
On the Determination of Series or a

new Method to find the general

Terms of Series*

Leonhard Euler

§1 Since the law of progression, which the terms of a series follow, can vary
to infinity, it seems that not only all different species of series, but not even all
classes, no matter how far they extend, can actually be enumerated. Hence
two or more series are given, which, even though they have as many common
terms as one wants, nevertheless differ and are contained in very different
laws. Who has inspected the very broad field of series even only for a short
time, will easily understand that the nature of a series is not determined, no
matter how many of its terms are exhibited. So if it is in question, what the
series is, which starts with these terms

1, 3, 5, 7, 9, 11, 13, 15,

the question is most undetermined; and except for the series of the odd
natural numbers proceeding in natural order innumerable other series can be
assigned, which start with the same terms; and this defect of determination is
not restricted to a certain number of given terms, but, no matter how large
that number was, can be common to all infinite series.

*Original title: „De serierum determinatione seu nova methodus inveniendi terminos gene-
rales serierum“, first published in „Novi Commentarii academiae scientiarum Petropolitanae 3,
1753, pp. 36-85 “, reprinted in „Opera Omnia: Series 1, Volume 14, pp. 463- 515“, Eneström-
Number E189, translated by: Alexander Aycock for the project „Euler-Kreis Mainz“
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§2 But this will be seen more clearly, if we transfer the nature of series to
Geometry. For, each arbitrary series can be represented by means of a curved
line, whose ordinate is expressed by suitable terms of the series itself, while
the abscissas denote their indices or numbers, which represent the order of
each term. This way any arbitrary term of the series defines a point on the
curved line, which corresponds to the given abscissa. Hence, if a series is
required, which has arbitrary many given terms, the question reduces to this,
that a curved line is found, which goes through as many given points. But it is
perspicuous that always innumerable curved lines can be assigned which go
through the single points at the same time. Although Newton showed this only
for parabolic curves, if not only all algebraic curves but also transcendental
ones are admitted, there is no doubt that the number of satisfying curves
additionally becomes infinitely larger.

§3 It will seem more remarkable, if I say that the series is not even deter-
mined, even though innumerable of its terms are given. So if I define this
series

1 + 2 + 3 + 4 + 5 + 6 + etc.

in such a way that I say that in it all integer numbers in natural order are
contained, who will then not believe that this series is completely determined,
since for each place in the series its term was assigned? For, in the place,
which is x units away from the beginning, the term will be = the number x
itself, or the term, whose index is = x, will also be = x. But how that series,
as it was done, is described, there is not more known than that to the index x,
if x was an integer number, corresponds the term x; but if for the index x a
fractional number is assumed, there is now reason, by which it would be clear
that the term corresponding to that index x is = x. But I will show, if for this
series the term corresponding to the index x is put = y, that it can happen
in infinitely many ways that, as often as x is an integer number, so often it
always is y = x, even though by taking fractional numbers for x the value of y
differs from x. Hence, even though all terms of the series, which correspond to
integer indices, are determined, the intermediate ones, which have fractional
indices, can nevertheless be determined in infinitely many ways, such that the
interpolation of this series remains undetermined.
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§4 That this is seen more clearly, one has to recur to circular arcs; for, since
having put the semicircumference of the circle, whose radius is = 1, = π the
sine of the arc nπ is = 0, as often as n is an integer, it is manifest, if one puts
y = x + P sin πx while P denotes either a constant quantity or an arbitrary
function of x and for x one successively puts the integer numbers 1, 2, 3, 4, 5
etc., that then the values of y will be = 1, 2, 3, 4, 5, etc., as if it was P = 0. And
nevertheless the intermediate values, which correspond to fractional indices,
will not be equal to these indices. For, for the sake of an example let P = xx
and put x = 1

2 ; because of sin 1
2 π = 1 the term corresponding to the index 1

2
will become

1
2
+

1
4
· 1 =

3
4

.

But one can think of infinitely many other expressions of this kind, which
satisfy equally, of which kind are

y = x + P sin πx + Q sin 2πx + R sin 3πx + S sin 4πx + etc.,

by which the interpolation is rendered much more undetermined.

§5 I already exhibited a similar example of a series, which could seem
determined, some time ago; for, I had found an expression or a function of x,
which, if for x any power of 10 is substituted, becomes equal to this power, if
this exponent is a positive integer, of course. That function of x, which I will
indicate by the letter y, was of such a nature that having put x = 1 it becomes
y = 0 and, if one puts x = 10n while n is a positive integer number, always
becomes y = n; hence it seemed to follow that the function y will always
be the common logarithm of x. Nevertheless, I showed, if for x not a certain
power of ten is substituted, that the value of y often differs a lot from the
logarithm of ten. Therefore, having set up the series, for which we have

Indices 1, 101, 102, 103, 104, 105, 106 etc.

and

Terms 0, 1, 2, 3, 4, 5, 6 etc.

for the description of logarithms it does not suffice, if someone says that the
logarithms are the middle terms, which correspond to the indices assumed in
the superior series, of the inferior series.
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§6 Therefore, since the nature of a series is not determined from some
of its terms, even though their number is infinite, since the interpolation
nevertheless remains undetermined and can be done in infinitely many ways,
it is easily seen, how uncertain all these interpolation methods are, which
teach to complete the task from the terms having integer indices alone. For,
the interpolation can only be considered as certain, if the nature of the series is
taken into account in the operation. But the nature of a series is seen perfectly,
if its general term or a formula, which for each index x, whether integer or
fractional or even surdic, exhibits the corresponding terms, was known. For,
this way not only all terms of the series, which correspond to integer indices,
are determined, but also the terms, which correspond to arbitrary non-integer
indices, are defined without any ambiguity; and so the task of interpolation is
no longer impeded by any uncertainty.

§7 But except for the general term one has innumerable other ways to form
series; nevertheless all these ways can be conveniently reduced to three classes.
To the first class I count these ways of forming series, in which each term
of the series is only determined by the corresponding index; since this is
caused by certain operations to be done for this aim, the formula containing
these operations in general will be the general term of the series itself, that by
which the series is perfectly and absolutely determined I already noted. To
the second class all these ways of forming series extend, in which the general
term of the series is determined by some of the preceding terms according
to a certain rule, which way is usually especially applied in recurring series.
But whenever to find a certain term of a series not only the preceding terms
are to be taken into account, but also the index itself must be used, I hence
constitute the third class of determination.

§8 If an arbitrary term of the series is determined from the index alone,
then, whether an integer or a fractional number is assumed for the index,
the corresponding term is equally defined and so the interpolation of the
series will have neither any difficulty nor uncertainty. But if, as we put in
the second class, an arbitrary term is determined from the preceding one or
several preceding ones, then having assumed the first or some first terms
ad libitum the single terms, which correspond to integer indices, will be
found, but it is not possible to define the intermediate terms corresponding
to fractional terms from this, which is also be said about the third class. But
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although this way in the second and third class not only all terms, which
correspond to integer indices, are assigned, but also the law between the
terms and its preceding ones is prescribed, which equally extends to terms
of fractional indices, nevertheless not even this way the series is completely
determined, but for any arbitrary series of this class infinitely many general
terms can be exhibited, which, while they yield the same terms for integer
indices, nevertheless deviate for the fractional ones.

§9 Since this justly seems to be paradoxical, it will be worth one’s while
to consider this defect of determination in the series, in which each term is
determined from the preceding ones, more diligently. Therefore, let us take
the simplest case and assume that the series is defined in such a way, that each
term is equal to the preceding one itself. If now the first term of the series is
set = 1, the second will also be = 1 and all following ones, which correspond
to integer indices, will become equal to the unity and this series will arise:

Indices: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 etc.

Terms: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 etc.

and it is manifest that to each integer index x corresponds the term = 1. But
how the terms corresponding to fractional indices will behave, is hence not
defined; only this is known, if the term corresponding to the index 1

2 was = a,
that also all terms, which correspond to the indices

3
2

,
5
2

,
7
2

,
9
2

etc.

will also be = a. For, all terms, whose indices differ by one unit or several
units, must be equal by the prescribed law, since each preceding term is
understood as the one, whose index is the one smaller by one unit.

§10 Therefore, this series is defined in such a way that, if the term corre-
sponding to the index x is put = y, the following term corresponding to the
index x + 1 is = y′, one has y′ = y; but then furthermore it is assumed, if it
was x = 1, that it will also be y = 1. Hence, if for this series the general term
is desired, it must be a function of x of such a kind, which shall be = y, that,
if instead of x one puts x + 1, the resulting value y′ of the function y will be
equal to y itself, and that having put x = 1 it also is y = 1. But it is manifest,
if in general one puts y = 1, that this condition is satisfied and in this case
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not only the terms, which correspond to integer indices, but also those, which
correspond to fractional ones, will be smaller than unity. But on the other
hand these conditions can also be satisfied in infinitely many other ways; for,
if one puts

y = 1 + α sin 2πx,

while π denotes the half of the circumference of the circle, whose radius is
= 1, it will be

y′ = 1 + α sin 2πx;

but it is
sin 2π(x + 1) = sin 2πx

and hence y′ = y, but then for x = 1 it will also be y = 1. In this case the
intermediate terms or the ones, corresponding to fractional indices, are not
longer equal to the unity; for, having put x = 1

4 it will be y = 1 + α.

