x = 1. It will indeed be convenient, to separate the
cases, in which n is a positive number from those, where n is a negative
number, because very often, if these conditions are fulfilled, while n is a
positive number, they are not fulfilled in the remaining cases at the same time.
But if the prescribed conditions are only fulfilled in the cases, in which n is
a positive number, then only the value of the first continued fraction can be
exhibited; but the value of the second fraction on the other hand can only be
given, if the conditions were fulfilled, while n is a negative number.

§54 Let us start the explanation of this method to find the values of continued
fractions from the example treated before, and hence first let this continued
fraction be propounded

r +
f h

r +
( f + r)(h + r)

r +
( f + 2r)(h + 2r)

r + etc.
whose value was seen § 34 to be

h( f − r)
∫

yh+r−1dy :
√

1− y2r − f (h− r)
∫

y f+r−1dy :
√

1− y2r

f
∫

y f+r−1dy :
√

1− y2r − h
∫

yh+r−1dy :
√

1− y2r
.

Therefore, compare this continued fraction to this general one

a
∫

Pdx∫
PRdx

= b +
(a + α)c

b + β +
(a + 2α)(c + γ)

b + 2β +
(a + 3α)(c + 2γ)

b + 3β + etc.
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and it will be

b = r, β = 0, α = r, γ = r, a = f − r, c = h.

Having substituted this value it will result

ds
S

=
rRdR + (h− r)R2dR− ( f − 2r)dR

rR3 − rR
=

( f − 2r)dR
rR

+
rdR + (h− f + r)RdR

r(R2 − 1)

and by integrating

log S =
f − 2r

r
log R +

h− f
2r

log(R + 1) +
h− f + 2r

2r
log(R− 1) + log C

or

S = CR
f−2r

r (R2 − 1)
h− f
2r (R− 1).

Therefore, it will hence be

Rn+1S = CR
f−(n−1)r

r (R2 − 1)
h− f
2r (R− 1)

and

Pdx =
CR

f−2r
r (R2 − 1)

h− f
2r dR

r(R + 1)
.

§55 But because Rn+1S has to vanish in two cases, so for x = 0 and x = 1,
and that, no matter which positive number is substituted for n (for, to take
into account negative values is not necessary), let us put that f , h and r are
positive numbers and h > f ; this can certainly be assumed without loss of
generality, if was not f = h; further, let it be f > r. Having constituted all this,
it is manifest that the formula Rn+1S vanishes in two cases, of course if R = 0
and if R = 1; and this is also true, if it is f = h. If it is f > r, one can put
R = x and it will be

Pdx =
x

f−2r
r (1− x2)

h− f
2r dx

1 + x
after having determined the constant C. Hence the value of the propounded
continued fraction will be
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= ( f − r)

∫ x
f−2r

r (1−x2)
h− f
2r dx

1+x∫ x
f−r

r (1−x2)
h− f
2r dx

1+x

But for x = yr value in question will be

=
( f − r)

∫
y f−r−1(1− y2r)

h− f
2r dy : (1 + yr)∫

y f−1(1− y2r)
h− f
2r dy : (1 + yr)

.

§56 Hence we obtained another expression containing the value of this
continued fraction

r +
f h

r +
( f + r)(h + r)

r + etc.

,

which expression, even though it contains integral formulas, nevertheless
differs from the expression found before. Hence this last expression is only
valid, if it is f > r; but for h one has to take the smaller of the two quantities
f and h, if they were not equal, of course. But nevertheless, if also f was
was smaller than r, the value of the continued fraction can be exhibited by
considering this one

r +
( f + r)(h + r)

r +
( f + 2r)(h + 2r)

r + etc.

,

whose value will be

=
f
∫

y f−1(1− y2r)
h− f
2r dy : (1 + yr)∫

y f+r−1(1− y2r)
h− f
2r dy : (1 + yr)

,

which does not require any restrictions. Hence having put this value = V the
value of the propounded continued fraction will be = r + f h

V .

