
On the expression of integrals by

means of factors*

Leonhard Euler

Geometers until now have mainly studied the reduction of integrals to
infinite series for two reasons: First, to understand the nature of series more
clearly and secondly because of the immense use, which series have to find
the values of integrals approximately. But now in Volume 11 of the Novi
Commentarii academiae scientiarum Petropolitanae1, motivated by the same
reasons, I showed that the reduction of integrals to infinte products is not less
worthy to be developed carefully, and there I already gave many specimens of
these reductions, which seem to have a use not to be contemned in the whole
field of Analysis, even though the treatment was not sufficiently fleshed out
and structured very well at that time. Therefore, it is advisable to resume
this subject here; first, I will explain the foundations, on which it is based,
more diligently, but then expand many cases, which seem to be especially
memorable, more accurately.

But it should especially be noted that it is not possible to express integrals
this way in general in such a way that it equally extends to all values, for
which task infinite series are more appropriate, but products can only be
used conveniently then, if the value of the integral is investigated only, if a
certain determined value is attributed to the variable. And it is indeed not
possible to assume this value arbitrarily, but it must rather be of such a nature,
that it already enjoys a special property in the differential, namely, that the

*Original title: „De expressione integralium per factores“, first published in „Novi Commentarii
academiae scientiarum Petropolitanae 6, 1761, pp. 115-154“, reprinted in „Opera Omnia: Series
1, Volume 17, pp. 233 - 267“, Eneström-Number E254, translated by: Alexander Aycock for
the project „Euler-Kreis Mainz“

1Euler refers to his paper “De productis ex infinitis factoribus ortis“. This is paper E122 in the
Eneström-Index.
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differential becomes either zero or infinity for this case.

But cases of this kind are already especially remarkable with respect to the
remaining ones and are usually sought after in the practical applications,
since in most cases the question is already about calculating the integrals for a
certain values of this kind. As if the quadrature of the circle is in consideration,
or the value of this formula

∫ dx√
1−xx

is in question in the case x = 1, or the

value of the formula dx
1+xx is in question in the case x = ∞; but in the last

formula the differential becomes infinite, in the first on the other hand it
vanishes for the given value of x.

Therefore, to cover the subject in more generality, I will expand formulas of
two kinds here, which are

∫
xm−1dx(1− xn)k and

∫ xm−1dx
(1 + xn)k ,

both of which I assume to be integrated in such a way that they vanish for
x = 0. But then it is the idea to determine the only value of the first integral∫

xm−1dx(1− xn)k for the value x = 1; but then I will only investigate that
value of the integral

∫ xm−1dx
(1+xn)k for the case x = ∞. But it is evident that these

cases of the integrals with respect to the remaining ones enjoy such an eminent
prerogative that they especially deserve it to be expanded.

Although seeking for elegance here I omitted the coefficients, it is nevertheless
plain that these formulas extend equally far as if coefficients would have been
added. For, a formula of this kind

∫
γym−1dx(α− βyn)k having put βyn

α = xn

is obviously reduced to the one under consideration,
∫

xm−1dx(1− xn)k, and
therefore is seen not to extend further and by a similar reduction this formula∫ γym−1dy

(α+βyn)k is contained in the other
∫ xm−1dx

(1+xn)k , whence it would be completely
superfluous to want to use these more complicated formulas instead of our
formulas expressed in simpler manner.

But even the one of the formulas we want to consider here is contained in the
other, such that it suffices to have treated only the one of them.

For, if one puts x = y

(1+yn)
1
n

, it will be

1− xn =
1

1 + yn , xm =
ym

(1 + yn)
m
n

and
dx
x

=
dy

y()1 + yn)
;

having substituted these values one will obtain
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∫
xm−1dx(1− xn)k =

∫ ym−1dy
(1 + yn)k+1+m

n

having taken these integrals in such a way that they vanish having put x = 0
and y = 0 which condition is always to be understood to be fulfilled in the
following. Therefore, because having put y = ∞ it is x = 1, we will have the
following theorem.

THEOREM 1

§1 The value of this integral formula∫
xm−1dx(1− xn)k

in the case x = 1 is equal to the value of this integral formula

∫ ym−1dy
(1 + yn)k+1+m

n

in the case y = ∞.

The reason for this this equality is that first form is actually transformed into
the second, if one puts x = y

(1+yn)
1
n

.

The following theorem, which results from a similar reduction, also has a lot
of utility; therefore, I state it together with its proof.

THEOREM 2

§2 The value of this integral formula∫
xm−1dx(1− xn)k

in the case x = 1 is equal to the value of this integral formula∫
ynk+n−1dy(1− yn)

m−n
n

in the case y = 1.

Put x = (1− yn)
1
n that it is
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1− xn = yn, xm = (1− yn)
m
n and

dx
x

=
−yn−1dy

1− yn ;

having substituted these values one will have

xm−1dx(1− xn)k = −ynk+n−1dy(1− yn)
m−n

n .

Let

Y =
∫

ynk+n−1dy(1− yn)
m−n

n

having taken the integral in such a way that it vanishes having put y = 0; but
then having put y = 1 let Y go over into A. Since now those formulas must be
integrated in such a way that they vanish having put x = 0, in which case it is
y = 1, it will be ∫

xm−1dx(1− xn)k = A−Y.

Now put x = 1, in which case it is y = 0 and hence Y = 0, and our integral
formula will become = A or the integral

∫
xm−1dx(1− xn)k in the case x = 1

will be equal to the integral
∫

ynk+n−1dy(1− yn)
m−n

n in the case y = 1. Q.E.D.

COROLLARY 1

§3 Therefore, since these three formulas

I.
∫

xm−1dx(1− xn)k, II.
∫ ym−1dy

(1 + yn)k+1+m
n

, III.
∫

znk+n−1dz(1− zn)
m−n

n

depend on each other in such a way that the first goes over into the second
having put x = y

(1+yn)
1
n

, but having put x = (1 − zn)
1
n it goes over into

the third one taken negatively, it is obvious that, if one of these forms was
integrable absolutely, also the remaining two will be absolutely integrable.

COROLLARY 2

§4 But the first is absolutely integrable, as it is perspicuous per se, if k is a
positive integer number, whatever number is put for m. Nevertheless, only
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the cases are excluded, in which m becomes equal to a certain number of this
progression

0, −n, −2n, −3n, · · · ,−kn;

for, in these cases a part of the integral will depend on logarithms. Therefore,
these cases to be excluded reduce to this that the absolute integration succeeds
while k is a positive integer number, if −m

n is a positive integer number either
smaller than k or equal to k, or if k + m

n is not a positive integer not greater
than k.

COROLLARY 3

§5 In like manner the second form will be integrable, if −k− 1− m
n was a

positive integer number, say i; but here the cases, in which −m
n equally is a

positive integer number not greater than i, are excluded. Or if ω denotes an
arbitrary positive integer number of this series 0, 1, 2, · · · i, the cases, in which
it is −m

n = ω, are excluded.

COROLLARY 4

§6 But the third formula will be absolutely integrable, if m−n
n was a positive

integer number, say i; but the cases, in which it is −k− 1 = ω, while ω denotes
any arbitrary positive integer not greater than i, are excluded.

COROLLARY 5

§7 Therefore, having noted this the formula
∫

xm−1dx(1− xn)k will be integ-
rable absolutely in the following cases, in which i denotes an arbitrary positive
number, but ω denotes an arbitrary positive integer number not greater than
i:

I. If k = i and nevertheless not − m
n

= ω.

II. If − k− 1− m
n

= i and nevertheless not − m
n

= ω (or − k− 1 = ω).