§11 Since here not only α can be assumed ad libitum, but one can also
think of innumerable other formulas of this kind, which fulfill the prescribed
conditions, of which kind these are

y = 1 + α sin 2πx + β sin 4πx + γ sin 6πx + etc.,

it is perspicuous that the interpolation even of this most simple series 1 +
1 + 1 + etc., if it is only defined in such a way that each term is equal to the
preceding one, but the first is said to be expressed by the unity, is highly
undetermined, since the intermediate terms having fractional indices can be
equal to any numbers. Nevertheless, even though innumerable general terms
can be exhibited for this series, they are all contained in the same general law
and without any deviation can be found by means of Analysis. Of course,
a very far extending method can be given, by means of which it is possible
to define the general terms of all series, whose terms are determined by
the preceding ones, whether without the index or with the index, in most
universal manner; this method since it does not only lead to a more complete
understanding of series, but also contains augmentations not to be contemned
for whole Analysis, I constituted to develop here more diligently; for this aim
I will consider the following problems.
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PROBLEM 1

§12 To find the general term of the series, any arbitrary term of which is equal to
the preceding one, but whose first term = 1.

SOLUTION

Let the general term or the one which corresponds to the index x be = y and
put the following term (whose index is = x + 1) = y′ and it must be y′ = y;
and having put x = 1 is must be y = 1. Since now y is a certain function of x,
by the nature of differential calculus, if instead of x one puts x + 1, it will be

y′ = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.,

having assumed the differential dx to be constant. Therefore, it must be

0 =
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.,

And this equation contains completely all satisfying values of y, as long as
the integration is tempered in such a way that having put x = 1 it is y = 1 or,
what reduces to the same, that having put x = 0 it is y = 1. Therefore, the
question was reduced to the resolution of this differential equation, which not
only consists of an infinite number of terms, but also contains all orders of
differentials. But since the variable y everywhere does not have more than
one dimension and of the other variable x only the differential dx, which
is assumed to be constant, occurs, this equation can be treated in the same
way which I explained in Miscellanea Berololin. Volume 7. Therefore, by
putting z instead of dy

dx , z2 instead of ddy
dx2 and in general zn instead of dny

dxn form
the algebraic equation

0 =
z
1
+

z2

1 · 2 +
z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + etc.,

which having taken e for the number, whose hyperbolic logarithm is = 1, goes
over into this finite form 0 = ez − 1. Now one has to investigate all roots of
this equation, whose number is infinite, or one has to assign all factors of the
formula ez − 1. But it is

ez =

(
1 +

z
n

)n

,
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having put n to be an infinite number; if this value is substituted, one will
have to resolve this equation (

1 +
z
n

)n

− 1,

of which certainly one simple factor is = z
n or z, which the infinite equation

immediately reveals. To find the remaining ones one has to recall the theorem,
in which it is demonstrated that a factor of the binomial form an − bn is

aa− 2ab cos
2kπ

n
+ bb,

while k denotes an integer number. Therefore, in the present case it is

a = 1 +
z
n

and b = 1,

whence all factors of the propounded formula ez − 1 are contained in this
general form

1 +
2z
n

+
zz
nn
− 2
(

1 +
z
n

)
cos

2kπ

n
+ 1

or

2
(

1 +
z
n

)
versin

2kπ

n
+

zz
nn

;

hence by dividing this factor by the constant quantity 2 versin 2kπ
n the general

factor will be
= 1 +

z
n
+

zz
2nn versin 2kπ

n

.

Since now n is an infinite number, it will be

cos
2kπ

n
= 1− 2kkππ

nn
und versin

2kπ

n
=

2kkππ

nn
;

having substituted this value the general factor of the formula ez − 1 will be

= 1 +
z
n
+

zz
4kknn

,

and by successively putting the integer numbers 1, 2, 3, 4 etc. instead of k
completely all factors of the formula ez − 1 will arise. But the first factor z
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gives the constant part of the integral, which shall be = C; but if the remaining
factors, which are reduced to this form

4kkππ +
4kkππ

n
z + zz,

are compared to the form of the factors, which I expanded in the dissertation
mentioned before,

f f − 2 f z cos ϕ + zz,

it will be
f = 2kπ and cos ϕ = − kπ

n
and sin ϕ = 1 because of the infinite number n, in which case it is cos ϕ = 0.
Therefore, the part of the integral to arise from this will be

αe
−2kkππ

n x sin 2kπx +Ae
−2kkππ

n x cos 2kπx

or because of n = ∞
α sin 2kπx +A cos 2kπx,

Therefore, having successively substituted all integer numbers 1, 2, 3, 4 etc.
for k the integral of the found equation will arise

0 =
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · x4 + etc.

will arise expressed in the following form

y = C + α sin 2πx+A cos 2πx

+ β sin 4πx+B cos 4πx

+ γ sin 6πx+C cos 6πx + etc.

Now define the constant C in such a way that having put x = 0 it is y = 1,
and one will find the general term of the propounded series

y = 1 + α sin 2πx+A (cos 2πx− 1)

+ β sin 4πx+B(cos 4πx− 1)

+ γ sin 6πx+C (cos 6πx− 1) + etc.

Therefore, whatever values are substituted for α, β, γ, δ etc., A, B, C, D etc.,
always a formula will arise, which exhibits the general term of the propounded
series. Q. E. I.
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COROLLARY 1

§13 If the first term, to which all remaining ones having integer exponents
are equal, must not be the unity but an arbitrary quantity, the general term of
the series y or the term, which corresponds to the index x, is found as

y = a + α sin 2πx + β sin 4πx + γ sin 6πx + δ sin 8πx + etc.

+A cos 2πx +B cos 4πx + C cos 6πx +D cos 8πx + etc.

and an arbitrary term having in integer number index will be

= a +A+B+ C+D+ etc.

COROLLARY 2

§14 Since sines and cosines of the arcs 4πx, 6πx, 8πx etc. can be expressed by
means of powers of sin 2πx and cos 2πx and vice versa all rational functions,
or which do not have the ambiguity of the sign, can be exhibited by series of
this kind we found for y, we will be able to define the general term y in such
a way that we say that y is an arbitrary function of sin 2πx and cos 2πx, as
long as no formulas of this kind

√
1± cos 2πx

and other similar ones occur, which involve the sines and cosines of submulti-
ple angles of 2πx.

COROLLARY 3

§15 Therefore, having excluded these cases, if we put sin 2 pix = p and
cos 2πx = q, y will be equal to an arbitrary function of p and q; hence this
differential infinite equation

0 =
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.

will be integrated in general in such a way that y is an arbitrary function of p
and q.
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COROLLARY 4

§16 But if we call sin πx = r and cos πx = s, it will be p = 2s and q = ss− rr
and functions of p and q will be functions of even dimensions of r and s.
Hence from the infinite differential equation the value of y will in general
become equal to an arbitrary function of even dimensions of r and s, where it
is to be noted that because of the whole sine = 1 it is rr + ss = 1.

COROLLARY 5

§17 Put x
a instead of x that one has this equation

0 =
ady

1 · dx
+

a2ddy
1 · 2 · dx2 +

a3d3y
1 · 2 · 3 · dx3 +

a4d4y
1 · 2 · 3 · 4 · dx4 + etc.

If we now put

sin
πx
a

= r and cos
πx
a

= s.

the integral of this equation will be described in such a way that y = an
arbitrary function of even dimensions of r and s.

COROLLARY 6

§18 Therefore, two formulas for the value of this integral can be exhibited,
the one of which is

y =
A+Br2+Crs+Ds2+Er4+Fr3s+Gr2s2+Hrs3+Is4+etc.

α+βr2+γrs+ δs2 + εr4 +ζr3s+ηr2s2+ θrs3 + ιs4+etc.

The other form will be

y =
Ar+Bs+Cr3+Dr2s+Ers2+Fs3+Gr5+etc.

αr+βs+γr3+ δr2s + εrs2 +ζs3+ηr5+etc.

COROLLARY 7

§19 Therefore, whatever value of this kind is substituted for y in the equation

0 =
ady

1 · dx
+

a2ddy
1 · 2 · dx2 +

a3d3y
1 · 2 · 3 · dx3 +

a4d4y
1 · 2 · 3 · 4 · dx4 + etc.,
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the identical equation will arise or an infinite series will result, whose sum
will be = 0. But for the continued differentiations it is to be noted that it is

dr
dx

=
πs
a

and
ds
dx

= −πr
a

and hence by means of the substitution the differentials dx will cancel each
other everywhere.

SCHOLIUM 1

§20 But the factors deserve it to be mentioned, into which this infinite
algebraic expression

z
1
+

z2

1 · 2 +
z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 +
z5

1 · 2 · 3 · 4 · 5 + etc.,

was resolved above. For, since the first simple factor is = z and the remaining
trinomial ones are contained in this general form

1 +
z
n
+

zz
4kkππ

,

if we successively the numbers 1, 2, 3, 4 etc. are substituted for k, let us for
the sake of brevity put

Z =
z
1
+

z2

1 · 2 +
z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + etc.,

and by means of infinitely many factors it will be

Z = z
(

1+
z
n
+

zz
4ππ

)(
1+

z
n
+

zz
16ππ

)(
1+

z
n
+

zz
36ππ

)(
1+

z
n
+

zz
64ππ

)
etc.,

the number of which factors having excluded the first is infinite and = 1
2 n.

Therefore, let 1
2 n = m or n = 2m and put z = 2v;

2v
1

+
22v2

1 · 2 +
23v3

1 · 2 · 3 +
24v4

1 · 2 · 3 · 4 + etc.

= 2v
(

1 +
v
m

+
vv
ππ

)(
1 +

v
m

+
vv

4ππ

)(
1 +

v
m

+
vv

9ππ

)(
1 +

v
m

+
vv

16ππ

)
etc.
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and hence the following product of infinitely many factors, whose number is
= m, will be(

1 +
v
m

+
vv
ππ

)(
1 +

v
m

+
vv

4ππ

)(
1 +

v
m

+
vv

9ππ

)(
1 +

v
m

+
vv

16ππ

)
etc.

