
On the Integration of Differential

Equations *

Leonhard Euler

§1 Here, I consider differential equations of first degree, which involve only
two variables, which therefore can be represented in this general form

Mdx + Ndy = 0,

if M and N denote any arbitrary functions of the two variables x and y. But it
was proved that an equation of this kind always expresses a certain relation
between the variables x and y, by which for each value of the one the values
for the other are defined. But because this finite relation between the variables
must be found by means of integration, the integral equation, if it is extended
to its complete generality, will receive a constant quantity, which, while it is
completely arbitrary, contains infinitely many integral equations, which all
satisfy the differential equation equally.

§2 Therefore, having propounded any differential equation of this kind

Mdx + Ndy = 0

the whole task of the Analysis consists in this that a finite equation between
the same variables x and y is found, which expresses the same among those
relations as the differential equation, and this in the broadest sense, of course
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Alexander Aycock for „Euler-Kreis Mainz“
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such that it contains a certain arbitrary constant, which is not in the differential
equation. But if this question is propounded in this most general form, until
now no way was found to get to its solution; and all cases, which could be
solved until now, can be reduced to a tiny number, such that in this part of
Analysis, as in the remaining ones, still very large increments are desired; and
therefore, the complete cognition of all secrets of this science can never be
expected.

§3 Almost everything achieved in this task until now can be referred to these
cases, in which the differential equation

Mdx + Ndy = 0

either immediately admits a separation of variables, or by means of suitable
substitutions can be reduced to such a form. For, if by introducing two new
variables v and z instead of x and y, the propounded differential equation can
be transformed in a form of this kind

Vdv + Zdz = 0,

in which V is a function only of v and Z only of z, the whole task will be
completed, while the complete integral equation will be:∫

Vdv +
∫

Zdz = Const.,

which manifestly contains that arbitrary constant introduced by the general
integration. And to this almost all artifices reduce, which the Analysists have
used in the resolution of equations of this kind.

§4 Therefore, if the propounded differential equation does not immediately
admit the separation of variables, the whole task used to be that appropriate
substitutions, which open the way to the separation, are investigated, where
often the highest ingeniousness, which the Geometers used to reach his goal,
must be admired. Since there is nevertheless no certain way known to investi-
gate substitutions of this kind, this method seems rather unnatural, whence I
decided, to consider a maybe not new, but nevertheless still not sufficiently
developed method in more detail, since which does not require substitutions
seems to be more natural being found on the nature of differentials and even
contains the first method, at least partially, in it as a special case.
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§5 Having reduced the differential equation to this form

Mdx + Ndy = 0

consider the formula Mdx + Bdy without taking into account that is has to
vanish, and examine, whether it is a differential of a certain function of x and
y or not. This examination is to be done in such a way, as it was explained
already abundantly in different sources; of course, both functions M and N
must be differentiated, and since their differentials must have a form of this
kind

dM = pdx + qdy and dN = rdx + sdy,

see, whether it is q = r or not. For, if it was q = r, this is an infallible criterion
that the formula Mdx + Ndy is integrable: But if it was not q = r, it is equally
certain, that this formula did not arise form a differentiation of a certain finite
function of x and y. From this the whole question is reduced to two cases, of
which the one holds, if it was q = r, the other, if these two quantities q and r
were not equal to each other.

§6 Therefore, to see the equality, or inequality, of the quantities q and r, it is
not even necessary that the functions M and N are expanded completely by
differentiation, but it suffices in the function M, which is connected to dx, to
consider the quantity x as constant, and only ask for its partial differential,
which is obtained from the variability of y only, since this way the term qdy is
obtained, but I usually denote the value of q found this way by the sign

(
dM
dy

)
.

In similar manner, differentiate the other function N, which is connected to
dy, in such a way, that y is treated as a constant, and from the variability of x
only the part rdx is obtained, where I equally express the value of r by

(
dN
dx

)
.

Therefore, if the formula Mdx + Ndy was of such a nature that it is(
dM
dy

)
=

(
dN
dx

)
,

it is integrable, and its integral can be found the following way. Having done
this, if the condition of criterion is not satisfied, let us see how it is to be
proceeded.
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PROBLEM 1

§7 If the differential equation

Mdx + Ndy = 0

was of such a nature that it is(
dM
dy

)
=

(
dN
dx

)
,

to find its integral equation.

