ON FINDING FINITE DIFFERENCES *

Leonhard Euler

§44 How from the finite differences of the functions their differentials can
easily be found, we explained at the beginning and even derived the principle
of differentials from this source. For, if the differences, if they were assumed
to be finite, vanish and go over into nothing, the differentials arise; and
because in this case many and often innumerable terms, which constitute
the finite difference, are neglected, the differentials can be found a lot easier
and expressed both more convenient and succinct than the finite differences.
And therefore there seems to be no way to ascend from differentials to finite
differences. Nevertheless, by the method we will use here one will be able to
define the finite differences from the differentials of all orders of any function.

§45 Let y be any function of x; because this having put x + dx for x goes
over into y + dy, if again instead of x it is put x + dx, the value y + dy will be
augmented by its differential dy + ddy and it will be = y + 2dy + ddy which
value therefore corresponds to x + 2dx put instead for x. In similar way, if we
put that x is continuously augmented by its differential dx that it successively
takes the values x + dx, x 4 2dx, x + 3dx, x + 4dx etc., the corresponding
values of y will be those which this table indicates.

*Original title: “ De Inventione Differentiarum Finitarum”, first published as part of the book
,Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, 1755",
reprinted in in , Opera Omnia: Series 1, Volume 10, pp. 256 - 275 “, Enestrom-Number E212,
translated by: Alexander Aycock for the , Euler-Kreis Mainz*”



Values of Corresponding Values of the Function
x Yy
x+1ldx |y +dy
x+2dx |y +2dy +ddy
x+3dx |y +3dy +3ddy +d
x+4dx |y +4dy +eddy +4dy  +dy
x+5dx |y +5dy +10ddy +10d%y +5d'y +d°y
x+6dx |y +6dy +15ddy +20d% +15d%y +6d°y +d%
etc. etc.

§46 Therefore, if in general x goes over into x + ndx, the function y will take
this form

(n—l)dd +71(71—1)(11—2)613 +71(11—1)(11—2)(11—3)

4 .
1.2 1-2-3 y 1-2-3-4 4y +ete;

n n
y+ Tdy +

even though in this expression any term is infinitely smaller than its preceding
term, we nevertheless did not leave out any term, that this formula is rendered
apt for the present task. For, we will assume an infinitely large number for
n, and since we know that it can happen that the product of an infinitely
large and an infinitely small quantity becomes equal to a finite quantity, the
second term can certainly become homogeneous to the second or the quantity
ndy can represent a finite quantity. Because of the same reason the third

term ”(El) ddy, even though ddy is infinitely smaller than ddy, nevertheless,

because the one factor n('f.gl) is infinitely larger than n, can also express a
finite quantity; and so having put n to be an infinite number, it is not possible

to neglect any term of that expression.

§47 But having put n to be an infinite number, by whatever finite number
it is either augmented or diminished, the resulting number will have the
ratio of equality to n and hence one can write the number n for the single

factors n — 1, n — 2, n — 3, n — 4 etc. everywhere. For, because it is "('11_;1) ddy =
Innddy — Inddy, the first term 3nnddy will have a ratio to the second 3nddy
of n to 1 and so it will vanish with respect to the latter; therefore, instead

of ”('11_;1) one will be able to write %nn. In similar manner, the coefficient of




the fourth term ”(n%)(;_’j) can be contracted to %3 and in the same manner

one can neglect the numbers, by which 7 is diminished in the factors, in
the following. But having done this, the function y, if in place of x one puts

x + ndx while n is an infinite number, will take the following value
d dd 343 44
ndy n nnddy — n°d’y n n*d*y .

y+t 12 "123 12321

n’dy
2:3-4-

tc.
3 + etc

5

§48 Because therefore having taken 7 as infinitely large number, even though
dx is infinitely small, the product ndx can express a finite quantity, let us put
ndx = w that itis n = 57; n will certainly be an infinite number, because it is
the quotient resulting from a division of the finite quantity w by the infinitely
small dx. But having used this value instead of 7, if the variable quantity x is
augmented by a certain quantity w or if instead of x one puts x + w, then a
certain function y of it will go over into this form

343

w?ddy w

+a)dy+ n y whdty
YT Tdx " 1-2dx2 " 1-2-3dx® ' 1-2-3 - 4dx®

the single terms of which expression can be found by continued differentiation

of y. For, because y is a function x, we showed above that these functions Z—Z,
%, % etc. all exhibit finite quantities.

