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Quantities to each other - On the

Comparison of the Arcs of an

Ellipse *

Leonhard Euler

§1 The first specimen I exhibited of this method recently concerned the
comparison of the arcs of a circle and a parabola; even though this comparison
considered for itself is not new, since this subject was already treated by
customary methods a long time ago, it was nevertheless advisable to start
from there, in order to fully understand the utility of this new method, which
I sketched; especially that it does not only lead to the same truths, which
are found by the usual methods, but also does so in a lot easier and more
convenient way. For, the usual method requires rather tedious integrations and
is of such a nature that, if the arcs of these curves, which are to be compared
to each other, could not have been reduced to known quadratures of the circle
and the hyperbola, it could not have been applied at all.

§2 Therefore, it will be seen more clearly from the comparison of the arcs
of ellipses and hyperbolas, how much utility this new method has; since
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randi; de comparatione arcuum ellipsis“, erstmals publiziert in „Novi Commentarii academiae
scientiarum Petropolitanae 7 1761, pp. 3-48“, reprinted in „Opera Omnia: Series 1, Volume 20,
pp. 153 - 200 “, Eneström-Number E261, translated by: Alexander Aycock, for the Project
„Euler-Kreis Mainz“
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the rectification of these curves can neither be reduced to the quadrature
of the circle nor to logarithms by any means, the usual methods can not be
applied here and it is also not obvious how to compare the different arcs of
these curves to each other. Hence, since I will show that by means of the new
method elliptical and hyperbolic arcs can be compared to each other with the
same success as parabolic arcs and the usual methods are completely inept
for this, the extraordinary utility of this new method will hence become even
more evident.

§3 But I discovered that by means of this method so elliptic as hyperbolic
arcs can be compared in the same way as parabolic arcs and it is no obstruction
that the rectification of these curves seems to exceed the power of Analysis
completely1. Yes, the arcs can even be compared under the same conditions as
in the case of the parabola, such that having propounded either an arbitrary
elliptic or hyperbolic arc, starting from another certain point of the same curve
an arc can be separated, which differs from the first one by a geometrically
assignable quantity2. But in like manner, starting form a certain point, one
will be able to exhibit an arc, which differs from the propounded arc taken
twice or trice or arbitrarily often3 by a geometric quantity.

§4 Further, it is possible that this difference becomes zero and the found arc
becomes equal to the propounded arc itself or even a multiple of it, as it is
known to be possible in the case of the parabola. In like manner it happens
that it is not possible to exhibit two equal arcs, which are not at the same time
already identical4; but it will even be more remarkable that so in the case of
the ellipse as in the case of the hyperbola having propounded an arbitrary arc
always another arc can be assigned, which is equal to the double or triple or
any multiple the propounded arc.

§5 Therefore, as the nature of the comparisons of the different arcs of the
ellipse and the hyperbola is similar to the comparisons of the arcs of the
parabola, so the lemniscate is detected to be similar to the circle. For, in the

1Euler means that the occurring integrals cannot expressed in terms of elementary functions
like logarithms etc.

2Nowadays we would call this an algebraic quantity.
3By this Euler means a twice or trice etc. as long arc.
4It is important to note that Euler uses the term ëqual"to describe two different arcs with the

same or equal length; they do not have to be identical.
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case of the lemniscate as in the case of the circle, if an arbitrary arc was
propounded, starting from a certain point, it is possible to separate an arc,
which was either equal to the propounded arc or to its double or triple or to
an arbitrary multiple. For, on this curve as in the case of the circle no arcs of
such a kind are exist, whose difference can be assigned geometrically.

§6 But what I mentioned here, extends a lot further than to the discussed
curves, ellipse, hyperbola and lemniscate, which only constitute the simplest
cases of the formulas this method yields. For, having expanded these formulas
it will be possible to make a similar comparison in infinitely many other
classes of curves. But as the first specimen was based on the expansion of this
equation

0 = α + 2β(x + y) + γ(xx + yy) + 2δxy,

so here one has to assume an equation extending further; but it nevertheless
has to be possible to define both variables by the extraction of square roots.
Therefore, let this equation be propounded

CANONICAL EQUATION
0 = α + γ(xx + yy) + 2δxy + ζxxyy

§7 If we solve this equation for y first then for y afterwards, we will obtain

y =
−δx +

√
δδxx− (α + γxx)(γ + ζxx)

γ + ζxx
,

x =
−δy +

√
δδyy− (α + γyy)(γ + ζyy)

γ + ζyy
,

where we attributed different signs to the roots, since they are arbitrary; it just
has always to be taken into account in the following.

§8 For the sake of brevity let us put these formulas involving the square
roots √

δδxx− (α + γxx)(γ + ζxx) = X
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and √
δδyy− (α + γyy)(γ + ζyy) = Y,

that we have

y =
−δx + X
γ + ζxx

or X = γy + δx + ζxxy,

x =
−δy + Y
γ + ζyy

or −Y = γx + δx + ζxyy.

§9 Now let us differentiate the canonical equation and it will be

0 = dx(γx + δy + ζxyy) + dy(γy + δx + ζxxy),

whence we conclude that it will be

0 = −Ydx + Xdy or
dy
Y
− dx

X
= 0.

Therefore, since X is a function of x and Y is a function of Y, by integrating
we will find ∫ dy

Y
−
∫ dx

X
= Const.

§10 Therefore, vice versa we know, if an integral equation of such a kind
was propounded ∫ dy

Y
−
∫ dx

X
= Const.,

in which X and Y denote irrational functions of x and y of such a kind that it
is

X =
√

δδxx− (α + γxx)(γ + ζxx)

and

Y =
√

δδyy− (α + γyy)(γ + ζyy),

that this equation is then solved by the relation between x and y defined by
means of the canonical equation.
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§11 But as we found the equation dy
Y −

dx
X = 0, so let us now consider this

further extending equation

Qdy
Y
− Pdx

X
= dV

and let us investigate, functions of x and y of what kind P and Q must be, that
dV admits an integration and hence the difference of the integral formulas∫ Qdy

Y
−
∫ Pdx

X
= Const. + V

can be exhibited algebraically.

§13 That this investigation can be done more easily, let us put xy = u and
because of xdy + ydx = du we will have dy = du

x −
ydx
dx ; having substituted

this value for dy in the differential equation we will find

0 = dx(γx + δy + ζxyy) +
du
x
(γy + δx + ζxxy)− dx

(
γyy

x
+ δy + ζxyy

)
or by multiplying by x

0 = dx(γxx− γyy) + du(γy + δx + ζxxy)

or

0 = γdx(xx− yy) + Xdu.

§14 Therefore, it will be dx
X = du

γ(yy−xx) , and because it is dy
Y = dx

X , it will also

be dy
Y = du

γ(yy−xx) , whence we will have

dV =
(Q− P)du
γ(yy− xx)

.

Therefore, first it is plain, if it is Q = yy and P = xx that it will be

dV =
du
γ

and V =
u
γ
=

xy
γ

.

Hence having assumed the canonical equation∫ yydy
Y
−
∫ xxdx

X
= Const. +

xy
γ

.
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§15 But the same integration of the quantity V also succeeds, if any powers
of even dimensions of x and y are taken for P and Q. In order to see this, let
us put xx + yy = t and because of xy = u the canonical equation goes over
into this form

0 = α + γt + 2δu + ζuu,

whence it is t = −α−2δu−ζuu
γ

§16 Now let us put P = x4 and Q = y4; it will be

dV =
du
γ
(xx + yy) =

tdu
γ

and hence dV = −−du
γγ

(α + 2δu + ζuu);

whence by integrating it is

dV =
−αu
γγ
− δuu

γγ
− ζu3

3γγ
or V = −−xy

3γγ
(3α + 3δxy + ζyyxx).

Or because of ζxxyy = −α− γ(xx + yy)− 2δxy one will have

V =
−xy
3γγ

(2α− γ(xx + yy) + δxy).

§17 Hence our canonical equation will even solve this integral equation∫ y4dy
Y
−
∫ x4dx

X
= Const.− xy

3γγ
(3α + 3δxy + ζxxyy).

And by collecting these three cases the canonical equation will even solve this
more general differential equation

∫ dy(A+Byy + Cy4)√
δδ− (α + γyy)(γ + ζyy)

−
∫ dx(A+Bxx + Cx4)√

δδ− (α + γxx)(γ + ζxx)

= Const. +
Bxy

γ
− Cxy

3γγ
(3α + 3δxy + ζxxyy).

§18 To proceed even further, let us put P = x6 and Q = y6 and it will be

dV =
du
γ
(y4 + xxyy + x4) =

du
γ
(tt− uu);

6



therefore, having substituted the value found for t it will be

dV =
du
γ3 (αα + 4αδu + (4δδ + 2αζ − γγ)uu + 4δζu3 + ζζu4)

and hence by integrating

V =
u
γ3

(
αα + 2αδu +

1
3
(4δδ + 2αζ − γγ)uu + δζu3 +

1
5

ζζu4
)

.

Hence by means of the canonical equation it will be∫ y6dy
Y
−
∫ x6dx

X

= Const.+
xy

15γ3 (15αα+ 30αδxy+ 5(4δδ+ 2αζ−γγ)xxyy+ 15δζx3y3 + 3ζζx4y4).

§19 But now let us also attribute forms of such a kind to our irrational
formulas X and Y, which can be accommodated to certain cases more easily,
and let

X =
√

p(A + Cxx + Ex4) and Y =
√

p(A + Cyy + Ey4);

therefore, it is necessary that it is

Ap = −αγ, Ep = −γζ, Cp = δδ− γγ− αζ,

whence it is

α =
−Ap

γ
, ζ =

−Ep
γ

and δ =

√
γγ + Cp +

AEpp
γγ

.

