
General Solution of certain

Diophantine problems which

usually seem to admit only special

solutions *

Leonhard Euler

§1 Diophantine analysis, which is about solving undetermined problems
by rational or even integer numbers, usually treats two kinds of problems,
the difference of which is mostly in the nature of the solution. For, the one
problems are of such a nature that general solutions can be exhibited which
contain completely all satisfactory solutions; the other problems on the other
hand only admit particular solutions, or at least by known methods it is only
possible to find such solutions, such that, except the numbers which might
be found, infinitely many others also solving the problem exist which are not
contained in the found solution. Here it is convenient to note in general that
problems of the first class a resolved a lot more easily than those which are
referred to the other class, which in most cases require exceptional ingenuity
together with extraordinary artifices, in which the very great power of this
analysis is seen. For this reason Diophantine problems seem to be have to be
divided into these two classes.

*Original title: "Solutio generalis quorundam problematum Diophanteorum, quae vulgo
nonnisi solutiones speciales admittere videntur", first published in: Novi Commentarii
academiae scientiarum Petropolitanae 6, 1761, pp. 155-184, reprint in: Opera Omnia: Series
1, Volume 2, pp. 428 - 458, Eneström-Number E255, translated by: Alexander Aycock for
the project „Euler-Kreis Mainz“.
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§2 Diophantus himself only gave the most simple solutions of all questions
he considered and in most cases was contented to have indicated the numbers
in which the one solution is contained. But on the other hand his method is
not to be considered to be restricted to these very special solutions; for, since
at that time the use of letters by which the indefinite numbers are denoted
had not been received yet, further-extending solutions of this kind, as they
are usually exhibited now, could not be expected from him; nevertheless, the
methods which he used to solve a given problem extend as far as those which
are used today; yes, we are even forced to confess that hardly anything in this
branch of analysis has been found, the clear traces of which are not already
detected in Diophantus’ work. Therefore, since the apparent particularity of
Diophantus’ solutions is no obstruction, the disparity mentioned above is
already manifestly seen in Diophantus’ work, if we consider his methods;
the ones of them are of such a nature that they can give completely all
solutions which can solve the problem, the others on the other hand only yield
some solutions or, even though they can be increased to infinity, nevertheless
innumerable others which are also satisfactory are not contained.

§3 An example of a problem the general solution of which can be exhibited is
provided by the ordinary question in which one asks for two square numbers
the sum of which is a square, or having taken x and y for the roots of these
squares that xx + yy is a square number. For, having taken three numbers a, p
and q arbitrarily one will have this general solution

y = 2apq and x = a(pp− qq);

for, from these values it results√
xx + yy = a(pp + qq).

On this solution it is to be noted that there are no numbers to be substituted
for x and y the sum of which becomes a square which are not at the same
time contained in this formula. And this generality is not only seen from this
that for the three letters a, p and q any numbers can be taken, whence already
an infinite multitude of solutions is obtained, but the investigation of these
formulas also reveals that there is no solution which is not comprehended by
them. But on the other hand the last criterion is a lot more certain than the
first, since often many indefinite letters can enter the solution and nevertheless
the solution is not rendered general.
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§4 But the nature of the investigation in this example shows us the universa-
lity clearly. For, since

√
xx + yy must be a rational number, it will certainly be

greater than x; therefore, set it = x + z. But then, whatever the ratio of y to z
is, one will be able to put z = p

q y and this way the generality is not lost. But
having put

√
xx + yy = x + p

q y and having taken the squares we will have

xx + yy = xx +
2q
p

xy +
pp
qq

yy.

Having cancelled the term xx on both sides and having divided the remainer
by y it will result

y =
2q
p

x +
qq
pp

y or (pp− qq)y = 2pqx.

Therefore, it will be

x
y
=

pp− qq
2pq

and hence x and y are either both multiples or both submultiples of the
numbers pp− qq and 2pq. Therefore, having taken a for the general index of
the multiple or submultiples we will obtain

y = 2apq and x = a(pp− qq),

and because of z = q
p y = 2aqq it will be

x + z =
√

xx + yy = a(pp + qq).

§5 But an example of a problem the general solution of which can not by
exhibited by known methods is the question on finding three cubes the sum
of which is a cube: or three numbers x, y and z are to be found such that

x3 + y3 + z3 = cube.

This problem was solved both by Diophant and by more recent authors in
many ways and certainly in such a way that an infinite multitude of solutions
has been exhibited; and nevertheless no solution extends so far that it contains
completely all cases solving this question. In this problem even either one
cube x3 or two x3 + y3 can be considered as given, whence either the two
remaining cubes or just one must be found that the sum becomes a cube; but
however the solution is found, it is nevertheless very particular.
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§6 To see this more clearly, let us briefly mention the usual solutions here.
Therefore, first let the two cubes a3 and b3 be given and the third x3 must be
found that the sum of all three

a3 + b3 + x3

becomes a cube again. But it is manifest that the cube root of this cube will be
greater than x; but even though one sets it = x + v, nevertheless a quadratic
equation for x results and so the difficulty is not reduced. Therefore, one
usually sets x = p− b that the sum of three cubes becomes

a3 + 3bbp− 3bpp + p3 = cube = v3,

and by this the generality of the solution is certainly not restricted. But further
a cube of such a kind must be assumed that the unknown p can be exhibited
by a simple equation and hence rationally. But it is obvious that this can be
done in two ways. For, first having taken v = a + p it will become

a3 + 3bbp− 3bpp + p3 = a3 + 3aap + 3app + p3;

since here the terms a3 and p3 cancel each other, the remainder divided by 3p
gives

bb− bp = aa + ap and hence p =
bb− aa

a + b
= b− a,

whence x = p− b = −a, in which case of course

a3 + b3 + x3 = a3 + b3 − a3 = b3 = a cube.