§57 That case, in which f = h, which had been found before by a peculiar
method and its value was detected in § 34 to be
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=
1− (h− r)

∫
xh−1dx : (1 + xr)∫

xh−1dx : (1 + xr)
=

(h− r)
∫

xh−r−1dx : (1 + xr)∫
xh−1dx : (1 + xr)

,

follows from this last expression immediately; hence for f = h the expression
found in § 55 will become this one

(h− r)
∫

yh−r−1dy : (1 + yr)∫
yh−1dy : (1 + yr)

;

this is completely the same expression, whence the agreement of the both
general expressions is seen clearly. Here it is certainly possible to assume
h > r, because the cases, in which this is not true, are very easily reduced to
those in which this condition is met, as it was just shown.

§58 In order to understand this agreement of the two expression in every
case, we have to mention the following lemma in advance, which was already
proved by others: If we have this series

1 +
p

q + s
+

p(p + s)
(q + s)(q + 2s)

+
p(p + s)(p + 2s)

(q + s)(q + 2s)(q + 3s)
+ etc.,

in which the quantities p, q and s are positive and q > p, the sum of this
infinite series will be = q

q−p . But this lemma can be proved by my general
method to sum series in the following way. Just consider this series

xq +
p

q + s
xq+s +

p(p + s)
(q + s)(q + 2s)

xq+2s + etc.;

call its sum z, and by differentiating it will be

dz
dx

= qxq−1 + pxq+s−1 +
p(p + s)

q + s
xq+2s−1 + etc.

and

xp−q−zdz = qxp−s−1dx + pxp−1dx +
p(p + s)

q + s
xp+s−1dx + etc.;

integrating this equation gives∫
xp−q−zdz =

qxp−s

p− s
+ xp +

pxp+s

p + s
+ etc. =

qxp−s

p− s
+ xp−qz.
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Differentiating this equation on the other hand gives

xp−q−sds = qxp−s−1dx + xp−qdx + (p− q)xp−q−1zdx

or

dz(1− xs) + (q− p)xs−1zdx = qxq−1dx

or

dz +
(q− p)xs−1zdx

1− xs =
qxq−1dx
1− xs ,

whose integral is

z

(1− xs)
q−p

s
= q

∫ xp−1dx

(1− xs)
q−p+s

s
=

qxq

(q− p)(1− xs)
q−p

s
− pq

q− p

∫ xq−1dx

(1− xs)
q−p

s
,

whence it will be

z =
qxq

q− p
− pq(1− xs)

q−p
s

q− p

∫ xq−1dx

(1− xs)
q−p

s
.

Therefore, for x = 1 it will be

z =
q

q− p
= 1 +

p
q + s

+
p(p + s)

(q + s)(q + 2s)
+ etc.,

which is the demonstration of the stated lemma, whence at the same time it is
understood that it is only correct, if q > p.

§59 Therefore, we expressed the value of the continued fraction

r +
f h

r +
( f + r)(h + r)

r +
( f + 2r)(h + 2r)

r + etc.
in two ways; first

=
h( f − r)

∫
yh+r−1dy :

√
1− y2r − f (h− r)

∫
y f+r−1dy :

√
1− y2r

f
∫

y f+r−1dy :
√

1− y2r − h
∫

yh+r−1dy :
√

1− y2r
,
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and second, as it was found in § 56,

= r +
h
∫

y f+r−1dy(1− y2r)
h− f
2r : (1 + yr)∫

y f−1dy(1− y2r)
h− f
2r : (1 + yr)

.

It will be worth one’s while to demonstrate the agreement of these expressions.
Therefore, because it is

1
1 + yr =

1− yr

1− y2r ,

it will be

∫
y f−1dy(1− y2r)

h− f
2r : (1+ yr) =

∫
y f−1dy(1− y2r)

h− f−2r
2r −

∫
y f+r−1dy(1− y2r)

h− f−2r
2r

and ∫
y f+r−1dy(1− y2r)

h− f
2r : (1 + yr)

=
∫

y f+r−1dy(1− y2r)
h− f−2r

2r −
∫

y f+2r−1dy(1− y2r)
h− f−2r

2r

=
∫

y f+r−1dy(1− y2r)
h− f−2r

2r − f
h

∫
y f−1dy(1− y2r)

h− f−2r
2r .

Now just put ∫
y f+r−1dy(1− y2r)

h− f−2r
2r∫

y f−1dy(1− y2r)
h− f−2r

2r

= V;

the last value of the continued fraction will be

= r +
hV − f
1−V

.