§20 Now let γγ = A and p = kk and assume γ = −
√

A and it will be

α = kk
√

A, γ = −
√

A, ζ =
Ekk√

A
and δ =

√
A + Ckk + Ek4

and so it will be

X = k
√

A + Cxx + Ex4 and Y = k
√

A + Cyy + Ey4

and the canonical equation will result as

0 = Akk− A(xx + yy) + 2xy
√

A(A + Ckk + Ek4) + Ekkxxyy.
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§21 But hence the variables x and y depend on each other in such a way that
it is

X = −y
√

A + x
√

A + Ckk + Ek4 +
Ekk√

A
xxy,

Y = x
√

A− y
√

A + Ckk + Ek4 − Ekk√
A

xyy,

whence it is

y =
x
√

A(A + Ckk + Ek4)− k
√

A(A + Cxx + Ex4)

A− Ekkxx
,

x =
y
√

A(A + Ckk + Ek4) + k
√

A(A + Cyy + Ey4)

A− Ekkyy
.

§22 Therefore, these values will solve this very far extending integral equati-
on deduced from § 17, if it is multiplied by −k,∫ dx(A+Bxx + Cx4)√

A + Cxx + Dx4
−
∫ dy(A+Byy + Cy4)√

A + Cyy + Ey4

= Const. +
Bkxy√

A
+

Ckxy
3A
√

A
(3Akk + 3xy

√
A(A + Ckk + Ek4) + Ekkxxyy)

= Const. +
Bkxy√

A
+

Ckxy
6A
√

A
(3Akk + 3A(xx + yy)− Ekkxxyy).

§23 Therefore, if a certain curve was of such a nature that to the abscissa x
this arc corresponds

∫ dx(A+Bxx + Cx4)√
A + Cxx + Ex4

and this arc is denoted by Π. x and another arc corresponding to the abscissa
y in the same curve

∫ dy(A+Byy + Cy4)√
A + Cyy + Ey4
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is denoted by Π. y, these two arcs will be related to each other as follows

Π. x−Π. y = Const. +
Bkxy√

A
+

Ckxy
6A
√

A
(3Akk + 3A(xx + yy)− Ekkxxyy),

if the abscissas x and y depend on each other in such a way that it is

x =
y
√

A(A + Ckk + Ek4) + k
√

A(A + Cyy + Ey4)

A− Ekkyy

and

y =
x
√

A(A + Ckk + Ek4)− k
√

A(A + Cxx + Ex4)

A− Ekkxx
.

§24 But in order to determine that constant the integral equation contains,
consider the case in which it is y = 0 and x = k; if now the arc corresponding
to a vanishing abscissa also vanishes, it will be Π. k = Const. for this case;
having substituted this value one will have

Π. x−Π. y−Π. k =
Bkxy√

A
+

Ckxy(kk + xx + yy)
2
√

A
− CEk3x3y3

6A
√

A
.

Therefore, this way three arcs are found on that curve and one of these arcs
exceeds the sum of the remaining two by a geometrically assignable quantity.

§25 Hence it is plain in general, if the curve was of such a nature that the
arc corresponding to the abscissa x is

Π. x =
∫

Adx√
A + Cxx + Ex4

and hence it is B = 0 and C = 0, that then the difference of those arcs becomes
zero; and therefore, the arcs can be compared to each other in this case in the
same way as it was done in the case of circle. But if the term Bxx or Cx4 or
even both occur in the numerator, then the difference of those three arcs is
assignable geometrically and hence the comparison of the arc will succeed
as it did in the case of the parabola. But this comparison will be made in the
same way I explained in the first specimen for the circle and the parabola.
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§26 Since three arcs enter the calculation, whose abscissas are x, y and k, it
is plain that, as y depends on x and k, that so k depends on x and y, whence
given two variables the third will be determined by these equations

x =
y
√

A(A + Ckk + Ek4) + k
√

A(A + Cyy + Ey4)

A− Ekkyy
,

y =
y
√

A(A + Ckk + Ek4)− k
√

A(A + Cxx + Ex4)

A− Ekkxx
,

k =
x
√

A(A + Cyy + Ey4)− y
√

A(A + Cxx + Ex4)

A− Ekkyy
.

§27 If then one gets rid of all irrational quantities, this equation will result

EEk4x4y4 = AA(2kkxx + 2kkyy + 2xxyy− k4 − x4 − y4)

+4ACkkxxyy + 2AEkkxxyy(kk + xx + yy).

Since the three abscissas k, x, y all enter into this equation equally, one will be
able to consider their squares kk, xx, yy as roots of a cubic equation of this
kind

Z3 − pZZ + qZ− r = 0,

and since it is

p = kk + xx + yy,

q = kkxx + kkyy + xxyy,

r = kkxxyy,

it will be
EErr = AA(4q− pp) + 4ACr + 2AEpr

or

(Ap− Er)2 = 4AAq + 4ACr.
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§28 Therefore, if, having constituted this relation among the coefficients p, q
and r, for kk, xx and yy the three roots of this cubic equation are taken

Z3 − pZZ + qZ− r = 0,

for the comparison of the arcs of the curve, which we considered (§ 23), it will
be

Π. x−Π. y−Π. k =
B
√

r√
A

+
Cp
√

r
2
√

A
− CEr

√
r

6A
√

A
.

§29 Let the abscissas with the respective signs, +x, −y, −k, be the roots of
this cubic equation

z3 + szz + tz− u = 0;

it will be

√
r = u, q = tt + 2su and p = ss− 2t

and

(Ass− 2At− Euu)2 = 4AAtt + 8AAsu + 4ACuu

or

t =
Ass− Euu

4A
− 2Asu + Cuu

Ass− Euu
.

But the roots of this equation will be found by means of the trisection of the
angle in such a way that having taken v = 2

3

√
ss− 3t and the angle Φ, whose

cosine of course is

cos Φ =
27u + 9st− 2s3

2(ss− 3t)
√

ss− 3t
,

the roots itself will be

x = v cos
1
3

Φ− 1
3

s, y = v cos
(

60° +
1
3

Φ
)
− 1

3
s,

k = v cos
(

60°− 1
3

Φ
)
− 1

3
s.
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§30 But having put these things concerning the roots aside, let us consider
the use of the found formula more accurately; and first this remarkable
differential equation occurs

dx√
A + Cxx + Dx4

=
dy√

A + Cyy + Ey4
;

we know about this equation that it is equivalent to this integral equation

x =
y
√

A(A + Ckk + Ek4) + k
√

A(A + Cyy + Ey4)

A− Ekkyy
;

and since it contains a new arbitrary constant k, it will indeed be the complete
integral equation.

§31 If for this case we put∫ dx√
A + Cxx + Ex4

= Π. x,

since having put y = 0, it is x = k, it will be Π. x = Π. k + Π. y. Hence, if it is
k = y, that it also is

x =
2y
√

A(A + Cyy + Ey4)

A− Ey4 ,

it will be Π. x = 2Π. y and hence this value of x solves this differential
equation

dx√
A + Cxx + Ex4

=
2dy√

A + Cyy + Ey4
;

but since this equation does not contain a new constant, it will only be a
particular solution of the propounded differential equation.

§32 Nevertheless it is even possible to exhibit the complete integral of this
differential equation. For, put

dy√
A + Cyy + Ey4

=
dz√

A + Czz + Ez4

and it will be
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y =
z
√

A(A + Ckk + Ek4) + k
√

A(A + Czz + Ez4)

A− Ekkzz
,

which value is to be substituted for y in the formula

x =
2y
√

A(A + Cyy + Ey4)

A− Ey4 ,

and this way x will be expressed by z and the new arbitrary constant k, which
value will be the complete integral of this differential equation

dx√
A + Cxx + Ex4

=
2dz√

A + Czz + Ez4
.

§33 Let us set Π. k = nΠ. y and let us assume that the value of k was already
found and from the preceding paragraphs we conclude, if one takes

x =
y
√

A(A + Ckk + Ek4) + k
√

A(A + Cyy + Ey4)

A− Ekkyy
,

that it will be Π. = (n + 1)Π. y. Therefore, since in the case n = 1 it is k = y,
the value hence found for x will give the value of k for the case n = 2, whence
the value of x is found, that it will be Π. x = 3π. y. This value taken for k will
then yield the value of x that it is Π. x = 4Π. y, and this way one can proceed
arbitrarily far.

§34 But having found the value of x that it is Π. x = nΠ. y, it will be a
particular integral of this differential equation

dx√
A + Cxx + Ex4

=
ndy√

A + Cyy + Ey4
;

but then take

z =
x
√

A + Ckk + Ek4) + k
√

A(A + Cxx + Ex4)

A− Ekkxx
and so the complete value of the integral z will be obtained for this differential
equation

dz√
A + Czz + Ez4

=
ndy√

A + Cyy + Ey4
;

13



for, it will be Π. z = Π k + Π. x = Π. k + nΠ. y.

§35 Now let us also contemplate the further extending formula in gene-
ral and represent it as the curved line ak f gpqrst (Fig. 1) and let this curve
be of such a nature that having put an arbitrary abscissa AK = x the arc
corresponding to it is

ak =
∫ dx(A+Bxx+ Cx4)√

A + Cxx + Ex4
,

which arc we want to denote by Π. x.

A K F G P Q R S T

a
k

f g
p q r s t

Fig. 1

But it is manifest, the same way this relation among the arc ak and its abscissa
AK was constituted, that one is able to constitute the same relation among an
arc and another abscissa, to which the arc can be referred. Hence, even though
here x denotes the abscissa corresponding to the arc ak, x can nevertheless
denote also another certain straight line5 extending to the arc, as long as this
line also vanishes, if also the arc itself vanishes.

§36 Now let us consider three abscissas and let them be AK = k, AF = f
and AG = g; further let these abscissas depend on each other in such a way
that it is

5By straight line Euler actually means an abscissa in this context.
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g =
f
√

A(A + Ckk + Ek4) + k
√

A(A + C f f + E f 4)

A− EEkk f f
,

f =
g
√

A(A + Ckk + Ek4)− k
√

A(A + Cgg + Eg4)

A− EEkkgg
,

k =
g
√

A(A + C f f + E f 4)− f
√

A(A + Cgg + Eg4)

A− EEkkgg
,

and the arcs ak = Π. k, a f = Π. f and ag = Π. g will be connected by this
relation:

Π. g−Π. f −Π. k = Arc. ag−Arc. a f −Arc. ak = Arc. f g−Arc. ak

=
Bk f g√

A
+

Ck f g(kk + f f + gg)
2
√

A
− CEk3 f 3g3

6A
√

A
.