_|_

+ etc.,

§49 Because therefore while the variable quantity x is assumed to be aug-
mented by the finite quantity w, any function y of it is augmented by its first
difference, which above we indicated by Ay where w = Ax, one will be able
to find the difference of y by continued differentiation; for, it will be

whdty
24dx*

_wdy | @?ddy | &y

Ay dx * 2dx? + 6dx3

+ etc.

_|_

or
Ax Ay  Ax? ddy AP By Axt dYy
Ay:T'E-FT'E'FT'@‘Fj'@-I‘GtC.

And so the finite difference Ay is expressed by a progression whose single
terms proceed in powers of Ax. And hence vice versa it is clear, if the quantity
x is augmented only be an infinitely small quantity, that Ax goes over into its
differential dx, that all terms compared to the first vanish and that it will be
Ay = dy; for, having set Ax = dx the difference, by definition, Ay goes over

into the differential dy.



§50 Because, if instead of x it is put x 4+ w, any function y of it takes the
following value

wdy wrddy PPy widty

dx " 2de T edd | 24dxt
the validity of this expression can be probed in examples of such a kind in
which the higher differentials of y finally vanish; for, in these cases the number
of terms of the superior expression will become finite.

y+ + etc.,

EXAMPLE 1

The value of the expression xx — x shall be sought after, if instead of x one puts x + 1.

Put y = xx — x, and because it is set that x goes over into x 4 1, it will be
w = 1; now, having taken the differentials, it will be

dy ddy dy
a_Zx—l, @_2’ E_O etc.

Hence, the function y = xx — x having put x + 1 instead of x will go over into

1
xx—x—|—1(2x—1)—|—§-2:xx—|—x.

But if in xx — x one actually puts x + 1 instead of x,
xx will go over into  xx +2x +1
x will go over into +x +1
S0, in total

xx —x will go over into xx + x

EXAMPLE 2

The value of the expression x> + xx + x shall be sought after, if instead of x it is put
x+ 2.

Put y = x® + xx + x and it will be w = 2; now, because it is

y:x3—|—xx+x,



it will be

dy ddy d3y_ d4y_
%—3xx+2x+1, W—6x+2, @—6, @—O etc.

From these the value of the function y = x3 + xx + x, if for x one sets x + 2,
will be the following

4
x3—|—xx+x—|—2(3xx—|—2x+1)—|—§(6x+2) —1—2-6: X3+ 7xx +17x + 14,
which same arises, if instead of x actually x + 2 is substituted.

EXAMPLE 3

The value of the expression xx + 3x + 1 shall be sought after, if instead of x one puts
x—3.

Therefore, it will be w = —3, and having put

y=xx+3x+1
it will be
dy ddy d3y_
a_2x+3, @_2, @—0 etc.,

whence having put x — 3 instead of x the function x> + 3x + 1 will go over
into

3 9
x2+3x+1—I(2x+3)+§-2:x2—3x+1.

§51 If for w a negative number is taken, one will find the value, which any
function of x takes, if the quantity x is diminished by the given quantity w.
Of course, if instead if x one puts x — w, an arbitrary function y of x will take
this value

wdy wrddy PPy widty

Codx T o2dx? 0 6dx T 24dxt

whence all variations, the function y can undergo, while the quantity x is
changed anyhow, can be found. But if y was a polynomial function of x, since

—etc.,



one finally gets to vanishing differentials, the varied value will be expressed
by means of a finite expression; but if y was not a function of this kind, the
varied value will be expressed by means of an infinite series, whose sum,
since, if the substitution is actually done, the varied value is easily assigned,
can be exhibited by a finite expression.

§52 But as the first difference was found, so also the following differences
can be exhibited by similar expressions. For, let x successively take the values
X+ w, x + 2w, x + 3w, x + 4w etc. and indicate the corresponding values
of y by ¥}, y1I, yI, yIV etc., as we put in the beginning of this book. Since
therefore y', !, yI!, 4V etc. are the values, which y obtains, if instead of y
one respectively writes x + w, x + 2w, x + 3w, x + 4w etc., by means of the
demonstrated method the values of these ys will be expressed this way:

I wdy w?ddy w3d3y whdty

VoEVt e T e U e T o T
oy i T
e N T
yWo=y+ 4‘;? + 16;?2@ - 646°‘ny + 2526::;4y + etc.

etc.