SOLUTION

If it was (
dM
dy

)
=

(
dN
dx

)
,

then a finite function of the two variables x and y is given, which differentiated
yields Mdx + Ndy. Let V be this function, and because it is

dV = Mdx + Ndy,

Mdx will be the differential of V, if only x is taken as a variable, and Ndy
its differential, if only y is taken as a variable. Therefore, hence vice versa V
will be found, if either Mdx is integrated, having considered y as constant, or
Ndy is integrated, having considered x as constant: And so this operation is
reduced to the integration of a differential formula involving only one variable
which is postulated to be possible in this case, might it succeed algebraically
or require the quadrature of curves. But because reasoning as this the quantity
V is found in two ways, and the one integration instead of the constant leads
to an arbitrary function of y, the other on the other hand assumes a function
of x, such that it is

both V =
∫

Mdx + Y and V =
∫

Ndy + X,

it is always possible to define these functions Y of y and X of x in such a way
that it is

∫
Mdx +Y =

∫
Ndy + X, which is easily achieved in each case. Since

having done this the quantity V is the integral of the formula Mdx + Ndy, it is
evident that the integral equation of the propounded equation Mdx+ Ndy = 0
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will be V = Const., and it will be the complete integral equation, since it
involves an arbitrary constant.

COROLLARY 1

§8 In this case the case of separated equations is immediately contained. For,
if M was a function of x only, and N a function of y only, it will certainly be

(
dM
dy

)
= 0 and

(
dN
dx

)
= 0 and hence

(
dM
dy

)
=

(
dN
dx

)
;

therefore, this is the simplest case, which the problem contains in it.

COROLLARY 2

§9 But if in the differential equation

Mdx + Ndy = 0

M was a function of x only, and N of of y only, each of both parts is integrable
separately, and the integral equation will be:∫

Mdx +
∫

Ndy = Const.

COROLLARY 3

§10 Furthermore, our problem provides us with the solution of infinitely
many other differential equations, the common character of all of which
consists in this that it is (

dM
dy

)
=

(
dN
dx

)
,

and their resolution can be done by means of integration of formulas contai-
ning one single variable.
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SCHOLIUM 1

§11 Therefore, as often as in the differential equation Mdx + Ndy = 0 it
was

(
dM
dy

)
=
(

dN
dx

)
, its resolution has no difficulty, as long as the integration

of formulas involving one variable is conceded; this can certainly justly be
postulated. Nevertheless, the determination of those functions X and Y which
have to be introduced instead of the constants, could seem to create certain
inconveniences; but it will soon be found to vanish in the single cases. But
to contract this operation even further, the second integration is not even
necessary. For, after the one part Mdx, having considered y as constant, was
integrated, which integral shall be = Q, set

V = Q + Y,

having meanwhile put Y for a indefinite function of y, which the other
variable x does not go into at all. Then differentiate this quantity Q + Y again
by treating x as a constant, and since the differential has to arise as = Ndy,
from this condition the function Y will be determined most easily, since from
the nature of the procedure itself hence the quantity x will be eliminated
immediately. But having found this function Y, the integral equation will
be Q + Y = Const., which operation will be conveniently illustrated in the
following examples.

EXAMPLE 1

§12 To integrate this differential equation:

2axydx + axxdy− y3dx− 3xyydy = 0.

Having compared this equation to the form Mdx + Ndy = 0, it will be:

M = 2axy− y3 and N = axx− 3xyy.

Therefore, first it is to be checked, whether this case is contained in the
problem, for which aim we want to find the values:(

dM
dy

)
= 2ax− 3yy and

(
dN
dx

)
= 2ax− 3yy,

because which are equal, the prescribed operation will necessarily succeed.
But, haven taken y to be constant, one will find:

6



∫
Mdx = axxy− y3x + Y;

if the differential of this form is taken, having put x to be constant, it will
arise:

axxdy− 3yyxdy + dY = Ndy,

and having resubstituted its value axx − 3xyy for for N, it will be dY = 0,
whence Y = 0 arises, or Y = Const.. Hence one will have the integral equation
is question:

axxy− y3x = Const..

EXAMPLE 2

§13 To integrate this differential equation:

ydy + xdx− 2ydx
(y− x)2 = 0.

Having compared this equation to the form Mdx + Ndy = 0, it will be:

M =
x− 2y
(y− x)2 and N =

y
(y− x)2 .

Now, that it becomes plain, whether this equation is contained in the case of
the problem, find the differential values:(

dM
dy

)
=

2y
(y− x)2 and

(
dN
dx

)
=

2y
(y− x)2 ,

since which are equal, the task will be successful. Hence according to the rule
one concludes, having taken y to be constant, the integral:∫

Mdx =
∫ xdx− 2ydx

(y− x)2 = −
∫ dx

y− x
−
∫ ydx

(y− x)2

and one will find: ∫
Mdx = log(y− x)− y

y− x
+ Y,
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whose differential, having taken x to be constant, must produce the other part
Ndy of the propounded equation; hence one will have:

Ndy =
dy

y− x
+

xdy
(y− x)2 + dY =

ydy
(y− x)2 + dY.