§37 Therefore, given an arbitrary arc ak starting from the origin a of the
curve one will be able to separate an arc f g starting from a certain point f ,
such that the difference of the arcs f g and ak can be assigned geometrically.
For, because of the given points k and f the abscissas k and f will be given;
using these two the abscissa g is defined by means of the first formula. Or, if
the points k and g are given, going backwards from the point g one will even
be able to separate an arc g f , which differs from the arc ak by a geometric
quantity. Or finally, given an arbitrary arc f g, one will be able to separate an
arc ak starting from the origin a of the curve, which arc differs from that given
one by a geometric quantity.

§38 This case, in which it is f = k, should especially be expanded; therefore,
if the abscissa AG = g (Fig. 2) is assumed in such a way that it is

g =
2k
√

A(A + Ckk + Ek4)

A− Ek4 ,

while it is AK = k,
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h

k

a

g

Fig. 2

it will be

Arc. ag− 2Arc. ak =
Bkkg√

A
+

Ckkg(2kk + gg)
2
√

A
− CEk6g3

6A
√

A
.

If it now was Ek4 > A, the value of g will turn out to be negative, which
therefore taken backwardsBy this Euler means in negative direction of the x-axis
becomes AH = h, such that it is g = −h and Π. g = −Π. h, while

h =
2k
√

A(A + Ckk + Ek4)

Ek4 − A
,

and having changed the signs it will be

Arc. ah + 2Arc. ak =
Bkkh√

A
+

Ckkh(2kk + hh)
2
√

A
− CEk6h3

6A
√

A
.

§39 Hence it is understood that the abscissa k can obtain a value of such
a kind that it is h = k; hence, if starting from the point a two identical arcs
extending equally to both different sides are taken and it was AH = AK, it
will also be Arc. ah = Arc. ak; hence, if it is h = k or

Ek4 − A = 2
√

A(A + Ckk + Ek4)

or
EEk8 − 6AEk4 − 4ACkk− 3AA = 0,

it will be

3Arc. ak =
Bk3
√

A
+

2Ck5

2
√

A
− CEk9

6A
√

A
;
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therefore, the arc corresponding to this abscissa AK = k will be rectifiable
absolutely, since it is

Arc. ak =
Bk3

3
√

A
+

Ck5

2
√

A
− CEk9

18A
√

A
.

§40 But that equation, even though it is of degree eight, can be solved
conveniently; for, having put its factors

(k4 + αkk + β)(k4 − αkk + γ) = 0,

one finds

β + γ = αα− 6A
E

, β− γ =
4AC
αEE

and βγ = −3AA
EE

,

whence this equation results

α4 − 12A
E

αα +
36AA

EE
− 16AACC

ααE4 = −12AA
EE

and hence

αα =
4A
E

+
3

√
16AACC− 64A3E

E4

and because of

γ =
αα

2
− 3A

E
− 2AC

αEE
it will be

kk =
1
2

α±
√

2AC
αEE

+
3A
E
− 1

4
αα

or even

kk = −1
2

α±
√
−2AC
αEE

+
3A
E
− 1

4
αα.
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§41 But it is always true in these curves that to the negative abscissa the
same arc taken negatively corresponds. For, since it is

Π. x =
∫ dx(A+Bxx + Cx4)√

A + Cxx + Ex4
,

if the abscissa x is taken negatively, it will be

Π. (−x) =
∫ −dx(A+Bxx + Cx4)√

A + Cxx + Ex4
= −Π. x.

Therefore, it seems, as often as a real arc corresponds to the abscissa k defined
in the preceding paragraph, that then the length of the same arc can be
assigned geometrically.

§42 But I did not dare to affirm that this reasoning, by which I found the
absolutely rectifiable arc, is always correct; for, it seems that cases exist, in
which it is actually incorrect. For, if it is B = 0 and C = 0 and hence

Π. x =
∫

Adx√
A + Cxx + Dx4

,

in § 39 3 Arc. ak = 0 would result, although the abscissa k does not become
= 0 as seen from the equation of degree eight exhibited there. But one has to
recall that this equation resulted from this one

k =
2k
√

A(A + Ckk + Ek4)

Ek4 − A
;

since this equation immediately yields the root k = 0, this will be the only
root, which in this case fulfills all the conditions and the other will simply not.

§43 And nevertheless this reasoning is not to be considered to be wrong
at all in these cases, even if for k another arbitrary root is taken, but it is
rather to be understood in such a way that many arcs correspond to the
same abscissa; and only one of these arcs, namely the negative one, fulfills
all the requirements; and therefore, in this case, even if one sets h = k in §
38, it does hence nevertheless not follow that it is Arc. ah = Arc. ak and hence
Arc. ah + 2 Arc. ak = 3 Arc. ak, since to the same abscissa h = k also other arcs
except for Arc. ak correspond, among which there is one, which indeed yields
Arc. ah + 2 Arc. ak = 0.
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§44 In order to see this more clearly, let us put A = 1, C = 2 and E = 1 while
it is B = 0 and C = 0 and it will be Π. x = A arctan x and Arc. ak = A arctan k
and Arc. ah = A arctan h; therefore, having put

h =
2k
√

1 + 2kk + k4

k4 − 1
=

2k
k4 − 1

it will be AA arctan h + 2A arctan k = 0. If one now puts h = k, it will be
kk = 3 and k =

√
3 and one will find A(arctan

√
3+ 2 arctan k) and Arc.

√
3 =

Arc. 60◦; nevertheless hence it does not follow that 3AArc. 60◦ = 0, which
would certainly be wrong; but since to the tangent of

√
3 also the arc −120◦

corresponds, this value written in the first arc instead of arctan
√

3 will yield
the truth, namely

A(−Arc. 120° + 2Arc. 60°) = 0.

§45 Therefore, this ambiguity, that several values Arc. ak can correspond to
the same quantity k, which we assumed as abscissa here, is the reason that,
even though in § 38 one puts h = k, it is nevertheless not possible to write
3 Arc. ak for Arc. ah + 2 Arc. ak. Nevertheless, even in this case it will be

Arc. ah + 2Arc. ak =
Bk3
√

A
+

3Ck5

2
√

A
− CEk9

6A
√

A
;

for, to the abscissa h, even though it is = k, nevertheless, except for the arc
ak, also another arc will correspond, which substituted for Arc. ah solves the
equation. Therefore, this ambiguity must carefully be taken into account, that
no errors are made.

§46 But if an ambiguity of this kind does not occur such that only one arc
corresponds to the same abscissa, then, having put the abscissa h = k, it will
also be possible to write Arc. ak for Arc. ah and 3 Arc. ak for Arc. ah + 2 Arc. ak
without hesitation and hence one must not be afraid of any errors, whatever
root of the equation of degree eight found in § 39 is taken for k. This will be
evident in the case, in which it is A = A, B = 2C and C = 3E, in which it
certainly is

Π. x = x
√

A + Cxx + Ex4

and hence an algebraic quantity and
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Π. g−Π. f −Π. k =
2Ck f g√

A
+

3Ek f g(kk + f f + gg)
2
√

A
− EEk3 f 3g3

2A
√

A
.

§47 If one now sets f = k, it will be

g =
2k
√

A(A + Ckk + Ek4)

A− Ek4

and hence √
A(A + Cgg + Eg4) =

A(gg− 2kk) + Ek4gg
2kk

.

and √
A(A + Cgg + Eg4) =

A(gg− 2kk) + Ek4gg
2kk

.

Now let g = −k or

Ek4 − A = 2
√

A(A + Ckk + Ek4);

it will be√
A(A + Cgg + Eg4) =

−A + Ek4

2
=
√

A(A + Ckk + Ek4);

hence it is Π. g = −Π. k and

−Π. k =
−2Ck3
√

A
− 9Ek5

2
√

A
or 3Π. k =

k(4ACkk + 9AEk4 − EEk8)

2A
√

A
.

But it is

EEk8 = 6AEk4 + 4ACkk + 3AA,

what because of Π. k =
√

A + Ckk + Ek4 is true.
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§48 But although this curve is rectifiable per se, it nevertheless evidently
proves this, what we want, namely that in our formulas also non-rectifiable
curves are contained, in which case it is nevertheless possible to assign an
absolutely rectifiable arc in the way we explained before. But having found
one single rectifiable arc as ak, using it one will immediately be able to exhibit
infinitely many others of the same nature; for, since starting from a certain
point f an arc f g can be separated, whose difference to that given arc is
geometric, this arc f g will also be rectifiable. But furthermore, still infinitely
many other equally rectifiable arcs will be found in the following way from
that rectifiable arc; it will be convenient to explain this in general.

§49 To simplify our formulas, first, for the sake of brevity, let us put

√
A(A + Ckk + Ek4) = K,

√
A(A + C f f + E f 4) = F,

√
A(A + Cgg + Eg4) = G,

that by means of § 36 it is

g =
f K + kF

A− Ekk f f
, f =

gK− kG
A− Ekkgg

, k =
gF− f G

A− E f f gg
.

If it now was

Π. x =
∫ dx(A+Bxx + Cx4)√

A + Cxx + Ex4
,

it will be

=
Bk f g√

A
+

Ck f g(kk + f f + gg)
2
√

A
− CEk3 f 3g3

6A
√

A
.

