
Observations on the Comparison of
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Leonhard Euler

§0 Mathematical speculations, concerning their utility, seem to have to be
reduced to two classes; those, which provide extraordinary advantages both
for common life and other arts, are to be referred to the first class, whose value
is therefore estimated from the magnitude of this advantage. But the other
class contains those speculations, which, even though they do not lead to such
advantages, are nevertheless of such a nature, that they provide an occasion
to promote the science of Analysis and to sharpen the power of our mind. For,
since we are forced to put many speculations, whence highest utility could be
expected, aside one because of the missing Analysis, nevertheless a certain
value seems to be ascribed to them, which promises huge progress in the
science of Analysis. But for this purpose especially those speculations seem to
be accommodated, which are quasi made accidentally and were detected a
posteriori and hence the way to get to them a priori and in a direct way is less
obvious or not understood at all. For, so, having already found the truth, it
will be easier to investigate methods, which will lead to them directly; and
there is no doubt that the investigation of these new methods lead to huge
progress in Analysis.
But I detected several observations of this kind, which were not made by a
certain method and whose nature seems to be rather obscure, in the work of
Fagnano published recently; therefore, they are worth one’s complete attention
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and the eagerness, invested in their further investigation, well certainly be
well-spent. In this work certain extraordinary properties are given, which the
Ellipse, Hyperbola and the Lemniscate enjoy, and different arcs of these curves
are compared to each other; therefore, since the reason for these properties
seems very mysterious, I think it will be appropriate, if I examine them more
diligently, and communicate everything what I could discover in addition to
these results.
Therefore, concerning these curves, it is known that their rectification tran-
scends all power of Analysis so that their arcs can not only not expressed
algebraically, but they can not even reduced to the quadrature of the circle
or hyperbola. Therefore, Fagnano’s findings seem even more remarkable; for,
he found that in the case of the ellipse and the hyperbola one can exhibited
two arcs of such a kind, whose difference can be assigned algebraically, in
infinitely many ways, but on the lemniscate there are infinitely pairs of two
arcs of such a kind, which are either equal or the one has a ratio of two to
one to the other, whence he then derived a way to also assign an arc of such a
kind on this curves, which has an arbitrary ratio to another one.
But in the case of the ellipse and the hyperbola it has not been possible to
find new additional results; therefore, I will be content to have given an easier
construction of the arcs, whose difference can be exhibited geometrically.
But for the lemniscate, following the same ideas, I found many more, even
infinitely many, formulas, by means of which I am not only able to define two
arcs of such a kind infinitely many ways, which are either equal or have a
ratio of two to one, but also arcs of such a kind, which have an arbitrary ratio
to each other.

I. ON THE ELLIPSE

§1 Let the elliptic quadrant be ABC (Fig. 1). whose center is in C, and put
its semiaxes CA = 1 and CB = c; therefore, having taken an arbitrary abscissa
CP = x, the ordinate corresponding to it will be PM = y = c

√
1− xx; since

its differential is dy = − cxdx√
1−xx

, the elliptic arc corresponding to the abscissa
CP = x will be

BM =
∫ dx

√
1− (1− cc)xx√

1− xx
.

For the sake of brevity put 1− cc = n that the arc is

BM =
∫

dx
√

1− nxx
1− xx

,
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and, having taken another abscissa CQ = u, in like manner the arc correspon-
ding to it will be

BN =
∫

du
√

1− nuu
1− uu

.

Having constituted these, it is in question, how these two abscissas x and u
must be related to each other that the sum of their arcs

BM + BN =
∫

dx
√

1− nxx
1− xx

+
∫

du
√

1− nuu
1− uu

becomes integrable or can be exhibited geometrically.
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Fig. 1

§2 Therefore, the question reduces to this that it is determined, a function of
x of which kind must be substituted for u that the differential formula

dx
√

1− nxx
1− xx

+ du
√

1− nuu
1− uu

admits an integration. But it is easily seen, if this question is considered
in general, that its solution is based on the integration of each of the two
formulas and hence transcends the limits of Analysis in the same way as
the rectification of the ellipse. Therefore, since a general solution can not be
expected at all, one will have to try to find particular solutions, not necessarily
by a certain method but a least by trial and error; but hence their true origin,
even though the solution has been found, can hardly be understood.
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§3 First, the case u = −x is immediately obvious, in which our differential
formula becomes zero; but since hence two absolutely identical elliptic arcs
result, as this case is too obvious, so also the question is not solved by this in a
satisfactory manner. Therefore, since the problem must be solved by guessing
and trying several solutions, assume√

1− nxx
1− xx

= αu

and assume α in such a way that vice versa√
1− nuu
1− uu

= αx;

for, this way one will have

BM + BN = α
∫

udx + α
∫

xdu = αxu + Const.,

as it is required. But for the value of α we will have so

1− nxx− ααuu + ααuuxx = 0 as 1− nuu− ααxx + ααxxuu = 0;

whence it is plain that one has to put αα = n and α =
√

n so that

u =

√
1− nxx
n− nxx

and BM + BN = xu
√

n + Const.

§4 But even if this way the question seems to be solved, nevertheless these
determinations can not hold in a ellipse. For, since n < 1, since n = 1− cc,
it will be n − nxx < 1− nxx and hence u > 1; therefore, the abscissa CQ
exceeds the semiaxis CA and hence an imaginary arc would correspond to it
so that hence no correct conclusion could be deduced.