Therefore, because it is

Ndy =
ydy

(y− x)2 , it will dY = 0 and Y = 0,

for, the constant Y can be neglected, since it is introduced already in the
integral equation, which will be:

log(y− x)− y
y− x

= Const.

EXAMPLE 3

§14 To integrate this differential equation:

dx
x

+
yydx

x3 −
ydy
xx

+
(ydx− xdy)

√
xx + yy

x3 = 0.

Having compared this equation to the from Mdx + Ndy = 0, we will have:

M =
xx + yy + y

√
xx + yy

x3 and N =
−y−√xx + yy

xx
,

whence for the exploration of the criterion find:(
dM
dy

)
=

2y
x3 +

√
xx + yy

x3 +
yy

x3√xx + yy

and (
dN
dx

)
=

2y
x3 +

2
√

xx + yy
x3 − x

xx
√

xx + yy
,

since which values reduced become equal to each other, of course(
dM
dy

)
=

(
dN
dx

)
=

2y
x3 +

xx + 2yy
x3√xx + yy

,

the resolution will be possible. Therefore, investigate, having taken y to be
constant:
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∫
Mdx = log x− yy

2xx
+ y

∫ dx
x3

√
xx + yy.

But by means of the rules to integrate formulas involving one variable, since
here y is considered to be constant, one finds:∫ ydx

x3

√
xx + yy =

−y
√

xx + yy
2xx

+
1
2

log
√

xx + yy− y
y

,

such that it is:∫
Mdx = log x− yy

2xx
− y
√

xx + yy
2xx

+
1
2

log
√

xx + yy− y
y

+ Y.

But since the differential of this quantity, having assumed x to be constant,
has to yield

Ndy = −−ydy− dy
√

xx + yy
xx

,

we will obtain:

Ndy =
−ydy

xx
− dy

√
xx + yy
2xx

− yydy
2xx
√

xx + yy
− dy

2y
− dy

2
√

xx + yy
+ dY,

having compared this form to that one it will be:

dY = −dy
√

xx + yy
2xx

+
yydy

2xx
√

xx + yy
+

dy
2y

+
dy

2
√

xx + yy
,

where the terms, which still contain x, cancel each other, such that it is

dY =
dy
2y

and Y =
1
2

log y.

Having found this value for Y, one will obtain the integral equation in questi-
on:

log x− yy
2xx
− y
√

xx + yy
2xx

+
1
2

log(
√

xx + yy− y) = Const.
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SCHOLIUM 2

§15 From these examples it is sufficiently understood, how the prescribed
operation is to be done, such that hence no difficulty causes any further in-
conveniences, except those always remaining from the integration of formulas
involving one variable, when the integration cannot be done algebraically and
does not allow to be reduced to the quadrature of the circle or hyperbola. But
then the superior quadratures have to be treated in the same manner, and if
these difficulties remain, they are not to be ascribed to this method. Therefore,
it is possible to assume here, as often as the differential equation

Mdx + Ndy = 0

was of such a nature that in it it is(
dM
dy

)
=

(
dN
dx

)
,

that so often the integration is possible for us; hence, I proceed to equations,
in which this criterion is not satisfied.

THEOREM

§16 If in the differential equation

Mdx + Ndy = 0

it was not (
dM
dx

)
=

(
dN
dx

)
,

always a multiplicator is given, multiplied by which the formula Mdx + Ndy
becomes integrable.

PROOF

Since it is not (
dM
dy

)
=

(
dN
dx

)
,
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the formula Mdx + Ndy will also not be integrable, or no function of x and
y exists, whose differential is Mdx + Ndy. But here not the integral so of the
formula Mdx + Ndy as of the equation Mdx + Ndy = 0 is in question; and
because the same equation holds, if it is multiplied by any function L of x and
y, such that it is

LMdx + LNdy = 0,

it is to be demonstrated that always a function L of such a kind is given that
the formula

LMdx + LNdy

becomes integrable. For, that this happens, it is necessary that it is:(
d.LM

dy

)
=

(
d.LN

dx

)
,

or if one puts

dL = Pdx + Qdy,

because it is (
dL
dy

)
= Q and

(
dL
dx

)
= P,

the function L has to be of such a nature that it is:

L
(

dM
dy

)
+ MQ = L

(
dN
dx

)
+ NP.

But it is evident that this condition suffices to define the function L, if the
formula Mdx + Ndy is multiplied by it, becomes integrable.