§7 But that this solution is a very particular one is clear from the assumption
of the value v = a + p, since it can certainly happen that the quantity

a3 + 3bbp− 3bpp + p3

is a cube, the root of which is not a + p, such that by this the solution is highly
restricted, whence it happens that it even exhibited a value for p and hence
for x which is to be considered to have not even yielded a suitable solution,
since we found x = −a, which case is so obvious immediately that it can
certainly not even admitted as a solution. Therefore, usually another value
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is assumed for v, such a one nevertheless that the invention of p leads to a
simple equation what happens by putting v = a + bb

aa p; for, it will be

a3 + 3bbp− 3bpp + p3 = a3 + 3bbp +
3b4

a3 pp +
b6

a6 p3,

which, having cancelled the terms a3 + 3bbp on both sides, divided by pp
gives

−3b + p =
3b4

a3 +
b6

a6 p and p =
3a6b + 3a3b4

a6 − b6 .

§8 Therefore, since we hence found

p =
3a3b(a3 + b3)

a6 − b6 =
3a3b

a3 − b3 ,

it will be

x = p− b =
2a3b + b4

a3 − b3 =
b(2a3 + b3)

a3 − b3 ,

which is the root of the third cube to be added to the two given ones, i.e. a3 + b3,
that the sum becomes a cube. But the cube root of the sum by assumption
will be

= v = a +
bb
aa

p = a +
3ab3

a3 − b3

or

v =
a4 + 2ab3

a3 − b3 =
a(a3 + 2b3)

a3 − b3 .

Therefore, whatever number had been assumed for a and b, hence one will
have three cubes the sum of which is a cube. Of course, these will be

a3 + b3 +

(
b(2a3 + b3)

a3 − b3

)3

=

(
a(a3 + 2b3)

a3 − b3

)3

.

But that even this solution is a very special one is perspicuous from the
investigation itself, since we completely arbitrarily assumed the root of the
sum of the three cubes v = a + bb

aa p, although without a doubt it can obtain
infinitely many other values.
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§9 But further, given two cubes the third cube is found which combined
with them produces a cube; but it is obvious that infinitely many cubes of this
kind exist. For, if a = 4 and b = 3, the root of the third cube hence results as

x =
3(2 · 64 + 27)

64− 27
=

465
37

and v =
472
37

,

such that

43 + 33 +

(
465
37

)3

=

(
472
37

)3

.

But we know the cube of five added to these cubes 43 + 53 also produces a
cube, of course the cube of six, or that

33 + 43 + 53 = 63,

which case is nevertheless not contained in this solution. Hence if, in order to
solve this problem that x3 + y3 + z3 = v3, somebody says that one has to take

x = a, y = b and z =
b(2a3 + b3)

a3 − b3

and that it will then be v = a(a3+2b3)
a3−b3 , these formulas are certainly satisfactory,

but even though because of the two completely arbitrary numbers a and b
hence infinitely many triples of cubes can be exhibited the sum of which is a
square, nevertheless infinitely many other triples of cubes exist achieving the
same which are not contained in these formulas, as this case x = 3, y = 4 and
z = 5, for which v = 6.

§10 A further-extending solution is found, if just one of the three cubes is
assumed to be given such that it has to be

a3 + x3 + y3 = v3.

To this end, put x = pu + r and y = qu− r, which position does not restrict
the generality, and it will be

a3 + 3rr(p + q)u + 3r(pp− qq)uu + (p3 + q3)u3 = v3.
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But that hence the quantity u can be defined in rational terms, assume v =
a + rr

aa (p + q)u, by which position the solution is restricted vehemently, of
course; but from it one will obtain

v3 = a3 + 3rr(p + q)u +
3r4

a3 (p + q)2uu +
r6

a6 (p + q)3u3.

Therefore, having cancelled the terms a3 + 3rr(p + q)u on both sides and
having divided the remainer by (p + q)uu this equation will emerge

3r(p− q) + (pp− pq + qq)u =
3r4

a3 (p + q) +
r6

a6 (p + q)2u,

from which one finds

u =
3a3r4(p + q)− 3a6r(p− q)

a6(pp− pq + qq)− r6(p + q)2 .

§11 Therefore, having found this value for u, it will be

x = pu + r =
3a3 pr4(p + q)− a6r(2pp− 2pq− qq)− r7(p + q)2

a6(pp− pq + qq)− r6(p + q)2 ,

y = qu − r =
3a3qr4(p + q)− a6r(pp + 2pq− 2qq) + r7(p + q)2

a6(pp− pq + qq)− r6(p + q)2

and

v = a +
rr
aa

(p + q)u =
a7(pp− pq + qq)− 3a4r3(pp− qq) + 2ar6(p + q)2

a6(pp− pq + qq)− r6(p + q)2 .