§53 Because therefore, if Ay, Azy, A3y, A4y etc. denote the first, second, third,
fourth etc. differences, it is

Ay =y —y

Ay =y" =2 +y

A3y — yIH o 3yH + 3y1 —y

A4y — yIV o 4yHI + 6]/H . 4]/1 + y
etc,,

these differences by means of differentials will be expressed this way:



wdy | w?ddy WPy widty

Ay dx + dx? + 6dx3 + 24dx* +ete.

R

Ay — (3°—3- 236;1;2 - 1)wid%y N (3*—3. 2:4;;- 1)whd*y L et

Aty = (44 — 4.3 +264‘d2;4_ 4-1)whdty N (45 —4.3 +1626521i5_ 4-1)wddy ©ete.
etc.

§54 Of how much use these expressions of differences are in the doctrine of
series and progressions, is immediately clear and we will explain it in greater
detail in the following. Meanwhile, in this chapter we want to consider use,
which immediately follows from this for understanding of series. Although
usually the indices of the terms of a certain series are assumed to constitute
an arithmetic progression whose difference is the unity, that the use extends
further and the application is easier, let us nevertheless set the difference = w,
such that, if the general term or that corresponding to the index x, was x, the
following correspond to the indices x + w, x + 2w, x 4 3w etc. If therefore to
these indices correspond the following terms

X, x+w, x+2w, x+3w, x—+4w etc
Y, P, Q, R, S, etc.

the single terms will be defined from y and its differential this way:

_ wdy — wddy — W3dPy whdty
P=vt "0 22 T ead T oaaad T
 2wdy | 4Awlddy 903y lewtdty
Q=v+—"0n " 202 " ea T oaaa TO©
2 3,43 474
R=y+ 3wdy L wddy = 27w>d°y  8lw*d*y +ete.

dx 2dx2 6dx3 24d x4



dwdy | 16wrddy | 64widPy | 256wtdty
SEVT T 2dx2 6dx3 2aqt Tet©
_ Swdy | 25w?ddy  125w3d%y  625wtdty
T=y+-% 2dx2 6dx3 2aqt Tet©
etc.

§55 If these expressions are subtracted from each other, y will not longer go
into the differences and it will be

Py =l G G S e
2 343 4 74
Q-F= cjliy 3;}011? 7Zdj3y 152Zdj4y ete.
ot e ey ey
2 343 4 74
S—R = a;iy 7;] ‘;ny 37;;;)5 1725:;;; + etc.
etc.

If these expressions are again subtracted from each other, the first differentials

will also cancel each other and it will be

oy

R-2Q+P = 2‘;;’53]/ 126“:;@33/ 53‘;’;;1? +etc.

S —2R+Q= 2‘;;'5?]/ 186“:;%3]/ 11§;ii4y +ete.

T —25 +R = 2‘;;'53]/ 246“(];%3]/ 19;;ii4y +ete.
etc.

Having subtracted them from each other again the second differentials will
also go out of the computation:



6w3dy  36wtdty
R=3QH3P —y ="g + 2aan
6w3d%y  60wtdty
6dx® T 24dxd
6w3dy  8dwtdty

+ etc.

S —-3R+3Q0—-P = + etc.

T—-35 +3R-Q= tc.
TORTQ="cqs T oagas T
etc.
By continuing the subtraction it will be
24wtdty
—4R — 4P YT .
S +6Q +y 2add + etc
24wtdty
T —4S +6R —4Q+P— W—i—etc.
etc.
and
120w’d®y
T —55+10R —10Q +5P —y = ———=— +etc.
+ Q+ y o0 T et

etc.

§56 Therefore, if y was a polynomial function of x, since its higher differenti-
als will finally vanish, by proceeding this way one will finally reach vanishing
expressions. Because therefore these expressions are differences of y, let us
consider their forms and coefficients more diligently.

y =Y
_ wdy w?ddy w3d3y whdty w’d>y
A= 202 | 6dd 24dx* 04
2 343 494 545 6,46
2. widdy  3wid’y  Tw*dy 15w>d>y 31lw®d®y
AMV="02 Taae T3ddd 345400 1345 6d6 T CC

343 4 74 545 676 747

3. wdy  bw'dy | 25w’d’y  90wd®y 301w’d"y
AV="35 T aid T a5de 1.5 6dx6 256747
Ady whdty  10w0dPy  65w°doy . 35000’d"y 1701w8d8y
Y= s 54x5 | 5.6dx° ' 5-6-7dx’ | 5-6-78dx®

+ etc.