COROLLARY 1

§17 Therefore, having found the multiplicator L, which renders the formula

Mdx + Ndy

integrable, the equation Mdx + Ndy = 0 brought into the form
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LMdx + LNdy = 0,

can be integrated by the method explained in the preceding problem.

COROLLARY 2

§18 Having considered y as constant let the integral
∫

LMdx be in question,
to which add such a function Y of y that, if the aggregate∫

LMdx + Y

is differentiated again, having considered x as constant now, LNdy arises.
Having done this the integral equation will be∫

LMdx + Y = Const.

COROLLARY 3

§19 Therefore, the multiplicator must be of such a nature that having put

dL = Pdx + Qdy,

this equation is satisfied:

L
(

dM
dy

)
+ MQ = L

(
dN
dx

)
+ NP

or this one:

NP−MQ
L

=

(
dM
dy

)
−
(

dN
dx

)
,

whence it is manifest, if it would be(
dM
dy

)
=

(
dN
dx

)
,

that for L one can take the unity, or any constant quantity, while it is P = 0
and Q = 0.
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SCHOLIUM

§20 Therefore, if hence the multiplicator L could be found in general, one
would have the universal resolution of all differential equation of degree one;
it is certainly not possible to hope for this. Therefore, we have to be content,
if for the various cases, and many classes of differential equations, we can
investigate factors of this kind. But there are two classes of equations, for
which such factors can be found conveniently, of which the one comprehends
the equations, in which the the one variable never raises higher than one
dimension; the other class on the other hand is the one of homogeneous
equations. But except for these two classes there are many other cases, in
which the invention of such a factor can be done, to have examined which will
not be useless, since this seems to open the only way to develop and expand
that branch of Analysis, which is still desired. Therefore, I decided to collect
many classes of equations, which can be rendered integrable by means of a
multiplicator of this kind.

PROBLEM 2

§21 Having known one single multiplicator L, which renders the formula
Mdx + Ndy integrable, to find infinitely many other multiplicators, which
have the same use.

SOLUTION

Because the formula L(Mdx+ Ndy) by assumption is integrable, let its integral
be = z, such that it is

dz = L(Mdx + Ndy),

where z is a certain function of x and y. Now, let Z denote any function of z,
and since the formula Zdz is also integrable, because of

Zdz = LZ(Mdx + Ndy)

it is manifest that the propounded formula Mdx + Ndy also becomes integ-
rable, if it is multiplied by LZ. Therefore, having found one multiplicator L,
which renders the formula Mdx + Ndy integrable, from it innumerable other
factors LZ can be found, which will enable the same by taking any arbitrary
function of the integral
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∫
L(Mdx + Ndy)

for Z.

COROLLARY 1

§22 Therefore, having propounded any differential equation Mdx + Ndy,
not only one but even infinitely many multiplicators are given which render it
integrable. But it suffices to have found one of them, since all remaining ones
are determined by this one.

COROLLARY 2

§23 Therefore, if one has the differential equation

Mdx + Ndy = 0,

it can be rendered integrable in infinitely many ways. But no matter whether
one takes the multiplicator L, or any other one LZ, the found integral equation
reduces to the same; for, since that factor L yields z = Const., but this on the
other hand

∫
Zdz = Cosnt., they agree, since

∫
Zdz is a function of z.

EXAMPLE 1

§24 To find all multiplicators, which render this formula

αydx + βxdy

integrable.

One multiplicator solving this problem is obvious, namely 1
xy . Therefore, let

L = 1
xy , and further

dz =
αydx + βxdy

xy
=

αdx
x

+
βdy

y
,

whence by integrating it arises

z = α log x + β log y = log xαyβ.
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Now, let Z denote any function of z = log xαyβ, this means of xαyβ, and all
multiplicators in question will be contained in this general form

1
xy

funct. xαyβ.

Therefore, one will find simpler multiplicators, if instead of the function any
function of xαyβ is taken; and so the formula αydx + βxdy is rendered integ-
rable by this further extending multiplicator xαn−1yβn−1. If more composite
ones are desired, one will be able to combine any number of formulas of this
kind that one has

Axαn−1yβn−1 + Bxαm−1yβm−1 + etc.

EXAMPLE 2

§25 To find all multiplicators which renders this differential formula

αxµ−1yνdx + βxµyν−1dy

integrable.

Here, again one multiplicator immediately reveals itself to us

L =
1

xµyν
,

which yields

dz =
αdx

x
+

βdy
y

,

whence it is

z = α log x + β log y = log xαyβ.

Therefore, having put Z for any function of xαyβ, all multiplicators will be
contained in this general expression

Z
xµyν

=
1

xµyν
funct. xαyβ.