Therefore, since the four letters a, p, q and r can be assumed arbitrarily, this
solution extends infinitely times further than the preceding one, where only
two letters were arbitrary. But nevertheless it is to be noted that just the ratio
of the letters p and q enters the calculation such that hence the arbitrary letters
are reduced to only three; despite this, because of the restriction concerning
the root v, the this solution is to be considered as a particular one such that
triples of cubes exist which are not contained in these formulas. But the
preceding solution emerges from this one for p = 0 such that this one is
infinitely many times more general.
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§12 But we will obtain a still more general solution, if we assume none of
the three cubes as known or in general look for x, y and z that

x3 + y3 + z3 = v3.

To this end, put

x = pt + u, y = −pt + qu and z = t− qu,

by which positions still nothing is restricted; but after the substitution it will
be

t3 + 3ppttu + 3ptuu + u3 = v3.

+ 3ppqttu − 3pqqtuu

− 3qttu + 3qqtuu

Now assume v = t+ u, whence certainly a huge restriction results, and having
divided the equation by 3tu one will find

(pp + ppq− q)t + (p− pqq + qq)u = t + u

or

t
u
=
−1 + p + qq− pqq
1 + q− pp− ppq

;

therefore, one will have to take

t = n(−pqq + qq + p− 1) and u = n(−ppq− pp + q + 1),

whence one finds

x = n(−ppqq + pqq− ppq− p + q + 1),

y = n(p + q− pp + qq− ppq− pqq),

z = n(+ppqq− pqq + ppq + p− q− 1),

v = n(−pqq− ppq− pp + qq + p + q).

But hence z = −x and v = y which case is per se obvious.
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§13 But in the following way a further-extending solution is found. Put

x = mt + pu, y = nt + qu and z = −nt + ru

and it will be

x3 + y3 + z3 = m3t3 + 3mmpttu + 3mpptuu + p3u3;

+ 3nnq + 3nqq + q3

+ 3nnr − 3nrr + r3

since which sum must be a cube = v3, put

v = mt +
mmp + nn(q + r)

mm
u

and dividing by uu it will be

3t(mpp + n(qq− rr)) + u(p3 + q3 + r3)

=
3t
m3 (mmp + nn(q + r))2 +

u
m6 (mmp + nn(q + r))3

and so having neglected the common factor which is arbitrary it will be

t = m6(p3 + q3 + r3)− (mmp + nn(q + r))3,

u = 3m3(mmp + nn(q + r))2 − 3m6(mpp + n(qq− rr));

if these forms are divided by the common factor q + r again, it results

t = m6(qq− qr + rr)− 3m4nnpp− 3mmn4 p(q + r)− n6(q + r)2,

u = −3m6n(q− r) + 6m5nnp + 3m3n4(q + r).

§14 Hence now for x, y, z the following expressions emerge:

x = m7(qq− qr + rr)− 3m6np(q− r) + 3m5nnpp−mn6(q + r)2,

y = −m6n(2qq− 2qr− rr) + 6m5nnpq− 3m4n3 pp + 3m3n4q(q + r)

−3mmn5 p(q + r)− n7(q + r)2,

z = +m6n(−qq− 2qr + 2rr) + 6m5nnpr + 3m4n3 pp + 3m3n4r(q + r)
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+3mmn5 p(q + r) + n7(q + r)2,

the sum of which cubes is again a cube having the root v that

v = m7(qq− qr + rr)− 3m6np(q− r) + 3m5nnpp− 3m4n3(qq− rr)

+6m3n4 p(q + r) + 2mn6(q + r)2.

Indeed, these numbers can also be exhibited in the following way:

x = + 3m5n2 pp − 3m6npq + 3m6npr + m7qq − m7qr + m7rr,

− mn6 − 2mn6 − mn6

y = − 3m4n3 pp + 6m5n2 pq − 3m2n5 pr − 2m6nqq + 2m6nqr + m6nrr,

− 3m2n5 + 3m3n4 + 3m3n4 − n7

− n7 − 2n7

z = + 3m4n3 pp + 3m2n5 pq + 6m5n2 pr − m6nqq − 2m6nqr + 2m6nrr,

+ 3m2n5 + n7 + 3m3n4 + 3m3n4

+ 2n7 + n7

v = + 3m5n2 pp − 3m6npq + 3m6npr + m7qq − m7qr + m7rr.

+ 6m3n4 + 6m3n4 − 3m4n3 + 4mn6 + 3m4n3

+ 2mn6 + 2mn6.

Having substituted which values it actually is

x3 + y3 + z3 = v3.

§15 If each of these numbers is additionally multiplied by an indefinite coef-
ficient, these formulas will contain six arbitrary letters, which will certainly be
reduced to four, whence they seem to extend very far and contain completely
all cases; but nevertheless, from the solution in which we attributed a value
to v depending on the letters x, y and z, it is understood that these formulas
can only be considered as particular solutions. Furthermore, also by other
positions other solutions are found which are more suitable for certain cases;
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for, then one also has methods to find other particular solutions from any
found solution. Nevertheless, by all artifices, if they are not iterated infinitely
many times, no solution which can be considered as general can be obtained.
Yes, it has even almost been believed that problems of this kind are of such a
nature that they do not admit a general solution at all, from which the follo-
wing solution of the problem, which is indeed general, is most remarkable
and seems apt to expand the limits of Diophantine analysis.

PROBLEM

§16 To find all triples of cubes the sum of which is a cube.

SOLUTION

Let A, B, C be the roots of the three cubes and D the cube root of their sum
that

A3 + B3 + C3 = D3,

to which equation this form shall be attributed

A3 + B3 = C3 − D3.