§5 Therefore, let us try other formulas and let so√
1− nxx
1− xx

=
α

u
as

√
1− nuu
1− uu

=
α

x
,

whence, because of

αα− ααxx− uu + nxxuu = 0 and αα− ααuu− xx + nxxuu = 0
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we conclude α = 1 so that

1− uu− xx + nxxuu = 0 and hence u =

√
1− xx

1− nxx
.

But hence it result

BM + BN =
∫ dx

u
+
∫ du

x
=
∫ xdx + udu

xu
.

But the equation uu + xx = 1 + nxxuu, having differentiated it, gives

xdx + udu = nxu(xdu + udx) or
xdx + udu

xu
= n(xdu + udx),

whence we conclude

BM + BN = n
∫
(xdu + udx) = nxu + Const.

§6 This solution is not obstructed by any inconvenience; for, since n < 1,
it will be 1− nxx > 1− xx and hence u < 1, as the nature of the subject
demands it. Therefore, having taken an arbitrary abscissa CP = x, take the
other

CQ = u =

√
1− xx

1− nxx
and the sum of the arcs will be BM + BN = nxu + Const. To define this
constant, let x = 0 that BM = 0; and it will be u = 1 and the arc BN goes
over into the quadrant BMNA; hence 0 + BMNA = 0 + Const. and so this
constant will be = BMNA. Having substituted this value, we have

BM + BN = nxu + BMNA

and hence
BM− AN = nxu = (1− cc)xu = BN − AM.

§7 Therefore, given an arbitrary point M on the elliptic quadrant ACB, we
can assign another point N so that the difference of the arcs BM− AN, or
which is equal to BN − AM, can be expressed geometrically. To achieve this
more easily, let us drop the perpendicular MS to the ellipse in the point M;
the subnormal will be PS = ccx and, because of PM = c

√
1− xx, the normal

itself will be
MS = c

√
1− xx + ccxx = c

√
1− nxx
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and hence for the other point N the abscissa will be CQ = u = PM
MS CA. Or,

drop the perpendicular to the elongated normal MS from C and elongate it
to V that CV = CA = 1, and because of CR

CS = PM
MS it will be CQ = CR

CS CV.
Hence drop the perpendicular VQ to the axis CA from the point V, and it
will denote the point Q and, if elongated, even the point N.

§8 Since PS = ccx, it will be CS = x− ccx = nx and hence

CR =
CQ · CS

CV
=

u · nx
1

= nux.

Therefore, this perpendicular CR will exhibit the difference of the arcs BM−
AN or BN− AM. Hence this way the difference of the designated arcs will be

= nx
√

1−xx
1−nxx , which therefore vanishes so in the case x = 0 as x = 1, in which

the points M and N fall on the points B and A. But this difference becomes
maximal, if nx4 − 2xx + 1 = 0, this means, if x = 1√

1+c
, in which case it is

x = u and both points M and N merge into one point O; and in this case the
difference of the arcs will be BO− AO = nxx = 1− c and hence it will become
equal to the difference of the semiaxes CA−CB so that CA + AO = CB + BO.

§9 If the point M is taken in this point O that

CP = x =
1√

1 + c
,

it will be

PM =
c
√

c√
1 + c

and PS =
cc√
1 + c

and hence MS = c
√

c, whence the location of the point O can be defined
conveniently in various ways. But since

CM = CO =

√
1 + c3
√

1 + c
=
√

1− c + cc =
√

1 + cc− 2c cos 60◦,

whence a simple construction is deduced, it seems advisable to add the
following theorems, whose proof is clear from the preceding paragraphs.
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THEOREM 1

§10 If in the elliptic quadrant ACB (Fig. 2) one draws the tangent HKM in the
point M, which meats the other axis CB in H, and it is taken equal to the other
semiaxis that HK = CA, but then one draws the line KN parallel to the axis
CB through the point K and this parallel intersects the ellipse in N, the difference
BM− AN of the arcs BM and AN can be assigned geometrically; for, having dropped
the perpendicular to the tangent from the center C, this difference of the arcs will be
BM− AN = MT.

The proof is immediately clear from the figure, since the tangent HMK is
parallel and equal to the that line CRV (Fig. 1); but then it is perspicuous that
MT = CR.

H
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T

K

N

A

M

Fig. 2

THEOREM 2

§11 If one constructs the equilateral triangle CAE over the one semiaxis CA of
the elliptic quadrant ACB (Fig. 3) and in one of its sides AE one takes the portion
AF = CB and on the ellipse the line CO is equal to the line CF, the point O will
have the property that

CA + arc AO = CB + arc BO.

The proof is evident from § 9. For, since
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CA = 1, AF = c, and angle CAF = 60◦,

it will be
CF =

√
1 + cc− 2c cos 60◦

and hence = CO.

A

O

C

B

F

E
Fig. 3

II. ON THE HYPERBOLA

§12 Let C (Fig. 4) be the center of the hyperbola AMN and it transverse
semiaxis CA = 1, the conjugated semiaxis = c; having taken an arbitrary
abscissa CP = x the ordinate will be PM = c

√
xx− 1 and its differential

= cxdx√
xx−1

; hence the arc is

AM =
∫ dx

√
(1 + cc)xx− 1√

xx− 1
.
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For the sake of brevity put 1 + cc = n; it will be

AM =
∫

dx
√

nxx− 1
xx− 1

.