III. If
m− n

n
= i and nevertheless not − k− 1 = ω.
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COROLLARY 6

§8 But it is obvious that the cases of integrability will be the same in this
further extending formula

∫
xm−1dx(a + bxn)k, for which the proof is equally

valid. And from these three conditions the cases of integrability of all formulas
of this kind can be distinguished.

Although these things are not the main subjects I want to study in this paper,
it nevertheless, since they easily follow from the two theorems mentioned in
advance, did not seem to be out of place to add them here. Therefore, now I
proceed to the true foundation of the subject, which is based on the reduction
of the integrals to other forms. To explain this more distinctly, I contemplate
this algebraic form

xα(1− xn)γ = P;

having differentiated this form I obtain

dP = αxα−1dx(1− xn)γ − γnxα+n−1dx(1− xn)γ−1,

which can still in other ways be split into two terms, as, e.g.,

dP = αxα−1dx(1− xn)γ−1 − (α + γn)xα+n−1dx(1− xn)γ−1.

But then if in the last term one writes 1− (1− xn) for xn, the first form will
give

dP = (α + γn)xα−1dx(1− xn)γ − γnxα−1dx(1− xn)γ−1,

but the second on the other hand reduces to the same. Hence by integrating
we will obtain

P = α
∫

xα−1dx(1− xn)γ − γn
∫

xα+n−1dx(1− xn)γ−1,

P = α
∫

xα−1dx(1− xn)γ−1 − (α + γn)
∫

xα+n−1dx(1− xn)γ−1,

P = (α + γn)
∫

xα−1dx(1− xn)γ − γn
∫

xα−1dx(1− xn)γ−1.

Since these integrals must vanish having put x = 0, it is necessary that in the
same case P = xα(1− xn)γ vanishes, what certainly always happens, if α is
an arbitrary positive integer. For, if γ also was a positive integer, it is evident
that having put x = 1 it also is P = 0 in this case; hence we find the following
theorems.
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THEOREM 3

§9 If α and γ were positive numbers and after the integration one puts x = 1, one
will have the following equalities of the integral formulas

I. α
∫

xα−1dx(1− xn)γ = γn
∫

xα+n−1dx(1− xn)γ−1,

II. α
∫

xα−1dx(1− xn)γ−1 = (α + γn)
∫

xα+n−1dx(1− xn)γ−1,

III. (α + γn)
∫

xα−1dx(1− xn)γ = γn
∫

xα−1dx(1− xn)γ−1.

PROOF

For, since after the integration one puts x = 1, for this case in the above
formulas it is P = 0 and hence clearly the equations propounded here follow.
Q.E.D.

COROLLARY 1

§10 Each of these three equations is already contained in the two remaining
ones, whence they will be comprehended in this form

∫
xα+n−1dx(1− xn)γ−1 =

α

γn

∫
xα−1dx(1− xn)γ =

α

α + γn

∫
xα−1dx(1− xn)γ−1,

or the three following integral formulas will be equal to each other

1
α

∫
xα+n−1dx(1− xn)γ−1 =

1
γn

∫
xα−1dx(1− xn)γ =

1
α + γn

∫
xα−1dx(1− xn)γ−1,

if certainly α and γ are positive numbers.

COROLLARY 2

§11 Since by Theorem 2 it is∫
xm−1dx(1− xn)k =

∫
xnk+n−1dx(1− xn)

m−n
n
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having likewise put x = 1, one will obtain an equality between these six
integral formulas

I.
1
α

∫
xα+n−1dx(1− xn)γ−1, II.

1
γn

∫
xα−1dx(1− xn)γ,

III.
1

α + γn

∫
xα−1dx(1− xn)γ−1, IV.

1
α

∫
xnγ−1dx(1− xn)

α
n ,

V.
1

γn

∫
xnγ+n−1dx(1− xn)

α−n
n , VI.

1
α + γn

∫
xnγ−1dx(1− xn)

α−n
n ,

as long as the exponents α and γ were positive.

COROLLARY 3

§12 If α was an infinite number, it will be∫
xα+n−1dx(1− xn)γ−1 =

∫
xα−1dx(1− xn)γ−1

and for the same reason it will be

∫
xα+2n−1dx(1− xn)γ−1 =

∫
xα+n−1dx(1− xn)γ−1 =

∫
xα−1dx(1− xn)γ−1,

whence it is concluded in general that it will be∫
xα+µ−1dx(1− xn)γ−1 =

∫
xα−1dx(1− xn)γ−1,

as long as µ was a finite number and α was infinite.

COROLLARY 4

§13 In like manner, if γ was an infinite number, it will be∫
xα−1dx(1− xn)γ =

∫
xα−1dx(1− xn)γ−1

and in the same way it will be∫
xα−1dx(1− xn)γ+1 =

∫
xα−1dx(1− xn)γ,

whence it is concluded in general that it will be
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∫
xα−1dx(1− xn)γ±µ =

∫
xα−1dx(1− xn)γ,

if ν was a finite number and γ is infinite.

PROBLEM 1

§14 If m and n are positive numbers and i denotes an arbitrary positive integer, to
define the ratio of the formula ∫

xm−1dx(1− xn)k−1

to the formula ∫
xm−1dx(1− xn)k+1

in the case x = 1.

SOLUTION

Since it is [§ 9, III]∫
xα−1dx(1− xn)γ−1 =

α + γn
γn

∫
xα−1dx(1− xn)γ,

by putting m and k for α and γ it will be∫
xm−1dx(1− xn)k−1 =

m + kn
kn

∫
xm−1dx(1− xn)k;

if now, while α = m, one puts γ = k + 1, γ will be a lot greater positive
number, since k is such a one, and hence in like manner one will have∫

xm−1dx(1− xn)k =
m + (k + 1)n
(k + 1)n

∫
xm−1dx(1− xn)k+1

and by proceeding in the same way it will be∫
xm−1dx(1− xn)k+1 =

m + (k + 2)n
(k + 2)n

∫
xm−1dx(1− xn)k+2.

Therefore, hence it is concluded in general, while i denotes an arbitrary integer
number, that it will be
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∫
xm−1dx(1− xn)k−1∫
xm−1dx(1− xn)k+i =

m + kn
kn

· m + kn + n
kn + n

· m + kn + 2n
kn + 2n

· m + kn + 3n
kn + 3n

· · · m + kn + in
kn + in

.

Q.E.I.

COROLLARY 1

§ 15 Since it is [§ 11]∫
xm−1dx(1− xn)k−1 =

∫
xnk−1dx(1− xn)

m−n
n

and hence even∫
xm−1dx(1− xn)k+i =

∫
xkn+in+n−1dx(1− xn)

m−n
n ,

it will also be

∫
xkm−1dx(1− xn)

m−n
n

xkn+in+n−1dx(1− xn)
m−n

n
=

m + kn
kn

· m + kn + n
kn + n

· m + kn + 2n
kn + 2n

· · · m + kn + in
kn + in

.

COROLLARY 2

§16 If here one puts kn = µ and m
n = κ or m = κn, such that now µ and κ

are positive numbers, one will have this reduction

∫
xµ−1dx(1− xn)κ−1∫

xµ+in+n−1dx(1− xn)κ−1 =
µ +κn

µ
· µ +κn + n

µ + n
· µ +κ + 2n

µ + 2n
· · · µ +κn + in

µ + in
;

but having written m and k for the letters µ and κ it will be

∫
xm−1dx(1− xn)k−1∫

xm+in+n−1dx(1− xn)k−1 =
m + kn

m
· m + kn + n

m + n
· m + k + 2n

m + 2n
· · · m + kn + in

m + in
.
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COROLLARY 3

§17 If this expression is divided by the expression found in the problem, this
equation will result∫

xm−1dx(1− xn)k+i∫
xm+in+n−1dx(1− xn)k−1 =

kn
m
· kn + n

m + n
· kn + 2n

m + 2n
· · · kn + in

m + in
,

in which factors so the numerators as the denominators proceed in an arith-
metic progression whose difference is = n.