Now put

A = p + q, B = p− q, C = r− s and D = r + s,

by which position the generality of the solution is not restricted. But hence

A3 + B3 = 2p3 + 6pqq and D3 − C3 = 2s3 + 6rrs

and so it will be

p(pp + 3qq) = s(ss + 3rr),

which equation can only hold, if pp + 3qq and ss + 3rr have a common divisor.
But it is known that such numbers have no other divisors than those which
are of the same form; but to obtain this, instead of the four letters p, q, r and s
introduce six new ones this way
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p = ax + 3by, s = 3cy − dx,

q = bx + ay, r = dy + cx,

whence the generality of the solution is restricted a lot less. But hence it will
be

pp + 3qq = (aa + 3bb)(xx + 3yy)

and

ss + 3rr = (dd + 3cc)(xx + 3yy)

and our equation divided by xx + 3yy will take the following form

(ax + 3by)(aa + 3bb) = (3cy− dx)(dd + 3cc),

by which we already obtained that the letters x and y have only one dimension
and can hence be defined in rational terms. For, since

x
y
=
−3b(aa + 3bb) + 3c(dd + 3cc)

a(aa + 3bb) + d(dd + 3cc)
,

put

x = −3nb(aa + 3bb) + 3nc(dd + 3cc),

y = na(aa + 3bb) + nd(dd + 3cc).

From these values the letters p, q, r, s etc. are defined in such a way that

p = 3n(ac + bd)(dd + 3cc),

q = n(3bc− ad)(dd + 3cc)− n(aa + 3bb)2,

r = n(dd + 3cc)2 − n(3bc− ad)(aa + 3bb),

s = 3n(ac + bd)(aa + 3bb).

And hence finally the roots of the cubes in question, i.e. A, B, C, D will be
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A = n(3ac + 3bc− ad + 3bd)(dd + 3cc)− n(aa + 3bb)2,

B = n(3ac− 3bc + ad + 3bd)(dd + 3cc) + n(aa + 3bb)2,

C = n(dd + 3cc)2 − n(3ac + 3bc− ad + 3bd)(aa + 3bb),

D = n(dd + 3cc)2 + n(3ac− 3bc + ad + 3bd)(aa + 3bb),

by which values one obtains that

A3 + B3 + C3 = D3;

and since the solution was not restricted in any way, it obviously extends as
far as possible and contains all triples of cubes the sum of which is a cube
again.

COROLLARY 1

§17 Let us hence derive more special solutions and first let d = 0 and it will
be

A = 9n(a + b)c3 − n(aa + 3bb)2,

B = 9n(a− b)c3 + n(aa + 3bb)2,

C = 9nc4 − 3nc(a + b)(aa + 3bb),

D = 9nc4 + 3nc(a− b)(aa + 3bb).

If here one further sets b = a, it will be

A = 18nac3 − 16na4, B = 16na4, C = 9nc4 − 24na3c

and

D = 9nc4;

but if b = −a, one will find

A = −16na4, B = 18nac3 + 16na4, C = 9nc4

and

D = 9nc4 + 24na3c.
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COROLLARY 2

§18 Now let us put c = 0 and it will be

A = n(3b− a)d3 − n(aa + 3bb)2,

B = n(3n + a)d3 + n(aa + 3bb)2,

C = nd4 − nd(3b− a)(aa + 3bb),

D = nd4 + nd(3b + a)(aa + 3bb).

If one further sets b = a, it will be

A = 2nad3 − 16na4, B = 4nad3 + 16na4, C = nd4 − 8na3d,

D = nd4 + 16na3d;

but if a = −b, it will be

A = 4nbd3 − 16nb4, B = 2nbd3 + 16nb4, C = nd4 − 16nb3d,

D = nd4 + 8nb3d.

COROLLARY 3

§19 Now let b = 0 and our formulas will become

A = na(3c− d)(dd + 3cc)− na4,

B = na(3c + d)(dd + 3cc) + na4,

C = n(dd + 3cc)2 − na3(3c− d),

D = n(dd + 3cc)2 + na3(3c + d).

If one now furthermore sets d = c, it will be

A = 8nac3 − na4, B = 16nac3 + na4, C = 16nc4 − 2na3c,

D = 16nc4 + 4na3c;

but if d = −c, it will be

A = 16nac3 − na4, B = 8nac3 + na4, C = 16nc4 − 4na3c,

D = 16nc4 + 2na3c.
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COROLLARY 4

§20 Finally, put a = 0 and we will obtain

A = 3nb(c + d)(dd + 3cc)− 9nb4,

B = 3nb(d− c)(dd + 3cc) + 9nb4,

C = n(dd + 3cc)2 − 9nb3(c + d),

D = n(dd + 3cc)2 + 9nb3(d− c).

If ones further sets d = c, it will be

A = 24nbc3 − 9nb4, B = 9nb4, C = 16nc4 − 18nb3c,

D = 16nc4;

but if c = −d, one will have

A = −9nb4, B = 24nbd3 + 9nb4, C = 16nd4,

D = 16nd4 + 18nb3d.

COROLLARY 5

§21 If one of the numbers A, B, C becomes negative, which can be done
arbitrarily, as if A = −E, it will be B3 + C3 = D3 + E3 and so at the same time
we solved this problem in most general manner, in which two pairs of cubes
are in question, the sum of which is equal to each other. But if two roots result
as negative, as, e.g., A = −E and B = −F, it will be C3 = D3 + E3 + F3 and
so one will again have the solution of our problem.