= 1 +
2

1 · 2v +
4

1 · 2 · 3v2 +
8

1 · 2 · 3 · 4v3 +
16

1 · 2 · 3 · 4 · 5v5 + etc.

If now this product is actually expanded, since the number of factors is = m
while m is an infinite number, it will arise

1 + v +
m(m− 1)

1 · 2 · vv
mm

+
vv
ππ

(
1 +

1
4
+

1
9
+

1
16

+
1
25

+ etc.
)

+
m(m− 1)(m− 2)

1 · 2 · 3 · v3

m3 +
(m− 1)v3

mππ

(
1 +

1
4
+

1
9
+

1
16

+
1
25

+ etc.
)

etc.,

which terms compared to the series already found will give

1 =
2

1 · 2,
1

1 · 2 +
1

ππ

(
1 +

1
4
+

1
9
+

1
16

+ etc.
)
=

4
1 · 2 · 3,

1
1 · 2 · 3 +

1
ππ

(
1 +

1
4
+

1
9
+

1
16

+ etc.
)
=

8
1 · 2 · 3 · 4

Hence in each of both one has

1 +
1
4
+

1
9
+

1
16

+
1
25

+
1
36

+ etc. =
ππ

6
,

which is the same summation, I first had found already many years before and
have confirmed it with several proofs. Furthermore, hence it is perspicuous,
even though in these factors the number m is infinite, that it is nevertheless not
possible to omit the other term v

m , since in the expansion because of the infinite
repetition from the infinitely small terms v

m finite terms arise. But whenever
an arbitrary term is considered separately, as we did it in the formation of the
integral, then it is possible to omit these infinitely small terms without error.
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SCHOLIUM 2

But it is also possible to sum higher powers of the terms of the series

1 +
1
4
+

1
9
+ etc.

from this source and the same progressions will arise, which I had found once.
But that this calculation does not become too long, it can be done easily in the
following manner. Put

V = 1 +
2v

1 · 2 +
22v2

1 · 2 · 3 +
23v3

1 · 2 · 3 · 4 +
24v4

1 · 2 · 3 · 4 · 5 + etc.;

it will be

V =
e2v − 1

2v
and

dV
Vdv

=
2e2v

e2v − 1
− 1

v
,

which is reduced to this more convenient form

dV
Vdv

=
2ev

ev − e−v −
1
v
=

1 + v
1 +

v2

1·2 +
v3

1·2·3 +
v4

1·2·3·4 + etc.
v
1 +

v3

1·2·3 +
v5

1·2·3·4·5 +
v7

1·2···7 + etc.
− 1

v
,

such that it is

dV
Vdv

− 1 =
1 + v2

1·2 +
v4

1·2·3·4 +
v6

1·2···6 + etc.
v
1 +

v3

1·2·3 +
v5

1·2·3·4·5 +
v7

1·2···7 etc.
− 1

v

or
dV

Vdv
− 1 =

2v
1·2·3 +

4v3

1·2···5 +
4v5

1·2···7 +
8v7

1·2···9 + etc.

1 + v2

1·2·3 +
v4

1·2···5 +
v6

1·2···7 ++ v8

1·2···9 + etc.
− 1

v
.

Put
dV

Vdv
= 1 +Av−Bv3 + Cv5 −Dv7 + Ev9 − etc.;

it will be
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A =
2

1 · 2 · 3,

B =
A

1 · 2 · 3 −
4

1 · 2 · · · 5,

C =
B

1 · 2 · 3 −
A

1 · 2 · · · 5 +
6

1 · 2 · · · 7,

D =
C

1 · 2 · 3 −
B

1 · 2 · · · 5 +
A

1 · 2 · · · 7 −
8

1 · 2 · · · 9
etc.

Having found these values consider this other form of the quantity V expres-
sed by means of factors

V =

(
1 +

v
m

+
vv

1ππ

)(
1 +

v
m

+
vv

4ππ

)(
1 +

v
m

+
vv

9ππ

)
etc.,

from which one finds by means of differentiation

dV
Vdv

=
1
m + 2v

1ππ

1 + v
m + vv

1ππ

+
1
m + 2v

4ππ

1 + v
m + vv

4ππ

+
1
m + 2v

9ππ

1 + v
m + vv

9ππ

+ etc.

But in general it is

1
m + 2v

λππ

1 + v
m + vv

λππ

=
1
m

+
2

λππ
v− 3

mλππ
v2 +

4
m2λππ

v3 − etc.

− 1
mm

+
1

m3 − 1
m4

− 2
λλπ4 .

But since m is an infinite number and is equal to the number of factors, having
excluded the first terms one will be able to omit the remaining ones divided
by m without any error

1
m + 2v

λππ

1 + v
m + vv

λππ

=
1
m

+
2v

λππ
− 2v3

λ2π4 +
2v5

λ3π6 −
2v7

λ4π8 + etc.;

therefore, having successively substituted the square numbers 1, 4, 9, 16 etc.
and having combined these series, whose number is m, into one single sum
one will find
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dV
Vdv

= 1 +
2v
ππ

(
1+

1
4
+

1
9
+

1
16

+
1
25

+etc.
)

− 2v3

π4

(
1+

1
42+

1
92+

1
162+

1
252+etc.

)
+

2v5

π6

(
1+

1
43+

1
93+

1
163+

1
253+etc.

)
− 2v7

π8

(
1+

1
44+

1
94+

1
164+

1
254+etc.

)
etc.

If now this series is compared to the one found first, one will have

1+
1
4
+

1
9
+

1
16

+etc. =
1
2
Aπ2 =

1
6

π2,

1+
1
42+

1
92+

1
162+etc. =

1
2
Bπ4 =

1
90

π4,

1+
1
43+

1
93+

1
163+etc. =

1
2
C π6 =

1
945

π6,

1+
1
44+

1
94+

1
164+etc. =

1
2
Dπ8 =

1
9450

π8

etc.

And this way all summations exhibited already once by me will be confirmed
more, since the principle, which I had used then, could seem erroneous to
some people.

PROBLEM 2

§22 To find the general term of the series, whose arbitrary term exceeds the preceding
one by a given quantity and whose first term is given.

SOLUTION

Let the first term be = a and the excess of each term over the preceding shall
be = g; the terms corresponding to the integer indices will of course be these

16



1 2 3 4 5 6 7

a, a + g, a + 2g, a + 3g, a + 4g, a + 5g, a + 6g etc.,

such that to the integer index x corresponds the term y = a + (x− 1)g. But
while x is an arbitrary number infinitely many other formulas take the place
of y. For let y′ be the term corresponding to the index x + 1; it will be

y′ = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.

Since now by assumption it must be y′ = y + g, it will be

g =
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.

Although I gave the resolution of equations of this kind, where except for
the terms, which contain the differentials of y, a either a constant term or an
arbitrary function is present, some time ago, it will nevertheless be helpful to
get rid of this term g by means of the substitution y = gx + u; for, it will be

dy = gdx + du, ddy = ddu, d3y = d3u etc.,

because of the constant dx. Therefore, it will be

0 =
du

1 · dx
+

ddu
1 · 2 · dx2 +

d3u
1 · 2 · 3 · dx3 +

d4u
1 · 2 · 3 · 4 · dx4 + etc.

Since this equation agrees with the one which we found in the preceding
problem, if we put sin πx = r and cos πx = s, u will be an arbitrary function
of even dimensions of r and s, of which kind we exhibited one in § 18; and
having found this the general term in question will be y = A + gx + u, as
long as the constant A is defined in such a way, that having put x = 1 it is
y = a. Q.E.I.

PROBLEM 3

§23 To find the general term of the series, whose arbitrary term arises, if the preceding
is multiplied by a given number m, and whose first term shall be = a.

17



SOLUTION

Therefore, the terms of this series, which have integer indices, will constitute
the following geometric progression

1 2 3 4 5 6

a, ma, m2s, m3a, m4a, m5a etc.,

such that to the integer index x the term amx−1 corresponds. Therefore,
let in general be y the term corresponding to the index x and y′ the term
corresponding to the index x + 1 and it will be y′ = my. But it is

y′ = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc. = my.

To resolve this equation according to the prescriptions put 1 for y, z for dy
dx , z2

for ddy
dx2 etc. that the following algebraic equation arises

m = 1 +
z
1
+

zz
1 · 2 +

z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + etc.,

whose single roots must be investigated. But it will be m = ez; but let the
hyperbolic logarithm of m be = λ, that it is m = eλ and hence eλ − em = 0.
But since having taken an infinite number for n it is

eλ =

(
1 +

λ

n

)n

and ez =

(
1 +

z
n

)n

,

one will have this equation, whose roots are to be investigated(
1 +

λ

n

)n

−
(

1 +
z
n

)n

= 0,

of which the one root z − λ = 0 is certainly known immediately, whence
the part y = αeλx = αmx of the integral because of eλ = m is obtained. The
remaining roots are imaginary and are contained in this trinomial factor(

1 +
λ

n

)2

− 2
(

1 +
λ

n

)(
1 +

z
n

)
cos

2kπ

n
+

(
1 +

z
n

)2

,

while k is an arbitrary integer number; this form goes over into this one

2 +
2λ

n
− 2
(

1 +
λ

n

)
cos

2kπ

n
+

λλ

nn
− 2z

n
− 2z

n

(
1 +

λ

n

)
cos

2kπ

n
+

zz
nn

.

18



But because of the infinite number n it is

cos
2kπ

n
= 1− 2kkππ

nn
.