If instead of this function one takes any arbitrary power of xαnyβn, one
will hence obtain innumerable multiplicators, consisting of one single term
xαn−µyβn−ν, by taking any arbitrary numbers for n.
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SCHOLIUM

§26 Therefore, it can happen that two or more differential formulas of this
kind

αxµ−1yνdx + βxµyν−1dy

receive a common multiplicator: If this happens, the differential equation
composed of formulas of this kind as terms can be rendered integrable, if this
common multiplicator is applied. Let us expand this case already considered
once.

PROBLEM 3

§27 Let this differential equation be propounded:

αydx + βxdy + γxµ−1yνdx + δxµyν−1 = 0,

whose integral is to be found.

SOLUTION

To find an appropriate multiplicator such that this equation is rendered
integrable, consider both terms separately. And we certainly saw the first term
αydx + βxdy to be rendered integrable by this multiplicator

xαn−1yβn−1,

but the second term γxµ−1yνdx + δxµyν−1dy by this one

xγm−µyδm−ν.

Since now for n and m any arbitrary numbers can be taken, these two factors
can be made equal; hence it is

αn− 1 = γm− µ and βn− 1 = δm− ν

and hence

n =
γm− µ + 1

α
=

δm− ν + 1
β

,

and hence one obtains
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m =
αν− βµ− α + β

αδ− βγ
and n =

γν− δµ− γ + δ

αδ− βγ
.

Having found these values for m and n, this common multiplicator will give
this integral equation:

1
n

xαnyβn +
1
m

xγmyδm = Const.

COROLLARY 1

§28 Therefore, this integral equation is always algebraic, if for m and n the
true values are found. Therefore, only the cases need a particular reduction,
in which the number m and n go over into infinity or vanish.

COROLLARY 2

§29 But the two numbers m and n become infinite, if it was αδ = βγ. But in
this case the differential is resolved into two factors, and acquires this form

(αydx + βxdy)(1 +
γ

α
xµ−1yν−1) = 0

and hence it will be

either αydx + βxdy = 0, or 1 +
γ

α
xµ−1yν−1 = 0,

none of which two resolutions is of any difficulty.

COROLLARY 3

§30 But if it is n = 0, or

γ(ν− 1) = δ(µ− 1),

consider the number n as very small, and because it is by means of a conver-
gent series

xαn = 1+ αn log x+
1
2

α2n2(log x)2 + etc. and yβn = 1+ βn log y+
1
2

β2n2(log y)2 + etc.,

it will be
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1
n

xαnyβn =
1
n
+ α log x + β log y = log xαyβ

having involved the first part 1
n into the constant. Therefore, in this case the

integral equation will be:

log xαyβ +
1
m

xγmyδm = Const.

COROLLARY 4

§31 Therefore, for this case set

µ = γk + 1 and ν = δk + 1,

that one has this differential equation:

αydx + βxdy + γxγkδδk+1dx + δxγk+1yδkdy = 0,

and because it is

m =
αδk− βγk
αδ− βγ

= k,

the integral equation will be

log xαyβ +
1
k

xγkyδk = Const.

COROLLARY 5

§32 In similar manner, if it was m = 0 or

α(ν− 1) = β(µ− 1),

because of

1
m

xγmyδm = log xγyδ,

if one puts µ = αk + 1 and ν = βk + 1, whence it is

n =
γβk− δαk
αδ− βγ

= −k,
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the integral of this equation

αydx + βxdy + γxαkyβk+1dx + δxαk+1yβkdy = 0

will be

−1
k

x−αky−βk + log xγyδ = Const.

SCHOLIUM

§33 But a resolution of this kind in members, which are rendered integrable
by means of the same multiplicator, does not extend to equations of all classes.
For, it can certainly happen that the whole equation multiplied by a quantity
becomes integrable, although no parts of it is integrable separately, from
which one must not attribute to much to this treatment, which I did here.

PROBLEM 4

§34 If this differential equation is propounded

Pdx + Qydx + Rdy = 0,

where P, Q and R denote any arbitrary functions of x, such that the other
variable y does not have more than one dimension, to find the multiplicator,
which renders it integrable.

SOLUTION

Having compared this equation to the form Mdx + Ndy = 0 it will be

M = P + Qy and N = R,

whence it will be (
dM
dy

)
= Q and

(
dN
dx

)
=

dR
dx

.

Now set L for the multiplicator in question, and let

dL = pdx + qdy,
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and this equation must be satisfied

Np−Mq
L

= Q− dR
dx

=
Rp− (P + Qy)q

L
.

Because now Q− dR
dx is a function of x only, one will be able to take a function

of x only for L also, such that it is q = 0, and dL = pdx; hence it will be:

Q− dR
dx

=
Rp
L

, or Qdx− dR =
RdL

L
and hence

dL
L

=
Qdx

R
− dR

R
.