+ etc.




ASy — w’dy N 15w0d®y N 140w’ d’y N 1050w8d8y N 6951 d%y © ete
Y= 705 6adx6 6-7dx’ | 6-7-8dx® | 6-7-8-9dx° '
6 16 7 47 8 18 919 10 410
6.  wtdy  2lw'd’y 266w°d°y 2646w dy =~ 22827w " dy
BY="56 T 707 T 784 T 7.8.94x° | 7.8.9.10dx0 T O
etc.

§57 Let us also consider the same series continued backwards at the same
time, which contains the terms corresponding to the indices x — w, x — 2w,
x — 3w etc.

x—4w x—3w, x—2w, x—w, X, x+w, x+2w, x+3w, x+4w etc
S, r, q, v, v, P, Q, R, S etc.

Because therefore it is

3d3

wd w?dd w w
P=y= dxy + dezy B 6dx3y + 24dxz —ete
2wdy  Awrddy  8widy l6widty
T=Y~ "ix 2dx2 6dx3 24dxt etc.
3wd 9w?dd 27w3d? 81w*d*
revT dxy + 2dx2y  6dx3 ’ + 24dx4y ete.
s dwdy n 16w?ddy B 64wd3y n 256wtdty ot
Y dx 2dx? 6dx3 24dx* ’

etc.,

by subtracting these values from the superior ones P, Q, R, S etc. it will be

pP— wd w3d® w’d°
2 = dxy + 6dx3y + 120dxy5 Hete
Q- 2wd 8cw3d® 320°d°
2 L= dxy + 6dx3y + 120dx5y Hete
R—r 3wdy N 27w3d3y N 243w°d*y + ete
2 dx 6dx3 120dx5 )
S—s dwdy 6403y 1024w°d°y 4 ete
2 dx 6dx3 120dx5 '
etc.

10



But if these terms are added to the superior ones, then, as the differentials
of even orders are missing here, the odd differentials will go out of the
computation. For, it will be

P+p wrddy whdty wbdoy

> VY g U odaat T 70me T
Q+q 4w?ddy lewd*y 64wCdty

> YT ome T g T 7a0dwe T
R+r 9w2ddy ~ Slwidty  729wbd°y

2 VT a2 T aad T 70dxe TS
S+s n l6w?ddy  256wtd*y n 4096w°dty + etc

2 YT T 24dx* 720dx6 '

etc.

§58 Since the preceding terms can all be expressed, if they are collected into
one sum, the summatory term of the propounded series will arise. Let the
first term correspond to the index x — nw and the first term itself will be

. nwdy N nw?  nPw’dy N ntwtdty +ete

YT 0 T 2dx? 6dx3 24dx* '
Since therefore the term corresponding to the index x will be = y and the
number of all terms is = n + 1, the sum of all taken from the first, y included,
or the summatory term will be

d
= (n+1)y— % (142 +3 + - +n)

w?ddy
2dx?
wid3y
6dx3
whdty
24dx*
WPy
120dx5
+ etc.

_|_

(1422 +32 4 +n?)

(1+22+3 4 +n)

+ (1+284+3* 4 +n%)

(1+224+3° 4+ +n°)

11



§59 Above we exhibited the sums of these single series [§ 62 of the first part];
if these are substituted here, the sum of the propounded series will be

_ _owdy (1]
=(n+1)y Ir <nn—|—2n>

w?ddy
2dx?

6
REE L + 1
66[3(3 4 2 4

(
a (a

+ e (5743 +1n3_1n)
IS

2
1113 + 1nn + 1n
3 2

24dx* \ 5 2" T3 30

w’d> 1 5 4, 1,
6 2 12 12

Y
©120dx5

where n will be given from the index of the first term from which the sum
is computed. If one puts w = 1 and the index of the first term is = 1, of the
second = 2 and the last = x such that this series is propounded

dy (1 1
=W (z”‘zx>
;M;/Z <;x3 %xx + 23()
— 6{1333 <1x4 %x:" +ixx>
G R

12



120dx* \ 6 2 12

dy (1, 1, 15 1,5 1
720dx% <7x TN Y Tt T 42")

dSy 1e¢ 15 54 1,
(x—x+x—12x>

§60 From this expression, since the coefficients will be augmented immensely,
if x was a large number, hardly anything of use for the doctrine of series
follows; it will nevertheless be helpful to have mentioned other properties
following from there. Let the general term be x" and the summatory term
shall be indicated by S.y or S.x. Having used this notation everywhere it will
be

1xx 1x =Sx—x

2 27 T

1 1 1

gx?’ — Exz + gx =S.x%2—x?