Therefore, having multiplied that form by nn the general factor will be

= 2n(n + λ)

(
1− cos

2kπ

n

)
+ λλ + 2nz

(
1− cos

2kπ

n

)
− 2λz cos

2kπ

n
+ zz

= λλ + 4kkππ +
4kkππz

n
− 2λz + zz,

having neglected the vanishing terms; with respect to this even the term 4kkππz
n

can be omitted, such that the general factor is

λλ + 4kkππ − 2λz + zz,

and the number of these factors, if for k successively the numbers 1, 2, 3, 4 etc.
are substituted, will be = n

2 . But this compared to the general form given in
my dissertation printed in Volume 7 of the Miscellanea Berolin.

f f − 2 f z cos ϕ + zz

will give

f =
√

λλ + 4kkππ and cos ϕ =
λ√

λλ + 4kkππ

and hence
sin ϕ =

2kπ√
λλ + 4kkππ

.

Hence this part of the integral y arises

y = eλx(α sin 2kπx +A cos 2kπx).

Therefore, having successively substituted the values for k because of eλ one
will find

y = mx

C+ α sin 2πx+ β sin 4πx +γ sin 6πx+etc.

+A cos 2πx+B cos 4πx+C cos 6πx+etc.

 .

Therefore, since having put x = 1 it must be y = a, it will be

a = m(C +A+B+ C+D+ etc.),

whence the constant C is defined. Or if having put sin πx = r and cos πx = s
Q was an arbitrary function of even dimension of r and s, the general term in
question will be y = mx. Q.E.I.
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COROLLARY 1

§24 Therefore, in the geometric progression, insofar it is only described in
such a way, that each term is said to have a constant ratio to the preceding
one, the interpolation is not determined, since the intermediate terms can be
expressed in infinitely many different ways, they can even receive any value.

COROLLARY 2

§25 Therefore, the complete integral of this infinite differential equation can
be expressed in general

(m− 1)y =
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.

For, having put sin πx = r and cos πx = s, if Q denotes an even function of
r and s, it will be y = mxQ and hence m−xy becomes equal to an arbitrary
function of even dimension of r and s.

COROLLARY 3

§26 If for x one writes x
a , this equation will arise

(m− 1)y =
ady

1 · dx
+

aaddy
1 · 2 · dx2 +

a3d3y
1 · 2 · 3 · dx3 +

a4d4y
1 · 2 · 3 · 4 · dx4 + etc.

To integrate this put

sin
πx
a

= r and cos
πx
a

= s

and let Q denote an arbitrary function of even dimensions of r and s, such
that Q retains the same value, even though for r and s one writes −r and −s.
Having done this it will be y = mx:aQ.

COROLLARY 4

§27 And the solution of this problem could even be reduced to the solution of
the first problem. For, since it must be y′ = my, it will be log y′ = log y+ log m.
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Put log y = v, that it is log y′ = v′, and let it be log m = λ; it must be v′ = v+λ,
whence because of

v′ = v +
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 + etc.

it is

λ =
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 +

d4v
1 · 2 · 3 · 4 · dx4 + etc.

and having put v = u + λx one will have

0 =
du

1 · dx
+

ddu
1 · 2 · dx2 +

d3u
1 · 2 · 3 · dx3 +

d4u
1 · 2 · 3 · 4 · dx4 + etc.,

which is the equation, to which we got in the first problem. Therefore, if one
puts sin πx = r and cos πx = s and Q denotes a function of even dimensions
of r and s, it will be u = Q and hence

v = λx + Q = log y = x log m + Q.

Therefore, by taking numbers one has y = mxeQ; since there eQ also is a
function of even dimensions of r and s, if for it one writes Q, it will be, as we
found before, be y = mxQ.

SCHOLIUM

§28 Since we found all roots of the algebraic equation

m = 1 +
z
1
+

zz
1 · 2 +

z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + etc.,

we will hence be able to exhibit all factors of this infinite expression

Z = 1 +
z

1(1−m)
+

zz
1 · 2(1−m)

+
z3

1 · 2 · 3(1−m)
+

z4

1 · 2 · 3 · 4(1−m)
+ etc.

For, having put log m = λ the first simple factor will be 1 − z
λ and the

remaining trinomial factors will be contained in this general form

1 +
4kkππ

n(λλ + 4kkππ)
− 2λz− zz

λλ + 4kkππ
,
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which is transformed into this one

1 +
z
n
− λλz

n(λλ + 4kkππ)
− 2λz− zz

λλ + 4kkππ
,

if instead of k successively the numbers 1, 2, 3, 4 etc. are substituted and n is
an infinitely large number, whose half n

2 exhibits the number of factors itself.
For the sake of brevity let it be

λλ + 4kkππ = Φ

and it will be

Z =

(
1− z

λ

)(
1 +

z
n
− λλz

nΦ
− 2λz

Φ
+

zz
Φ

)
,

where the second factors holds the place of all infinitely many factors, which
arise from the variation of the quantity Φ. Therefore, having taken logarithms
and differentiated them one will obtain

dZ
Zdz

=
−1

λ− z
+

1
n −

λλ
nΦ −

2λ
Φ + 2z

Φ

1 + z
n −

λλz
nΦ −

2λz
Φ + zz

Φ

.

And having resolved these terms into infinite series

dZ
Zdz

=− 1
λ
− z

λ2 −
zz
λ3 − z3

λ4 − z4

λ5 − z5

λ6 − etc.

− 1
n
− 4λ2z

Φ2 −
8λ3zz

Φ3 − 16λ4z3

Φ4 − 32λ5z4

Φ5 − 64λ6z5

Φ6

− λλ

nΦ
+

2z
Φ

+
6λzz
ΦΦ

+
16λ2z3

Φ3 +
40λ3z4

Φ4 +
96λ4z5

Φ5

− 2λ

Φ
− −2z3

Φ3 − 10λz4

Φ3 − 36λ2z5

Φ4 ,

put
dZ
Zdz

= A + Bz + Cz2 + Dz3 + Ez4 + Fz5 + etc.,

and because it is Φ = λλ + 4kkππ, where it is to be understood that suc-
cessively for k all numbers 1, 2, 3, 4 etc. up to 1

2 n are substituted, it will
be

A =
1
2
− 1

λ
− 2λ

(
1

λλ + 4ππ
+

1
λλ + 16ππ

+
1

λλ + 36ππ
+ etc.

)
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If for the sake of brevity one sets

1
(λλ + 4ππ)

+
1

(λλ + 16ππ)
+

1
(λλ + 36ππ)

+ etc. = A,

1
(λλ + 4ππ)2 +

1
(λλ + 16ππ)2 +

1
(λλ + 36ππ)2 + etc. = B,

1
(λλ + 4ππ)3 +

1
(λλ + 16ππ)3 +

1
(λλ + 36ππ)3 + etc. = C,

1
(λλ + 4ππ)4 +

1
(λλ + 16ππ)4 +

1
(λλ + 36ππ)4 + etc. = D

etc.,

it will be

A =
1
2
− 1

λ
− 2λA,

B = − 1
λλ

+ 2A − 4λ2B

C = − 1
λ3 + 6λB − 8λ3C,

D = − 1
λ4 − 2B + 16λ2C − 16λ4D,

E = − 1
λ5 − 10λC+ 40λ3D− 32λ5E,

F = − 1
λ6 + 2C − 36λ2D+ 96λ4E − 64λF

etc.

Since now it is

Z = 1 +
z

1(1−m)
+

zz
1 · 2(1−m)

+
z3

1 · 2 · 3(1−m)
+ etc.,

it will be

Z =
ez −m
1−m

=
ez − eλ

1− eλ
und

dZ
dz

=
ez

1− ez ;

hence
dZ
Zdz

=
ez

ez − eλ
=

1
1− eλe−z =

1
1−me−m
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and from this

dZ
Zdz

=
1

1−m + mz− mzz
1·2 + mz3

1·2·3 −
mz4

1·2·3·4 + etc.
.

Now because of

dZ
Zdz

= A + Bz + Cz2 + Dz3 + Ez4 + Fz5 + etc.

it will become

1 = (1−m)A + (1−m)B z + (1−m)C z2 + (1−m)Dz3 + (1−m)E z4 + etc.,

+ m A + m B + m C + m D

− 1
2 m A − 1

2 m B − 1
2 m C

+ 1
6 m A + 1

6 m B

− 1
24 m A

whence the following determinations will arise

A =
1

1−m
,

B =
−mA
1−m

=
−m

(1−m)2 ,

C =
−mB + 1

2 mA
1−m

=
mm

(1−m)3 +
m

2(1−m)2 ,

D =
−mC + 1

2 mB− 1
6 mA

1−m
=

−m3

(1−m)4 −
mm

(1−m)3 −
m

6(1−m)2 ,

E =
−mD + 1

2 mC− 1
6 mB + 1

24 mA
1−m

=
m4

(1−m)5 +
3m3

2(1−m)4 +
7mm

12(1−m)3 +
m

24(1−m)2

etc.

Therefore, the following summations of the series A, B, B, D etc. will arise:

I.
1

1−m
=

1
2
− 1

λ
− 2λA
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or
A =

1
4λ
− 1

2λλ
− 1

2λ(1−m)
;

II.
−m

(1−m)2 = − 1
λλ

+ 2A− 4λλB =
1

2λ
− 2

λλ
− 1

λ(1−m)
− 4λλB,

whence it is

B =
1

8λ3 −
1

2λ4 −
1

4λ3(1−m)
+

m
4λλ(1−m)2 ;

III.
mm

(1−m)3 +
m

2(1−m)2 = − 1
λ3 + 6λB− 8λ3C =

3
4λλ
− 4

λ3 −
3

2λ2(1−m)

+
3m

2λ(1−m)2 − 8λC,

therefore

C =
3

32λ5 −
1

2λ6 −
3

16λ5(1−m)
+

3m
16λ4(1−m)2 −

m
16λ3(1−m)2 −

mm
8λ3(1−m)3 .