§50 In like manner except for the abscissa AK = k take two other abscissas
AP = p, AQ = q and having also put√

A(A + Cpp + Ep4) = P and
√

A(A + Cqq + Eq4) = Q

and having constituted this relation

q =
pK + kP

A− Ekkpp
, p =

qK− kQ
A− Ekkqq

, k =
qP− pQ

A− Eppqq
,

for the same curve it will be

Arc. pq−Arc. ak =
Bkpq√

A
+

Ckpq(kk + pp + qq)
2
√

A
− CEk3 p3q3

6A
√

A
.
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§51 Therefore, having subtracted that equation from this one this difference
will remain

Arc. pq−Arc. f g

=
Bk(pq− f g)√

A
+

Ckpq(kk + pp + qq)− Ck f g(kk + f f + gg)
2
√

A
− CEk3(p3q3 − f 3g3)

6A
√

A
,

where the abscissas f , g, p and q will depend on each other in such a way that
it is

k =
gF− f G

A− E f f gg
=

qP− pQ
A− Eppqq

or
1
k
=

gF + f G
A(gg− f f )

=
qP + pQ

A(qq− pp)
,

whence at the same time the abscissa k can be eliminated and the relation
among f , g, p, q can be defined.

§52 In order to do this elimination more easily, note that it also is

K =
A( f f + gg− kk)− Ekk f f gg

2 f g
=

A(pp + qq− kk)− Ekkppqq
2pq

,

whence it is

kk =
Apq( f f + gg)− A f g(pp + qq)

(pq− f g)(A− E f gpq)
=

(gF− f G)2

(A− E f f gg)2 =
(qP− pQ)2

(A− Eppqq)2 .

Therefore, it will be

pq(kk + pp + qq)− f g(kk + f f + gg) = pq(pp + qq)− f g( f f + gg)

+
Apq( f f + gg)− A f g(pp + qq)

A− E f gpq

and hence it is obtained

Arc. pq−Arc. f g =
Bk(pq− f g)√

A
+

Ck(pq− f g)( f f + gg + pp + qq)
2
√

A

−CEk(pq− f g)2(pq( f f + gg)− f g(pp + qq))
6(A− E f gpq)

√
A

.
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§53 Therefore, since it is

kk =
A(pq( f f + gg)− f g(pp + qq))

(pq− f g)(A− E f gpq)

and the four abscissas f , g, p, q depend on each other in such a way that it is

gF + f G
gg− f f

=
qP + pQ
qq− pp

,

it is plain, having propounded an arbitrary arc f g, that one is able to separate
an arc pq starting from another given point p in the curve, which differs from
that arc by an algebraically assignable quantity.

§54 If furthermore, by proceeding further from the point q, a point r is taken
such that having put the abscissa AR = r it is

gF + f G
gg− f f

=
rQ + qR
rr− qq

or

pq( f f + gg)− f g(pp + qq)
(pq− f g)(A− E f gpq)

=
qr( f f + gg)− f g(qq + rr)
(qr− f g)(A− E f gqr)

=
qr(pp + qq)− pq(qq + rr)
(qr− pq)(A− Epqqr)

,

also Arc. qr−Arc. f g will be an algebraic quantity, which difference added
to the first will give

Arc. pr− 2Arc. f g = algebr. quantity,

and so starting from the given point p one is able to separate an arc pr, which
exceeds the double of the propounded arc f g by an algebraic quantity.

§55 In like manner, if further the abscissas AS = s, AT = t etc. are taken in
such a way that it is

gF + f G
gg− f f

=
sR + rS
ss− rr

=
tS + sT
tt− ss

etc.,

the arc ps will exceed the triple of the arc f g, the arc pt the quadruple of the
arc f g etc. by an geometrically assignable quantity. But vice versa given either
the arc pr or ps or pt etc. one will be able to find an arc f g starting from the
given point f , which differs from the half or third or fourth part of the given
arc by a geometrically assignable quantity.

23



§56 It could also happen that, although the quantities B and C are not equal
to zero, this geometrically assignable difference nevertheless vanishes; yes,
one is even always able to define one of the abscissas in such a way that this
difference indeed goes over into zero. Therefore, in these cases one will be
able to assign two arcs of such a kind in the curve, which are either equal to
each other or have a given ratio of two numbers.

§57 Since these things extend very far and can be applied to all curves,
whose arc for an abscissa or another arbitrary line is expressed in terms of x
in such a way that it is

=
∫ dx(A+Bxx + Cx4)√

A + Cxx + Ex4
,

it will be convenient to expand these properties for several curves, that the
use of this method is seen more clearly. Therefore, it seems to be advisable to
explain this comparison of arcs in the case of the ellipse first.
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ON THE COMPARISON OF ARCS IN THE CASE OF THE

ELLIPSE

§58 Therefore, let the elliptic quadrant ABa (Fig. 1) be propounded and
let its center be in A; put the one semiaxis, which contains all the abscissas,
AB = a, the other axis Aa = na. Therefore, having taken an arbitrary abscissa
AP = x the ordinate will be

PM = n
√

aa− xx

and its differential

= − nxdx√
aa− xx

,

whence the arc corresponding to this abscissa becomes

am =
∫

dx

√
aa + (nn− 1)xx

a− xx
.

A K P F G B

g

f
M

v

T
a

N

k

Fig. 3

Set 1− nn = m that it is

aM =
∫

dx
√

aa−mxx
aa− xx

.

Since it does not matter, which one of the two semiaxes is greater or smaller,
let us assume that AB is smaller; and hence it is n < 1 and m is a positive
number smaller than 1, and since the focal point lies on the semiaxis AB, the
distance of this focal point from the center A will be
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=
√

aa− nnaa = a
√

m;

hence the value of the number m is understood more easily.

Therefore, if the arc corresponding to the arbitrary abscissa AP = x is denoted
by aM = Π. x, it will be

Π. x =
∫

dx
√

aa−mxx
aa− xx

,

which expression, reduced to our general form, will go over into this one

Π. x =
∫ dx(aa−mxx)√

a4 − (m + 1)aaxx + mx4)
.

And so for this case we will have these values

A = a4, C = −(m + 1)aa, E = a, A = aa, B = −m and C = 0.

Therefore, having taken the three abscissas k, x, y to which the arc Π. k, Π. x,
Π. y correspond such that it is

x =
aay
√

a4 − (m + 1)aakk + mk4 + aak
√

a4 − (m + 1)aayy + my4

a4 −mkkyy
,

y =
aax
√

a4 − (m + 1)aakk + mk4 − aak
√

a4 − (m + 1)aaxx + mx4

a4 −mkkxx
,

k =
aax
√

a4 − (m + 1)aayy + my4 + aay
√

a4 − (m + 1)aaxx + mx4

a4 −mxxyy
,

these three arcs will depend on each other in such a way that it is

Π. x−Π. y−Π. k = −mkxy
aa

.

Therefore, having mentioned these things in advance let us solve the following
problems.
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PROBLEM 1

§59 Having propounded an arbitrary arc ak of an ellipse (Fig. 3), starting from
another certain point f to separate an arc f g such that the difference of the arc ak and
f g can be assigned geometrically.

SOLUTION

Having drawn the ordinates kK, f F, gG from the points k, f , g call the abscissas
AK = k, AF = f , AG = g; the ordinates are given, the abscissas on the other
hand are in question, and the arcs will be

ak = Π. k, a f = Π. f , ag = Π. g.

Further, for the sake of brevity according to § 49 put

aa
√

a4 − (m + 1)aakk + mk4 = K,

aa
√

a4 − (m + 1)aa f f + m f 4 = F,

aa
√

a4 − (m + 1)aagg + mg4 = G

and constitute this relation among the three abscissas

g =
f K + kF

a4 −mkk f f
or f =

gK− kG
a4 −mkkgg

or k =
gF− f G

a4 −m f f gg
;

having done so one will have

Π. g−Π. f −Π. k = Arc. f g−Arc. ak = −mk f g
aa

.

Therefore, having taken the point in such a way that it is

AG = g =
f K + kF

a4 −mkk f f
,

the difference of the arcs ak and f g can be assigned geometrically. For, it will
be

Arc. ak−Arc. f g =
mk f g

aa
.

Q. E. I.
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COROLLARY 1

§60 The solution will be the same, if, having propounded the arc ak, the
point g is given; going backwards starting from that point an arc g f must be
separated differing from the given arc by a geometric quantity; for, then the
abscissas k and g will be given and hence one will be able to find the value of
the third one f .

COROLLARY 2

§61 Also, given an arbitrary arc f g on the ellipse, one will be able to separate
an arc ak starting from the vertex a such that the difference of the arcs ak and
f g becomes geometric. Therefore, the rectification of the arc f g will depend
on the rectification of a certain arc ak ending at the vertex a of the ellipse.

COROLLARY 3

§62 The relation among the three abscissas k, f , g can also be exhibited in
such a way that it is

g =
a4(−kk + f f )

f K− kF
or f =

a4(−kk + gg)
gK + kG

or k =
a4(gg− f f )

gF + f G
;

hence comparing them to the preceding ones, it is found

K =
a4( f f + gg− kk)−mkk f f gg

2 f g
= aa

√
(aa− kk)(aa−mkk),

F =
a4(kk + gg− f f )−mkk f f gg

2kg
= aa

√
(aa− f f )(aa−m f f ),

G =
−a4( f f + gg− kk) + mkk f f gg

2k f
= aa

√
(aa− gg)(aa−mgg);

but then one will also have

f g(gg− f f )K− kg(gg− kk)F− k f ( f f − kk)G = 0.
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COROLLARY 4

§63 If the difference of the arcs ak and f g must vanish completely, it is plain
that this can only happen, if it is either k = 0 or f = 0 or g = 0. In the first
case the arc ak itself and hence the arc f g vanishes, but in the two remaining
cases the one of the two endpoints of the arc f g falls on the point a and the
arc f g does not only become equal to the arc ak but even identical to it.

COROLLARY 5

§64 In order to apply this relation among the abscissas more easily, it will
helpful to have noted that in general, if the normal MN is drawn to the point
M and from A the perpendicular, which will be parallel to the tangent MT, is
dropped to it, and one puts AP = x, that it will be

PM = n
√

aa− xx, PN = nnx, AN = mx, MN = n
√

aa−mxx,

AV =
mx
√

aa− xx√
aa−mxx

, NV =
mnxx√

aa−mxx
, MV =

aa√
aa−mxx

,

MT =
x
√

aa−mxx√
aa− xx

, AT =
naa√

aa− xx
und AV ·MT = mxx.