1 1 1

1x4 — §x3 + Zxx =5x3— %
etc.

Therefore, it will be obtained from the superior expression

S = x" 1 — xS x + nat

M =1) ag o m0n=1) o nn=1)(n=2) s 5 nln—1)(0n -

+

2)

1-2 1-2 1-2-3 1-2-3
But because it is

n—1) nn-1)(n-2)
1-2 1-2-3

1-1=0=1-nt+™ +etc,,

it will be

nn—1) nn-—1)(n—-2) B
n- =15 + 123 —etc. =1
and hence having excluded the case n = 0 in which this expression becomes

=0itis

13

x" + etc.



no_ . ntl n o .n—1 nn—1) ,, 2_”(”—1)(”_2) n-3a .3
Sx"=x +x nx S.x+71.2 x"°S.x 12.3 x"°S.x

nn—1)(n—2)(n—23)
1-2-3-4

+ x"45.x* — etc.

§61 To see both the validity and the power of this formula in more clarity, let
us expand the single cases and at first let n = 1 and it willbe S.x = x>+ x — S.x
and hence S.x = ¥ as it is sufficiently known. Therefore, let us put n = 2

and it will be

S.x? =23+ xx — 2xS.x + S.xz,

and hence

3 3 1
Sx® = ExS.x2 — Exzs.x - §x3(x +1);

if one puts n = 4, it will arise
Sxt ="+t — 4x3S.x +6x2S.x% — 4xS.x% + S.at,

whence because of the cancelled S.x* it will be

3 1
Sx® = ExS.x2 —x?S.x+ Zx3(x +1);

if from the triple of this the double of the preceding is subtracted, it will
remain

1
S.x® = gxs.x2 — Zx3(x +1).

If one puts n = 5, it will become

S.x® = x° + x° — 5x*S.x + 10x35.x% — 10x2S.x% + 5xS.x* — S.x°

or

1
Sx° = ng.x4 —5x25.x% + 5x35.x% — ;x45.x + §x5(x +1)

and from n = 6 it follows

14



S.x% = x7 4+ x% — 6x°S.x + 15x*S.x% — 20x3S.x% + 15x%S.x* — 6xS.2° + S.x°
or

5 10 5 1
S.xd = ExS.x4 — ?xzs.x3 + §x35.x2 —x*Sx+ 8x5(x +1).

§62 From these we therefore conclude in general, if n = 2m + 1, that it will
be

g zmtl _ZmA1 o om (2m + 1)2mx25.x2’"_1

2 ' 2-1-2
(2m+1)2m2m —1) 3. om 2 2m+1 oy L om+1
7 1.5.3 x°S.x 5 X S.x—l—zx (x+1).

But if it was n = 2m + 2, since the terms S.x2"12 cancel each other, one will
find
g zmtl _ ZmA1 o om (2m + 1)2mx25.x2”’_1
2 2.3
(2m —1)2m(2m+1) 3. w2 2m I omn
. Iy 1).
5 3.4 x°S.x x Sx+2m+2x (x+1)

Therefore, the sum of the odd powers can in two ways be determined from
the sums of the lower powers and from the various combinations of these
formulas infinitely many other can be formed.

§63 But the sum of the odd powers can be determined a lot easier from the
preceding ones and for this it certainly suffices to know only the sum of the
preceding even power. For, from the sums of powers exhibited above [§ 62
of the first part] it is known that the number of terms constituting the sums
is only increased in the even powers, such that the sum of the odd powers
consists of as many terms as the sum of the preceding even power. So, if the
sum of the even power x>" is

S‘xZn — lxenJrl + ﬁx2n + ,Yxanl _ 5x2n73 _’_€x2n75 — etc.

(for, we saw that after the third term each second is missing and at the same
time the signs alternate), hence the sum of the following power x*'*! will be
found, if the single terms of it are respectively multiplied by these numbers

15



2n+1x 2n+1x 2n+1x 2n+1x 2n+1x
2n+2"" 2n+1"" on 7 2n—1"" 2n—2

not omitting the missing terms; and therefore it will be

etc.