And so the following sums of the propounded series D, E etc. will be found.

COROLLARY 1

§29 Therefore, because it is m = eλ, it will be

1
λλ + 4ππ

+
1

λλ + 16ππ
+

1
λλ + 36ππ

+ etc. =
1

4λ
− 1

2λλ
− 1

2λ(1− eλ)
;

let λ = 2πa
b ; it will be

bb
4(aa + bb)π2 +

bb
4(aa + 4bb)π2 +

bb
4(aa + 9bb)π2 + etc.

=
b

8πa
− bb

8ππaa
− b

4πa(1− e2πa:b)

and hence by multiplying by 4ππ
bb one will have

1
aa + bb

+
1

aa + 4bb
+

1
aa + 9bb

+ etc. =
π

2ab
− 1

2aa
+

π

ab(e2πa:b − 1)
,

which sum I exhibited already elsewhere deduced from another source.
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COROLLARY 2

§30 Therefore, if one sets b = 1, one has this sum

1
aa + 1

+
1

aa + 4
+

1
aa + 9

+ etc. =
π

2a
− 1

2aa
+

π

a(e2πa − 1)
,

and if furthermore one sets a = 0 that this series arises

1 +
1
4
+

1
9
+

1
16

+ etc.,

the sum of this series because of the terms growing to infinity will be derived
this way from the formula: Assume a to be infinitely small; it will be

e2πa = 1 + 2πa + 2ππaa +
4
3

π3a3

and hence the sum will be

=
π

2a
− 1

2aa
+

1
2aa + 2πa3 + 4

3 π2a4

=
πa + ππaa + 2

3 π3a3 − 1− πa− 2
3 π2aa + 1

2aa
(

1 + πa + 2
3 ππa2

) =
1
6

π2,

which, as it is known, is the sum of the series

1 +
1
4
+

1
9
+

1
16

+ etc.

COROLLARY 3

§31 If in the series found before

1
aa + bb

+
1

aa + 4bb
+

1
aa + 9bb

+ etc. =
π

2ab
− 1

2aa
+

π

ab(e2πa:b − 1)

the quantity a is considered as a variable and a differentiation is done, the sum
of the series B will arise; and so forth by means of continued differentiation
from the series A one will find the sums of the following series B, C, D, E etc.
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COROLLARY 4

§32 The sum of this series can be expressed more conveniently this way

1
aa + bb

+
1

aa + 4bb
+

1
aa + 9bb

+ etc. =
−1
2aa

+
π(e2πa:b + 1)

2ab(e2πa:b − 1)

=
−1
2aa

+
π(eπa:b + e−πa:b)

2ab(eπa:b − e−πa:b)
.

From this form the value of the series, if b is imaginary, is easily calculated;
for, let b = c√

−1
; it will be

1
aa− cc

+
1

aa− 4cc
+

1
aa− 9cc

+ etc. =
−1
2aa

+
π
(

e
πa
√
−1

c + e
−πa
√
−1

c

)√
−1

2ac
(

e
πa
√
−1

c − e
−πa
√
−1

c

) .

But it is
e

πa
√
−1

c + e
−πa
√
−1

c = 2 cos
πa
c

and
e

πa
√
−1

c − e
−πa
√
−1

c = 2
√
−1 · sin

πa
c

,

whence it is

1
aa− cc

+
1

aa− 4cc
+

1
aa− 9cc

+ etc. =
−1
2aa

+
π cos πa : c

2ac sin πa : c
.

COROLLARY 5

§33 Since it is cos (2k+1)π
2 = 0, in the cases, in which it is a = 2k + 1 and

c = 2, the sum of the series is

=
−1
2aa

= − 1
2(2k + 1)2 ,

while k is an arbitrary integer number. Hence it will be

1
(2k + 1)2 − 4

+
1

(2k + 1)2 − 16
+

1
(2k + 1)2 − 36

+
1

(2k + 1)2 − 64
+ etc. =

−1
2(2k + 1)2 ,

which summation I demonstrated elsewhere. For, if the single fractions are
resolved into partial fractions, it arises
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−1
2k + 1

=
1

2k− 1
+

1
2k− 3

+
1

2k− 5
+

1
2k− 7

+
1

2k− 9
+ etc.

+
1

2k + 3
+

1
2k + 5

+
1

2k + 7
+

1
2k + 9

+ etc.

COROLLARY 6

§34 Having brought the term −1
2k+1 to the other side and having collected

each two terms a new series will arise, whose sum is = 0. Of course, having
divided the single terms by 4k it will be

0 =
1

4kk− 1
+

1
4kk− 9

+
1

4kk− 25
+

1
4kk− 49

+
1

4kk− 81
+ etc.,

whose truth will easily reveal itself in the single cases.

PROBLEM 4

§35 To find the general term of the series, whose arbitrary term arises, if the preceding
is multiplied by a given number m and to that product a given number c is added,
and the first term of which series is equally given as = a.

SOLUTION

Therefore, the terms, which corresponds to integer indices, will behave this
way

1 2 3 4

a, ma + c, m2a + mc + c, m3a + m2c + mc + c etc.;

hence, if the index x is an integer number, the corresponding term will be

= mx−1a +
mx−1 − 1

m− 1
c.

But if x is not an integer, infinitely many other formulas except for this one
will equally satisfy; to find them let y be the term corresponding to the index
x and y′ the following or the one corresponding to x + 1; it will be

y′ = my + c,
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whence it will be

my + c = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.

Put
y = v− c

m− 1
and it will be

mv = v +
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 + etc.;

since this equation agrees with the one, which we found in the preceding
problem, if one puts sin πx = r and cos πx = s and Q is taken for an arbitrary
function of even dimensions of r and s, it will be

v = mxQ

and hence
y = mxQ− c

m− 1
.

Put x = 1, in which case it is r = 0 and s = −1, and let Q go over into C; it
must be

a = mC− c
m− 1

and hence it will be
C =

a
m

+
c

m(m− 1)
.

Hence, if for Q the constant quantity C itself is taken, it will be

y = mx−1a +
(mx−1 − 1)c

m− 1

for the simplest case. And if P is such a function of even dimensions of r and
s, which vanishes for x = 1, one will be able to put Q = C + P and the form
of the general term in question will be this one extending very far

y = mx−1a +
(mx−1 − 1)c

m− 1
+ mxP.

Q.E.I.
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PROBLEM 5

§36 To find the general term of recurring series of second order, in which each term
becomes equal to the aggregate of the two preceding terms multiplied by any arbitrary
numbers.

SOLUTION

Let

the term to which the index x corresponds =y,

the term to which the index x− 1 corresponds =′y,

V x− 2 corresponds =′′y,

and let this law of the recurring series be propounded that it is

y = α′y + β′′y.

Therefore, since it is

′y= y− dy
1 · dx

+
ddy

1 · 2 · dx2−
d3y

1 · 2 · 3 · dx3+
d3y

1 · 2 · 3 · 4 · dx4−etc.,

′′y= y− 2dy
1 · dx

+
4ddy

1 · 2 · dx2−
8d3y

1 · 2 · 3 · dx3+
16d4y

1 · 2 · 3 · 4 · dx4−etc.,

having substituted these formulas it will be

y =+ α

(
y− dy

1 · dx
+

ddy
1 · 2 · dx2 −

d3y
1 · 2 · 3 · dx3 +

d3y
1 · 2 · 3 · 4 · dx4 − etc.

)
+ β

(
y− 2dy

1 · dx
+

4ddy
1 · 2 · dx2 −

8d3y
1 · 2 · 3 · dx3 +

16d4y
1 · 2 · 3 · 4 · dx4 − etc.

)

To resolve this equation according to the general prescription put 1 for y, z for
dy
dx , z2 for ddy

dx2 etc. and it will be
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1 =+ α

(
1− z

1
+

zz
1 · 2 −

z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 − etc.
)

1 =+ α

(
1− 2z

1
+

4zz
1 · 2 −

8z3

1 · 2 · 3 +
16z4

1 · 2 · 3 · 4 − etc.
)

,

which equation is reduced to this finite form

1 = αe−z + βe−2z,

whose factors must be investigated. Therefore, having put e+z = u resolve this
equation

uu = αu + β,

of which either both roots are real or both are imaginary or finally both are
equal to each other. These three cases must be expanded separately.

I. Therefore, first let the two roots be real and different to each other, or let

uu− αu− β = (u− A)(u− B)

and hence by putting ez for u we will have the two general factors ez − A and
ez − B. But we saw above that the formula ez −m gave this integral

y = + Ax

C + α sin 2πx + β sin 4πx + γsin 6πx + etc.

+ Acos 2πx + Bcos 4πx + Ccos 6πx + etc.

 .

Therefore, both factors ez − A and ez − B taken together will give this value
for the general term y

y = + Ax

C + α sin 2πx + β sin 4πx + γsin 6πx + etc.

+ Acos 2πx + Bcos 4πx + Ccos 6πx + etc.



+ Bx

C + α′ sin 2πx + β′ sin 4πx + γ′sin 6πx + etc.

+ A′cos 2πx + B′cos 4πx + C′cos 6πx + etc.

 .

Or put sin πx = r and cos πx = s and let P and Q be arbitrary functions of
even dimensions of r and s and, if it was

31



uu− αu− β = (u− A)(u− B)

or if A and B are the roots of the equation uu− αu− β = 0, in this case it will
be

y = AxP + BxQ.