SCHOLIUM 1

§22 The most simple formulas exhibited in these corollaries are reduced to
these two, if in Corollary 3 one writes a for 2a and n = n

16 , and in Corollary 1

1
2 a for a:
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A = nac3 − na4, A = 9nac3 − na4,

B = 2nac3 + na4, B = na4,

C = nc4 − na3c, C = 9nc4 − 3na3c,

D = nc4 + 2na3c, D = 9nc4,

the first of which agrees with the one found above in § 8; but the other yields
this most simple case A = 8, B = 1, C = 6 and D = 9 such that

13 + 63 + 83 = 93.

SCHOLIUM 2

§23 At first sight the general formulas found in the problem seem to extend
not further than the formulas exhibited above (§ 14), since both contain five
arbitrary letters and those additionally can receive a common coefficient
such that they even seem to be more general. Nevertheless, the nature of the
solution shows that the formulas found in the problem are the most general
ones, while the above ones are very severely restricted. To see this restriction
more clearly, from § 13 consider the position

v = mt +
mmp + nn(q + r)

mm
u = mt + pu +

nn
mm

(q + r)u.

But on the other hand mt + pu = x and y + z = (q + r)u such that the position
is

v = x +
nn
mm

(y + z).

Hence that x3 + y3 + z3 = v3 in that solution it is assumed to be

v− x
y + z

=
nn
mm

= square;

and so that does not extend to other cases than those in which v−x
y+z or D−A

B+C

is a square number. Therefore, as often as D−A
B+C is not a square, the case is

not contained in the above formulas; but that cases of this kind exist is also
clear from the example 13 + 63 + 83 = 93 in which neither 9−1

6+8 nor 9−6
1+8 nor 9−8

1+6
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becomes a square. But this solution of the problem is not restricted in such a
way, since

D− C
A + B

=
s
p
=

pp + 3qq
ss + 3rr

=
aa + 3bb
dd + 3cc

,

whence from the general solution only the cases in which aa+3bb
dd+3cc is a square

number, are contained in the above formulas of § 14; hence the highest
generality of our solution shows very clearly.

SCHOLIUM 3

§24 But the nature of this problem requires just integer numbers and certain-
ly such which are mutually prime; for, if it was A3 + B3 + C3 = D3, then also
all equal multiples and equal submultiples of the numbers A, B, C, D solve
the problem; and hence it will suffice to have known only the cases, in which
the numbers A, B, C, D are both integer numbers and mutually prime. To this
end having taken any either positive or negative numbers for a, b, c, d, hence
first form

x = 3n(c(dd + 3cc) − b(aa + 3bb)),

y = n(d(dd + 3cc) + a(aa + 3bb))

and take such a fraction for n that x and y become mutually prime integers.
From these further form

p = ax + 3by, q = bx− ay, r = dy + cx and s = 3cy− dx,

which must again be lowered by the common divisor, if they have one. Hence
finally one will have

A = p + q, B = p− q, C = r− s and D = r + s

and so it will be

A3 + B3 + C3 = D3.

And the cases in which one of these numbers becomes negative will at the
same time yield all solutions in which the sum of two cubes is equal to the
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sum of two other cubes.

In this calculation it will be convenient to have a table of the numbers of
the form mm + 3nn readily available, whence thereafter the formulas aa + 3bb
and dd + 3cc can be taken.
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Table of Numbers of the form mm + 3mm

The numbern

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 3 12 27 48 75 108 147 192 243 300 363 432 507 588 675 768 867 972

1 1 4 13 28 49 76 109 148 193 244 301 364 433 508 589 676 769 868 973

2 4 7 16 31 52 79 112 151 196 247 304 367 436 511 592 679 772 871 976

3 9 12 21 36 57 84 117 156 201 252 309 372 441 516 597 684 777 876 981

4 16 19 28 43 64 91 124 163 208 259 316 379 448 523 604 691 784 883 988

5 25 28 37 52 73 100 133 172 217 268 325 388 457 532 613 700 793 892 997

6 36 39 48 63 84 111 144 183 228 279 336 399 468 543 624 711 804 903

7 49 52 61 76 97 124 157 196 241 292 349 412 481 556 637 724 817 916

8 64 67 76 91 112 139 172 211 256 307 364 427 496 571 652 739 832 931

9 81 84 93 108 129 156 189 228 273 324 381 444 513 588 669 756 849 948

10 100 103 112 127 148 175 208 247 292 343 400 463 532 607 688 775 868 967

11 121 124 133 148 169 196 229 268 313 364 421 484 553 628 709 796 889 988

12 144 147 156 171 192 219 252 291 336 387 444 507 576 651 732 819 912

13 169 172 181 196 217 244 277 316 361 412 469 532 601 676 757 844 937

14 196 199 208 223 244 271 304 343 388 439 496 559 628 703 784 871 964

15 225 228 237 252 273 300 333 372 417 468 525 588 657 732 813 900 993

16 256 259 268 283 304 331 364 403 448 499 556 619 688 763 841 931

17 289 292 301 316 337 364 397 436 481 532 589 652 721 796 877 964

18 324 327 336 351 372 399 432 471 516 567 624 687 756 831 912 999

19 361 364 373 388 409 436 469 508 553 604 661 724 793 868 949

20 400 403 412 427 448 475 508 547 592 643 700 763 832 907 988

21 441 444 453 468 489 516 549 588 633 684 741 804 873 948

22 484 487 496 511 532 559 592 631 676 727 784 847 916 991

23 529 532 541 556 577 604 637 676 721 772 829 892 961

24 576 579 588 603 624 651 684 723 768 819 876 939

25 625 628 637 652 673 700 733 772 817 868 925 988

26 676 679 688 703 724 751 784 823 868 919 976

27 729 732 741 756 777 804 837 876 921 972

28 784 787 796 811 832 859 892 931 976

29 841 844 853 868 889 916 949 988

30 900 903 912 927 948 975

31 961 964 973 988
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SCHOLIUM 4