Now furthermore put ∫
yh+r−1dy :

√
1− y2r∫

y f+r−1dy :
√

1− y2r
= W;

the first value will be

=
h( f − r)W − f (h− r)

f − hW
;
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and from the equality of the two values it follows that it will be

V =
f

hW
,

so that it is ∫
y f+r−1dy(1− y2r)

h− f−2r
2r∫

y f−1dy(1− y2r)
h− f−2r

2r

=
f
∫

y f+r−1dy :
√

1− y2r

h
∫

yh+r−1dy :
√

1− y2r
;

the reason for this equality is known from the theorems exhibited in the
preceding dissertation9; hence by one of those theorems it will be∫

y f+r−1dy(1− y2r)
h− f−2r

2r∫
y f+2r−1dy(1− y2r)

h− f−2r
2r

=

∫
y f+r−1dy :

√
1− y2r∫

yh+r−1dy :
√

1− y2r
.

§60 Now let us consider this continued fraction

2r +
f h

2r +
( f + r)(h + r)

2r +
( f + 2r)(h + 2r)

2r + etc.
whose value was found above in § 35 to be

=
2( f − r)(h− r)

∫
y f−1dy :

√
1− y2r − h( f + h− 3r)

∫
yh+r−1dy :

√
1− y2r

2h
∫

yh+r−1dy :
√

1− y2r − ( f + h− r)
∫

y f−1dy :
√

1− y2r

If now that continued fraction is compared to this one

a
∫

Pdx∫
PRdx

= b +
(a + α)c

b + β +
(a + 2α)(c + γ)

b + 2β +
(a + 3α)(c + 2γ)

b + 2β + etc.

it will be

b = 2r, β = 0, α = r, γ = r, a = f − r and c = h.

9Euler means E122 again.
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Hence from § 52 one will have

dS
S

=
( f − 2r)dR

rR
+

2rdR + (h− f + r)RdR
r(R2 − 1)

and by integrating

S = CR
f−2r

2r (R2 − 1)
h− f−r

2r (R− 1)2,

whence it is

Pdx =
C
r

R
f−2r

r (R2 − 1)
h− f−2r

2r (R− 1)2dR

and

Rn+1S = CR
f+(n−1)r

r (R2 − 1)
h− f−r

2r (R− 1)2,

which expression vanishes in two cases, for R = 0 and for R = 1, if only f > r
and h− 3r > f , which conditions can always be fulfilled.

§61 Now let R = x and having determined the constant C it will be

Pdx = x
f−2r

r dx(1− x2)
h− f−3r

2r (1− x)2

or having put R = x = yr it will be

Pdx = y f−r−1dy(1− y2r)
h− f−3r

2r (1− yr)2;

using this value of the propounded continued fraction it will be

a
∫

Pdx∫
PRdx

=
( f − r)

∫
y f−r−1dy(1− y2r)

h− f−3r
2r (1− yr)2∫

y f−1dy(1− y2r)
h− f−3r

2r (1− yr)2
;

this expression, applying the theorems of the preceding dissertation10, will be
reduced to the first form by expanding the square (1− yr)2; having done this
both integral formulas will be resolved into two simpler ones. But I will show
the reduction in the following more general example.

10E122
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§62 If one has this integral formula∫
ym−1dy(1− y2r)κ(1− yr)n

and (1− yr)n is expanded into the series

1− nyr +
n(n− 1)

1 · 2 y2r − etc.,

by taking every second term the propounded integral formula will be reduced
to the two following ones∫

ym−1dy(1− y2r)κ
(

1+
n(n− 1)

1 · 2 · m
p
+

n(n− 1)(n− 2)(n− 3)
1 · 2 · 3 · 4 · m(m + 2r)

p(p + 2r)
+ etc.

)

−
∫

ym+r−1dy(1− y2r)κ


n +

n(n− 1)(n− 2)
1 · 2 · 3 · m + r

p + r

+
n(n− 1)(n− 2)(n− 3)(n− 4)

1 · 2 · 3 · 4 · 5 · (m + r)(m + 3r)
(p + r)(p + 3r)

+ etc.


after having put

m + 2κr + 2r = p

for the sake of brevity. Therefore, if as in the preceding case it was n = 2, it
will be

∫
ym−1dy(1− y2r)κ(1− yr)2 =

m + p
p

∫
ym−1dy(1− y2r)κ− 2

∫
ym+r−1dy(1− y2r)κ .