2n+1 xZ”—2n+1
2n v 2n —1

gl A1 oup InA1

— (5 2n—2
n+2 n+1 X

‘Bx2n+1 4

2n + 1sx2”_4 2n+1

2n—4 2n—6
If therefore the sum of the power x*" is known, from it the sum of the following
power x*"*!1 can be formed in a convenient manner.

Zx*76 + etc.

§64 This investigation of the following sums is also extended to the even
powers; but since the sums of these receive a new term, this term is not found
by means of this method, nevertheless it can always be found from the nature
of the series itself, from which it is clear, if one puts x = 1, that the sum has
also to become = 1. But vice versa from a the sum of certain power one will
always be able to find the sum of the preceding powers. For, if it was

S = ax™ T4 x5S e — "7 +etc,,

it will be for the preceding power

1 -1 -3
R L Eﬂxnfl a2 - B e,
n n n n

and hence one can go backwards as far as one desires. But it is to be noted
that it always is « = 3 and B = 3 as is it already clear from the formulas given
above.

§65 To anyone paying attention it will immediately become clear that the
sum of x" 1 arises, if the sum of the powers x" is differentiated and its
differential is divided by ndx; and it will be 4.5.x" = ndx - S "1 and because
it is d.x" = nx"1dx, it will be

d.S.x" = Snx" ldx = S.d.x";

16



from this it is understood that the differential of the sum becomes equal to the
sum of the differentials; so in general, if the general term of a certain series
was = y and S.y was its summatory term, it will also be S.dy = d.S.y, this
means: the sum of all differentials becomes equal to the differential of the
sum of the terms themselves. The truth of this equality is easily seen from
those things we treated above on the differentiation of series. For, because it is

Saxt=x"4(x=1)"+ (x=2)" + (x=3)" + (x —4)" +etc,
it will be

d.S.x"
ndx

=" (=) (x—2)" 24 (x = 3)" ! fete. = ST,

which proof extends to all other series.

§66 But let us return, from where we started, to the differences of functions,
on which still several things are to be remarked. Because we saw, if y was any
function of x and instead of x one everywhere puts x £ w, that the function y
will obtain the following value

343

4d4 5d5

wdy deyiwy+wyi w’d’y
1dx 12dx2 1-2-3dx3  1-2-3-4dx* " 1-2-3-4-5dx>

this expression will be valid, whether for w any constant quantity is taken

y=x + etc.,

or even a variable value depending on x. For, having found the values of d—y,
‘;‘3 , ZZ etc. in the factors w, w?, w? etc. by differentiation, the variability is
not considered and hence it does not matter, whether w denotes a constant

quantity or a variable quantity depending on x.

§67 Therefore, let us put that it is w = x and in the function y instead of x
x — x = 0 is written. Therefore, if in any function of x instead of x one writes
0 everywhere, the value of the function will be this one

xdy . x2ddy x3d3 n xtdty
YT ldx T 124 12343 T 1-2-3-4dx
Therefore, this expression always indicates the value which any function y
obtains, if in it one puts x = 0, the validity of which statement the following
examples will illustrate.

— etc.
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EXAMPLE 1

Let y = xx + ax + ab, whose value, if one puts x = 0, shall be sought after which is
of course known to be = ab.

Because it is y = xx + ax + ab, it will be

dy_ ddy B
Tax - 2T 1o

and hence the value sought after arises as

=xx+ax+ab—x(2x+a)+ xx-1=ab.

EXAMPLE 2

Let y = x% — 2x + 3, whose value having put x = 0 shall be sought after, which
value is known to be = 3.

Because itis y = x3 — 2x + 3, it will be

Py
1-2-3dx3

dy ddy
dx =T T
the value sought after will be obtained as

= 3x,

=x% —2x+3—x(Bxx—2)+xx-3x—x>-1=3.

EXAMPLE 3

Let y = 1%, whose value having put x = 0 shall be sought after, which is known to
be = 0.

Because it is y = -, it will be
dy 1 ddy 1 dy 1

dx — (1—x)% 1-2dx2:(1—x)3’ 1-2-3dx3:(1_x)4 etc.