§25 From this table the numbers for aa + 3bb and dd + 3cc can be assumed
arbitrarily, whence one will have the values of the letters a, b, c, d, which can
be taken so positively as negatively. But if smaller numbers are desired for A,
B, C, D, it will be convenient to have taken values of such a kind for aa + 3bb
and 3cc + dd which have a common divisor. Therefore, set

aa + 3bb = mk and dd + 3cc = nk.

But then on the other hand let

ac + bd = f and 3bc− ad = g

and hence it will be

A = n(3 f + g)−mmk,

B = n(3 f − g) + mmk,

C = nnk−m(3 f + g),

D = nnk + m(3 f − g),

where it is to be noted, whatever values were found for f and g, that they can
be taken so positively as negatively, because of the ambiguous numbers a, b,
c, d; hence for each case one will have the following determinations

either f = ± (ac + bd), g = ± (3bc − ad)

or f = ± (ac − bd), g = ± (3bc + ad).

But it is plain, if while g stays negative f is taken negatively, that the same
numbers will result just in permuted order, whence it suffices to have assumed
only positive values for f . Furthermore, it is manifest, if m = n or

aa + 3bb = dd + 3cc,

that then it will be A = −C and D = B, whence one will have to exclude
these cases. Finally, if f = 0, A = −B and C = D, these cases are therefore
also to be omitted. Often it also happens that either for a and b or for c and
d or for each of both pairs several values results, from which the number of
solutions becomes even greater.
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EXAMPLE 1

§26 Take aa + 3bb = 19, it will be a = 4 and b = 1, but then take dd + 3cc =
76 and it will be

either d = 1, c = 5

or d = 7, c = 3

or d = 8, c = 2.

But then m = 1, n = 4 and k = 19. But for f and g the following values will
result

I. f = 21, g = ± 11, II. f = 19, g = ± 19, III. f = 19, g = ± 19,

IV. f = 5, g = ± 37, V. f = 16, g = ± 26, VI. f = 0, g = ± 38,

whence the third and the sixth case are to be excluded. And hence it will be

A = 12 f + 4g − 19,

B = 12 f − 4g + 19,

C = 304 − 3 f − g,

D = 304 + 3 f − g.

Therefore, hence for the first value f = 21 and g = ±11 one will find

A = 233 ± 44,

B = 271 ∓ 44,

C = 241 ∓ 11,

D = 367 ∓ 11,

therefore,
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for the upper signs for the lower signs

A = 277,

B = 227,

C = 230,

D = 356,

A = 189, or A = 3,

B = 315, B = 5,

C = 252, C = 4,

D = 378, D = 6.

But the cases II and III dividing the formulas by 19, because of f = 1 · 19 and
g = ±1 · 19 will give

A = 11 ± 4,

B = 13 ∓ 4,

C = 13 ∓ 1,

D = 19 ∓ 1,

therefore,

either or

A = 15, or A = 5,

B = 9, B = 3,

C = 12, C = 4,

D = 18, D = 6,

A = 7,

B = 17,

C = 14,

D = 20.

Case IV in which f = 5 and g = ±37 gives

A = 41 ± 148,

B = 79 ∓ 148,

C = 289 ∓ 37,

D = 319 ∓ 37,

therefore,
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either or

A = 189, or A = 63,

B = − 69, B = − 23,

C = 252, C = 84,

D = 282, D = 94,

A = − 107,

B = 227,

C = 326,

D = 356.

Case V in which f = 16 and g = ±26 gives

A = 173 ± 104,

B = 211 ∓ 104,

C = 256 ∓ 26,

D = 352 ∓ 26,

therefore,

either or

A = 277,

B = 107,

C = 230,

D = 326,

A = 69, or A = 23,

B = 315, B = 105,

C = 282, C = 94,

D = 378, D = 126.

Therefore, lo and behold the many triples of cubes found from one position:

2273 + 2303 + 2773 = 3563, 1073 + 3563 = 2273 + 3263,

1073 + 2303 + 2773 = 3263, 233 + 943 = 633 + 843,

233 + 943 + 1053 = 1263,

73 + 143 + 173 = 203,

33 + 43 + 53 = 63,

whence one concludes

3563 − 2273 = 2303 + 2773 = 3263 − 1073,
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likewise

1263 − 1053 = 633 + 843 = 233 + 943.