From this one will have

a
∫

Pdx∫
PRdx

=

( f−r)( f+h−3r)
h−2r

∫
y f−r−1dy(1− y2r)

h− f−3r
2r − 2( f − r)

∫
y f−1dy(1− y2r)

h− f−3r
2r

f+h−r
h−r

∫
y f−1dy(1− y2r)

h− f−3r
2r − 2

∫
y f+r−1dy(1− y2r)

h− f−3r
2r

=
h( f + h− 3r)

∫
y f−r−1dy(1− y2r)

h− f−r
2r − 2( f − r)(h− r)

∫
y f−1dy(1− y2r)

h− f−r
2r

( f + h− r)
∫

y f−1dy(1− y2r)
h− f−r

2r − 2h
∫

y f+r−1dy(1− y2r)
h− f−r

2r

,

which expression, because it has to be equal to the one found above in § 35,
will yield this equation

50



∫
y f+r−1dy(1− y2r)

h− f−r
2r∫

y f−1dy(1− y2r)
h− f−r

2r

=

∫
yh+r−1dy :

√
1− y2r∫

y f−1dy :
√

1− y2r
;

the reason for this is indeed contained in the theorems of the preceding
dissertation11.

§63 Now let us vice versa take given functions for P and R and let us form
continued fractions using them and let us put

P = xm−1(1− xr)n(p + qxr)κ and R = xr.

But because it has to be

(a + να)
∫

PRνdx = (b + νβ)
∫

PRν+1dx + (c + νγ)
∫

PRν+2dx

and hence because of the given P and R from § 52 it is

S =
1
r

xm−r(1− xr)n(p + qxr)κ(γx2r + βxr − α),

it will be

dS
S

=
(m− r)dx

x
+

nrxr−1dx
−1 + xr +

κqrxr−1dx
p + qxr +

2γrx2r−1dx + βrxr−1dx
γx2r + βxr − α

=
(a− α)rdx

αx
+

(αb− βa)rxr−1dx + (αc− γa)rx2r−1dx
α(γx2r + βxr − α)

.

Now let be

(p + qxr)(xr − 1) = γx2r + βxr − α;

it will be

γ = q, β = p− q and α = p.

Furthermore, let it be

(a− α)r
α

= m− r;

11Euler refers to E122 again.
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it will be

a =
mp
r

.

Hence further it will be

nqr +κqr + 2qr =
cpr−mpq

p
or

c =
mq
r

+ nq + (κ + 2)q

and finally

b =
m(p− q)

r
+ (n + 1)p− (κ + 1)q.

So as long as m and n + 1 were positive numbers that Rν+1S vanishes so for
x = as for x = 1, the following expression will result∫

xm+r−1dx(1− xr)n(p + qxr)κ∫
xm−1dx(1− xr)n(p + qxr)κ

=

∫
PRdx∫
Pdx

,

which will therefore be equal to this continued fraction

mp

m(p− q) + (n + 1)pr− (κ + 1)qr +
pq(m + r)(m + nr + (κ + 2)r)

m(p− q) + (n + 2)pr− (κ + 2)qr+

pq(m + 2r)(m + (n + 1)r + (κ + 2)r)
m(p− q) + (n + 3)pr− (κ + 3)qr + etc.

§64 To simplify this continued fraction just put

m + nr + r = a, m +κr + r = b and m + nr +κr + r = c;

it will be

κ =
c− a

r
, n =

c− b
r

andquadm = a + b− c− r

and therefore it will be
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p(a + b− c− r)

ap− bq +
pq(a + b− c)(c + r)

(a + r)p− (b + r)q +
pq(a + b− c + r)(c + 2r)

(a + 2r)p− (b + 2r)q +
pq(a + b− c + 2r)(c + 3r)
(a + 3r)p− (b + 3r)q + etc.

=

∫
xa+b−c−1dx(1− xr)

c−b
r (p + qxr)

c−a
r∫

xa+b−c−r−1dx(1− xr)
c−b

r (p + qxr)
c−a

r

having put x = 1 after each integration. But it is required that

a + b− c− r and c− b + r

are positive numbers. But if for the sake of brevity it is put

a + b− c− r = g,

it will be ∫
xg−r−1dx(1− xr)

c−b
r (p + qxr)

c−a
r∫

xg−1dx(1− xr)
c−b

r (p + qxr)
c−a

r

=
pg

ap− bq +
pq(c + r)(g + r)

(a + r)p− (b + r)q +
pq(c + 2r)(g + 2r)

(a + 2r)p− (b + 2r)q + etc.

which equation extends very far and contains all continued fractions found
up to now.