COROLLARY 6

§65 Therefore, having put g for x for the point g these values are found

g =
a2k
√
(aa− f f )(aa−m f f ) + aa f

√
(aa− kk)(aa−mkk)

a4 −mkk f f
,

√
aa− gg =

a3
√
(aa− kk)(aa− f f )− ak f sqrt(aa−mkk)(aa−m f f

a4 −mkk f f
,

√
aa−mgg =

a3
√
(aa−mkk)(aa−m f f )−mak f

√
(aa− kk)(aa− f f )

a4 −mkk f f

and √
(aa− gg)(aa−mgg)

=
a4k f (2maa(kk + f f )− (m + 1)(a4 + mkk f f )) + aa(aa(a4 + mkk f f )

√
(aa−mkk)(aa− f f )(aa−m f f )

(a4 −mkk f f )2 ,
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whence further it is found

aa
√

aa−mgg + mk f
√

aa− gg = a
√
(aa−mkk)(aa−m f f ),

aa
√

aa− gg + k f
√

aa−mgg = a
√
(aa− kk)(aa− f f ).

CASE 1

§66 Having propounded the arc ak of the ellipse (Fig. 4), which arc ends at the
one vertex a, starting from the other vertex B to separate an arc B f such that the
difference of the arcs ak and B f is geometric.

Therefore, the problem is reduced to this case, if the point g is set to be in the
vertex g or it is g = a, and one has to find the point f or the abscissa AF = f .
But because of g = a it will be G = 0 and one will have

f =
aK

a4 −maakk
= a

√
aa− kk

aa−mkk
or having drawn the normal kN to the point k one has to take

AF = f =
AB · Kk

Nk
.

A N K E F B

a
k

e
f

Fig. 4

But having taken this point that way the difference of the arcs will be

Arc. ak−Arc. B f =
mk f

a
= mk

√
aa− kk

aa−mkk
=

AN · Kk
Nk

.
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COROLLARY

§67 Therefore, it can happen that the point k and f denote the same point
and so the quadrant aeB will be dissected into two parts, whose difference
must be geometric. For this set k = f = AE = e and it will be

e = a
√

aa− ee
aa−mee

or a4 − 2aaee + me4 = 0,

whence it is

ee =
aa± aa

√
1−m

m
=

aa(1± n)
m

- because of m = 1− nn. Therefore, hence it will be

e =
a√

1± n
.

But since it must be e < a, it will be

e =
a√

1 + n
or

AE =
AB2

√
AB2 + AB · Aa

and Ee =
na
√

n√
1 + n

,

such that it is

AE : Ee = 1 : n
√

n = AB
√

AB : Aa
√

Aa.

And in this case it will be

Arc. ae−Arc. Be = a(1− n) = AB− Aa.

CASE 2

§68 Having propounded the arc ak (Fig. 5) ending at the vertex, starting from its
other endpoint k to separate an arc kg such that the difference of the arc ak and kg is
rectifiable.
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A K G B

a k
g

Fig. 5

Therefore, in this case the point f falls on k and it will be f = k and hence
also F = K; hence it is found

AG = g =
2kK

a4 −mk4 =
2aak

√
(aa− kk)(aa−mkk)

a4 −mk4 .

Therefore, having taken the abscissa AG the difference of the arcs will be

Arc. ak−Arc. kg =
mkkg

aa
=

2mk3
√
(aa− kk)(aa−mkk)

a4 −mk4 .

COROLLARY 1

§69 Therefore, vice versa an arbitrary arc ag ending at the vertex a can be
split into two parts in k in such a way that the difference of the parts ak− kg
becomes rectifiable. For, because of the known abscissa AG = g the abscissa
in question AK = k must be defined from this equation

gg(a4 −mk4)2 = 4a4kk(aa− kk)(aa−mkk),

which goes over into this equation of degree eight

mmggk8 − 4ma4k6 − 2ma4ggk4 + 4(m + 1)a6k4 − 4a8kk + a8gg = 0.

COROLLARY 2

§70 But if the factors of this equation are put

(mgk4 − Akk + a4g)(mgk4 − Bkk + a4g) = 0,
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one finds

A + B =
4a4

g
and AB = 4(m + 1)a6 − 4ma4gg,

whence

A− B =
4aa
g

√
a4 − (m + 1)aagg + mg4,

such that it is

A =
2a4 + 2aa

√
(aa− gg)(aa−mgg)

g

and

B =
2a4 − 2aa

√
(aa− gg)(aa−mgg)

g
.

As a logical consequence it is

k4 =
2a4kk± 2aakk

√
(aa− gg)(aa−mgg)− a4gg

mgg

and

kk =
a4 ± aa

√
(aa− gg)(aa−mgg)± a3

√
2aa− (m + 1)gg± 2

√
(aa− gg)(aa−mgg)

mgg
.

COROLLARY 3

§71 Therefore, the four roots of kk are

I. kk =
a4 + aa

√
(aa− gg)(aa−mgg) + a3√aa− gg + a3√aa−mgg

mgg
,

II. kk =
a4 + aa

√
(aa− gg)(aa−mgg)− a3√aa− gg− a3√aa−mgg

mgg
,
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III. kk =
a4 − aa

√
(aa− gg)(aa−mgg) + a3√aa− gg− a3√aa−mgg

mgg
,

IV. kk =
a4 − aa

√
(aa− gg)(aa−mgg)− a3√aa− gg + a3√aa−mgg

mgg
,

which, using the ambiguity of the square root sign, can conveniently be
represented this way in one single equation

kk =
aa

mgg
(a±

√
aa− gg)(a±

√
aa−mgg).

COROLLARY 4

§72 But the values of k will hence be

k = ± a
g
√

m

(√
a + g

2
±
√

a− g
2

)(√
a + g

√
m

2
±

√
a− g

√
m

2

)
,

which are eight in total, four positive ones and as many negative ones, which
are precisely the negatives of the four positive ones; but it is obvious that
only the positive values with k > g can actually be the right ones here. But it
certainly is

k =
a

g
√

m

(√
a + g

2
−
√

a− g
2

)(√
a + g

√
m

2
−

√
a− g

√
m

2

)
.

For, it is √
a + g

2
+

√
a− g

2
>
√

a,

√
a + g

2
−
√

a− g
2

<
√

g,√
a + g

√
m

2
+

√
a− g

√
m

2
>
√

a,

√
a + g

√
m

2
−

√
a− g

√
m

2
>
√

g
√

m.

COROLLARY 5

§73 If one puts

g
a
= cos η and

g
√

m
a

= cos θ,
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because of m > 1 and θ > η and our formula found for the roots of k will go
over into this form

k = ± a
cos θ

(
cos

1
2

η ± sin
1
2

η

)(
cos

1
2

θ ± sin
1
2

θ

)
or because of

cos θ = cos2 1
2

θ − sin2 1
2

θ

one will have

k = ±a ·
cos 1

2 η ± sin 1
2 η

cos 1
2 θ ± sin 1

2 θ
.

Or the eight values will be

k = ±a ·
cos

(
45°− 1

2 η
)

cos
(
45°− 1

2 θ
) , k = ±a ·

sin
(
45°− 1

2 η
)

cos
(
45°− 1

2 θ
) ,

k = ±a ·
cos

(
45°− 1

2 η
)

sin
(
45°− 1

2 θ
) , k = ±a ·

sin
(
45°− 1

2 η
)

sin
(
45°− 1

2 θ
) .

COROLLARY 6

§74 Out of these values the second

k = a ·
sin
(
45°− 1

2 η
)

cos
(
45°− 1

2 θ
) = a ·

sin
(
45°− 1

2 η
)

sin
(
45° + 1

2 θ
)

always fulfills the condition; for, as it is obvious, it not only is k > a, but also
k > g or k < a cos η. From the first value

k = a ·
sin
(
45° + 1

2 η
)

cos
(
45°− 1

2 θ
)

it certainly always is k > a, because of η > θ; but in order for it to be k > g, it
has to be

sin
(
45° + 1

2 η
)

cos
(
45°− 1

2 θ
) < cos η = sin(90°− η) = 2 sin

(
45°− 1

2
η

)
cos

(
45° +

1
2

η

)
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and hence

1 < 2 sin
(

45°− 1
2

η

)
sin
(

45° +
1
2

θ

)
or

1 < cos
1
2
(θ + η)− cos

(
90° +

1
2
(θ − η)

)
or

1 < cos
1
2
(θ + η) + sin

1
2
(θ − η).

PROBLEM 2

§75 Having propounded an arbitrary arc f g of an ellipse (Fig. 6), starting from a
given point p to separate another arc pq such that the difference of these arcs f g− pq
becomes geometric.

A F G P Q R S T U V BK

v
u

t
s

rqpgfka

Fig. 6

SOLUTION

Having drawn the ordinates f F, gG, pP, qQ, let the abscissas be AF = f ,
AG = g, AP = p and AQ = q, then take the arc ak starting from the vertex a;
and this arc ak has to exceed the given arc f g by a geometric quantity; and
having put the abscissa AK = k and for the sake of brevity having set

K = aa
√
(aa− kk)(aa−mkk),
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F = aa
√
(aa− f f )(aa−m f f ), G = aa

√
(aa− gg)(aa−mgg),

P = aa
√
(aa− pp)(aa−mpp) and Q = aa

√
(aa− qq)(aa−mqq)

first it will be

k =
gF− f G

a4 −m f f gg
=

a4(gg− f f )
gF + f G

;

hence one finds k such that it is

Arc. ak−Arc. fg =
mk f g

aa
.

But then determine the abscissa q by means of the preceding problem in such
a way that it is

q =
pK + kP

a4 −mkkpp
=

a4(pp− kk)
pK− kP

,

and it will be

Arc. ak−Arc. pq =
mkpq

aa
;

subtract the first equation from this last equation; it will remain

Arc. f g−Arc. pq =
mk
aa

(pq− f g).