Hence by integrating one will have

log L =
∫ Qdx

R
− log R,

and having taken e for the number whose hyperbolic logarithm is unity it
arises

L =
1
R

e
∫ Qdx

R .

But having found this multiplicator the integral equation will be:∫ Pdx
R

e
∫ Qdx

R + ye
∫ Qdx

R = Const.

COROLLARY 1

§35 If the equation has the propounded form, it, before it is treated this way,
can be divided by R that it obtains this form

Pdx + Qydx + dy = 0,

or one can immediately assume R = 1, having done which the multiplicator
will be e

∫
Qdx, and the integral equation∫

e
∫

QdxPdx + e
∫

Qdxy = Const.
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COROLLARY 2

§36 If one puts this integral∫
e
∫

QdxPdx + e
∫

Qdxy = z,

such that z is a certain function of two variables, but then Z denotes any
arbitrary function of z, all multiplicators, which render the formula

Pdx + Qdy + dy

integrable, are contained in this general form e
∫

Qdx.

PROBLEM 5

§37 If this differential equation is propounded:

Pyndx + Qdydx + Rdy = 0,

where P, Q and R denote any functions of x, to find a multiplicator, which
renders it integrable.

SOLUTION

Therefore, it will be M = Pyn + Qy and N = R, and hence(
dM
dy

)
= nPyn−1 + Q and

(
dN
dx

)
=

dR
dx

.

Hence having put the multiplicator in question L and

dL = pdx + qdy,

from the things found before it will be:

Rp− Pynq−Qyq
L

= nPyn−1 + Q− dR
dx

.

Assume L = Sym, while S is a function of x only, then it will be

p =
ymdS

dx
and q = mSym−1,

having substituted which values, it will arise:
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RdS
Sdx
−mPyn−1 −mQ = nPyn−1 + Q− dR

dx
.

That this equation can hold, one has to take m = −n, and it will be

RdS
Sdx

= (1− n)Q− dR
dx

, or
dS
S

=
(1− n)Qdx

R
− dR

R
.

Hence, because by integration it arises

S =
1
R

e(1−n)
∫ Qdx

R ,

because of m = −n the multiplicator in question will be:

L =
y−n

R
e(1−n)

∫ Qdx
R

and the integral equation will be

y1−n

1− n
e(1−n)

∫ Qdx
R +

∫ Pdx
R

e(1−n)
∫ Qdx

R = Const.

COROLLARY 1

§38 If it is n = 0, we have the case treated before of the equation

Pdx + Qdx + Qydx + Rdy = 0,

which by means of the multiplicator

1
R

e
∫ Qdx

R

is rendered integrable; and the integral equation of it is

ye
∫ Qdx

R +
∫ Pdx

R
e
∫ Qdx

R = Const.

COROLLARY 2

§39 But let n = 1, that the differential equation is:

Pydx + Qdydx + Rdy = 0
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the multiplicator because of 1− n = 0 will be 1
Ry ; that the equation is reduced

to this form ∫
(P + Q)dx

R
+ log y = Const.

SCHOLIUM

§40 Additionally, this problem is easily deduced from the preceding problem.
For, divide the propounded differential equation by yn, and one will have:

Pdx + Qy1−ndx + Ry−ndy = 0.

Put y1−n = z, it will be (1− n)y−ndy = dz, and so the equation goes over into
this one:

Pdx + Qzdx +
1

1− n
Rdz = 0,

which agrees to the equation of the preceding problem. Therefore, because
these two equations are to be referenced to the case, in which the one variable
never ascends higher than one dimension, we have completed it by this
method of multiplicators. Therefore, I proceed to another class, the class of
homogeneous differential equations, which are known that they can also be
treated by this method. But for this it is necessary to give a lemma, in which
the nature of homogeneous functions is contained, in advance, if we want to
derive the operation on first principles.

LEMMA

§41 If V was a homogeneous function, in which the two variables x and y
constitute n dimensions everywhere, its differential

dV = Pdx + Qdy

will be of such a nature that it is

Px + Qy = nV.
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DEMONSTRATION

Put y = xz, and the function V will obtain a form of this kind xnZ, where Z
is a certain function of z only. Therefore, it will hence be

dV = nxn−1Zdx + xndZ.

Reduce these two variables x and z also to the propounded differential dV =
Pdx + Qdy, and because it is

dy = zdx + xdz,

it will be

dV = (P + Qz)dx + Qxdz;

therefore, it is necessary that it is

nxn−1Z = P + Qz,

and by multiplying by x on both sides:

nxnZ = nV = Px + Qxz = Px + Qy,

such that it is Px + Qy = nV.