§65 If the quantities c and g are permuted, the following continued fraction
will result

pc

ap− bq +
pq(c + r)(g + r)

(a + r)p− (b + r)q +
pq(c + 2r)(g + 2r)

(a + 2r)p− (b + 2r)q + etc.

,

whose value will therefore be
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∫
xc+r−1dx(1− xr)

g−b
r (p + qxr)

g−a
r∫

xc−1dx(1− xr)
g−b

r (p + qxr)
g−a

r

.

Because these continued fractions have a given ratio, of course g to c, the
following theorem will follow from this after having resubstituted the value
of g

c
∫

xa+b−c−1dx(1− xr)
c−b

r (p + qxr)
c−a

r∫
xa+b−c−r−1dx(1− xr)

c−b
r (p + qxr)

c−a
r

=
(a + b− c− r)

∫
xc+r−1dx(1− xr)

a−c−r
r (p + qxr)

b−c−r
r∫

xc−1dx(1− xr)
a−c−r

r (p + qxr)
b−c−r

r
.

This very general formula contains many extraordinary particular reductions.
So for the sake of an example let it be b = c + r; it will be

a
∫

xa+r−1dx(p + qxr)
c−a

r : (1− xr)∫
xa−1dx(p + qxr)

c−a
r : (1− xr)

=
a
∫

xa+r−1dx(1− xr)
a−c−r

r∫
xc−1dx(1− xr)

c−a
r

= c,

whence it follows that it will be

∫ xa+r−1dx(p + qxr)
c−a

r

1− xr =
∫ xa−1dx(p + qxr)

c−a
r

1− xr .

One will therefore have this more general extending theorem

∫ xm−1dx(p + qxr)κ

1− xr =
∫ xn−1dx(p + qxr)κ

1− xr ,

where, after having integrated in such a way that the integrals vanish for
x = 0, x is understood to become = 1. And indeed only that case, in which
q + p = 0 and in which the inconvenience occurs, is excluded.

§66 The continued fractions we found up to now by interpolation, reduce to
this that the partial denominators all have the same value. To express those
continued fractions by this general form, put p = q = 1 and this continued
fraction will result
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cg

a− b +
(c + r)(g + r)

a− b +
(c + 2r)(g + 2r)

a− b +
(c + 3r)(g + 3r)

a− b + etc.

=
c
∫

xg+r−1dx(1− xr)
c−b

r (1 + xr)
c−a

r∫
xg−1dx(1− xr)

c−b
r (1 + xr)

c−a
r

or the value of the same will also be

=
g
∫

xc+r−1dx(1− xr)
g−b

r (1 + xr)
g−a

r∫
xc−1dx(1− xr)

g−b
r (1 + xr)

g−a
r

while it is g = a + b− c− r. Just put

a− b = s;

because of

a + b = c + g + r

it will be

a =
c + g + r + s

2
and b =

c + g + r− s
2

,

whence it will be

cg

s +
(c + r)(g + r)

s +
(c + 2r)(g + 2r)

s + etc.

=
c
∫

xg+r−1dx(1− x2r)
c−g−r−s

2r (1− xr)
s
r∫

xg−1dx(1− x2r)
c−g−r−s

2r (1− xr)
s
r

=
g
∫

xc+r−1dx(1− x2r)
g−c−r−s

2r (1− xr)
s
r

c
∫

xc−1dx(1− x2r)
g−c−r−s

2r (1− xr)
s
r

.

§67 In order to get to the from in § 47, let us put 2s instead of s and let be
c = q and g = r− q; one will have this continued fraction
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q(r− q)

2s +
(q + r)(2r− q)

2s +
(q + 2s)(3r− q)

2s + etc.

,

whose value will therefore be either

=
q
∫

x2r−q−1dx(1− x2r)
q−r−s

r (1− xr)
2s
r∫

xr−q−1dx(1− x2r)
q−r−s

r (1− xr)
2s
r

or

=
(r− q)

∫
xq+r−1dx(1− x2r)

−q−s
r (1− xr)

2s
r∫

xq−1dx(1− x2r)
−q−s

r (1− xr)
2s
r

.