Q. E. I.

COROLLARY 1

§76 Since k depends on the abscissas p and q in the same way as it depends
on f and g, it will be

k =
qP− f G

a4 −mppqq
=

a4(qq− pp)
qP + pQ

and hence the abscissa q must be defined using the given ones f , g and p by
means of this equation

gF− f G
a4 −m f f gg

=
qP− pQ

a4 −mppqq
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or even from this equation

gg− f f
gF + f G

=
qq− pp
qP + pQ

;

and hence one finds

q =
Fgp(pp− gg) + G f p(pp− f f )− P f g(gg− f f )

F f (pp− gg) + Gg(pp− f f )− Pp(gg− f f )
.

COROLLARY 2

§77 Even the abscissas p and q depend on the abscissa k in such a way that
it is

aa
√

aa−mqq + mkp
√

aa− qq = a
√
(aa−mkk)(aa−mpp),

aa
√

aa− qq + kp
√

aa−mqq = a
√
(aa− kk)(aa− pp),

aa
√

aa−mpp−mkq
√

aa− pp = a
√
(aa−mkk)(aa−mqq),

aa
√

aa− pp − kp
√

aa−mpp = a
√
(aa− kk)(aa− qq),

aa
√

aa−mkk −mpq
√

aa− kk = a
√
(aa−mpp)(aa−mqq),

aa
√

aa− kk − pq
√

aa−mkk = a
√
(aa− pp)(aa− qq).

COROLLARY 3

§78 If the difference of the arcs f g and pq must vanish, it is necessary that it
is either k = 0 or pq = f g. But if it is k = 0, because of

k =
a4(gg− f f )

gF + f G
=

a4(qq− pp)
qP + pQ

,

so the arc f g as the arc pq vanishes. But if it is pq = f g, because of

aa
√

aa−mkk−mpq
√

aa− kk = a
√
(aa−mpp)(aa−mqq),

aa
√

aa−mkk−m f g
√

aa− kk = a
√
(aa−m f f )(aa−mqq)
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it will be

(aa−mpp)(aa−mqq) = (aa−m f f )(aa−mgg)

and because of

aa
√

aa− kk− pq
√

aa−mkk = a
√
(aa− pp)(aa− qq),

aa
√

aa− kk− f g
√

aa−mkk = a
√
(aa− f f )(aa− qq)

it will be

(aa− pp)(aa− qq) = (aa− f f )(aa− gg),

whence it is plain that it is either q = g and p = f or q = f and p = g; but in
each of both cases the arc pq does not only become equal but even identical to
the arc f g.

COROLLARY 4

§79 If it could happen that the arc pq vanishes while the arc f g remains finite,
this arc would become rectifiable. But, while the arc pq vanishes, because of
q = p k results to be = 0 and hence it also is f = g; hence also the arc f g
vanishes.

COROLLARY 5

§80 If the arc pq must end at the other vertex B that it is q = a, we will have
this equation

a2
√

1−m =
√
(aa−mkk)(aa−mpp)

or

a4 − aakk− aapp + mkkpp = 0 and kk =
aa(aa− pp)

aa−mpp
.

This value substituted in the equation

aa
√

aa− kk− f gaa−mkk = a
√
(aa− f f )(aa− gg)

yields
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0 = a6 + 2(m− 1)a3 f gp− a4( f f + gg + pp)

+maa( f f gg + f f pp + ggpp)−m f f ggpp;

this case reduces to the case of the preceding problem, if only the vertices a
and B are permuted and instead of the abscissas the ordinates are introduced.

COROLLARY 6

§81 One should also note the case, in which the point p is assumed in the
point g, such that the arc pq becomes contiguous to the arc f g and it is

Arc. f g−Arc. gq =
mkg
aa

(q− f )

- because of p = g. Therefore, since it also is P = G, it will be

gF + f G
gg− f f

=
qG + gQ
qq− gg

,

whence the abscissa q is determined. Or having taken

k =
gF− f G

a4 −m f f gg
=

a4(gg− f f )
gF + f G

it will be

q =
gK + kG

a4 −mkkgg
=

a4(gg− kk)
gK− kG

.

But hence one finds

q =
gg
f
− a4(gg− f f )2

f
· a4 −mg4

2FG f g + a4(a4( f f + gg)− 2(m + 1)aa f f gg−mg4(gg− 3 f f ))

or

q =
2FGg(a4 −mg4)− a4 f ((a4 + mg4)2 − 2(m + 1)aagg(a4 + mg4) + 4ma4g4)

a4((a4 −mg4)2 − 4m f f gg(aa− gg)(aa−mgg))

or

q =
2FGg(a4 −mg4)− a4(mg4 − 2aagg + a4)(mg4 − 2maagg + a4)

a4(a4 −mg4)2 − 4ma4 f f gg(aa− gg)(aa−mgg)
.
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PROBLEM 3

§82 Having propounded an arbitrary arc f g of the ellipse, starting from the point p
to separate an arc pqr, which differs from the double of the arc f g by a geometrically
assignable quantity.

SOLUTION

First, using the abscissas AAF = f , AG = g of the points f and g and the
quantities F and G derived from them find the abscissa

AK = k =
gF− f G

a4 −m f f gg
=

a4(gg− f f )
gF + f G

,

that one has

Arc. ak−Arc. =
mk f g

aa
.

Then find the abscissa AQ = q to the abscissa AP = p of the point p such that
it is

q =
pK + kP

a4 −mkkpp
=

a4(pp− kk)
pK− KP

,

while the capitals L and P always denote functions of such a kind of the
lower case letters k and p that, if the lower case letter was x, the value of the
corresponding capital letter will be

X =
√
(aa− xx)(aa−mxx);

and it will be

Arc. ak−Arc. pq =
mkpq

aa
,

whence we obtain

Arc. f g−Arc. pq =
mk
aa

(pq− f g).

In like manner, if now the point q is considered as given and from it the point
r is found, that its abscissa is
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AR = r =
qK + jQ

a4 −mkkqq
=

a4(qq− kk)
qK− kQ

,

we will have

Arc. f g−Arc. qr =
mk
aa

(qr− f g).

Hence by adding these formulas we will find

2Arc. f g−Arc. pqr =
mk
aa

(pq + qr− 2 f g)

and so starting from a given point p we separated the arc pr, which differs
from the double of the arc f g by an algebraic quantity.

COROLLARY 1

§83 Since it is

k =
a4(gg− f f )

gF + f G
and k =

a4(qq− pp)
qP + pQ

and in the same way it also is

k =
a4(rr− qq)

rQ + qR
,

we will have these equations

gF + f G
gg− f f

=
qP + pQ
qq− pp

=
rQ + qR
rr− qq

,

whence from the given abscissas f , g and p the two remaining abscissas q and
r are defined.

COROLLARY 2

§84 If the arc f g starts at the vertex a that it is f = 0, it will be k = g, whence

q =
pG + gP

a4 −mggpp
=

a4(pp− gg)
pG− gP

and r =
qG + gQ

a4 −mggqq
=

a4(qq− gg)
qG− gQ

.
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And if furthermore the point p is given in the other vertex A that it is p = a
and P = 0, it will be

q =
G

a3 −magg
=

a
√
(aa− gg)(aa−mgg)

aa−mgg
;

hence

aa− qq =
aagg(1−m)(aa−mgg)

(aa−mgg)2 =
(1−m)aagg

aa−mgg

and

aa−mqq =
a4(1−m)(aa−mgg)

(aa−mgg)2 =
(1−m)a4

aa−mgg
, whence it is Q =

−(1−m)a5g
aa−mgg

,

since the ordinate must fall onto the lower part, and it will be

r =
a(a4 − 2aagg + mg4)

a4 − 2maagg + mg4 .

COROLLARY 3

§85 Therefore, in this case having taken r in the upper quadrant (Fig. 7) that
having put the abscissa AG = g it is

AR = r =
a(a4 − 2aagg + mg4)

a4 − 2maagg + mg4

A G R B

a g

r

Fig. 7
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or

BR = a− r =
2(1−m)a3gg

a4 − 2maagg + mg4 ,

it will be

2Arc. ag−Arc. Br = algebr. Quant. =
mg
aa

(aq + rq) =
mgq
aa

(a + r)

and hence

2Arc. ag−Arc. Br =
2mg(aa− gg)

√
(aa− gg)(aa−mgg)

a4 − 2maagg + mg4 .

COROLLARY 4

§86 If the points g and r must coalesce into one point that it is r = g, the
value of the common abscissa AG = AR = g must be determined from this
equation of degree five

mg5 −mag4 − 2maag3 + 2a3gg + a4g− a5 = 0.

So, if it is m = 1
2 and a = 1, one will have

g5 − g4 − 2g3 + 4gg + 2g− 2 = 0.

If it would be m = 4
3+
√

2
, g = a√

2
would result and it would also be

2Arc. ag−Arc. Bg = a

√
2 + 2

√
2

3 +
√

2
.

PROBLEM 4

§87 Having propounded an arbitrary arc f g of an ellipse (Fig. 6) to find an arc pqr
which is precisely twice as long.
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SOLUTION

Therefore, in the solution of the preceding problem it has to be

pq + qr− 2 f g = 0,

and then it will be 2 Arc. f g = Arc. pqr. But here, because of the given arc f g,
except for the semiaxis AB = a and Aa = a

√
1−m also the abscissas AF = f

and AG = g are given together with the values F and G derived from them,
whence one has to find

k =
a4(gg− f f )

gF + f G
;

and at the same time the value derived from it will be

K =
a4( f f + gg− kk)−mkk f f gg

2 f g

(by corollary 3 of problem 1). But in like manner the abscissas p and q depend
on k that it is

K =
a4(qq + rr− kk)−mkkppqq

2pq
,

and likewise from the abscissas q and r it will be

K =
a4(qq + rr− kk)−mkkqqrr

2qr
.