II. If both roots were imaginary, then certainly the same formula already
found can be used, since in each case the imaginary quantities cancel each
other; nevertheless, one can exhibit a formula for y free from all imaginary
quantities. For, in this case the equation uu− αu− β = 0 will obtain a form of
such a kind

uu− 2 f u cos ω + f f = 0,

whose roots are
u = f cos ω± f

√
−1 · sin ω,

such that it is

A = f cos ω + f
√
−1 · sin ω und B = f cos ω− f

√
−1 · sin ω.

But hence it will be

Ax = f x cos ωx + f x
√
−1 · sin ωx

and
Bx = f x cos ωx− f x

√
−1 · sin ωx.

Therefore, if these values are substituted for Ax and Bx, it will be

y = (P + Q) f x cos ωx + (P−Q)
√
−1 · f x sin ωx.

Since now P and Q are arbitrary functions of r and s, as long as they have
even dimensions, instead of P + Q write P and instead of (P−Q)

√
−1 put Q

and from the equation

uu− αu− β = uu− 2 f u cos ω + f f = 0
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the general term in question will be

y = f xP cos ωx + f xQ sin ωx.

III. If both roots A and B of the equation uu− αu− β = 0 were equal, say
A = B = m, one will have the equation

(ez −m)2 = 0.

As in § 23 put m = eλ; the first factor of the formula (ez − eλ)2 will be the
square = (z− λ)2, whence the this part of the integral arises

(A+Bx)eλx = (A+Bx)mx = (A+Bx)Ax.

All remaining ones will equally be quadratic and will be contained in this
general form

(λλ + 4kkππ − 2λz + zz)2,

from which according to the prescriptions given by me once this part of the
integral arises

Ax(A+Bx) sin 2kπx + Ax(C+Dx) cos 2kπx.

By collecting all these if follows, if it was

uu− αu− β = (u− A)2 = uu− 2Au + AA,

that the general term in question will be

y = Ax

A+Bx(C+Dx)sin 2πx+(G+Hx)sin 4πx+etc.

(E+ Fx)cos 2πx+(I+ Kx) cos 4πx+etc.

 .

Put sin πx = r and cos πx = s again and let P and Q be arbitrary even
functions of r and s and one will be able to express the general term in such a
way, that it is

y = Ax(P + Qx).

Q.E.I.
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COROLLARY 1

§37 Therefore, if in a recurring series the arbitrary term y is determined
by the two preceding ones ′y and ′′y in such a way that it is y = α′y + β′′y,
or if according to de Moivre +α, +β was the scale of relation, and if x was
the index of the term y, y will be a highly undetermined function of x, since
innumerable formulas can be exhibited, which yield satisfying values for y.

COROLLARY 2

§38 But to find all expressions for y from the scale of relation +α, +β form
this equation uu− αu− β = 0, from whose resolution the form of the general
term y will be found in the following manner.

COROLLARY 3

§39 Let the roots of the equation

uu− αu− β = 0

be A and B such that it is

A =
1
2

α +

√
1
4

αα + β and B =
1
2

α−
√

1
4

αα + β,

and having put sin πx = r and cos πx = s take any arbitrary functions of r
and s, which shall be P and Q; it will be

y = AxP + BxQ =

(
1
2

α +

√
1
4

αα + β

)x

+

(
1
2

α−
√

1
4

αα + β

)x

Q.

COROLLARY 4

§40 But if both roots of the equation uu = αu + β were equal, that formula
because of β + 1

4 αα = 0 is useless. But in this case, since both roots are 1
2 α, if

one puts 1
2 α = A, the general term will be

y = Ax(P + Qx).
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COROLLARY 5

§41 But if 1
4 αα + β is a negative quantity, the parts found before will be

imaginary. Therefore, to find the imaginary form compare the equation

uu− αu− β = 0

to this one
uu− 2 f u cos ω + f f = 0;

it will be
f =

√
−β und α = 2

√
−β · cos ω

or

cos ω =
α

2
√
−β

and sin ω =

√
−4β− αα

2
√
−β

=

√
1 +

αα

4β
,

whence the angle ω will be found, from which it will be

y = f x(P cos ωx + Q sin ωx).

COROLLARY 6

§42 If for P and Q constant quantities are assumed, the same form of the
general term arises, which is usually exhibited and is considered as the
only one, which satisfies the condition. But having propounded an arbitrary
determined series one has to define these two constant quantities from the
first two terms, which are assumed to be given. But in general, since the two
arbitrary functions P and Q enter, which, as often as x is an integer number,
will obtain the same constant values, it is plain that two terms of the series
corresponding to integer indices can be assumed ad libitum.

SCHOLIUM

§43 This method to find the general terms of recurring series is mainly
remarkable for that reason that it not only exhibits all possible forms but
also proceeds a priori and completes the task from analytical principles alone,
whereas others, which treated those series, all got to the special form of the
general term on an indirect way. For, it is the principal property and quasi a
criterion of a direct method, that it not only from the principles of the subject
themselves finds its nature, but also contains all ways of determinations at
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the same time. But an indirect method, even though they often yield short
and elegant solutions of problems, nevertheless very rarely exhaust the nature
of the question in consideration. An extraordinary example of this difference
is seen in the preceding problem, but will even occur more clearly in the
following problem, where in general the general terms of all recurring series
will be investigated.

PROBLEM 6

§44 To find the general term of recurring series of arbitrary order, whose arbitrary
term becomes equal to an aggregate of several of the preceding terms multiplied by
arbitrary numbers.

SOLUTION

Let the term corresponding to the index x be = y, but denote the preceding
terms, which correspond to the indices x− 1, x− 2, x− 3, x− 4 etc., by ′y, ′′y,
′′′y, IVy and let this law of the series be propounded that one everywhere has

y = α ′y + β ′′y + γ ′′′y + δ IVy + etc.

Since now from the nature of differentials it is

′y=y− dy
1 · dx

+
ddy

1 · 2 · dx2−
d3y

1 · 2 · 3 · dx3+etc.,

′′y=y− 2dy
1 · dx

+
22ddy

1 · 2 · dx2−
23d3y

1 · 2 · 3 · dx3+etc.,

′′′y=y− 3dy
1 · dx

+
32ddy

1 · 2 · dx2−
33d3y

1 · 2 · 3 · dx3 +etc.

etc.,

if these values are substituted there, an equation will arise, in whose single
terms one dimension of the variable y occurs, but of the other variable x
only the differential dx, which is assumed to be constant, enters. Hence, if
everywhere 1 is set instead of y, z instead of dy

dx and generally zm instead of
dmy
dxm , having done the reduction this equation will emerge

1 = αe−z + βe−2z + γe−3z + δe−4z + etc.
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Now let ez = u, and having got rid of the fractions an algebraic equation of
this kind will arise

un = αun−1 + βun−2 + γun−3 + δun−4 + etc.,

which will be of so many dimensions as preceding terms are required for the
determination of the term y or of what order the recurring series itself was.
Now the form of the general term y will be concluded from the roots of this
equation or from the factors of this formula

un − αun−1 − βun−2 − γun−3 − δun−4 − etc. = U

in the same way we did it in the solutions of the problems propounded until
now: Of course, if it is sin πx = r and cos πx = s and P, Q, R, S, T etc. denote
arbitrary functions of even dimensions of r and s, further, investigate all real
so simple as trinomial factors of the formula U and, if some of them were
equal, express them combined by means of powers. But these single factors
will yield as many parts of the general terms y, which parts will be formed by
means of the following rules:

I. If one factor is u− A, the part of the integral will be

y = AxP.

II. If the factor is (u− A)2, the part of the integral will be

y = Ax(P + Qx).

III. If the factor is (u− A)3, the part of the integral will be

y = Ax(P + Qx + Rx2).

IV. If the factor is (u− A)4, the part of the integral will be

y = Ax(P + Qx + Rx2 + Sx3).
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etc.

1. If the factors is u− 2Au cos ω + AA, it will be

y = Ax(P cos ωx + Q sin ωx).

2. If the factor is (u− 2Au cos ω + AA)2, it will be

y = Ax(P + Qx) cos ωx + Ax(R + Sx) sin ωx

3. If the factor is (u− 2Au cos ω + AA)3, the part will be

y =+ Ax(P+Qx+Rxx) cos ωx

+ Ax(S+T x+Vxx) sin ωx

etc.

Therefore, if for the single factors of the formula U hence the parts of the
integral are found and the are combined into one sum, one will have the
complete value for the general term in question. Q.E.I.

COROLLARY 1

§45 Therefore, this way one obtains the complete integral of the following
infinite differential equation
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y = y (α + β + γ + δ + etc.)

− dy
1 · dx

(α + 2 β + 3 γ + 4 δ + etc.)

+
ddy

1 · 2 · dx2 (α + 22β + 32γ + 42δ + etc.)

− d3y
1 · 2 · 3 · dx3 (α + 23β + 33γ + 43δ + etc.)

+
d4y

1 · 2 · 3 · 4 · dx4 (α + 24β + 34γ + 44δ + etc.)

etc.

or the value of y will be expressed by means of a function of x.

COROLLARY 2

§46 Therefore, the complete difficulty is reduced to the resolution of the
algebraic equation

un = αun−1 + βun−2 + γun−3 + δun−4 + etc.

For having found its roots or factors it is easy to determine the value of y
by means of the rules given before.

COROLLARY 3

§47 Since by integration so many arbitrary quantities P, Q, R, S etc. are
introduced as the exponent n contains unities or as preceding terms enter into
the determination of the following, it is manifest that as many terms can be
taken ad libitum, from which all remaining ones, whose indices are integer
numbers, are determined. This is nevertheless no obstruction that the terms
of the non integer indices stay most undetermined, as it was already noted in
the preceding problems.