Therefore, if in the same way another abscissa CQ = u is taken, the arc
corresponding to it will be

AN =
∫

du
√

nuu− 1
uu− 1

.

AIQ P
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Fig. 4

§13 Having put these, let this new question be propounded to us that, given
the point M, another one N is defined in such a way that the sum of the arcs
AM + AN or the expression∫

dx
√

nxx− 1
xx− 1

+
∫

du
√

nuu1
uu− 1

admits an integration absolutely; that this happens in the case u = −x is
immediately clear; but hence nothing can be concluded for our investigation.

§14 Therefore, let us put √
nxx− 1
xx− 1

= u
√

n,
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since it vice versa is √
nuu− 1
uu− 1

= x
√

n;

therefore, this equation nuuxx − n(uu + xx) + 1 = 0 results. But by this
assumption the sum of the arcs results as

AM + AN =
∫

udx
√

n +
∫

xdu
√

n = ux
√

n + Const.

Therefore, for this integration to hold, it has to be u =
√

nxx−1
nxx−n , whence, since

because of n > 1 also u > 1 results, from the given point M one will always
be able to assign the point N.

§15 To define the constant, it is clear that the case x = 1, in which the point
M falls on the vertex A, is not helpful, since hence u = ∞ and the point N is
removed to infinity. Therefore, to determine this constant correctly, another
case must be considered; but there is no better one than that, where the points
M and N coalesce into one or in which u = x and nx4 − 2nxx + 1 = 0. But
hence it results

xx = 1 +
c√

1 + cc
and x =

√
1 +

c√
1 + cc

.

§16 Therefore, let O be this point, in which both points M and N coalesce,
and having drawn the ordinate OI, it will be

CI =
√

1 +
c√

1 + cc
and 2AO = c +

√
1 + cc + Const.

Therefore, we hence obtain the constant in question

2AO− c−
√

1 + cc

because
√

n =
√

1 + cc. Having substituted this value, for different points M
and N taken in such a way that u = nxx−1

nxx−n the sum of the arcs will be

AM + AN = ux
√

n + 2AO− c−
√

1 + cc

or
ON −OM = ux

√
n− c−

√
1 + cc.

Therefore, this way we obtained two arcs ON and OM, whose difference
ON −OM can be assigned geometrically.
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§17 But that it is understood more easily, how so the the point O as the point
N can be defined from M, draw the perpendicular AD = c starting from the
point A and the line CD will be the aysmptote of the hyperbola CD; then,
having put CP = x, PM = y draw the tangent MT; because of

y = c
√

xx− 1 and dy =
cxdx√
xx− 1

the subtangent will be

PT =
y
√

xx− 1
cx

= x− 1
x

and CT =
1
x

and the tangent will be

MT =
y
√

nxx− 1
cx

.

Hence it results√
xx− 1

nxx− 1
=

PT
MT

and hence u =
MT

PT
√

1 + cc
=

CA2 ·MT
CD · PT

= CQ.

PA Q
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Fig. 5
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§18 From the center C draw the line CR = CD parallel to the tangent TM
and, having dropped the perpendicular RS from R, it will be CS = CD·PT

MT and
hence CQ = CA2

CS . Hence CQ is to be taken as the third proportional to CS and
CA. But the task will solved more conveniently without using the tangents;
for, since

QN =
cc√

n(xx− 1)
=

c3

y
√

n
,

it will be

PM ·QN =
c3

√
1 + cc

=
AD3

CD

or, having dropped the perpendicular AE to the asymptote from A, it will be

PM ·QN = AD · DE,

since DE = AD2

CD , whence the following theorem results.

THEOREM 3

§19 While AOZ (Fig. 6) denotes the hyperbola, C its center, A its vertex and CDZ
its asymptote, to which from A the perpendicular AD was dropped, and likewise the
perpendicular AE was dropped to the asymptote, if the ordinate IO is constituted as
the mean proportional of AD and DE and the ordinates PM and QN to the left and
the right are chosen in such a way that IO is the mean proportional of them, then the
difference of the arcs = N and OM can be assigned geometrically.

ON −OM =
CP · CQ− CI · CI

CE
.

The proof is obvious from the preceding paragraph. For, since connecting the
points M and N to O, let IO · IO = AD ·DE, IO will be the mean proportional
of AD and DE; and having found this it has to be PM · QN = OI ·OI. But
then it is understood from § 16 to be ON−OM = (CP ·CQ−CI ·CI)

√
n and

because of
√

n = CD by satisfying the homogeneity it will be ON −OM =

(CP · CQ− CI · CI) CD
CA2 . But it is CA2

CD = CE and so the truth of the theorem is
established.
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III. ON THE LEMNISCATE

§20 This curve is famous for the many extraordinary properties it enjoys,
but especially, since its arcs are equal to the arcs of the curva elastica. But this
curve is of such a nature that, having put the orthogonal coordinates CP = x,
PM = y (Fig. 7), it is expressed by this equation

(xx + yy)2 = xx− yy.