Hence, the value in question will be

X X XX x3 x4

T1x =22 =2 (—nf (—xp

18



and therefore the value of this series is = 0. This is also plain from the fact

that this series truncated by the first term, e.g. § fx)z - = 7t fsx)4 — etc,,

is a geometric series and its sum is = 0

o x . x
=y = T-x/ whence the value

found will be

EXAMPLE 4

Let y = e* while e denotes the number whose hyperbolic logarithm is the unity and
the value of y be sought after, if one puts x = 0, which value is known to be = 1.

Because it is y = e*, it will be

dy e dly

— ¢, = tc.
dx dx? et
and hence the value in question will be
Ik S 3 N ext et
N 1 12 1.2:3 1.-2-3:4 ‘
= (1-T 4 il + o —etc
N 1 12 1-2.3 1-2-3-4 VR
But above we saw that the series
X XX ¥
l1—=—+— + etc.

112 1-2.3

expresses the value e™; therefore, the value in question will be e* - e = & =
1, of course.

EXAMPLE 5

Let y = sinx and having put x = 0 it is manifest that is will be y = 0, which also
the general formula will indicate.

For, if it is y = sin x, it will be

dy ddy . By dty
e Cos x, e sin X, a3 Ccos x, @ =sinx etc.
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Having put x = 0 the value of y will be this one

inx—E x—ﬂinx—i— a x+x74 inx — et
S 1cos 1'25 1.2'3cos 1‘2'3_45 etc.

which is

4 x6

=sinx|(1-— i + X — + etc
o 1-2 1-2-3-4 1-2-3---6 ’

X X3 x° x7
— Ccosx + + etc.

1 1.2-3'1.2.3.4.5 1.-2.3.-.7

But the superior of these series” expresses cos x, the inferior sin x, whence the
value in question will be

=sinxcosx —cosx -sinx = 0.

§68 Hence, we therefore vice versa realize, if y was a function of x of such a
kind that it vanishes having put x = 0, that then it will be

xdy — xxddy x3d3y xtdty

YT %dx T 12dx2 T 12343 T 1-2-3- 4d?
Hence, this is the general equation of completely all functions of x, which, if
x = 0, at the same time vanish themselves. And therefore this equation is of
such a nature, that, no matter which function of x, as long as it vanishes as
x vanishes, is substituted for y, it is always satisfied. But if therefore y was
a function of such a kind of x which having put x = 0 shall receive a given
value = A, then it will be

+ —etc. = 0.

xdy — x*ddy x*d3y xtdty
Y Tdx "1 2dx2 T 1-2-3dx3 123 4dx*
in which function all functions of x are contained which having put x = 0 go
over into A.

+ —etc. = A,

§69 If instead of x one writes 2x or x + x, any function of x, which shall be
denoted by y, will obtain this value
xdy — x*ddy *d3y

VY Tax "1 2d@ "1 23403 T

xtdty
1-2-3-4dx*

—+ etc.
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And if we write nx instead of x, this means x + (n — 1)x, the function y will
take the following value

(n—1)xdy N (n — 1)%xxddy N (n—1)3x3d%

1dx 1-2dx? 1-2-3dx3
but if we in general write t for x, any function y of x will because of t =
x +t — x be transformed into the following form

y _|_ + etC.

(t—x)dy N (t — x)2ddy N (t— x)3d%

1dx 1-2dx? 1-2-3dx3
If therefore v was such a function of t as y is of x, since v arises from y by
putting ¢ instead of x, it will be

y+ + etc.

(t — x)dy N (t — x)2ddy n (t— x)3d%y
1dx 1-2dx? 1-2-3dx3
the validity of which formula can be probed by any arbitrary example.

v=Yy+ + etc.,

EXAMPLE

For, let y = xx — x; it is manifest that having put t instead of x that it will be
v = tt — t, which same the found expression will also reveal.

For, because of y = xx — x it will be

dy ddy
a—Zx—l and W_l'

hence, it will be
v=xx—x+(t—x)(2x —1) + (t — x)?

=xX—X+2tx —2xx —t+ x4+ tt —2tx + xx = tt —t.

Therefore, if y was a function of such a kind of x, which having put x = a
goes over into A, because of t = a and v = A it will be

(a —x)dy N (a—x)%ddy  (a—x)3d%y

1dx 1-2dx? 1-2-3dx3
and hence all functions of x, which having put x = a go over into A, satisfy
this equation.

A=y+ + etc.

21