PROBLEM 7

§48 If any arbitrary term of the series becomes equal to a certain constant quantity
c together with an aggregate of several preceding terms multiplied by given numbers
(as in the preceding problem), to find the general term of this series.
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SOLUTION

Having as before put the term corresponding to the undetermined index x
= y let the preceding ones corresponding to the indices y− 1, x− 2, x− 3 etc.
be ′y, ′′y, ′′′y etc. and let this law of progression be propounded

y = c + α ′y + β ′′y ++γ ′′′y + δ IVy + etc.;

therefore, having propounded the values exhibited above for ′y, ′′y, ′′′y, IVy
etc. it will be

y =c + y (α + β + γ + δ + etc.)

− dy
1 · dx

(α + 2 β + 3 γ + 4 δ + etc.)

+
ddy

1 · 2 · dx2 (α + 22β + 32γ + 42δ + etc.)

− d3y
1 · 2 · 3 · dx3 (α + 23β + 33γ + 43δ + etc.)

etc.

Now, to get rid of the constant term c from the equation put y = v + g and let

g = c + g(α + β + γ + δ + etc.)

and hence
g =

c
1− α− β− γ− δ− etc.

.

Having done this because of dy = dv, ddy = ddv etc. one will have this
equation:

v = v (α + β + γ + δ + etc.)

− dv
1 · dx

(α + 2 β + 3 γ + 4 δ + etc.)

+
ddv

1 · 2 · dx2 (α + 22β + 32γ + 42δ + etc.)

etc.

Since this equation is similar to the one we resolved in the preceding problem,
the value of v will be found by means of the rules given there. Having found
this one will have the general term in question

y = v +
c

1− α− β− γ− δ− etc.
,
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whence the nature of the propounded series will become known. Q.E.I.

COROLLARY 1

§49 Therefore, the constant quantity c, which is added to the formula

α ′y + β ′′y + γ ′′′y + etc.,

does only affect the general term y in that regard that it adds a constant to it.
Therefore, find the general term for the pure recurring series, whose relation
scale is +α, +β, +γ, +δ etc., and to it add the number c

1−α−β−γ−etc. .

COROLLARY 2

§50 But this constant quantity to be added c
1−α−β−γ−etc. becomes infinite and

hence uncertain, if the denominator vanishes or if it is

1− α− β− γ− δ− etc. = 0.

But in this case the equation

un − αun−1 − βun−2 − γun−3 − etc. = 0

will have the root u− 1 = 0, whence the part y = P of the integral arises; this
quantity P, that not all terms become infinite, must be infinite in such a way
that it together with that infinite constant yields a finite quantity, which will
be = P + Qx.

SCHOLIUM 1

That this becomes more clear, it is to be observed that series of this kind, as
we considered here, can always be reduced to pure recurring series higher by
one degree. For, if it is

y = c + α ′y + β ′′y + γ ′′′y + δ IVy,

it will be
′y = c + α ′′y + β ′′′y + γ IVy + δ Vy,

whose difference gives

y = (α + 1) ′y + (β− α) ′′y + (γ− β) ′′′y + (δ− γ) IVy− δ Vy,
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which is the law for a pure recurring series, whose general term will be formed
from the resolution of this equation:

un+1 − (α + 1)un − (β− α)un−1 − (γ− β)un−2 − etc. = 0.

But one factor of this is already known, namely u− 1, because it is

(u− 1)(un − αun−1 − βun−2 − γun−3 − etc.) = 0.

But the factor u− 1 gives the part 1xP of the integral only then, whenever not
at the same time it is a factors of the other form un − αun−1 − etc.; but if this
also has the factor u− 1 or its power as a factor, the exponent of this must
be augmented by the unity and hence the corresponding part of the integral
must be investigated. But having found the general term y this way, because
in it the quantity c is not contained, it will be too general; therefore, it must
be restricted to the propounded case. Of course, from the value of y find the
values of the preceding terms ′y, ′′y, ′′′y etc. by putting x− 1, x− 2, x− 3 etc.
instead of x etc., where it is to be noted that the functions P, Q, R etc. retain
the same values and hence experience no change. Further, substitute these
values in the equation

y = c + α ′y + β ′′y + γ ′′′y + δ IVy + etc.

and this way one of the those functions P, Q, R etc. will be determined. So, if
this law of the series is propounded

y = c + 3′y− 2′′y,

hence this equation will arise

(u− 1)(u2 − 3u− 2)) = 0,

whose factors are
(u− 1)2(u− 2) = 0,

from which this general term is concluded

y = P + Qx + 2xR;

therefore, it will be
′y = P + Qx−Q + 2x−1R
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and
′′y = P + Qx− 2Q + 2x−2R,

which substituted will give this equality

P + Qx + 4 · 2x−2R = c + Qx + Q + 4 · 2x−2R,

whence one finds Q = −c; and so the general term corresponding to the
propounded law will be

y = P− cx + 2xR,

where for P and R one can assume arbitrary functions of even dimensions of
r and s.

SCHOLIUM 2

§52 Therefore, since we gave a universal method to find the general term of
series, each term of which is determined by means of the preceding ones, if no
powers of the preceding terms occur, let us accommodate this same method to
series, each term of which is not only determined from the preceding ones but
also the index itself, in which we constituted the third class of the formation
of series. But if squares or higher powers enter into the determination of the
following term, as if it was

y′ = yy + ay,

that the infinite differential equation, by which the general term is found, is
certainly easily exhibited, which in this case will be

yy + ay = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 + etc.;

but since until now no artifice is known to resolve equations of this kind, we
are forced to omit the treatment of this class of series here.

PROBLEM 8

§53 To find the general term of the series, whose arbitrary term corresponding to the
index x becomes equal to an multiple of the preceding together with a multiple of the
index and a certain constant quantity.
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SOLUTION

Let y be the term corresponding to the index x and let y′ denote the following
terms and let this law of the series be propounded

y′ = my + a + bx,

from which the value of y must be defined. Therefore, if for y′ we substitute
its value, we will have this equation:

a + bx + my = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 + etc.

Even though I taught to resolve equations of this kind in general, it will
nevertheless be helpful to resolve this equation into another one, in which all
terms contain only one dimension of y. Therefore, put

y = A + Bx + v;

it will be
dy = Bdx + dv, ddy = ddv etc.

and it will be

a + b x = A + Bx + v +
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 + etc.

+mA+mBx +B

Now let

A + B = a + mA and B = b + mB

and one will find

B =
−b

m− 1
and A =

−b
(m− 1)2 −

a
m− 1

.

Therefore, this equation will remain

mv = v +
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 + etc.;
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since this is reduced to ez −m = u−m = 0, it will be

v = mxP

and hence the general term in question

y =
−b

(m− 1)2 −
a + bx
m− 1

+ mxP.

Here, the one case is excluded, in which it is m = 1, because of the vanishing
denominator m− 1. For, since in this case one will have

a + bx = v +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 + etc.,

to get rid of the term bx one has to take a value of this kind for y

y = A + Bx + Cxx + v,

whence it is

dy
dx

= B + 2Cx +
dv
dx

und
ddy
dx2 = 2C +

ddv
dx2 ;

and so one will have

a + bx = B + 2Cx +
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 + etc.

+C

Therefore, let it be

C =
1
2

b and B = a− 1
2

b

and it will be v = P and the general term

y = A +

(
a− 1

2
b
)

x +
1
2

bxx + P,

or since A can be contained in the function P, it will be

y =

(
a− 1

2

)
x +

1
2

bxx + P.

Q.E.I.
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SCHOLIUM

§54 But series of this kind can be reduced to the law of simple recurring
series. For, because it is

y′ = a + bx + my,

it will be
y′′ = a + b(x + 1) + my′,

whence by subtracting it will be

y′′ − y′ = b + my′ −my;

in similar manner it will be

y′′′ − y′′ = b + my′′ −my′

and by subtracting again

y′′′ − 2y′′ + y′ = my′′ − 2my′ + my

or
y′′′ = (m + 2)y′′ − (2m + 1)y′ + my

or for the preceding terms

y = (m + 2) ′y− (2m + 1) ′′y + m ′′′y.

Therefore, hence according to § 51 this equation will be formed

u3 − (m + 2)u2 + (2m + 1)u−m = 0,

which has these factors
(u− 1)2(u−m) = 0,

from which this general term arises

y = P + Qx + mxR.

Now to accommodate this too far extending formula to the propounded case
y′ = a + bx + my, because of

y′ = P + Qx + Q + m ·mxR
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it will be

P + Q + Qx + m ·mxR = a + bx + mP + mQx + m ·mxR

and hence
P + Q = a + mP and Q = b + mQ,

whence it is found

Q =
−b

m− 1
und P =

−b
(m− 1)2 −

a
m− 1

,

such that the general term, as it was found before, is

y =
−b

(m− 1)2 −
a + bx
m− 1

+ mxR.

But if it is m = 1, it is immediately plain that the three factors of the equation
(u − 1)2(u − m) = 0 will be equal and that it is (u − 1)3 = 0, whence the
general term is

y = P + Qx + Rxx

and hence

y′ = P+ Qx+Rxx =P+Qx + Rxx

+ Q+2R x a +b x

+ R

Therefore, it arises

R =
1
2

b und Q = a− 1
2

b,

such that the general term is

y = P +

(
a− 1

2
b
)

x +
1
2

bxx,

as before. In similar manner it is clear, if the law of progression in general is

y = X + α ′y + β ′′y + γ ′′′y ++δ IVy + etc.