Hence it is plain that this curve is a line of fourth order, which has an angle
of 45◦ to the semiaxis CA in the point C, which also is its center, but in A
it passes through the axis CA = 1 perpendicularly. But the figure CMNA
exhibits the fourth part of the whole lemniscate, to which the three remaining
parts around the center are equal; this follows from the fact that the equation
remains the same, even if either the abscissa x or the ordinate y or even both
is changed into is negative.
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§21 Therefore, concerning the expression of a certain arc CM of this curve,
it is most conveniently defined from the cord CM. For, if we put this cord
CM = z, because of xx + yy = zz we will have z4 = xx − yy = 2xx − zz =
zz− 2yy, whence we find

x = z

√
1 + zz

2
and y = z

√
1− zz

2

and by differentiation

dx =
dz(1 + 2zz)√

2(1 + zz)
and dy =

dz(1− 2zz)√
2(1− zz)

.

Therefore, hence the element of the CM is calculated to be

√
dx2 + dy2 = dz

√
(1− zz)(1 + 2zz)2 + (1 + zz)(1− 2zz)2

2(1 + zz)(1− zz)

or √
dx2 + dy2 =

dz√
1− z4

.
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§22 Therefore, if an arbitrary cord, drawn from the center C, is put CM = z,
the arc corresponding to it will be CM =

∫ dz√
1−z4 . Therefore, if in the same

way another cord CN is called = u, the arc corresponding to it will be
CN =

∫ du√
1−u4 , whose complement to the whole quadrant is the arc AN. Now

Fagnano told, a function of z of which kind must be taken for u so that either
the arc AN is equal to the arc CM or the CN is the double of the arc CM,
or even that the arc AN is equal to the double arc CM. Therefore, I will first
explain those cases, but then I will discuss everything else I was able to find
on the proportions of arcs of this kind.

THEOREM 4

§23 If on the lemniscate described just before one considers an arbitrary cord CM =
z and additionally another one, which we want to put

CN = u =

√
1− zz
1 + zz

,

the arc CM will be equal to the arc AN or also the arc CN will be equal to the arc
AM.

PROOF

Since the cord is CM = z, the arc will be CM =
∫ dz√

1−z4 and because of the

cord CN = u the arc CN will be =
∫ du√

1−u4 . But it is u =
√

1−zz
1+zz ; hence

du =
−2zdz

(1 + zz)
√

1− z4
.

But furthermore

u4 =
1− 2zz + z4

1 + 2zz + z4 and 1− u4 =
4zz

(1 + zz)2 and
√

1− u4 =
zz

1 + zz
.

Having substituted these values, one will have

arc CN = −
∫ dz√

1− z4
= − arc CM + Const.,

so that arc CN + arc CM = Const.. To define this constant, consider the case,
in which z = 0 and hence the arc CM = 0; but in this case the cord CN = u =
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1 = CA and hence the arc CN goes over into the quadrant CMNA, from which
one has CMNA + 0 = Const. for this case. Therefore, having substituted these
values, in general it will result arc CN + arc CM = arc CMNA and hence

arc CM = arc AN,

and, adding the arc MN to both sides,

arc CMN = arc ANM.

Q.E.D.

COROLLARY 1

§24 Therefore, given an arbitrary arc CM terminated at the center C, whose
cord is CM = z, another equal arc AN, originating from A, is separated from
it by taking the cord

CN = u =

√
1− zz
1 + zz

or CN = CA

√
CA2 − CM2

CA2 + CM2

or completing the homogeneity by means of the axis CA = 1.

COROLLARY 2

§25 Since u =
√

1−zz
1+zz , it will vice versa be z =

√
1−uu
1+uu ; hence the cords CM

and CN can be permuted so that, if both cords CM = z and CN = u were of
such a nature that

uuzz + uu + zz = 1,

also the points M and N can be permuted and hence so arc CM = arc AN as
arc CN = arc AM.

COROLLARY 3

§26 Since CN = u =
√

1−zz
1+zz , it will be√

1 + uu
2

=
1√

1 + zz
and

√
1− uu

2
=

z√
1 + zz

.
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Hence, since from the nature of the lemniscate the coordinates for the point N
are

CQ = u

√
1 + uu

2
and QN = u

√
1− uu

2
,

it will be

CQ =
u√

1 + zz
and QN =

uz√
1 + zz

and hence
QN
CQ

= z.

Hence, if the normal AT to the axis CA is drawn from A, until it intersects
the cord CN in T, it will be AT = z = CM.

COROLLARY 4

§27 Therefore, from a given point M the other point N is most easily deduced
this way: Take the tangent AT equal to the cord CM and having drawn the
line CT it will intersect the curve in the point N in question. But for the same
reason it is plain: If the cord CM is elongated until it meets the tangent in the
point A in S, it will also be AS = CN.

COROLLARY 5

§28 Moreover, it is obvious that the points M and N can coalesce into one
point O, by which hence the whole quadrant COA in divided into two equal
parts. Therefore, one will find this point O, if one puts u = z, whence

z4 + 2zz = 1 and hence zz + 1 =
√

2;

therefore, the cord CO results as =
√√

2− 1, to which at the same time
the tangent AI will be equal, whence the position of this point O is easily
assigned.

COROLLARY 6

§29 Therefore, having called this point O, in which the quadrant COA is
split into two equal parts CMO and ANO, having defined the points M and
N by the explained rule, it will also be arc . MO = arc . ON so that this same
point O splits the arc MN into two equal parts.
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THEOREM 5

§30 On the lemnicate, whose axis is CA = 1 (Fig. 8), if the ordinate is an arbitrary
cord CM = z and additionally we have another cord or ordinate

CM2 = u =
2z
√

1− z4

1 + z4 ,

the arc corresponding this cord u, or CM2 will twice as long as the arc corresponding
that cord CM.