EXAMPLE 2

§27 Let aa + 3bb = 28; it will be

either a = 1, b = 3,

or a = 4, b = 2,

or a = 5, b = 1;

but then let dd + 3cc = 84; it will be

either d = 3, c = 5,

or d = 6, c = 4,

or d = 9, c = 1;

and hence k = 28, m = 1 and n = 3; but then for f and g the following values
will result

I. f = 14, g = ± 42, II. f = 4, g = ± 48, III. f = 22, g = ± 30,

IV. f = 14, g = ± 42, V. f = 28, g = ± 0, VI. f = 26, g = ± 18,

where it is to be noted that these values I and IV of which are identical result
only from the position a = 1 and b = 3 and the two remaining ones produce
the same. Therefore, hence we will have

A = 9 f + 3g − 28,

B = 9 f − 3g + 28,

C = 252 + 3 f − g,

D = 252 + 3 f − g,

whence the first and fourth, dividing by 14, will give
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A = 7 ± 9,

B = 11 ∓ 9,

C = 15 ∓ 3,

D = 21 ∓ 3,

therefore,

either or

A = 16 = 8,

B = 2 = 1,

C = 12 = 6,

D = 18 = 9,

A = − 2 = − 1,

B = 20 = 10,

C = 18 = 9,

D = 24 = 12.

The second case on the other hand, dividing by 4, gives

A = 2 ± 36,

B = 16 ∓ 36,

C = 60 ∓ 12,

D = 66 ∓ 12,

therefore,

either or

A = 38 = 19,

B = − 20 = − 10,

C = 48 = 24,

D = 54 = 27,

A = − 34 = − 17,

B = 52 = 26,

C = 72 = 36,

D = 78 = 39.

The third case divided by 2 gives
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A = 85 ± 45,

B = 113 ∓ 45,

C = 93 ∓ 15,

D = 159 ∓ 15,

therefore,

either or

A = 130 = 65,

B = 68 = 34,

C = 78 = 39,

D = 144 = 72,

A = 40 = 20,

B = 158 = 79,

C = 108 = 54,

D = 174 = 87.

The fifth cases divided by 28 gives

A = 8 = 4,

B = 10 = 5,

C = 6 = 3,

D = 12 = 6.

Finally, the sixth cases divided by 2 gives

A = 103 ± 27,

B = 131 ∓ 27,

C = 87 ∓ 9,

D = 165 ∓ 9,

therefore,
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either or

A = 130 = 65 = 5,

B = 104 = 54 = 4,

C = 78 = 39 = 3,

D = 156 = 78 = 6,

A = 76 = 38,

B = 158 = 79,

C = 96 = 48,

D = 174 = 87.

Therefore, from this example the following formulas result:

13 + 63 + 83 = 93, and 13 + 123 = 93 + 103,

343 + 393 + 653 = 723, 103 + 273 = 193 + 243,

33 + 43 + 53 = 63,

383 + 483 + 793 = 873,

and hence it follows

873 − 793 = 203 + 543 = 383 + 483.

Therefore, it is plain that from each assumed example several formulas of this
kind are obtained among which the same occurs more often; as the case

33 + 43 + 53 = 63

occurs twice in this and the preceding example.

§28 Therefore, lo and behold the general solution of the problem in which
four rational numbers A, B, C, D of such a kind are in question that A3 + B3 +
C3 = D3, or, which is the same, in which four rational numbers p, q, r and s
are in question that

p(pp + 3qq) = s(ss + 3rr).

Since these problems using ordinary methods can only be solved particularly,
it is obvious that these ordinary methods still have a huge defect and hence
still desire a notable perfection. But then there is no doubt that, what we
showed here for one single problem, can be achieved in infinitely many others
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with the same success. It is certainly clear in general that an equation of this
kind

αp(nnp + nqq) = βs(mss + nrr)

or even this further-extending one

(αp + βq + γr + δs + ε)(mpp + nqq) = (ap + bq + cr + ds + e)(mrr + nss)

can be solved in rational terms most generally by putting

p = n f x + gy, q = m f y− gx

and

r = nhx + ky, s = mhy− kx;

for, it will be

mpp + nqq = (gg + mn f f )(nxx + myy)

and

mrr + nss = (kk + mnhh)(nxx + myy),

whence the equation divided by nxx + myy will contain the unknowns x and
y of just one dimension, from which therefore without any restriction their
values will be determined rationally.

§29 Therefore, not without a reason one can suspect that also of other Dio-
phantine problems, of which still just particular solutions have been found,
there are also general solutions and the difference mentioned above derived
from the generality and the particularity is not essential; hence it is plain how
huge increments are still desired in Diophantine analysis. If one succeeds to
get to them in any time, there is no doubt that hence the whole analysis so of
the finite as the infinite would obtain auxiliary tools not to be condemned. For,
since in integral calculus the principal artifice consists in this that irrational
differential formulas are transformed into rational ones, as this artifice has be-
en transferred from Diophantine analysis to this calculus, so greater auxiliary
tools are justly be expected; hence the eagerness spent on the development of
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this branch of analysis, which considered for itself might seem to be somewhat
pointless, is not to be considered to be invested without any benefit at all.

§ 30 Here further another condition not less worth one’s attention deserves
it to be noted, i.e. that more often in Diophantine analysis problems of such a
kind occur which seem to admit a general solution by usual methods, although
that solution is just a particular one; in these cases particular artifices must
be applied that the restriction by which the usual method is limited is got
rid of. As if two cubes in integer numbers are in question the sum of which
is a square, a solution not restricted in any way seems to be obtained, if the
equation

x3 + y3 = zz

is resolved in such a way that one puts

x =
pz
r

and y =
qz
r

.