PROBLEM 2

§18 To express the value of the formula∫
xm−1dx(1− xn)k−1,

which it obtains in the case x = 1, by means of infinite products, if the exponents m
and k are positive.

SOLUTION

In the form of the preceding problem set the number i to be infinite and one
will have

∫
xm−1dx(1− xn)k−1∫
xm−1dx(1− xn)k+i =

m + kn
kn

· m + kn + n
kn + n

· m + kn + 2n
kn + 2n

· m + kn + 3n
kn + 3n

· etc. to infinity.

Now, while i still is the same infinite number, take another finite number κ
instead of k and in like manner one will have

∫
xm−1dx(1− xn)κ−1∫
xm−1dx(1− xn)κ+i =

m +κn
κn

· m +κn + n
κn + n

· m +κn + 2n
κn + 2n

· m +κn + 3n
κn + 3n

· etc.,

where the number of factors is equal to the number of factors of the preceding
expression. Of course, in both cases = i + 1. But because of the infinite i it is,
as we noted in § 13,∫

xm−1dx(1− xn)k+i =
∫

xm−1dx(1− xn)κ+i,
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hence having divided the first form by the second this equation will result

∫
xm−1dx(1− xn)k−1∫
xm−1dx(1− xn)κ−1 =

κ(m + kn)
k(m +κn)

· (κ + 1)(m + kn + n)
(k + 1)(m +κn + n)

· (κ + 2)(m + kn + 2n)
(k + 2)(m +κn + 2n)

· etc..

Now set κ = 1 and it will be
∫

xm−1dx(1− xn)κ−1 = xm

m = 1
m having put

x = 1, whence it will be

∫
xm−1dx(1− xn)k−1 =

1
m
· 1(m + kn)

k(m + n)
· 2(m + kn + n)
(k + 1)(m + 2n)

· 3(m + kn + 2n)
(k + 2)(m + 3n)

· 4(m + kn + 3n)
(k + 3)(m + 4n)

· etc.

Q.E.I.

ANOTHER PROOF

Proceed the same way as in § 16 by setting i to be an infinite number and it
will be

∫
xm−1dx(1− xn)k−1∫

xm+in−1dx(1− xn)k−1 =
m + kn

m
· m + kn + n

m + n
· m + kn + 2n

m + 2n
· m + kn + 3n

m + 3n
· etc.

Now having put another finite number µ for m it will in like manner be

∫
xµ−1dx(1− xn)k−1∫

xµ+in−1dx(1− xn)k−1 =
µ + kn

µ
· µ + kn + n

µ + n
· µ + kn + 2n

µ + 2n
· µ + kn + 3n

µ + 3n
· etc.

But since because of the infinite number i it is

∫
xm+in−1dx(1− xn)k−1 =

∫
xµ+in−1dx(1− xn)k−1 =

∫
xindx(1− xn)k−1

while the finite quantities vanish with respect to the infinite ones, and since in
both of them one has the same number of factors, by dividing the first form
by the second this equation will result

∫
xm−1dx(1− xn)k−1∫
xµ−1dx(1− xn)k−1 =

µ(m + kn)
m(µ + kn)

· (µ + n)(m + kn + n)
(m + n)(µ + kn + n)

· (µ + 2n)(m + kn + 2n)
(m + 2n)(µ + kn + 2n)

· etc.
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Now set µ = n; it will be

∫
xn−1dx(1− xn)k−1 =

1− (1− xn)k

kn
having done the integration in such a way that the integral vanishes for x = 0.
Now having put x = 1 this value goes over into 1

kn , whence one will obtain

∫
xm−1dx(1− xn)k−1 =

1
kn
· 1(m + kn)

m(1 + k)
· 2(m + kn + n)
(m + n)(2 + k)

· 3(m + kn + 2n)
(m + 2n)(3 + k)

· etc.

Therefore, lo and behold another product consisting of infinitely many factors
not very different from the first and even equal to it, by which the value of
the propounded integral formula is expressed. Q.E.I.

COROLLARY 1

§19 But that these two infinite forms are equal to each other is clear per se;
for, having divided the second by the first because of the equal numerators of
the single terms this quotient results

1 =
m
kn
· k(m + n)

m(k + 1)
· (k + 1)(m + 2n)
(m + n)(k + 2)

· (k + 2)(m + 3n)
(m + 2n)(k + 3)

· etc.

But the first two factors give m+n
n(k+1) , the first three m+2n

n(k+2) , four m+3n
n(k+3) and

infinitely many give m+in
n(k+i) =

in+m
in+kn = 1.

COROLLARY 2

§20 One can form infinitely many infinite products of a form of this kind,
whose value is = 1. For, since it is

p
p + q

· p + q
p + 2q

· p + 2q
p + 3q

· p + 3q
p + 4q

· · · = p
p + iq

=
p
iq

r + s
r
· r + 2s

r + s
· r + 3s

r + 2s
· r + 4s

r + 3s
· · · = r + is

r
=

is
r

,

by multiplying these two forms we will have

1 =
qr
ps
· p(r + s)

r(p + q)
· (p + q)(r + 2s)
(r + s)(p + 2q)

· (p + 2q)(r + 3s)
(r + 2s)(p + 3q)

· etc.

13



COROLLARY 3

§21 Therefore, if the found value of the integral formula is multiplied by
this expression = 1, the following further extending expression equal to it
will result, namely ∫

xm−1dx(1− xn)k−1

=
qr

knps
· 1(m + kn)p(r + s)

m(k + 1)r(p + q)
· 2(m + kn + n)(p + q)(r + 2s)
(m + n)(k + 2)(r + s)(p + 2s)

· 3(m + kn + 2n)(p + 2q)(r + 3s)
(m + 2n)(k + 3)(r + 2s)(p + 3q)

· etc.,

where it is possible to assume any arbitrary numbers for p, q, r, s. Therefore,
they can be assumed in many ways that each arbitrary factor is reduced to a
simpler form.

COROLLARY 4

§22 Let p = m and q = n and it will be∫
xm−1dx(1− xn)k−1

=
r

mks
· 1(m + kn)(r + s)
(m + n)(k + 1)r

· 2(m + kn + n)(r + 2s)
(m + 2n)(k + 2)(r + s)

· 3(m + kn + 2n)(r + 3s)
(m + 3n)(k + 3)(r + 2s)

· etc.

which is the expression found first. But if it is r = m + kn and s = n, it will be

∫
xm−1dx(1− xn)k−1 =

m + kn
mkn

· 1(m + kn + n)
(m + n)(k + 1)

· 2(m + kn + 2n)
(m + 2n)(k + 2)

· 3(m + kn + 3n)
(m + 3n)(k + 3)

· etc.

COROLLARY 5

§23 If one puts p = k + 1 and q = 1, it will be∫
xm−1dx(1− xn)k−1

=
r

k(k + 1)ns
· 1(m + kn)(r + s)

mr(k + 2)
· 2/m + kn + n)(r + 2s)
(m + n)(r + s)(k + 3)

· 3(m + kn + 2n)(r + 3s)
(m + 2n)(r + 2s)(k + 4)

· etc.;

further, let r = 1 and s = 1; it will be

∫
xm−1dx(1− xn)k−1 =

1
k(k + 1)n

· 2(n + kn)
m(k + 2)

· 3(m + kn + n)
(m + n)(k + 3)

· 4(m + kn + 2n)
(m + 2n)(k + 4)

· etc.;
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but if one puts r = m + kn and s = n, it will be

∫
xm−1dx(1− xn)k−1 =

m + kn
k(k + 1)nn

· 1(m + kn + n)
m(k + 2)

· 2(m + kn + 2n)
(m + n)(k + 3)

· 3(m + kn + 3n)
(m + 2n)(k + 4)

· etc.