C

M N

A

M2 N2

Fig. 8

PROOF

Since the cord is CM = z, the arc CM will be =
∫ dz√

1−z4 and similarly because

of the cord CM2 = u the arc CM2 will be
∫ du√

1−u4 . But since u = 2z
√

1−z4

1+z4 , it
will be

uu =
4zz− 4z6

1 + 2z4 + z8

and hence

√
1− uu =

1− 2zz− z4

1 + z4 and
√

1 + uu =
1 + 2zz− z4

1 + z4 ,

whence √
1− u4 =

1− 6z4 + z8

(1 + z4)2 .

Hence by differentiating one concludes

du =
2dz(1− z8)− 4z4dz(1 + z4)− 8z4dz(1− z4)

(1 + z4)2
√

1− z4
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or

du =
2dz− 12z4dz + 2z8dz

(1 + z4)2
√

1− z4
=

2dz(1− 6z4 + z8)

(1 + z4)2
√

1− z4
.

Therefore, we obtain
du√

1− u4
=

2dz√
1− z4

and by integrating arc . CM2 = 2 arc . CM + Const.. But since for z = 0 also
u = 0 and hence both arcs CM and CM2 vanish, also the constant vanishes.
And so, having taken the cord CM2 = u = 2z

√
1−z4

1+z4 it will be

arc CM2 = 2 arc CM.

Q.E.D.

COROLLARY 1

§31 If one takes the cord CN =
√

1−zz
1+zz , the arc AN will be arc . CM and

hence also the arc CM2 will be 2 arc .AN. In like manner, if one takes the cord
CN2 = 1−uu

1+uu , the arc AN2 will be = arc . CM2 and so also, starting from the
vertex A, it will be arc . AN2 = 2 arc . AN. Therefore, this way one will obtains
four equal arcs, namely arc . CM, arc . MM2, arc . AN and arc . NN2.

COROLLARY 2

§32 But since

u =
2z
√

1− z4

1 + z4 ,
√

1− uu =
1− 2zz− z4

1 + z4 and
√

1 + uu =
1 + 2zz− z4

1 + z4 ,

one will have these four cords expressed in such a way

CM = z, CN =

√
1− zz
1 + zz

, CM2 =
2z
√

1− z4

1 + z4 , CN2 =
1− 2zz− z4

1 + 2zz− z4 .

COROLLARY 3

§33 Let both points M2 and N2 coalesce in the middle point O of the curve,
for which we saw above that the cord CO is =

√√
2− 1, and in this case

the whole curve COA will be split into four parts in the points M, O and N.
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Therefore, this happens, if CM2 = CN2 =
√√

2− 1 so that, having for the
sake of brevity set

√√
2− 1 = α, we have

1− 2zz− z4 = α + 2αzz− αz4 or z4 =
−2(1 + α)zz + 1− α

1− α

and

zz =
−(1 + α) +

√
2(1 + αα)

1− α
or zz =

−1−
√√

2− 1 +
√

2
√

2

1−
√√

2− 1
.

Hence we conclude

CM = z =

√
−1− α +

√
2(1 + αα)

1− α
and CN =

√
−1 + α +

√
2(1 + αα)

1 + α

C A

NM

O

Fig. 9

C A

NM

Fig. 10

COROLLARY 4

§34 Let both points M2 and N (Fig. 10) coalesce and the points M and N2

will coalesce in the same way and so the whole curve CMNA will be split
into three parts in the points M and N. Therefore, for this case we will have

2z
√

1− z4

1 + z4 =

√
1− zz
1 + zz

or z =
1− 2zz− z4

1 + 2zz− z4 ,
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the second of which gives 1− z− 2zz− 2z3 − z4 + z5 = 0 and this divided by
1 + z then 1− 2z− 2z3 + z4 = 0; assume its factors to be

(1− µz + zz)(1− νz + zz) = 0

and it will be µ + ν = 2 and µν = −2, whence µ− ν = 2
√

3 and hence

µ = 1 +
√

3 and ν = 1−
√

3.

Therefore, it will be

z =
1 +
√

3±
√

2
√

3
2

= CM

and because of zz = 4+4
√

3±2(1+
√

3)
√

2
√

3
4 it will result

CN =

√
1− zz
1 + zz

=

√√√√ −2
√

3∓ (1 +
√

3)
√

2
√

3

4 + 2
√

3± (1 +
√

3)
√

2
√

3
=

√
∓
√

2
√

3
1 +
√

3
.

Therefore,

CM =
1 +
√

3−
√

2
√

3
2

and CN =

√√
2
√

3
1 +
√

3
.

COROLLARY 5

§35 Given an arbitrary arc CM2 (Fig. 8) one can also find its half CM; for, if
the cord of that arc is set CM2 = u and the cord of the arc in question CM = z,
it will be

u =
2z
√

1− z4

1 + z4 and 1− 4zz
uu

+ 2z4 +
4z6

uu
+ z8 = 0,

whose factor we assume to be

(1− µzz− z4)(1− νzz− z4) = 0,

whence one obtains µ + ν = 4
uu and µν = 4; therefore, it will be

µ− ν = 4

√
1
u4 − 1 =

4
uu

√
1− u4
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and hence

µ =
2 + 2

√
1− u4

uu
and ν =

2− 2
√

1− u4

uu
,

therefore,

zz =
−1−

√
1− u4 +

√
2(1 +

√
1− u4)

uu
,

whence two real values are found for z, the one

z =

√
−1−

√
1− u4 +

√
2(1 +

√
1− u4)

u
=

√
(1−

√
1− uu)(

√
1 + uu− 1)

u

the other

z =

√
(−1 +

√
1− u4) +

√
2(1−

√
1− u4)

u
=

√
(1 +

√
1− uu)(

√
1 + uu)− 1

u
.