For, it will be (p3 + q3)z = r3 and hence

z =
r3

p3 + q3

and

x =
prr

p3 + q3 and y =
qrr

p3 + q3 .

Hence for x and y to become integer numbers, set r = (p3 + q3) that one has

x = nnp(p3 + q3) and y = nnq(p3 + q3),

and it will be

x3 + y3 = n6(p3 + q3)4 = square.

§31 But even though this solution seems to be general, nevertheless only
such numbers are found for x and y which have the common factor p3 + q3

such that hence it seems to be concluded that there are no other mutually
prime numbers which substituted for x and y solve the question. Nevertheless,
in the case x = 1 and y = 2 it is perspicuous that x3 + y3 = a square. But

29



even if this case can be derived from our formulas putting p = 1, q = 2 and
n = 1

3 , hence it results x = 1
9 · 9 = 1 and y = 2

9 · 9 = 2, nevertheless, that hence
other cases of this kind are found, it is necessary that for p and q numbers of
such a kind are taken the sum of which is a square, say = ss, that thereafter
one can set n = 1

s , whence x = p and y = q will result; this way that what
its in question is already postulated as known, i.e. that two cubes can be
assigned the sum of which is a square. Therefore, let us see how to occur this
inconvenience in the following problem.

PROBLEM

§31 To find to mutually prime integer numbers the cubes of which added give a
square.

SOLUTION

Let x and y be the numbers in question that it must be

x3 + y3 = square.

Therefore, it must be (x + y)(xx− xy+ yy) = a square. But about these factors
I note that they are either mutually prime or admit three as a common divisor,
whence the solution will be two-parted, but which will be combined into one
in such a way that each of both factors x + y and xx− xy + yy must either be
a square or a tripled square.

I. First let each of both factors be a square and put

xx− yy + yy = (pp− pq + qq)2

and it will be either

x = pp− 2pq and y = pp− qq

or

x = 2pq− pp and y = qq− pp.

Therefore, in the first case it is necessary that x + y = 2pp − 2pq − qq is a
square. Since this form is = 3pp − (p + q)2, if one puts it = rr, it would
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be necessary that 3pp = (p + q)2 + rr = the sum of two squares which is
impossible. Therefore, the other case remains in which

x + y = qq + 2pq− 2pp = (q + p)2 − 3pp = a square,

which is satisfied putting

p = 2mn and q = 3mm− 2mn + nn,

x = 2pq− pp = 4mn(3mm− 3mn + nn),

y = qq− pp = (3mm+nn)(3mm− 4mn+nn) = (m−n)(3m−n)(3mm+nn).

II. Then on the other hand put

xx− xy + yy = a triple of a square = 3(pp− pq + pp)2,

which is satisfied in three ways:

I. x = 2pp − 2pq − qq, y = pp + 2pq − 2qq,

II. x = 2pp − 2pq − qq, y = pp − 4pq − 2qq,

III. x = pp + 2pq − 2qq, y = − pp + 4pq − qq.

In the first case x + y = 3pp− 3qq = a tripled square or pp− qq = a square
whence

p = mm + nn and q = 2mn

and hence

x = 2(m4 − 2m3n− 2mn3 + n4),

and hence

y = m4 + 4m3n− 6mmnn + 4mn3 + n4.

In the second case x+ y = 3pp− 6pq = a tripled square, therefore, pp− 2pq =
a square which is satisfied putting

p = 2mn and q = mm− nn,

whence it results
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x = 3m4 + 6mmnn − n4,

y = − 3m4 + 6mmnn + n4.

In the third case x + y = 6pq− 3qq = 3� and 2pq− qq = �, whence

p = mm + nn and q = 2mn

and hence

x = − 3m4 + 6mmnn + n4,

y = 3m4 + 6mmnn − n4,

which agree with those.
Therefore, lo and behold the three solutions of the propounded problem:

I.

x = 4mn(3mm− 3mn + nn),

y = (m− n)(3m− n)(3mm + nn),

II.

x = 2(m4 − 2m3n− 2mn3 + n4),

y = m4 + 4m3n− 6mmnn + 4mn3 + n4,

III.

x = 3m4 + 6mmnn− n4,

y = − 3m4 + 6mmnn + n4,

where certainly the second is detected to be contained in the third which
agrees with the fourth, such that the second more complicated one can be
omitted.

COROLLARY 1

§33 If these formulas found for x and y are multiplied by a square number,
they likewise answer the question; so the sum of two cubes x3 + y3 becomes a
square number whence somehow non mutually prime numbers are obtained.
But in like manner, if vice versa these formulas have a common quadratic
divisor, divided by it they will likewise answer the question, whence mutually
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prime numbers are found for x and y, as they are in question here. Therefore,
we will have two formulas for this task:

I.

x = 4mn(3mm− 3mn + nn),

y = (m− n)(3m− n)(3mm + nn),

II.

x = 3m4 + 6mmnn− n4,

y = − 3m4 + 6mmnn + n4.

COROLLARY 2

§34 It is evident that there are infinitely many cases in which the one of
these formulas receives a negative value; this happens in the first, if either m
or n is a negative number, or if n is contained within the limits m and 3m, but
in the second formulas if either nn

mm is greater than 3 + 2
√

3 or mm
nn is smaller

than 2
√

3− 3. Therefore, in these cases two cubes are found the difference of
which is a square.
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