COROLLARY 6

§24 If, while the exponent k remains the same, we change the remaining
exponents m and n to µ and ν, we will have

∫
xµ−1dx(1− xν)k−1 =

1
µ
· 1(µ + kν)

(µ + ν)k
· 2(µ + kν + ν)

(µ + 2ν)(k + 1)
· 3(µ + kν + 2ν)

(µ + 3ν)(k + 2)
· etc.,

as long as µ, ν and k are positive numbers. Therefore, having divided that
form [§ 17] by this one we will have

∫
xm−1dx(1− xn)k−1∫
xµ−1dx(1− xν)k−1 =

µ

m
· (µ + ν)(m + kn)
(m + n)(µ + kν)

· (µ + 2ν)(m + kn + n)
(m + 2n)(µ + kν + ν)

· (µ + 3ν)(m + kn + 2n)
(m + 3n)(µ + kν + 2ν)

· etc.

COROLLARY 7

§25 But if even in the other form k is changed to κ, one will have∫
xm−1dx(1− xn)k−1∫
xµ−1dx(1− xν)κ−1

=
µ

m
· κ(µ + ν)(m + kn)

k(m + n)(µ +κν)
· (κ + 1)(µ + 2ν)(m + kn + n)
(k + 1)(m + 2n)(µ +κν + ν)

· (κ + 2)(µ + 3ν)(m + kn + 2n)
(k + 2)(m + 3n)(µ +κν + 2ν)

· etc.

having put x = 1 after the integration and while all exponents m, n, k and µ,
ν, κ are positive.

SCHOLIUM

§26 Having explained these conversions of integral formulas into infinite
products let us see vice versa, how a propounded infinite product of this kind
must be reduced to integrations of differential formulas in the case x = 1.
Here it is especially to be considered, how many factors the terms, which
constitute this infinite product, are composited of; these terms first must only
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be of such a nature that the infinitesimal terms 1. Hence they will be fractions
and will consist of a certain number so of numerators as of denominators and
in both of them the factors will proceed in an arithmetic progression; for, even
though the different parts obtain different differences, they can nevertheless
easily be reduced to the same. Therefore, because there is no obstruction that
this difference is set equal to 1, we will have the following orders of infinite
products of this kind for the different numbers of factors of each fraction in
the product

a
b
· a + 1

b + 1
· a + 2

b + 2
· a + 3

b + 3
· a + 4

b + 4
· a + 5

b + 5
· etc.,

ac
be
· (a + 1)(c + 1)
(b + 1)(e + 1)

· (a + 2)(c + 2)
(b + 2)(e + 2)

· (a + 3)(c + 3)
(b + 3)(e + 3)

· etc.,

ac f
beg
· (a + 1)(c + 1)( f + 1)
(b + 1)(e + 1)(g + 1)

· (a + 2)(c + 2)( f + 2)
(b + 2)(e + 2)(g + 2)

· etc.,

ac f h
begk

· (a + 1)(c + 1)( f + 1)(h + 1)
(b + 1)(e + 1)(g + 1)(k + 1)

· (a + 2)(c + 2)( f + 2)(h + 2)
(b + 2)(e + 2)(g + 2)(k + 2)

· etc.

Therefore, let us see, how the value of each of these products is to be expressed
by integral formulas.

PROBLEM 3

§27 To define the value of the following infinite product consisting of simple terms
by means of integral formulas

P =
a
b
· a + 1

b + 1
· a + 2

b + 2
· a + 3

b + 3
· a + 4

b + 4
· a + 5

b + 5
· etc.

SOLUTION

While i denotes an infinite number we saw [§ 16] that it is

∫
xm−1dx(1− xn)k−1∫
xindx(1− xn)k−1 =

m + kn
m

· m + kn + n
m + n

· m + kn + 2n
m + 2n

· etc.,

which form will be reduced to the propounded one by putting n = 1, m + k =
a and m = b, whence it is k = a− b. Therefore, because k must be a positive
number, if it was a > b, it will be

16



P =

∫
xb−1dx(1− x)a−b−1

xidx(1− x)a−b−1 =

∫
xa−b−1dx(1− x)b−1∫

xa−b−1dx(1− x)i ,

but if it is b > a, it will be

P =

∫
xidx(1− x)b−a−1∫

xa−1dx(1− x)b−a−1 =

∫
xb−a−1dx(1− x)i∫

xb−a−1dx(1− x)a−1 .

Q.E.I.

COROLLARY 2

§28 But it is obvious, if a > b, that the value P will be infinite, but if b > a,
that it will be P = 0. But in the case a = b it is P = 1; since the case equally
extends to both we explained, it is evident that it is

∫ xa−1dx
1−x =

∫ xidx
1−x , which

integrals in the case x = 1 certainly become infinite in such a way that their
ratio is 1. But in general it is

∫ xa−1dx
1− x

=
∫ xb−1dx

1− x
.

PROBLEM 4

§29 To define the value of the following infinite product consisting of two factors in
the denominator and the numerator of each fraction by means of integral formulas

P =
ac
be
· (a + 1)(c + 1)
(b + 1)(e + 1)

· (a + 2)(c + 2)
(b + 2)(e + 2)

· (a + 3)(c + 3)
(b + 3)(e + 3)

· etc.

SOLUTION

Since by § 24, while m, n, k, µ, ν denote positive numbers, it is

(µ + ν)(m + kn)
(m + n)(µ + kν)

· (µ + 2ν)(m + kn + n)
(m + 2n)(µ + kν + ν)

· etc. =
m
µ
·
∫

xm−1dx(1− xn)k−1∫
xµ−1dx(1− xν)k−1 ,

put n = 1, ν = 1, µ + 1 = a, m + k = c, m + 1 = b, µ + k = e; it will be
µ = a− 1, m = b− 1 and k = c− b + 1 = c− a + 1. Hence, that this form can
be reduced to the propounded form, it is necessary that it is c− b = e− a;

17



for, if this condition is not satisfied, the value of the propounded product P
would be either infinite or vanishing. That this inconvenience does not occur,
let c− b = e− a or a + c = b + e, and as long as a− 1, b− 1 and c− b or c− 1
are positive numbers, it will be

P =
b− 1
a− 1

·
∫

xb−2dx(1− x)c−b∫
xa−2dx(1− x)c−a .

Or consider this form

µ(m + kn− n)
m(µ + kν− ν)

· (µ + ν)(m + kn)
(m + n)(µ + kν)

· etc. =
m + kn +−n

µ + kν− ν
·
∫

xm−1dx(1− xn)k−1∫
xµ−1dx(1− xν)k−1 ,

which clearly follows from that one, and put n = 1, ν = 1, µ = a, m = b,
c = m + k + 1 and e = µ + k− 1 and it will be k− 1 = c− b = e− a; therefore,
it must again be a + c = b + e. Therefore, now, as long as a, b and c− b + 1 or
e− a + 1 are positive numbers, it will be

P =
c
e
·
∫

xb−1dx(1− x)c−b∫
xa−1dx(1− x)c−a .

Therefore, if it was a + c = b + e, the value in question P is finite and is
expressed by these integral formulas in the case x = 1. Q.E.I.

COROLLARY 1

§30 Since it is a + c = b + e, if it is c > b, it will also be e > a and a and
b in the first term ac

be denote the smaller factors of the numerator and the
denominator. But it is required that c− b + 1 is a positive number. Hence, if
also c− e + 1 is a positive number, the value P can additionally be expressed
in another ways, namely by permuting b and e this way

P =
c
b
·
∫

xe−1dx(1− x)c−e∫
xa−1dx(1− x)b−a .