COROLLARY 6

§36 These two values are indeed true; for, since the same cord CM2 (Fig. 11)
and Cm2 corresponds to two different arcs CM2 and CM2m2, the one value
of z will yield the cord of the arc CM, which is the half of the arc CM2, but
the other value of z gives the cord of the arc Cm, which is the half of the arc
CM2m2; and the first value certainly holds for that case, the second on the
other hand for this case.

m
M2

M

C

m2

A

Fig. 11
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1

2 O 3

4

AC
Fig. 12

COROLLARY 7

§37 This way the lemniscate CA can also be split into five equal parts. For,
let the cord of the simple part be C1 = z (Fig. 12), the cord of the doubled
part is

C2 =
2z
√

1− z4

1 + z4 = u;

the cord of the quadrupled part will be

C4 =
2u
√

1− u4

1 + u4 =

√
1− zz
1 + zz

,

since A4 = C1, whence the cord z is defined; having found it, since C2 = A3,
the cord C3 will be = 1−uu

1+uu .

COROLLARY 8

§38 Since hence, having put a certain cord = z, one can find the cords of the
doubled, quadrubled, eigtht times as large, sixteen times as long etc. arcs, it
is obvious that this way the lemniscate can be split in so many parts, whose
number is 2m(1 + 2n). But this formula contains the following numbers

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, etc

But hence it is not always possible to assign all points of division.

SCHOLIUM

§39 Therefore, these are the results, which Fagnano observed on the lemnisca-
te or which can be derived from his findings. For, even if, having propounded
an arbitrary arc, he only taught to assign its double, nevertheless hence by
doubling this arc again also the cords of the quadrupled, eight times as long,
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sixteen times as long etc. arcs will be found from this. And if the cord of the
simple are is set = z, of the doubled arc = u, the quadrupled arc = p, the
eight times as long arc = q, sixteen times as long arc = r etc., it will be

u =
2z
√

1− z4

1 + z4

p =
2u
√

1− u4

1 + u4 =
4z(1 + z4)(1− 6z4 + z8)

√
1− z4

(1 + z4)4 + 16z4(1− z4)2

q =
2p
√

1− p4

1 + p4

r =
2q
√

1− q4

1 + q4

But it is not possible to assign the cords of other multiple arcs from them.
Therefore, I will investigate here, how the cords of certain multiple arcs are
expressed, to exhaust this subject, as far as the limits of analysis certainly
allow it, completely. First, certainly by trial and error, I found, if the cord of
the simple arc is = z, that then the cord of the tripled arc will be = z(3−6z4−z8)

1+6z4−3z8 ;
but after this I understood that the subject can be treated generally in the
following way.

THEOREM 6

§40 If the cord of the simple arc CM (Fig. 13) is = z and the cord of the n-tupled
arc CMn is = u, the arc of the (n + 1)-tupled arc will be

CMn+1 =
z
√

1−uu
1+uu + u

√
1−zz
1+zz

1− uz
√

(1−uu)(1−zz)
(1+uu)(1+zz)

.

PROOF

Therefore, the simple arc itself will be

CM =
∫ dz√

1− z4

and the n-tupled arc

CMn =
∫ du√

1− u4
= n

∫ dz√
1− z4
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and hence we have du = ndz
√

1−u4√
1−z4 . For the sake of brevity let us put

z
√

1− uu
1 + uu

= P and u
√

1− zz
1 + zz

= Q

m
A

mnMn+1

C
M

Mn mn+1

Fig. 13

that the cord exhibited for the (n + 1)-tupled arc is CMn+1 =
P + Q

1− PQ
, which

we want to call = s, and it has to be demonstrated that the arc corresponding
to this cord is∫ ds√

1− s4
= (n + 1)

∫ dz√
1− z4

oder
ds√

1− s4
=

(n + 1)dz√
1− z4

.

But since s = P+Q
1−PQ , it will be

ds =
dP(1 + QQ) + dQ(1 + PP)

(1− PQ)2

but then one finds

1− s4 =
(1− PQ)4 − (P + Q)4

(1− PQ)4

=
(1 + PP + QQ + PPQQ)(1− PP−QQ− 4PQ + PPQQ)

(1− PQ)4

hence√
1− s4 =

√
(1 + PP)(1 + QQ)(1− PP−QQ− 4PQ + PPQQ)

(1− PQ)2 ,

whence one finds

ds√
1− s4

=
dP
√

1+QQ
1+PP + dQ

√
1+PP
1+QQ√

1− PP−QQ− 4PQ + PPQQ
,
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the value of which expression we want to investigate.
And first certainly

1 + PP =
1 + uu + zz− uuzz

1 + uu
and 1 + QQ =

1 + uu + zz− uuzz
1 + zz

,

so that 1+PP
1+QQ = 1+zz

1+uu and hence

ds√
1− s4

=
dP
√

1+uu
1+zz + dQ

√
1+zz
1+uu√

1− PP−QQ + PPQQ− 4PQ
.