The value of the same continued fraction was found before to be

=
(q + s)

∫
yr+s+q−1dy :

√
1− y2r∫

yr+s−q−1dy :
√

1− y2r
− s.

Therefore, these integral formulas will be equal to each other; this is an
outstanding theorem.

§68 Let us, as we did in § 48, set r = 2 and q = 1; it will be

(1 + s)
∫

ys+2dy :
√

1− y4∫
ysdy :

√
1− y4

− s =
∫

x2dx(1− x4)
−s−1

2 (1− x2)s∫
dx(1− x4)−

−s−1
2 (1− x2)s

,

which equality is obvious, if s = 0; and even in the cases, in which s is an odd
integer, the equality is easily shown. So if it is s = 1, the last formula will be∫

xxdx : (1 + xx)∫
dx : (1 + xx)

=
x−

∫
dx : (1 + xx)∫

dx : (1 + xx)
=

4− π

π

for x = 1. The first formula on the other hand will give

2
∫

y3dy :
√

1− y4∫
ydy :

√
1− y4

− 1 =
4
π
− 1 =

4− π

π
;

hence it agrees completely with the preceding. But if s is an even number, the
agreement of the both expressions is easily seen by expansion of (1− xx)s.
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§69 But except for the continued fractions found up to now the general
formula contains innumerable others; and it will be helpful to have expanded
some of them. Therefore, let it be g = c and the value of this continued fraction

c2

s +
(c + r)2

s +
(c + 2r)2

s + etc.
will be

c
∫

xc+r−1dx(1− xr)
s
r : (1− x2r)

r+s
2r∫

xc−1dx(1− xr)
s
r : (1− x2r)

r+s
2r

.

Now put c = 1 and r = 1 and it will be

1

s +
4

s +
9

s +
16

s + etc.

=

∫
xdx(1− x)s : (1− xx)

s+1
2∫

dx(1− x)s : (1− xx)
s+1

2
;

let us investigate the values of this expression for various values of s. Therefore,
having put the value of this expression = V, it will be as follows:

if s = 0,

V =

∫
xdx :

√
1− xx∫

dx :
√

1− xx
=

1
2
∫

dy : (1 + yy)
;

if s = 2,

V =
2
∫

dx :
√

1− xx− 3
∫

xdx :
√

1− xx
2
∫

xdx :
√

1− xx−
∫

dx :
√

1− xx
=

1
2
∫

y2dy : (1 + yy)
− 2;

if s = 4,

V =
19
∫

xdx :
√

1− xx− 12
∫

dx :
√

1− xx
3
∫

dx :
√

1− xx− 4
∫

xdx :
√

1− xx
=

1
2
∫

y4dy : (1 + yy)
− 4.

But in general it will be
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V =
1

2
∫

ysdy : (1 + yy)
− s;

from this formula it is obvious, if S was an even integer that the integral can
be reduced to the quadrature of the circle; but, if s was odd, the integrals can
be expressed by logarithms.

§70 Now let this continued fraction be propounded

1 +
1

2 +
4

3 +
9

4 +
16

5 +
25

6 + etc.
Now compare this one to the form exhibited in § 64 and it will be

pqcg = 1,

pq(c + r)(g + r) = 4,

pq(c + 2r)(g + 2r) = 9,

ap− bq = 2 and (p− q)r = 1,

whence it will be

p =

√
5 + 1
2r

, q =

√
5− 1
2r

,

a =
r(1 + 3

√
5)

2
√

5
and b =

r(3
√

5− 1)
2
√

5
;

after having substituted these values one will find the value of the propounded
continued fraction to be

= 1 +
(
√

5− 1)
∫

x2r−1dx(1− xr)
1−
√

5
2
√

5 (1 +
√

5 + (
√

5− 1)xr)
−
√

5−1
2
√

5

2
∫

xr−1dx(1− xr)
1−
√

5
2
√

5 (1 +
√

5 + (
√

5− 1)xr)
−
√

5−1
2
√

5

.