COROLLARY 2

§31 And each of these formulas will hold
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P =
c
b
·
∫

xe−1dx(1− x)c−e∫
xa−1dx(1− x)b−a =

c
e
·
∫

xb−1dx(1− x)c−b∫
xa−1dx(1− x)c−a =

a
b
·
∫

xe−1dx(1− x)a−e∫
xc−1dx(1− x)b−c

=
a
e
·
∫

xb−1dx(1x)a−b∫
xc−1dx(1− x)e−c .

The first of them holds, if c− e+ 1 = b− a+ 1 is > 0, the second, if c− b+ 1 =
e − a + 1 > 0, the third, if a − e + 1 = b − c + 1 > 0, and the fourth, if
a− b + 1 = e− c + 1 > 0.

COROLLARY 3

§32 The first and the second form will hold at the same time, if the difference
of a and b is smaller than 1 and hence also the difference of c and e is smaller
than 1. And all four will hold at the same time, if additionally the difference
of a and c was greater than 1.

COROLLARY 4

§33 Therefore, if one puts a = p + m, b = p + n, c = p−m and e = p− n,
that it is a + c = b + e = 2p and it was m + n < 1, it will be

P =
p−m
p + n

·
∫

xp−n−1dx(1− x)n−m∫
xp+m−1dx(1− x)m−n =

p + m
p + n

·
∫

xp−n−1dx(1− x)m+n∫
xp−m−1dx(1− x)n+m ,

P =
p−m
p− n

·
∫

xp+n−1dx(1− x)−n−m∫
xp+m−1dx(1− x)−m−n =

p + m
p− n

·
∫

xp+n−1dx(1− x)m−n∫
xp−m−1dx(1− x)n−m .

And these four formulas will be equal to each other.

PROBLEM 5

§34 To express the value of the following infinite product consisting of three factors
in the numerator and denominator of each fraction by means of integral formulas

P =
ac f
beg
· (a + 1)(c + 1)( f + 1)
(b + 1)(e + 1)(g + 1)

· (a + 2)(c + 2)( f + 2)
(b + 2)(e + 2)(g + 2)

· etc.
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SOLUTION

Since in § 25 we found

κ(µ + ν)(m + kn)
k(m + n)(µ +κν)

· (κ + 1)(µ + 2ν)(m + kn + n)
(k + 1)(m + 2n)(µ +κν + ν)

· etc. =
m
µ
·
∫

xm−1dx(1− xn)k−1∫
xµ−1dx(1− xν)κ−1 ,

by also adding the term of the preceding it will be

(κ − 1)µ(m + kn− n)
(k− 1)m(µ +κν− ν)

· κ(µ + ν)(m + kn)
k(m + n)(µ +κν)

· etc. =
(κ − 1)(m + kn− n)
(k− 1)(µ +κν− ν)

·
∫

xm−1dx(1− xn)k−1∫
xµ−1dx(1− xν)κ−1 ;

in order to reduce this form to the propounded one, set

κ − 1 = a, k− 1 = b, µ = c, m = e, n = 1, ν = 1

and

m + k− 1 = e + b = f , µ +κ − 1 = c + a = g.

Therefore, since this reduction does only succeed under this condition, let
f = b + e and g = a + c, that one has this infinite product

P =
ac(b + e)
be(a + c)

· (a + 1)(c + 1)(b + e + 1)
(b + 1)(e + 1)(a + c + 1)

· (a + 2)(c + 2)(b + e + 2)
(b + 2)(e + 2)(a + c + 2)

· etc.

Hence, because in this case it is m = e, k = b + 1, µ = c and κ = a + 1 while
n = ν = 1, it will be

P =
a(b + e)
b(a + c)

·
∫

xa−1dx(1− x)b∫
xa−1dx(1− x)a ,

if c, e, b + 1 and a + 1 are positive numbers. Q.E.I.

COROLLARY 1

§35 Since by means of § 9 it is∫
xα−1dx(1− x)γ−1 =

α + γ

α

∫
xαdx(1− x)γ−1,
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it will be ∫
xe−1dx(1− x)b =

b + e + 1
e

∫
xedx(1− x)b

and hence

P =
ac(b + e)(b + e + 1)
be(a + c)(a + c + 1)

·
∫

xedx(1− x)b∫
xcdx(1− x)a .

And because it is∫
xα−1dx(1− x)γ =

γ

α + γ

∫
xα−1dx(1− x)γ−1,

it will be ∫
xe−1dx(1− x)b =

b
b + e

∫
ce−1dx(1− x)b−1;

one will also have

P =

∫
xe−1dx(1− x)b−1∫
xc−1dx(1− x)a−1 .

COROLLARY 2

§36 But this formula holds, if a, b, c and e are positive numbers, and since
now a and c, likewise b and c, can be permuted, it will also be

P =

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 ,

which conversion is also obvious from Theorem 2 per se.

SCHOLIUM 1

§37 Therefore, the propounded problem is not solved in general, but only in
the case, in which f = b + e and g = a + c, and so our solution is restricted
by two conditions. But indeed only one restriction is necessary, for the value
of P to not become infinite or vanishing; for this it is required that it is
a + c + f = b + e + g. But to solve the problem for this one restriction, it is
necessary to introduce more integral formulas into the calculation, which can
be done this way. Therefore, since, having put a + c + f = b + e + g, it is
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P =
ac f
beg
· (a + 1)(c + 1)( f + 1)
(b + 1)(e + 1)(g + 1)

· (a + 2)(c + 2)( f + 2)
(b + 2)(e + 2)(g + 2)

· etc.,

set P = QR and let

Q =
(p + q)(p− 1)
(p + r)(p− r)

· (p + q + 1)(p− q + 1)
(p + r + 1)(p− r + 1)

· etc. =
p + q
p + r

·
∫

xp−r−1dx(1− x)q+r∫
xp−q−1dx(1− x)q+r

and

R =
αγ(β + ε)

βε(α + γ)
· (α + 1)(γ + 1)(β + ε + 1)
(β + 1)(ε + 1)(α + γ + 1)

· etc. =

∫
xβ−1dx(1− x)ε−1∫
xα−1dx(1− x)γ−1 .

Now let the first term of the product QR become equal to the first term of the
propounded form P, namely

αγ(β + ε)(p + q)(p− q)
βε(α + γ)(p + r)(p− r)

=
ac f
beg

,

which can be done in many ways. For, the first terms can be split into three
factors in several ways; of course, put β + ε = p + r and α + γ = p + q, that
one has q = α + γ− p and r = β + ε− p, and it will be

αγ(2p− α− γ)

βε(2p− β− ε
=

ac f
beg

.

Therefore, if one sets

α = a, β = b, γ = c, ε = e and 2p = a + c + f = b + e + g,

it will be q = a + c − p and r = b + e − p. And so no other restriction is
necessary here than that it is a + c + f = b + e + g = 2p. Therefore, for this
case the value of the propounded infinite product will be

P =
a + c
b + e

·
∫

x2p−b−e−1dx(1− x)a+b+c+e−2p∫
x2p−a−c−1dx(1− x)a+b+c+e−2p ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 ,

where now so the letters a and c as b and c can be permuted arbitrarily.
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To give another proof set γ = p + r and ε = p− q that it is

α(β + ε)(p + q)
β(α + γ)(p− r)

=
ac f
beg

.

Now let

α = a, β = b, ε = c− b, γ = e− a;

it will be

q = p− c + b and r = e− a− p

and hence

f = 2p− c + b and g = 2p− e + a.