Further, because of

1− PP =
1 + uu− zz + uuzz

1 + uu
and 1−QQ =

1 + zz− uu + uuzz
1 + zz

it will be

(1− PP)(1−QQ) = 1− P2 −Q2 + P2Q2 =
1− z4 − u4 + 4uuzz + u4z4

(1 + zz)(1 + uu)

and

4PQ =
4uz
√
(1− z4)(1− u4)

(1 + zz)(1 + uu)
and hence one concludes the denominator√

1− PP−QQ + PPQQ− 4PQ

=

√
(1− z4 − u4) + 4uuzz + u4z4 − 4uz

√
(1− z4)(1− u4)√

(1 + zz)(1 + uu)

=

√
(1− z4)(1− u4)− 2uz√

(1 + zz)(1 + uu)
,

whence one will obtain

ds√
1− s4

=
dP(1 + uu) + dQ(1 + zz)√

(1− z4)(1− u4)− 2uz
.

But now by differentiating

dP = dz
√

1− uu
1 + uu

− 2zudu
(1 + uu)

√
1− u4

dQ = du
√

1− zz
1 + zz

− 2zudu
(1 + zz)

√
1− z4

,

26



whence because of

du =
ndz
√

1− u4
√

1− z4

it will be

dP = dz
√

1− uu
1 + uu

− 2nuzdz
(1 + uu)

√
1− z4

dQ =
ndz
√

1− u4

1 + zz
− 2uzdz

(1 + zz)
√

1− z4
,

whence one gets the numerator

dP(1 + uu) + dQ(1 + zz) = dz
√

1− u4 − 2nuzdz√
1− z4

+ ndz
√

1− u4 − 2uzdz√
1− z4

or

dP(1 + uu) + dQ(1 + zz) = (n + 1)dz
√

1− u4 − 2(n + 1)uzdz√
1− z4

=
(n + 1)dz√

1− z4

(√
(1− z4)(1− u4)− 2uz

)
,

whence it is perspicuous that

ds√
1− s4

=
(n + 1)dz√

1− z4

and
arc CMn+1 = (n + 1) · arc CM

Q.E.D.

COROLLARY 1

§41 If from the vertex A the arcs Am, Amn, Amn+1, which are equal to the
arcs CM, CMn, CMn+1, Cm will be the cord of the complement of the arc
CM, Cm the cord of the complement of the arc CMn, Cmn+1 the cord of the
arc CMn+1. But because of the cords CM = z, CMn = u, CMn+1 = s the
complement of the cords will be

Cm =

√
1− zz
1 + zz

, Cmn =

√
1− uu
1 + uu

, Cmn+1 =

√
1− ss
1 + ss

.
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But since

s =
z
√

1−uu
1+uu + u

√
1−zz
1+zz

1− zu
√

(1−uu)(1−zz)
(1+uu)(1+zz)

=
P + Q

1− PQ
,

it will be√
1− ss
1 + ss

=

√
1− PP−QQ− 4PQ + PPQQ

(1 + PP)(1 + QQ)
=

√
(1− z4)(1− u4)− 2uz
1 + uu + zz− uuzz

which is reduced to this form√
1− ss
1 + ss

=

√
(1−zz)(1−uu)
(1+zz)(1+uu) − uz

1 + uz
√

(1−zz)(1−uu)
(1+zz)(1+uu)

.

COROLLARY 2

§42 Therefore, if one puts

the cords of the simple arc = z, the cord of the complement = Z,

the cords of the n-tuple arc = u, the cord of the complement = U,

that

Z =

√
1− zz
1 + zz

and U =

√
1− uu
1 + uu

,

the cord of the (n + 1)−tupled arc will be

zU + uZ
1− zuUZ

,

the cord of the complement will be

ZU − zu
1 + zuZU

.
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COROLLARY 3

§43 Therefore, the invention of the cords of certain multiple arcs together
with the cords of the complements we look as follows:

Cord of the arc Cord of the complement

single = a single = A

double = b = 2aA
1−aaAA double = AA−aa

1+aaAA = B

triple = c = aB+bA
1−abAB triple = AB−ab

1+abAB = C

quadruple = d = aC+cA
1−acAC quadruple = AC−ac

1+acAC = D

quintuple = e = aD+dA
1−adAD quintuple = AD−ad

1+adAD = E

etc. etc.

COROLLARY 4

§44 In like manner, if the cord of the m−tupled arc is = r, the cord of the
complement = R and the cord of the n−tupled arc = s and the cord of its
complement = S that

R =

√
1− rr
1 + rr

and S =

√
1− ss
1 + ss

,

the cord of the (m + n)−tuple arc = rS+sR
1−rsRS and the cord of the complement

= RS−rs
1+rs+RS . Yes, even by taking a negative number for n, since then the cord

s goes over into its negative, the cord of the difference of those arcs can be
exhibited; of course, the cord of the (m− n)−tupled arc = rS−sR

1+rsRS and the
cord of its complement = RS+rs

1−rsRS .