But, because of the irrational exponents, nothing special can be deduced from
this formula.
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§71 Whereas in these continued fractions the partial numerators are compo-
sed of two factors, I now proceed to continued fractions of such kind, in which
these partial numerators constitute an arithmetic progression. Therefore, now,
returning to § 50, let it be γ = 0 and c = 1; it will be∫

PRdx∫
Pdx

=
a

b +
a + α

b + β +
a + 2α

b + 2β +
a + 3α

b + 3β + etc.

But one has to take

dS
S

=
(a− α)dR

αR
+

(αb− βa)dR + αRdR
α(βR− α)

=
(a− α)dR

αR
+

dR
β

+
(α2 + αβb− β2a)dR

αβ(βR− α)
,

whence it is

S = Ce
R
β R

a−α
α (βR− α)

α2+αβb−β2a
αββ .

Put

R =
αx
β

;

it will be

S = Ce
αx
ββ x

a−α
α (1− x)

α2+αβb−β2a
αββ

and Rn+1S vanishes in two cases, of course so for x = 0 as for x = 1, as long

α2 + αβb > β2a.

Hence it will be

Pdx = e
αx
ββ x

a−α
α dx(1− x)

α2+αβb−αβ2−β2a
αββ

and the value of the propounded continued fraction will be

=

∫
PRdx∫
Pdx

=
α
∫

e
αx
ββ x

a
α dx(1− x)

α2+αβb−αβ2−β2a
αββ

β
∫

e
αx
ββ x

a−α
α dx(1− x)

α2+αβb−αβ2−β2a
αββ
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after having put x = 1 after integration.

§72 To illustrate this case by an example, let

a = 1, α = 1 and β = 1;

one will have this continued fraction

1

1 +
2

2 +
3

3 +
4

4 + etc.
whose value will be ∫

exxdx∫
exdx

=
xex − ex + 1

ex − 1
=

1
e− 1

having put x = 1. Hence it will be

e = 2 +
2

2 +
3

3 +
4

4 +
5

5 + etc.
by which expression one finds the decimal expansion of the number e, whose
logarithm is = 1, very quickly.

§73 Now let us put β = 0 in the continued fraction given in § 71, so that it∫
PRdx∫
Pdx

=
a

b +
a + α

b +
a + 2α

b +
a + 3α

b + etc.
it will be
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dS
S

=
(a− α)dR

αR
− bdR

α
− RdR

α
and hence

S = CR
a−α

α e
−2bR−RR

2α .

Now Rn+1S vanishes in two cases; first, if R = 0, then, if R = ∞, as long a and
α are positive numbers. Therefore, put

R =
x

1− x
and it will be

S = Cx
a−α

α : (1− x)
a−α

α e
2bx−(2b−1)xx

2α(1−x)2 .

Because of

dR =
dx

(1− x)2

it will be

∫
Pdx =

∫ x
a−α

α dx

(1− x)
a+α

α e
2bx−(2b−1)xx

2α(1−x)2

and

∫
PRdx =

∫ x
a
α dx

(1− x)
a+2α

α e
2bx−(2b−1)xx

2α(1−x)2

.

§74 Finally, in § 50 let it be

a = 1, c = 1, α = 0 γ = 0;

it will be ∫
PRdx∫
Pdx

=
1

b +
1

b + β +
1

b + 2β +
1

b + 3β + etc.
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and

dS
S

=
R2dR + (b− β)RdR− dR

βR2 ,

whence it will be

S = e
RR+1

β R
b−β

β and Pdx = e
RR+1

β R
b−2β

β dR

and

PRdx = e
RR+1

β R
b−β

β dR.

But R has to be a function of x of such a kind that Rn+1 vanishes so for x = 0
as for x = 1. But it is a lot more difficult to assign a function of such a kind
than for the remaining cases. Hence I will not try to resolve this case by the
same method, but will solve it by another method now to be explained.