But if the sum is put a + c + f = b + e + g = s, it will be

a + b + 2p = s and 2p = s− a− b

and so

p + q = s− a− c = f , p− q = c− b, p + r = e− a,

p− r = s− b− e = g and q + r = b + e− a− c.

And hence this expression results

P =
s− a− c

e− a
·
∫

xs−b−e−1dx(1− x)b+e−a−c∫
xc−b−1dx(1− x)b+c−a−c ·

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)c−a−1 ,

where again so the letters a and c as b and e can be permuted. Or because of
the many values of Q it will also be

P =
c− b
e− a

·
∫

xg−1dx(1− x)c+e−s∫
x f−1dx(1− x)a+e−s ·

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)e−a−1 .

But the formula found first by putting s for 2p goes over into this one

P =
a + c
b + e

·
∫

xg−1dx(1− x)b+e− f∫
x f−1dx(1− x)b+e− f ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 .
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SCHOLIUM 2

§38 Now, if all these permutations are applied, which are obtained for the
formula Q, and the following formula was propounded

P =
ac f
beg
· (a + 1)(c + 1)( f + 1)
(b + 1)(e + 1)(g + 1)

· (a + 2)(c + 2)( f + 2)
(b + 2)(e + 2)(g + 2)

· etc.

and it was a + c + f = b + e + g, one will find the following values for the
value P, namely

P =
f
g
·
∫

xe−a−1dx(1− x)a+ f−e∫
xc−b−1dx(1− x)a+ f−e ·

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)c−a−1 ,

P =
f

e− a
·
∫

xg−1dx(1− x) f−g∫
xc−b−1dx(1− x) f−g ·

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)e−a−1 ,

P =
c− b

g
·
∫

xe−a−1dx(1− x)g− f∫
x f−1dx(1− x)g− f ·

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)e−a−1 ,

P =
c− b
e− a

·
∫

xg−1dx(1− x)e−a− f∫
x f−1dx(1− x)e−a− f ·

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)e−a−1 ,

P =
f
g
·
∫

xb+e−1dx(1− x) f−b−e∫
xa+c−1dx(1− x) f−b−e ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 ,

P =
f

b + e
·
∫

xg−1dx(1− x) f−g∫
xa+c−1dx(1− x) f−g ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 ,

P =
a + c

g
·
∫

xb−e−1dx(1− x)g− f∫
x f−1dx(1− x)g− f ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 ,

P =
a + c
b + e

·
∫

xg−1dx(1− x)b+ f−e∫
x f−1dx(1− x)b+e− f ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 .

But further it is possible to permute so the three letters a, c, f as b, e, g
arbitrarily here, from which a very large amount of formulas, which are all
equal to the same value P, will result.

SCHOLIUM 3

§39 Hence even for the simpler product

P =
ac
be
· (a + 1)(c + 1)
(b + 1)(e + 1)

· (a + 2)(c + 2)
(b + 2)(e + 2)

· etc.,
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if it was a + c = b + e, except for the values found above one will even be able
to exhibit many others. For, first, since it is a + c = b + e, the value found in
problem 5 extends to this

P =

∫
xe−1dx(1− x)b−1∫
xc−1dx(1− x)a−1 .

Further, if in the series of the preceding paragraph one of the letters a, c, f
is set equal to one of b, e, g, either this same expression or others will be
obtained, which together with the preceding ones will be

P =

∫
xe−1dx(1− x)a−e−1∫
xc−1dx(1− x)b−c−1 , P =

∫
xb−1dx(1− x)a−b−1∫
xc−1dx(1− x)e−c−1 ,

P =

∫
xe−1dx(1− x)c−e−1∫
xa−1dx(1− x)b−a−1 , P =

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)e−a−1 ,

P =

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)c−1 , P =

∫
xb−1dx(1− x)c−b−1∫
xa−1dx(1− x)e−a−1 ,

where it is

e− a = c− b and c− e = b− a.

In the following n expressions is an arbitrary number:

P =

∫
xe−n−1dx(1− x)n+a−e−1∫
xc−n−1dx(1− x)n+b−c−1 ·

∫
xn−1dx(1− x)c−n−1∫
xn−1dx(1− x)e−n−1 ,

P =

∫
xn+b−1dx(1− x)c−b−n−1∫
xn+a−1dx(1− x)c−b−n−1 ·

∫
xn−1dx(1− x)b−1∫
xn−1dx(1− x)a−1 ,

P =

∫
xe−1dx(1− x)n+b−c−1∫
xc−1dx(1− x)n+b−c−1 ·

∫
xn−1dx(1− x)b−1∫
xn−1dx(1− x)a−1 ,

P =

∫
xn−1dx(1− x)a−1∫
xc−1dx(1− x)a−1 ·

∫
xb−1dx(1− x)e−1∫
xa−1dx(1− x)n−1 =

∫
xb−1dx(1− x)e−1∫
xc−1dx(1− x)a−1 ,

which last expression is already contained in the preceding ones. But here
it is to be noted that it would be superfluous to define the ratio of the
exponents here as it was done above. For, since P certainly is a finite value
for a + c = b + e, if a certain of the integral formulas has negative exponents
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smaller thn −1, then it is possible to reduce them to greater one and then the
true value of P will be obtained. But simpler formulas are contained in this
theorem.

THEOREM 4

§40 If it was a + c = b + e = s, then it will be∫
xa−1dx(1− x)c−1∫
xb−1dx(1− x)e−1 =

∫
xa−1dx(1− x)s−a−b−1∫
xb−1dx(1− x)s−a−b−1 ,

if after the integration one sets x = 1.

PROOF

For, from the preceding formulas it is∫
xa−1dx(1− x)c−1∫
xb−1dx(1− x)c−1 =

∫
xa−1dx(1− x)c−b−1∫
xb−1dx(1− x)e−a−1 .

But because of a + c = b + e = s it is c = s− a and e = s− b, whence it will be

c− b = e− a = s− a− b,

whence the propounded formula is constructed. Q.E.D.

COROLLARY 1

§41 Here it is possible to permute so the numbers a and c as b and e, whence
one obtains four integral formulas equal to the first, namely each single one
of these formulas

∫
xa−1dx(1− x)s−a−b−1∫
xb−1dx(1− x)s−a−b−1 ,

∫
xa−1dx(1− x)s−a−e−1∫
xe−1dx(1− x)s−a−e−1∫

xc−1dx(1− x)s−b−c−1∫
xb−1dx(1− x)s−b−c−1 ,

∫
xc−1dx(1− x)s−c−e−1∫
xe−1dx(1− x)s−c−e−1

is equal to this form ∫
xa−1dx(1− x)c−1∫
xb−1dx(1− x)e−1 .
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COROLLARY 2

§42 But the value of each of these formulas is equal to this infinite product

be
ac
· (b + 1)(e + 1)
(a + 1)(c + 1)

· (b + 2)(e + 2)
(a + 2)(c + 2)

· etc.

COROLLARY 3

§43 If it is e = 1 and hence b = s− 1, a = s− c, having put

P =
1(s− 1)
c(s− c)

· 2 · s
(c + 1)(s− c + 1)

· 3(s + 1)
(c + 2)(s− c + 2)

· etc.

because of ∫
xb−1dx(1− x)e−1 =

∫
xs−2dx =

1
s− 1

it will be

P = (s− 1)
∫

xs−c−1dx(1− x)c−1,

P = (c− 1)
∫

xs−c−1dx(1− x)c−2 = (s− 1)
∫

xs−c−1dx(1− x)c−1,

P = (s− c− 1)
∫

xc−1dx(1− x)s−c−2,

P =

∫
xs−c−1dx(1− x)c−s∫
xs−2dx(1− x)c−s =

∫
xc−1dx(1− x)−c∫
xs−2dx(1− x)−c = (s− 1)

∫
xs−c−1dx(1− x)c−1.