COROLLARY 5

§45 Therefore, having introduced the notations in corollary 3, it will also be

d =
2bB

1− bbBB
and D =

BB− bb
1 + bbBB

e =
bC + cB

1− bcBC
and E =

BC− bc
1 + bcBC

.
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COROLLARY 6

§46 From these one concludes, if the cord of the simple arc is set = z, that
the values of the cords used in corollary 3 will be

a = z A =

√
1− zz
1 + zz

b =
2z
√

1− z4

1 + z4 B =
1− 2zz− z4

1 + 2zz− z4

c =
z(3− 6z4 − z8)

1 + 6z4 − 3z8 C =
(1 + z4)2 − 4zz(1− zz)2

(1 + z4)2 + 4zz(1− zz)2

√
1− zz
1 + zz

d =
4z(1 + z4)(1− 6z4 + z8)

√
1− z4

(1 + z4)4 + 16z4(1− z4)2)
D =

(1− 6z4 + z8)2 − 8zz(1− z4)(1 + z4)2)

(1− 6z4 + z8)2 + 8zz(1− z4)(1 + z4)2 .

SCHOLIUM 1

§47 The composition of the formulas rS+sR
1−rsRS and RS−rs

1+rs+RS deserves some
more attention, since it is similar to the rule, by which the tangent of the
sum or difference of two angles are usually defined. For, if rS = tan α and
sR = tan β, it will be rS+sT

1−rsRS = tan(α + β) and for the difference exhibited in
corollary 4 rS−sR

1+rsRS = tan(α− β). And in like manner, if one puts RS = tan γ

and rs = tan δ, it will be
RS− rs

1 + rsRS
= tan (γ− δ) and

RS + rs
1− rsRS

= tan (γ + δ).

But the nature of this composition will be represented more conveniently, if
the cord of the m−tupled arc is put r = M sin µ, the cord of the complement
R = M cos µ, the cord of the n−tuple s = N sin ν, the cord of the complement
S = N cos ν; for, then it will be

cord of the (m + n)-tuple arc = MN sin (µ+ν)
1−M2 N2 sin µ sin ν cos µ cos ν

arc of its complement = MN cos (µ+ν)
1+M2 N2 sin µ cos µ cos ν sin ν

arc of the (m− n)-tuple arc = MN sin (µ−ν)
1−M2 N2 sin µ sin ν cos µ cos ν

the cord of its complement = MN cos (µ−ν)
1+M2 N2 sin µ sin ν cos µ cos ν

But since 1− rr− RR = rrRR, it will be 1−MM = M4(sin2 µ)(cos2 µ) and
hence

M2 sin µ cos µ =
√

1−MM and N2 sin ν cos ν =
√

1− NN,
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whence the denominator of these formulas will go over into

1−
√
(1−MM)(1− NN) and 1 +

√
(1−MM)(1− NN).

Furthermore, from that equation 1−MM = M4 sin2 µ cos2 µ

1
MM

=
1
2
+

1
2

√
1 + sin 2µ sin 2µ,

because of sin 2µ = 2 sin µ cos µ. But hence those formulas do not become
shorter.

SCHOLIUM 2

§48 From these observations very important progresses for the integral
calculus follow, since hence we are able to exhibit the particular integrals
of many differential equations, whose integration can not be hoped for in
general. So having propounded the differential equation

du√
1− u4

=
dz√

1− z4
,

except the case of the integral u = z, which is obvious, we know that it is

satisfied by u = −
√

1−zz
1+zz . Therefore, since in general the integration involves

an arbitrary constant, say C, u will be equal to a certain function of the quantity
z and C; it will nevertheless be of such a nature that for a certain value of C
we have u = z and for another value of C we find u = −

√
1−zz
1+zz . Therefore,

two values exist, which, if attributed to this constant, convert that function
into that so simple algebraic expression.
In like manner having propounded this equation

du√
1− u4

=
2dz√
1− z4

,

we have two values, which we know to satisfy it,

u =
2z
√

1− z4

1 + z4 and u =
−1 + 2zz + z4

1 + 2zz− z4

and in like manner we taught to exhibit two values, which satisfy this equation
in general

mdu√
1− u4

=
ndz√
1− z4

,
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whence the way to find the general integrals of these formulas seems to be
paved almost completely.

Further, what was mentioned about the ellipse and the hyperbola, yields
the following special integrations of differential equations.
For, having propounded this equation of § 3

dx
√

1− nxx
1− xx

+ du
√

1− nuu
1− uu

= (xdu + udx)
√

n,

we know that it is satisfied by this integral equation

1− nxx− nuu + nuuxx = 0.

This equation taken from § 5

dx
√

1− nxx
1− xx

+ du
√

1− nuu
1− uu

= n(xdu + udx)

was found to be satisfied by this equation

1− xx− uu + nuuxx = 0.

Further, the following equation derived from the hyperbola § 14

dx
√

nxx− 1
xx− 1

+ du
√

nuu− 1
uu− 1

= (xdu + udx)
√

n

is also satisfied by
1− nxx− nuu + nuuxx = 0,

which certainly agrees with the first derived from the ellipse, since√
nxx− 1
xx− 1

=

√
1− nxx
1− xx

.

But hence it is easy to conclude that this equation

dx

√
f − gxx
h− kxx

+ du

√
f − guu
h− kuu

= (xdu + udx)
√

g
h

is satisfied by this special integral equation

f h− gh(xx + uu) + gkxxuu = 0,
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but this other equation

dx

√
f − gxx
n− kxx

+ du

√
f − guu
n− kuu

= (xdu + udx)
g√
f k

is satisfied by this special integral equation

f h− f k(xx + uu) + gkxxuu = 0.

These are the results I considered had to be explained, since the seem to
provide me some motivation to expand the limits of Analysis even further.
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