47



and X is a polynomial function of x, as

X = a + bx + cxx + dx3 + etc.,

that by continued subtraction one finally gets to a law by which the single
terms are determined by the preceding ones alone, and so the series will
always be recurring, whose general term can be defined by the prescriptions
given before. But this term will extend too far and therefore by finding the
values of the terms ′y, ′′y, ′′′y etc. must be accommodated to the propoun-
ded law, having done which always so many functions P, Q, R etc. will be
determined as letters a, b, c, d etc. were eliminated by subtraction. Therefore,
because series of this kind do no longer cause any difficulties, let us consider
other ones, in which X is neither a rational nor a polynomial function of x.

PROBLEM 9

§55 To find the general term of the series, whose arbitrary term becomes equal to the
preceding one together with an arbitrary function of the index itself.

SOLUTION

Let the term corresponding to the index x be = y and its preceding one

′y = y− dy
1 · dx

+
ddy

1 · 2 · dx2 −
d3y

1 · 2 · 3 · dx3 +
d4y

1 · 2 · 3 · 4 · dx4 − etc.

But let the law of progression be

y =′ y + X,

whence it will be

X =
dy

1 · dx
− ddy

1 · 2 · dx2 +
d3y

1 · 2 · 3 · dx3 −
d4y

1 · 2 · 3 · 4 · dx4 + etc.,

which equation is resolved by means of the rules I gave some time ago. Of
course, by putting zn for dny

dxn form this expression

Z = z− z2

1 · 2 +
z3

1 · 2 · 3 −
z4

1 · 2 · 3 · 4 + etc. = 1− e−z,
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all factors of which must be found, the first of which will be z; the remaining
one are contained in this general form zz + 4kkππ. But from the factor z− 0
this part of the integral will arise

y =
∫

Xdx + etc.

But from the factor zz+ 4kkππ, if it is compared to the formula zz− 2kz cos ϕ+
kk, it will be k = 2kπ and cos ϕ = 0, whence it is ϕ = 90◦, and hence the
letters M and N because of

A = 0, B = 1, C =
−1
1 · 2, D =

1
1 · 2 · 3 etc.

will be determined in such a way

M =1−4k2π2

1 · 2 +
16k4π4

1 · 2 · 3 · 4−
64k6π6

1 · 2 · 3 · 4 · 5 · 6 + etc.,

N = − 2kπ

1
+

8k3π3

1 · 2 · 3 −
32k5π5

1 · 2 · 3 · 4 · 5 + etc.,

that it is
M = cos 2kπ und N = − sin 2kπ.

Having found these values the part of the integral to arise from the factor
zz + 4kkππ will be

y = 2

(cos 2kπcos 2kπx−sin 2kπsin 2kπx)
∫

Xdxcos 2kπx

(cos 2kπsin 2kπx+sin 2kπcos 2kπx)
∫

Xdxsin 2kπx

 ;

but it is sin 2kπ = 0, cos 2kπ = 1, whence it will be

v = 2 cos 2kπx
∫

Xdx cos 2kπx + 2 sin 2kπx
∫

Xdx sin 2kπx.

If now all these values to arise from the variability of the number k are
collected into one sum, the general term in question will arise:
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y =
∫

Xdx + 2 cos 2πx
∫

Xdx cos 2πx + 2 cos 4πx
∫

Xdx cos 4πx

+ 2 cos 6πx
∫

Xdx cos 6πx + etc.

+ 2 sin 2πx
∫

Xdx sin 2πx + 2 sin 4πx
∫

Xdx sin 4πx

+ 2 sin 6πx
∫

Xdx sin 6πx + etc.

Q.E.I.

COROLLARY 1

§56 Since it is y =′ y + X, it is manifest that y expresses the summatory term
of the series, whose general term is = X. For, if the sum of all terms from the
first to this one X, whose index is = x, is put = y, it will be the sum of all
except for the last =′ y and hence y =′ y + X.

COROLLARY 2

§57 Therefore, the found expression y or the general term of the propounded
series at the same time is the summatory term of the series, whose general
term is = X; and so we obtained a new expression for the sum of a series,
whose general term is given; but because of the infinite amount of integrals it
will very rarely be of any use.

SCHOLIUM

§58 If except for the arbitrary function of the index x not only the closet
preceding term but also more of the preceding terms are used for the formation
of the following term of the series, in similar manner one will get to the
resolution of an infinite differential equation, which can be treated by means
of the method propounded by me. Therefore, not only the series, whose law
of formation extends to the second class, by the method explained here can
be reduced to a calculation and their general terms can be found, but it also
equally extends to the third class and shows the true nature of those series
even more clearly.
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PROBLEM 10

§59 To find the general term of the series, whose arbitrary term is equal to the
preceding term multiplied by its index.

SOLUTION

If the first term is put equal to unity, Wallis’s hypergeometric series will arise

Indices: 1, 2, 3, 4, 5, 6, 7, 8, 9 etc.

Terms: 1, 1, 2, 6, 24, 120, 720, 5040, 40320 etc.

Put the term corresponding to the index x = y and the one following it = y′;
it will be

y′ = yx,

whence this equation arises

yx = y +
dy

1 · dx
+

ddy
1 · 2 · dx2 +

d3y
1 · 2 · 3 · dx3 +

d4y
1 · 2 · 3 · 4 · dx4 + etc.;

but for solving such an equation no general rule is known. But in a simple
task this equation is transformed into another one, which can be resolved. Of
course, out y = ev; it will be y′ = ev′ and hence it will be ev′ = evx and having
taken logarithms

v′ = v + log x,

whence one will have

log x =
dv

1 · dx
+

ddv
1 · 2 · dx2 +

d3v
1 · 2 · 3 · dx3 +

d4v
1 · 2 · 3 · 4 · dx4 ++

d4v
1 · 2 · 3 · 4 · 5 · dx5 + etc.,

which equation is contained in the preceding one by taking X = log x; there-
fore, the integral will be

v =
∫

dx log x + 2 cos 2πx
∫

dx log x cos 2πx + 2 cos 4πx
∫

dx log x cos 4πx + etc.

+ 2 sin 2πx
∫

dx log x sin 2πx + 2 sin 4πx
∫

dx log x sin 4πx + etc.

But having found the value of v the general term in question will be ev while
e denotes a number, whose hyperbolic logarithm is = 1. Q.E.I.
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SCHOLIUM

§60 The first term of this expression is
∫

dx log x = x log x− x, the remaining
single terms can be integrated by means of infinite series. For, it is

∫
dx log x cos mx =+

1
m

sin mx
(

log x +
1

m2x2 −
1 · 2 · 3
m4x4 +

1 · 2 · 3 · 4 · 5
m6x6 − etc.

)
+

1
m

cos mx
(

1
mx

− 1 · 2
m3x3 +

1 · 2 · 3 · 4
m5x5 − etc.

)
∫

dx log x sin mx= − 1
m

cos mx
(

log x +
1

m2x2 −
1 · 2 · 3
m4x4 +

1 · 2 · 3 · 4 · 5
m6x6 − etc.

)
+

1
m

sin mx
(

1
mx

− 1 · 2
m3x3 +

1 · 2 · 3 · 4
m5x5 − etc.

)

Hence it is concluded that it will be

2 cos mx
∫

dx log x cos mx + 2 sin mx
∫

dx log x sin mx

=
2

mmx

(
1− 1 · 2

m2x2 +
1 · 2 · 3 · 4

m4x4 − 1 · 2 · 3 · 4 · 5 · 6
m6x6 + etc.

)
+ α cos mx+A sin mx.

Now having successively substituted the values 2π, 4π, 6π etc. for m and
having collected all these expressions one will find

v = C + x log x− x+
1

2π2x

(
1+

1
4
+

1
9
+

1
16

+etc.
)
+α cos 2πx+A sin 2πx

− 1 · 2
8π4x3

(
1+

1
42+

1
92+

1
162+etc.

)
+β cos 4πx+B sin 4πx

−1 · 2 · 3 · 4
32π6x5

(
1+

1
43+

1
93+

1
163+etc.

)
+γ cos 6πx+ C sin 6πx

etc.

If now for the these series of powers the sums found be me a long time ago
are substituted, one will have
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v = C + x log x− x + α cos 2πx + β cos 4πx + γ cos 6πx + etc.

+A sin 2πx +B sin 4πx + C sin 6πx + etc.

+
1

1 · 2 · 3 ·
1

2x
− 1

3 · 4 · 5 ·
1

6x3 +
1

5 · 6 · 7 ·
1

6x5 −
1

7 · 8 · 9 ·
3

10x7 +
1

9 · 10 · 11
· 5

6x9 − etc.,

or if P is a function of even dimensions of r = sin πx and s = cos πx, it will
be

v = P + x log x− x +
1

1 · 2 · 3 ·
1

2x
− 1

3 · 4 · 5 ·
1

6x3 +
1

5 · 6 · 7 ·
1

6x5 − etc.

Since now having put x = 1 it is y = 1 and v = 0, in this case it must be

P = 1− 1
1 · 2 · 3 · 2 +

1
3 · 4 · 5 · 6 −

1
5 · 6 · 7 · 6 +

3
7 · 8 · 9 · 10

− etc.,

whose value I showed elsewhere to be

P =
1
2

log 2π.

and it will have this value, as often as x is an arbitrary integer. Hence by going
back to numbers, one will find the general terms in question

y =
xx

ex · e
1

1·2·3 ·
1

2x−
1

3·4·5 ·
1

6x3 +
1

5·6·6 ·
1

x5−etc.√2π

or
y =

xx

ex · e
1

12x−
1

360x3 +
1

1260x5 .etc.√2π.

Hence, if x is a very large number, it will approximately be

y =
xx

ex

(
1 +

1
12x

+
1

288x2 −
139

51840x3 + etc.
)√

2π

and so the magnitude of each terms moved from the beginning very far is
easily approximately assigned.
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