SCHOLIUM

§44 But since I exhibited many comparisons of integral formulas of this kind,
here I want to persecute some - with respect to the others - more notable cases
and want to show, how they can be expressed by means of integral formulas.
But mainly those infinite products expressing the sines and cosines of a certain
angle are remarkable. For, while ρ denotes the right angle and ϕ an arbitrary
angle it is known that it is

sin ϕ = ϕ

(
1− ϕϕ

4ρρ

)(
1− ϕϕ

16ρρ

)(
1− ϕϕ

36ρρ

)(
1− ϕϕ

64ρρ

)
· etc.
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and

cos ϕ =

(
1− ϕϕ

ρρ

)(
1− ϕϕ

9ρρ

)(
1− ϕϕ

25ρρ

)(
1− ϕϕ

49ρρ

)
· etc.

Now, if one puts ϕ = m
n ρ, it will be(

1− mm
4nn

) (
1− mm

16nn

) (
1− mm

36nn

)
· etc. =

n
mρ

sin
m
n

ρ,(
1− mm

nn

) (
1− mm

9nn

) (
1− mm

25nn

)
· etc. = cos

m
n

ρ.

Or if the angle equal to two right ones π is introduced and because of ρ = 1
2 π

one writes 2m for m, by expanding the factors it will be

(m− n)(n + m)

n · n · (2n−m)(2n + m)

2n · 2n
· (3n−m)(3n + m)

3n · 3n
· etc. =

n
mπ

sin
m
n

π,

(n− 2m)(n + 2m)

n · n · (3n− 2m)(3n + 2m)

3n · 3n
· (5n− 2m)(5n + 2m)

5n · 5n
· etc. = cos

m
n

π,

But by reducing the differences to 1 it will be

(
1− m

n

) (
1 + m

n

)
1 · 1 ·

(
2− m

n

) (
2 + m

n

)
2 · 2 ·

(
3− m

n

) (
3 + m

n

)
3 · 3 =

n
mπ

sin
m
n

π,

( 1
2 −

m
n

) ( 1
2 +

m
n

)
1
2 ·

1
2

·
( 3

2 −
m
n

) ( 3
2 +

m
n

)
3
2 ·

3
2

· etc. = cos
m
n

π.

PROBLEM 6

§46 To find the integral formula, whose value in the case x = 1 yields sin m
n π.

SOLUTION

Because it is

n
mπ

sin
m
n

π =

(
1− m

n

) (
1 + m

n

)
1 · 1 ·

(
2− m

n

) (
2 + m

n

)
2 · 2 · etc.,

compare this infinite product to the general form
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P =
be
ac
· (b + 1)(e + 1)
(a + 1)(c + 1)

· (b + 2)(e + 2)
(a + 2)(c + 2)

· etc.,

whose value was exhibited in several ways by integrals formulas in § 41.
Therefore, one has to set

a = 1, c = 1, b = 1− m
n

and e = 1 +
m
n

and it will be s = a + c = b + e = 2, but then

s− a− b− 1 = −1 +
m
n

, s− a− e− 1 = −1− m
n

,

s− b− c − 1 = −1 +
m
n

, s− c − e− 1 = −1− m
n

.

Therefore, hence for P the following expression follows

P =

∫
dx(1− x)0∫

x
−m

n dx(1− x)
m
n
=

1∫
x
−m

n dx(1− x)
m
n

,

to which all remaining ones are easily reduced. Therefore, this formula gives

∫
x

m
n dx(1− x)−

m
n =

∫ x
m
n dx

(1− x)
m
n
=

mπ

n sin m
n π

and having put x = yn one will have

∫ ym+n−1dy
(1− yn)

m
n
=

mπ

nn sin m
n π

or
∫ ym−1dy

(1− yn)
m
n
=

π

n sin m
n π

.

Therefore, we find

sin
m
n

π =
π

n
:
∫ ym−1dy

(1− yn)
m
n

.

Q.E.I.

COROLLARY 1

§46 Therefore, by means of Theorem 1 this form
∫

ym−1dy(1− yn)
−m

n because

of k = −m
n is converted into this one

∫ ym−1dy
1+yn and hence one will have
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∫ ym−1dy
1 + yn =

π

n sin m
n π

in the case y = ∞, which form because of its simplicity is especially remarka-
ble.

COROLLARY 2

§47 Therefore, we will find these two very remarkable equalities

mπ

n sin m
n π

=
∫ mym−1dy

(1− yn)
m
n

having put y = 1 and

mπ

n sin m
n π

=
∫ mym−1dy

1 + yn

having put y = ∞, in which cases therefore the integral of each of both
formulas can be exhibited conveniently.

COROLLARY 3

§48 Therefore, since having put x = 1 and y = ∞ it is

π

n sin m
n π

=
∫ xm−1dx

(1− xn)
m
n
=
∫ ym−1dy

1 + yn ,

if one writes 2in + m for m, because of sin 2in+m
n π = sin m

n π it will also be

∫ x2in+m−1dx

(1− xn)
2in+m

n
=
∫ xm−1dx

(1− xn)
m
n
=

π

n sin m
n π

and

∫ y2in+m−1dy
1 + yn =

∫ ym−1dy
1 + yn =

π

n sin m
n π

while i denotes an arbitrary integer number.
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COROLLARY 4

§49 Since further while i denotes an arbitrary integer number, if one writes
2in−m for m, it is sin 2in−m

n π = − sin m
nπ , it will be

∫ x2in−m−1dx

(1− xn)
2in−m

n
= −

∫ xm−1dx
(1− xn)

m
n
= − π

n sin m
n π

and

∫ y2in−m−1dy
1 + yn = −

∫ ym−1dy
1 + yn = − π

n sin m
n π

.

Further, if one writes (2i− 1)−m for m, because of sin (2i−1)n−m
n π = sin m

n π

it will be

∫ x(2i−1)n−m−1dx

(1− xn)
(2i−1)n−m

n

= −
∫ xm−1dx

(1− xn)
m
n
=

π

n sin m
n π∫ y(2i−1)n−m−1dy

1 + yn =
∫ ym−1dy

1 + yn =
π

n sin m
n π

.

Finally, in the same way it will be

∫ x(2i−1)n+m−1dx

(1− xn)
(2i−1)n+m

n

= −
∫ xm−1dx

(1− xn)
m
n
= − π

n sin m
n π∫ y(2i−1)n−m−1dy

1 + yn = −
∫ ym−1dy

1 + yn = − π

n sin m
n π

.

COROLLARY 5

§50 Since the integral formulas
∫ ym−1dy

1+yn occur more often, it will be worth
one’s while to list its values for the principal cases having put y = ∞. Therefo-
re, it will be
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∫ dy
1 + y2 =

π

2 sin π
2
=

π

2
because of sin

π

2
= 1,

∫ dy
1 + y3 =

π

3 sin π
3
=

2π

3
√

3
because of sin

π

3
=

√
3

2
,

∫ ydy
1 + y3 =

π

3 sin 2π
3

=
2π

3
√

3
because of sin

2π

3
=

√
3

2
,∫ dy

1 + y4 =
π

4 sin π
4
=

π

2
√

2
,

∫ y2dy
1 + y4 =

π

4 sin 3π
4

=
π

2
√

2
,

∫ dy
1 + y5 =

∫ y3dy
1 + y5 =

π

5 sin π
5

,

∫ ydy
1 + y5 =

∫ y2dy
1 + y5 =

π

5 sin 2π
5

,

∫ dy
1 + y6 =

∫ y4dy
1 + y6 =

π

6 sin π
6
=

π

3

and so forth.

PROBLEM 7

§51 To find the integral formula, whose value in the case x = 1 yields cos m
n π.