COROLLARY 1

§42 Therefore, since we have the two equations:

dV = Pdx + Qdy and nV = Px + Qy,

hence the two functions P and Q can be defined; for, one will find:

P =
ydV − nVdy

ydx− xdy
and Q =

nVdx− xdV
ydx− xdy

.

COROLLARY 2

§43 Therefore, as often as V is a homogeneous function of n dimensions, so
often because of
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P =

(
dV
dx

)
Q =

(
dV
dy

)
it will be (

dV
dx

)
=

ydV − nVdy
ydx− xdy

and
(

dV
dy

)
=

nVdx− xdV
ydx− xdy

,

where it is to be noted that in these fractions the differentials cancel each other,
or both numerators will be divisible by ydx− xdy.

PROBLEM 6

§44 Having propounded the differential equation

Mdx + Ndy = 0,

in which M and N are homogeneous functions of x and y, both of the same
number of dimensions, to find the multiplicator, which renders the equation
integrable.

SOLUTION

Let n be the number of dimensions corresponding to both functions M and
N, and by means of the preceding paragraph it will be(

dM
dy

)
=

nMdx− xdM
ydx− xdy

and
(

dN
dx

)
=

ydN − nNdy
ydx− xdy

and hence (
dM
dy

)
−
(

dN
dx

)
=

n(Mdx + Ndy)− xdM− ydN
ydx− xdy

.

Now, it is easily concluded that a multiplicator is given which is also a
homogeneous function of x and y. Therefore, let L be such a homogeneous
function of m dimensions. Hence, if in § 19 one puts

dL = Pdx + Qdy,

it will be [§ 42]
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P =
ydL−mLdy
ydx− xdy

and Q =
mLdx− xdL
ydx− xdy

and hence, because it must be according to § 19

NP−MQ
L

=

(
dM
dy

)
−
(

dN
dx

)
,

by multiplying by ydx− xdy on both side one will obtain:

NydL−mLNdy−mLMdx + MxdL
L

= n(Mdx + Ndy)− xdM− ydN,

whence one finds:

dL
L

=
(m + n)(Mdx + Ndy)− xdM− ydN

Mx + Ny
,

which formula manifestly becomes integrable having put m + n = −1, having
done which it will be

log L = − log(Mx + Ny).

Therefore, one will have the multiplicator in question

L =
1

Mx + Ny
.

COROLLARY 1

§45 Therefore, having propounded the homogeneous differential equation
Mdx + Ndy = 0, is will most easily be reduced to integrability, since the
formula

Mdx + Ndy
Mx + Ny

is integrable, whose integral, by means of the method given above, will give
the integral equation is question.
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COROLLARY 2

§46 A inconvenience arises only in the case, where it is Mx + Ny = 0, as it
happens in the equation ydx− xdy = 0, which would have to be divided by

xy− xy = 0 · xy.

But since any multiple of this divisor equally satisfies, the divisor xy will also
solves the task, as it is perspicuous per se.

SCHOLIUM

§47 There is a very well known method, by which the most ingenious
Joh. Bernoulli once taught to render all homogeneous differential equations
separable. Having propounded an equation of this kind

Mdx + Ndy = 0

in which M and N shall be homogeneous functions of n dimension, he tells us
to put y = ux, having done which the functions M and N will obtain forms
of this kind, that it is

M = xnU and N = xnV,

while U and V are functions of u only. Therefore, the propounded equation,
divided by xn will go over into this one:

Udx + Vdy = 0.

But because it is dy = udx + xdu, we will have

Udx + Vudx + Vxdu = 0,

which divided by x(U + Vu) becomes separable, or this form

(U + Vu)dx + Vxdu
x(U + Vu)

integrable. But it is

(U + Vu)dx + Vxdu =
1
xn (Mdx + Ndy)

and
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xn(U + Vu) = M + Nu.

Therefore, this formula will be integrable:

Mdx + Ndy
x(M + Nu)

=
Mdx + Ndy

Mx + Ny
because of ux = y.

Therefore, having explained these two classes of equations, which can be
rendered integrable by means of suitable multiplicators, let us see, to which
other classes the same method can be extended: And at first I observe that
all differential equations which can be integrated by other methods can also
be treated by this method by means of a suitable multiplicator, which will be
explained more clearly in the following problem.

PROBLEM 7

§48 Having propounded the differential equation Mdx + Ndy = 0, if its
complete integral equation was found, to assign all multiplicators, which
render the differential equation integrable.