But from the equation pq + qr = 2 f g it is q = 2 f g
p+q , whence we will obtain

these two equations

K =
a4(pp− kk)(p + r)2 + 4a4 f f gg− 4m f f ggkkpp

4 f gg(p + r)
,

K =
a4(rr− kk)(p + r)2 + 4a4 f f gg− 4m f f ggkkrr

4 f gr(p + r)
,

from which the two abscissas p and r determining the arc pr in question can
be defined. Therefore, hence, by eliminating K and dividing by p− r, first we
find

45



a4 pq(p + r)2 + a4kk(p + r)2 − 4a4 f f gg− 4m f f ggkkpr = 0.

Further, by adding those equations we will have

2K =
a4 pr(p + r)3 − a4kk(p + r)3 + 4a4 f f gg(p + r)− 4m f f ggkkpr(p + q)

4 f gpr(p + q)
.

But from that equation it is

a4(p + q)2 =
4 f f gg(a4 + mkkpq)

pr + kk
,

which value substituted in this one yields

8K f gpr =
4 f f gg(pr− kk)(a4 + mkkpr)

pr + kk
+ 4a4 f f gg− 4m f f ggkkpr

or

2Kpr(pr + kk)
f g

= 2a4 pr− 2mk4 pr;

hence one finds

pr =
(a4 −mk4) f g− Kkk

K
=

f f gg(2a4 −mk4)− a4kk( f f + gg− kk)
a4( f f + gg− kk)−m f f ggkk

and

(p + q)2 =
4 f g
a4 (K + m f gkk) =

2(a4( f f + gg− kk) + 2m f f ggkk)
a4 .

Therefore,

p + r =
√

2(a4( f f + gg− kk) + m f f ggkk)
aa

.

Further

r− p =

√
2(a8(gg− f f )2 − a8k4 + 2ma4 f f ggk4 −mm f 4g4k4)

aa
√

a4( f f + gg− kk)−m f f ggkk
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or

r− p =

√
2(a8(gg− f f )2 − k4(a4 −m f f gg)2)

aa
√

a4( f f + gg− kk)−m f f ggkk
.

But since it is

a4(gg− f f ) = k(gF + f G) and a4 −m f f gg =
gF− f G

k
,

it will be

r− p =
2k
aa

√
FG
K

,

whence because of

r + p =

√
2(a4( f f + gg− kk) + m f f ggkk)

aa
=

2
aa

√
f g(K + m f gkk)

each of both abscissas p and r become known. Q.E.I.

COROLLARY 1

§88 Since it is

k =
gF− f G

a4 −m f f gg

and

K =
(a4 + m f f gg)FG− a6 f g(1maa( f f + gg)− (m + 1)(a4 + m f f gg))

(a4 −m f f gg)2 ,

it will be

r + p =
2
aa

√
f gFG−ma4 f f gg( f f + gg) + (m + 1)a6 f f gg

a4 −m f f gg
,

r− p =
2(gF− f G)

aa

√
FG

(a4 + m f f gg)(FG + (m + 1)a6 f g)− 2ma8 f g( f f + gg)
.
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COROLLARY 2

§89 If the given arc f g ends at the vertex a that it is f = 0 and F = a4,
p + r = 0 and r− p = 2g results, whence it is p = −g and r = g; therefore,
the twice as long arc is equally extended to both sides starting from a and
consists of two equal halves, the arc f g and the arc ag. The same happens, if
the given arc ends at the other vertex B that it is is g = a and G = 0; for, then
it is r− p = 0 and r + p = 2 f and hence r = p = f .

COROLLARY 3

§90 As in these cases, where the propounded arc f g ends at the other vertex,
the twice as long arc is obvious per se, so, if the propounded ends at none
of the two vertices, it is very difficult to assign the twice as long arc; it is not
even possible to separate this arc into two parts geometrically.

COROLLARY 4

§91 Hence, it is also plain, if vice versa the arc pr is given, that one is able to
find the arc f g, which will be exactly half of the arc pr; but this will require
very cumbersome calculations. But if the twice as long arc pqr is equal to the
quadrant of the ellipse or it is p = 0 and r = a, it will not be difficult to assign
the arc equal to the half of that arc. For, first it will be

q = k and k = a

√
1−
√

1−m
m

and this way so k is known; further, it is

K = a4

√
1−m

m
(1−

√
1−m).

Further, it is

2 f g = ak and f f + gg =
Kk
a3 + kk +

mk4

4aa
.

But it is

m =
2aakk− a4

k4 and hence f f + gg =
2kk + 3aa

4
;

therefore, it is
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g + f =
1
2

√
2kk + 3aa + 4ak

and

g− f =
1
2

√
2kk + 3aa− 4ak

and hence

f =
1
4

√
3aa + 4ak + 2kk− 1

4

√
3aa− 4ak + 2kk,

g =
1
4

√
3aa + 4ak + 2kk +

1
4

√
3aa− 4ak + 2kk.

COROLLARY 5

§92 If the one semiaxis is put Aa = b while the other is AB = a that it is
m = aa−bb

aa , it will be k = a
√

a
a+b for this case; having substituted this value

one will have

g± f =
a
2

√
5a + 3b

a + b
± 4
√

a
a + b

;

hence it is

f =
a
2

√
5a− 3b−

√
9aa + 14ab + 9bb

2(a + b)
,

g =
a
2

√
5a− 3b +

√
9aa + 14ab + 9bb

2(a + b)

and so the abscissas for each of the two endpoints of the arc f g, which is the
half of the whole arc of the quadrant, are found.
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COROLLARY 6

§93 Therefore, in this case it will be

f f + gg =
aa(5a + 3b)

4(a + b)
= aa +

aa(a− b)
4(a + b)

and also

f g =
aa
2

√
a

a + b
and 2 f g = aa

√
a

a + b
;

if, for the sake of an example, it is a = 25 and b = 119, one will find

f =
25

3
√

2
and g =

125
4
√

2
.

SCHOLIUM

§94 Hence we obtained the solution of this elegant problem:

Having propounded the elliptical quadrant BAa (Fig. 8), to separate an arc f g on
it geometrically, which is precisely half of the whole arc of the quadrant a f gB.

A F G B

g

fa

Fig. 8

For, having put the semiaxes AB = a and Aa = b the abscissas for the points
f and g in question will be
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AF =
a
2

√
5a + 3b−

√
9aa + 14ab + 9bb

2(a + b)
,

AG =
a
2

√
5a + 3b +

√
9aa + 14ab + 9bb

2(a + b)
,

whence for the same points one finds the ordinates

F f =
b
2

√
3a + 5b +

√
9aa + 14ab + 9bb

2(a + b)
,

Gg =
b
2

√
3a + 5b−

√
9aa + 14ab + 9bb

2(a + b)
.

PROBLEM 5

§95 To split the given arc pr of the ellipse (Fig. 6) into two parts pq and qr such
that the difference of these parts, pq− qr, is assignable geometrically.

SOLUTION

Having put AP = p, AQ = q and AR = r as in the preceding problem, while
the semiaxes are AB = a and AA = a

√
1−m, find the arc ak starting from

the vertex a that having put its abscissa AK = k it is

k =
qP− pQ

a4 −mppqq
=

a4(qq− pp)
qP + pQ

,

and it will be

Arc. ak−Arc. pq =
mkpq

aa
.

But then let it also be

k =
rQ− qR

a4 −mqqrr
=

a4(rr− qq)
rQ + qR

;

and it will also be
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Arc. ak−Arc. qr =
mkqr

aa
and hence

Arc. pq−Arc. qr =
mkq
aa

(r− p).

Therefore, since the abscissas p and r are given along with the quantities
derived from them, P and R, the abscissa of the point q in question must be
determined from this equation

qP + pQ
qq− pp

=
rQ + qR
rr− qq

or

Pq(rr− qq)− Rq(qq− pp) = Q(p + r)(qq− pr),

which equation squared and then divided by (qq− pp)(rr− qq) gives

a4((p + r)2 − 2qq)− 2(m + 1)aaprqq + mqq(qq(p + r)2 − 2pprr) = 2qqPR : a4

or

q4 =
2qq
( PR

a4 + mpprr + (m + 1)aapr + a4)− a4(p + r)2

m(p + r)2 ,

by which equation the value of the abscissas q can be defined. Q.E.I.

COROLLARY 1

§96 If the whole quadrant must be divided into two parts, whose difference
is geometric, one has to put p = 0 and r = a; hence it is P = a4 and R = 0
and hence

q4 =
2aaqq− a4

m
and qq =

aa(1−
√

1−m)

m
and q = a

√
1−
√

1−m
m

,

which is the same determination we found above in the corollary of case 1 in
problem 1.
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COROLLARY 2

§97 If the one of the abscissas p and r is negative and equal to the other one
or it is p + r = 0, one will immediately have either q = 0 or

Prr− Pqq− Rqq + Rp = 0 or qq =
Prr + Rpp

P + R
and hence P + R = 0.

But it is obvious, if each of both ordinates Pp and Rr were positive, that it will
be R = P and then it its q = 0.

PROBLEM 9

§98 If the ellipse ADBFA (Fig 9.) was dissected by the diameter ECF, to split the
half of the circumference EBF in the point M in such a way that the difference of the
parts EM and FM is assignable geometrically.

SOLUTION

Even though this problem is contained in the preceding one, it it nevertheless
not possible to deduce the solution that problem, since it is so P + r = 0 as
P + R = 0; therefore, one must the find the solution in a peculiar way.