§75 I indeed mentioned this method to get to continued fractions already
some time ago12, but because I only treated a particular case at that time, it
will be convenient to explain it here in more detail. But this method does not
use integral formulas as the preceding method, but relies on the resolution of
a differential equation similar to that one considered by Riccati. Of course, I
consider this differential equation

axmdx + bxm−1ydx + cy2dx + dy = 0,

which by putting

xm+3 = 0 and y =
1
cx

+
1

xxz
goes over into this one

−c
m + 3

t
−m−4
m+3 dt− b

m + 3
t
−1

m+3 zdt− ac + b
(m + 3)c

z2dt + dz = 0,

which is similar to the first one. Hence if the value of z was known in terms
of t, at the same time y will be known in terms of x. Therefore, reduce this
equation to another similar one in the same way by putting

12In his first paper on continued fractions, E71.
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t
2m+5
m+3 = u and z =

−(m + 3)c
(ac + b)t

+
1

ttv

and just continue the reductions of this kind to infinity; having done this,
if each value is substituted in the preceding one, y will be expressed in the
following way

y = Ax−1 +
1

−Bx−m−1 +
1

Cx−1 +
1

−Dx−m−1 +
1

Ex−1 +
1

−Fx−m−1 + etc.

;

the letters A, B, C, D etc. on the other hand will obtain the following values

A =
1
c

,

B =
(m + 3)c

ac + b
,

C =
(2m + 5)(ac + b)
c(ac− (m + 2)b)

,

D =
(3m + 7)c(ac− (m + 2)b)
(ac + b)(ac + (m + 3)b)

,

E =
(4m + 9)(ac + b)(ac + (m + 3)b)
c(ac− (m + 2)b)(ac− (2m + 4)b)

,

F =
(5m + 11)c(ac− (m + 2)b)(ac− (2m + 4)b)
(ac + b)(ac + (m + 3)b)(ac + (2m + 5)b)

etc.,

which relations are more easily understood by the following equations:
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AB =
m + 3
ac + b

,

BC =
(m + 3)(2m + 5)

ac− (m + 2)b
,

CD =
(2m + 5)(3m + 7)

ac + (m + 3)b
,

DE =
(3m + 7)(4m + 9)

ac− (2m + 4)b
,

EF =
(4m + 9)(5m + 11)

ac + (2m + 5)b
,

FG =
(5m + 11)(6m + 13)

ac− (3m + 6)b
etc.

§76 If now these values are substituted in the found continued fraction, one
will then find

cxy = 1 +
(ac + b)xm+2

−(m + 3) +
(ac− (m + 2)b)xm+2

(2m + 5) +
(ac + (m + 3)b)xm+2

−(3m + 7) +
(ac− (2m + 4)b)xm+2

(4m + 9) + etc.

From this expression it is clear that the propounded equation is absolutely
integrable in the cases, in which b becomes equal to a certain term of this
progression

−ac,
−ac

m + 3
,

−ac
2m + 5

,
−ac

3m + 7
· · · −ac

im + 2i + 1
,

further also in the cases, in which b is a term of this progression

ac
m + 2

,
ac

2(m + 2)
,

ac
3(m + 2)

· · · ac
im + 2i

.

But this continued fraction exhibits the integral of the propounded differential
equation with the boundary condition, that for x = 0 it is cxy = 1, if m+ 2 > 0;
but if m + 2 < 0, then the boundary condition is, that for x = ∞ it is cxy = 1.
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§77 Let us suppose that b = 0 and a = nc and that after the integration x is
put = 1; from this equation

ncxmdx + cy2dx + dy = 0

the following continued fraction will result, by which the value of y will be
defined in the case, in which one puts x = 1,

y =
1
c
+

n

− (m + 3)
c

+
n

2m + 5
c

+
n

− (2m + 7)
c

+
n

4m + 9
c

+ etc.

;

or just put c = 1
κ ; from the equation

nxmdx + y2dx +κdy = 0

the value of y in the case, in which x = 1, will be as follows

y = κ +
n

−(mκ + 3κ) +
n

2mκ + 5κ +
n

−(3mκ + 7κ) + etc.
or

y = κ −
n

mκ + 3κ −
n

2mκ + 5κ −
n

3mκ + 7κ −
n

4mκ + 9κ − etc.

§78 Therefore, if this continued fraction is propounded
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b +
1

b + β +
1

b + 2β +
1

b + 3β +
1

b + 4β + etc.

it will be

κ = b, n = −1, (m + 2)b = β

or

m =
β

b
− 2.

Therefore, the value of this continued fraction will be the solution for y in the
case, in which it is x = 1, of this differential equation

x
β−2b

b dx = y2dx + bdy

having integrated it in such a way that for x = 0 xy becomes = b, because it is

m + 2 > 0,

if β
b is a positive number, of course.
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