SOLUTION

Since it is

cos
m
n

π =

( 1
2 −

m
n

) ( 1
2 +

m
n

)
1
2 ·

1
2

·
( 3

2 −
m
n

) ( 3
2 +

m
n

)
3
2 ·

3
2

· etc.,

compare the general form

P =
be
ac
· (b + 1)(e + 1)
(a + 1)(c + 1)

· etc.

to this infinite product and hence set
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a =
1
2

, c =
1
2

, b =
1
2
− m

n
, e =

1
2
+

m
n

,

such that it is s = a + c = b + e = 1 and

s− a− b− 1 = −1 +
m
n

, s− a− e− 1 = −1− m
n

,

s− b− c − 1 = −1 +
m
n

, s− c − e− 1 = −1− m
n

,

And therefore it will be

P =
x−

1
2 dx(1− x)−

1
2∫

x−
1
2−

m
n dx(1− x)−

1
2−

m
n
=

∫
dx :
√

x− xx∫ x
m
n −

1
2 dx

(1−x)
1
2 +

m
n

But it is
∫ dx√

x−xx = π having put x = 1, whence it is

P = cos
m
n

π =
π∫ x
m
n −

1
2 dx

(1−x)
1
2 +

m
n

.

But by means of the remaining formulas of P one will have

P = cos
m
n

π =

∫
x−

1
2 dx(1− x)−1+m

n∫
x−

1
2−

m
n dx(1− x)−1+m

n
=

∫
x−

1
2 dx(1− x)−1−m

n∫
x−

1
2+

m
n dx(1− x)−1−m

n
.

Q.E.I.

COROLLARY 1

§52 Put x = y2 and the first form will go over into this one

cos
m
n

π =
π

2
∫ y

2m
n dy

(1−yy)
1
2 +

m
n

such that it is

∫ x
2m
n dx

(1− xx)
1
2+

m
n
=

π

2 cos m
n π

.
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COROLLARY 2

§53 But on the other hand by means of Theorem 1 it is

∫
x

m
n −

1
2 dx(1− x)−

1
2−

m
n =

∫ y
m
n −

1
2 dy

1 + y

having put y = ∞. Therefore, because it is

∫ y
m
n −

1
2 dy

1 + y
=

π

cos m
n π

,

put yn for y and it will be

∫ ym+ 1
2 n−1dy

1 + yn =
π

n cos m
n π

=
∫ y

1
2 n−m−1dy
1 + yn .

COROLLARY 3

§54 If also the remaining formulas are converted by means of Theorem 1,
these equations will result

∫
x−

1
2 dx(1− x)−1+m

n =
∫ y−

1
2 dy

(1 + y)
1
2+

m
n
=
∫ y

m
n −1dy

(1 + y)
1
2+

m
n

,

∫
x−

1
2−

m
n dx(1− x)−1+m

n =
∫ y−

1
2−

m
n dy√

1 + y
=
∫ y

m
n −1dy√
1 + y

having put y = ∞. Therefore, having put yn for y it will be

cos
mπ

n
=

∫ ym−1dy

(1+yn)
1
2 +

m
n∫ ym−1dy√

1+yn

=

∫ y
1
2 n−1dy

(1+yn)
1
2 +

m
n∫ y

1
2−m−1dy√

1+yn

.

COROLLARY 4

§54[a] If one writes 1
2 n−m for m, because of

cos
(

1
2

n−m
)

π

n
= sin

m
n

π
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one will at first obtain

π

n sin m
n π

=
∫ ym−1dy

1 + yn

as before; but the remaining formulas will give

sin
mπ

n
=

∫ y
1
2 n−m−1dy

(1+yn)1−m
n∫ y

1
2 n−m−1dy√

1+yn

=

∫ y
1
2 n−1dy

(1+yn)1−m
n∫ ym−1dy√

1+yn

,

and since for the cosine it is possible to take a negative m, it will also be

sin
mπ

n
=

∫ y
1
2 n−m−1dy
(1+yn)

m
n∫ ym− 1

2 n−1dy√
1+yn

=

∫ y
1
2 n−1dy

(1+yn)
m
n∫ yn−m−1dy√

1+yn

.

COROLLARY 5

§55 But on the other hand it is also possible to find another formula for the
cosine from the preceding problem. For, since having put 2m for m it is

π

n sin 2m
n π

=
π

2n sin m
n π cos m

n π
=
∫ y2m−1dy

1 + yn

and

∫ ym−1dy
1 + yn =

π

n sin m
n π

,

if this form is divided by that one, we will have

2 cos
m
n

π =

∫ ym−1dy
1+yn∫ y2m−1dy
1+yn

and cos
m
n

π =

1
2

∫ ym−1dy
1+yn∫ y2m−1dy

1+yn

.

COROLLARY 6

§56 Therefore, lo and behold the many integral formulas, which in the case
y = ∞ yield sin m

n π:
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I.
π

n
∫ ym−1dy

1+yn

, II.

∫ y
1
2 n−m−1dy

1+yn

2
∫ yn−2m−1dy

1+yn

, III.

∫ y
1
2 n−1dy

(1+yn)
m
n∫ yn−m−1dy√

1+yn

,

IV.

∫ ym− 1
2 n−1dy

(1+yn)
m
n∫ ym− 1

2 n−1dy√
1+yn

, V.

∫ y
1
2 n−1dy

(1+yn)1−m
n∫ ym−1dy√

1+yn

, VI.

∫ y
1
2 n−m−1dy

(1+yn)1−m
n∫ y

1
2 n−m−1dy√

1+yn

,

where it is to be noted that in the forms III and IV, likewise in V and VI the
numerators and the denominators are equal to each other.

COROLLARY 7

§57 In like manner we will have as many formulas for cos m
n π which are:

I.
π

n
∫ y

1
2 n−m−1dy

1+yn

, II.

∫ ym−1dy
1+yn

2
∫ y2m−1dy

1+yn

, III.

∫ ym−1dy

(1+yn)
1
2 +

m
n∫ ym−1dy√

1+yn

,

IV.

∫ y
1
2 n−1dy

(1+yn)
1
2 +

m
n∫ y

1
2 n−m−1dy√

1+yn

, V.

∫ y−m−1dy

(1+yn)
1
2−

m
n∫ y−m−1dy√

1+yn

, VI.

∫ y
1
2 n−1dy

(1+yn)
1
2−

m
n∫ y

1
2 n+m−1dy√

1+yn

.

SCHOLIUM

§58 Hence it is possible to deduce even formulas for the tangent of the angle
m
n π; I will exhibit the simpler ones of them here:

tan
m
n

π =

∫ y
1
2−m−1dy
1+yn∫ ym−1dy
1+yn

, tan
m
n

π =

∫ y
1
2 n−1dy

(1+yn)1−m
n∫ ym−1dy

(1+yn)
1
2 +

m
n

=

∫ y
1
2 n−m−1dy

(1+yn)1−m
n∫ y

1
2 n−1dy

(1+yn)
1
2 +

m
n

.

More extraordinary properties will be found from the combination of these
formulas; as if it was n = 4 and m = 1, it will be
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1√
2
=

π

4
∫ dy

1+y4

=

∫ dy
1+y4

2
∫ ydy

1+y4

=

∫ ydy
4
√

1+y4∫ yydy√
1+y4

=

∫ ydy
4
√

(1+y4)3∫ dy√
1+y4

=

∫ dy
4
√

(1+y4)3∫ dy√
1+y4

,

whence it is concluded that it will be∫ ydy
4
√
(1 + y4)3

=
∫ dy

4
√
(1 + y4)3

in the case y = ∞ or that it is∫
(1− y)dy
4
√
(1 + y4)3

= 0;

but I will not spend more time on finding such properties here.
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