D

P
AB

Q

R

F H

EI
GM

C
V

N

Fig. 9

Therefore, having put the semiaxes CA = a, CD = b = a
√

1−m for the one
endpoint E of the propounded arc let the abscissa be CP = p; the ordinate
will be PE = b

a
√

aa− pp, which coordinate taken negatively will extend to
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the other endpoint F; but let these coordinates be r and b
a
√

aa− rr such that
it is r = −p and

√
aa− rr = −√aa− pp. Since now having taken the new

abscissa k and having put the abscissa in question CQ = q from corollary 2 of
problem 2 we have

aa
√

aa− kk− pq
√

aa−mkk = a
√
(aa− pp)(aa− qq),

aa
√

aa− kk− qr
√

aa−mkk = a
√
(aa− qq)(aa− rr),

this last equation, because of

r = −p and
√

aa− rr = −
√

aa− pp,

goes over into this one

aa
√

aa− kk + pq
√

aa−mkk = −a
√
(aa− p)(aa− qq),

which added to the first gives

2aa
√

aa− kk = 0 and hence k = a;

this value substituted in the other gives

−pq
√

1−m =
√
(aa− pp)(aa− qq)

and hence

−q√
aa− qq

=

√
aa− pp

p
√

1−m
,

as a logical consequence it is

q = − a
√

aa− pp√
aa−mpp

,

where the negative sign indicates that q must be taken in the negative part of
the abscissas6. Draw the normal EN to the curve in E; then will have

PE
EN

=

√
aa− pp√

aa−mpp
.

6Nowadays we would call this the negative x-axis.
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Therefore, it is CQ = a·PE
EN . Further, let GH be the conjugated diameter, which

the normal EN intersects in V; it will be

PE
EN

=
CV
CN

=
CQ
CI

,

having elongated CG to the point of intersection with the ordinate QM in
I. Hence, because of CQ = a·CQ

CI CI = a = CA results. Hence this simple
construction follows: Continue the conjugated diameter GH beyond the point
G to I that it is CI = CA; from I drop the perpendicular IQ to the axis AB;
this perpendicular will intersect the ellipse in the point M in question. But
because of k = a it will be

Arc. EM−Arc. FM = −2mpq
a

=
2mp · PE

EN
=

2CN · CV
CN

= 2CV

- because of CN = mp. Q. E. I.

COROLLARY 1

§99 If, using the same two equations, by eliminating k the preceding problem
is solved in general, one will obtain the following equation

mq4(r
√

aa− pp− p
√

aa− rr)2− 2aaqq(aa+mpr)(aa− pr−
√
(aa− pp)(aa− rr))

+a6(
√

aa− pp−
√

aa− rr)2 = 0,

whence by resolution we obtain

qq =
aa(aa− pr−

√
(aa− pp)(aa− rr))(aa + mpr±

√
(aa−mpp)(aa−mrr))

m(r
√

rr− pp− p
√

aa− rr)2
,

q =

a
(√

a+r)(a−p)
2 −

√
a−r)(a+p)

2

)(√
a+p
√

m)(a+r
√

m)
2m ±

√
a−p
√

m)(a−r
√

m)
2m

)
r
√

aa− pp− p
√

aa− rr
.
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COROLLARY 2

§100 Although this solution in principle does not differ from the solution of
the preceding problem, it nevertheless solves the present problem immediately.
For, if we put

r = −p and
√

aa− rr = −
√

aa− pp,

the first equation of the preceding corollary goes over into this form

−2aaqq(aa−mpp) · 2aa + a6(2
√

aa− pp)2 = 0

or

qq =
aa(aa− pp)

aa−mpp
.

COROLLARY 3

§101 If we eliminate q from the first two equations, we will obtain

q =
aa(
√

aa− pp−
√

aa− rr)
√

aa− kk
(r
√

aa− pp− p
√

aa− rr)
√

aa−mkk

and

√
aa− qq =

a(r− p)
√

aa− kk
r
√

aa− pp− p
√

aa− rr
;

hence it is

a4(aa− kk)(
√

aa− pp−
√

aa− rr)2 + a2(aa− kk)(aa−mkk)(r− p)2

= aa(aa−mkk)(r
√

aa− pp− p
√

aa− rr)2

or

mk4(r− p) = 2kk(aa−mpr)(aa− pr−
√
(aa− pp)(aa− rr))

− aa(aa− pr−
√
(aa− pp)(aa− rr))2,

whence it is
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kk =
(aa− pr−

√
(aa− pp)(aa− rr))(aa−mpr−

√
(aa−mpp)(aa−mrr))

m(r− p)2 ,

and hence it is concluded

k =

(√
(a+r)(a−p)

2 −
√

(a−r)(a+p)
2

)(√
(a+r

√
m)(a−p

√
m)

2m −
√

(a−r
√

m)(a+p
√

m)
2m

)
r− p

.

COROLLARY 4

§102 Hence it will be

kq =
aa(aa− pr−

√
(aa− pp)(aa− rr))(

√
aa−mpp−

√
aa−mrr)

m(r− p)(r
√

aa− pp− p
√

aa− rr
.

Hence, since the difference of the arcs pq and qr is = mkq
aa (r− p), we will have

in general

Arc. pq−Arc. qr =
(aa− pr−

√
(aa− pp)(aa− rr))(

√
aa−mpp−

√
aa−mrr)

r
√

aa− pp− p
√

aa− rr
,

if the point q is defined using the result from corollary 1, of course. Therefore,
it will be

Arc. pq−Arc. qr =
(
√

aa− pp−
√

aa− rr)(
√

aa−mpp−
√

aa−mrr)
r + p

and

q =

(√
(a+r)(a+p)

2 −
√

(a−r)(a−p)
2

)(√
(a+p

√
m)(a+r

√
m)

2m −
√

(a−p
√

m)(a−r
√

m)
2m

)
p + r

.
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PROBLEM 7

§103 Having propounded the arc f g of an ellipse (Fig. 6), starting from the point p
to separate the arc pqrs, which differs from the triple of that arc f g by a geometrically
assignable quantity.

SOLUTION

Let, as before, the abscissas of the given points f , g and p be AF = f , AG = g,
AP = p and first find the arc ak, whose abscissa is

AK = k =
gF− f G

a4 −m f f gg
=

a4(pp− f f )
gF + f G

,

that it is

Arc. ak−Arc. f g =
mk f g

aa
.

Then find the point q that it is

AQ = q =
pK + kP

a4 −mkkpp
=

a4(pp− kk)
pK− kP

and hence

Q =
a4(qq− pp)− kk(a4 −mppqq)

2kp
=

pq(qq− pp)K− kq(qq− kk)P
kp(pp− kk)

,

and it will be

Arc. f g−Arc. pq =
mk
aa

(pq− f g).

Further, in like manner find the point r that it is

AR = r =
qK + kQ

aa−mkkqq
=

a4(qq− kk)
qK− kQ

and

R =
a4(rr− qq)− kk(a4 −mqqrr)

2kq
=

qr(rr− qq)K− kr(rr− kk)Q
kq(qq− kk)

,
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and since it is

Arc. f g−Arc. qr =
mk
aa

(qr− f g),

it will be

2Arc. f g−Arc. pqr =
mk
aa

(pq + qr− 2 f g).

Hence let us define the point s in the same way that the abscissa is

AS = s =
rK + kR

a4 −mkkrr
=

a4(rr− kk)
rK− kR

and

S =
a4(ss− rr)− kk(a4 −mrrss)

2kr
=

rs(ss− rr)K− ks(ss− kk)R
kr(rr− kk)

,

and since it will be

Arc. f g−Arc. rs =
mk
aa

(rs− f g),

one will have

3Arc. f g−Arc. pqrs =
mk
aa

(pq + qr + rs− 3 f g).

Q. E. I.

COROLLARY 1

§104 Proceeding in the same way it is obvious that one, starting from a given
point p, is able to define an arc pt which differs from the quadruple of the
given arc f g by an algebraic quantity, and that the operation can be continued
this way arbitrarily far.

COROLLARY 2

§105 If the given arc f g is equal to the whole quadrant that it is f = 0 and
g = a and hence F = a4 and G = 0, it will be k = a and K = 0. Hence one
finds
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q =
P

a(aa−mpp)
= a

√
aa− pp

aa−mpp

and

Q =
−q(qq− aa)
p(pp− aa)

P =
−(aa− qq)PP

ap(aa−, pp)(aa− pp)
= − a3(aa− qq)

p
;

but it is

aa− qq =
a(1−m)pp
aa−mpp

, whence it is Q =
−(1−m)a5 p

aa−mpp
.

Further

r =
Q

a(aa−mqq)
= −p

and

R = −aa
√
(aa− pp)(aa−mpp) = −P.

Finally, it will be

s =
−P

a(aa−mpp)
= −a

√
aa− pp

aa−mpp
= −q and S = −Q =

(1−m)a5 p
aa−mpp

and it will be

3Arc. f g−Arc. pqrs =
m
a

pq = mp

√
aa− pp

aa−mpp
.

COROLLARY 3

§106 One will also be able to define the point p in such a way that it is

pq + qr + rs = 3 f g,

in which case the arc pqrs will become exactly equal to the triple of the given
arc f g. And so one will further be able to find an arc, which has a certain ratio
to the given arc f g.
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SCHOLIUM

§107 All these problems, which I treated here for the ellipse, can likewise be
solved for the hyperbola; so, given an arbitrary arc of a hyperbola, starting
from a certain point of the same hyperbola one will be able to separate an
arc, which differs either from the given arc or from the double of the given
arc or the triple or from any other multiple of it by a geometrically assignable
quantity. Further, it will also be possible to assume this point in such a way
that the difference vanishes completely, in which case, given an arbitrary arc
of the hyperbola, one will be able to assign another arc, which is equal either
to the double or the triple or to any other multiple of the given arc. Hence it
is perspicuous, if having propounded an arc another arc was found, which
has a ratio of µ to 1 to the given one, and in like manner another arc is found,
which has a ratio of ν to 1 to the given arc, that then this way one has two arcs
of the hyperbola, which have a ratio of µ to ν to each other, and so one will be
able to exhibit infinitely many pairs of arcs, which have a given ratio to each
other. And problems of this kind can not only be solved for the hyperbola
but also for all other arbitrary curves, which are of such a nature that the arc
corresponding to the abscissa or to the variable x are contained in this form

∫ dx(A+Bxx + Cx4)√
A + Cxx + Ex4

,

which can also be extended a lot further by the rules given at the beginning in
such a way that it is reduced to this form

∫ dx(A+Bxx + Cx4 +Dx6 + Ex8 + etc.)√
A + Cxx + Ex4

;

but I think that for now one does not have to spend any more time on neither
the hyperbola nor on other other curves of this kind.
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