SOLUTION

Since the complete integral equation involves an arbitrary constant C, which
is not in the differential equation, now matter how intricate it might be, find
its value by resolution of the equation, which shall be C = V, and V will be a
function of x and y which additionally contains constants of the differential
equation in it. Then differentiate this equation C = V, and so 0 = dV will
arise. And now it is necessary that dV has the propounded form itself as a
divisor. Therefore, let it be

dV = L(Mdx + Ndy),

and L will be the suitable multiplicator, which renders the propounded
differential equation integrable. Further, since, while Z denotes any function
of V, the formula

ZdV = LZ(Mdx + Ndy)

is also integrable, the expression LZ will include all multiplicators, by which
the propounded differential equation Mdx + Ndy = 0 becomes integrable.
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COROLLARY 1

§49 Therefore, as often as the complete integral of the differential equation
Mdx + Ndy = 0 can be assigned, so often not only one but completely all
multiplicators can be defined by which the equation is rendered integrable.

COROLLARY 2

§50 Therefore, because by other methods the complete integrals of many
differential equations were found, hence the method treated up to now, which
was still applied only to two classes of equations, can be amplified significantly.

SCHOLIUM

§51 Nevertheless, if we do not want to descend to very special cases, the
differential equations, whose complete integrals can be assigned, are reduced
to a tiny number. And first the differential equations of first degree contained
in this form

dx(α + βx + γy) + dy(δ + εx + ζy) = 0,

since which are easily reduced to homogeneous ones, can also be treated by
this method of multiplicators. Furthermore, this form is remarkable

dy + Pydx + Qyydx = Rdx,

if one single satisfying value of which is known, from it the complete integral
can be found, whence in these cases it will be possible to assign appropria-
te multiplicators. Thirdly, also the cases of this equation deserve it to be
considered

dy + yydx = axmdx,

called the Riccati equation after its discoverer, in which it can be reduced to
separability. Finally, there are the cases of this equation

ydy + Pydx = Qdx,

since which are integrable, they are accommodated to the investigation of
multiplicators. Hence this will open a new way to find the equation from a
given form of the multiplicators, which by means of them become integrable,
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whence it might be possible to gain increments for Analysis not to be hoped
for.

PROBLEM 8

§52 Having propounded the differential equation of first degree:

(α + βx + γy)dx + (δ + εx + ζy)dy = 0,

to find the multiplicators, which render it integrable.

SOLUTION

Reduce this equation to homogeneity by putting:

x = t + f and y = u + g,

that it arises

(α + β f + γg + βγu)dt + (δ + ε f + ζg + εt + ζu)du = 0

which having put

α + β f + γg = 0 and δ + ε f + ζg = 0,

whence the quantities f and g are determined, becomes homogeneous, of
course,

(βt + γu)dt + (εt + ζu)du = 0;

and hence by means of the multiplicator

1
βtt + (γ + ε)tu + ζuu

it is rendered integrable. Hence having found the letters f and g the propoun-
ded equation will become integrable, if it is divided by

β(x− f )2 + (γ + ε)(x− f )(y− g) + ζ(y− g)2,

or by

βxx + (γ + ε)xy + ζyy− (2β f + γg + εg)x− (2ζg + γ f + ε f )y
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+β f f + (γ + ε) f g + ζgg.

But because it is

f =
αζ − γδ

γε− βζ
and g =

βδ− αε

γε− βζ
,

the divisor in question will arise as:

βxx + (γ + ε)xy + ζyy +
αγδ− ααζ + α + δε− βδδ

γε− βζ

+
−2αβζ + βγδ− βδε + αγε + αεε

γε− βζ
x +
−2βδζ + αεζ − αγζ + γδε + γγδ

γε− βζ
y.

But having found one divisor or multiplicator, from it one will easily find all
possible ones.

COROLLARY 1

§53 Therefore, the form of the divisor by means of which the differential
equation

(α + βx + γy)dx + (δ + εx + ζy)dy = 0

is rendered integrable, it is

βxx + (γ + ε)yx + ζyy + Ax + By + C,

where the constants A, B, C were defined above.

COROLLARY 2

§54 Since the found divisor also satisfies, if it is multiplied by γε− βζ, it is
plain that in the case, in which it is βζ = γε, the divisor will be

(αεε− βδε+ βγδ− αβζ)x+(γγδ− αγδ− αγζ + αεζ− βδζ)y+ αγδ− ααζ + αδε− βδδ

which having put

β = m f , γ = n f , ε = mg, ζ = ng,

goes over into
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m(αg− δ f )(mg− n f )x + n(αg− δ f )(mg− n f )y + (αg− δ f )(δm− αn).

COROLLARY 3

§55 Hence, if the propounded equation was of this kind:

[α + f (mx + ny)]dx + [δ + g(mx + ny)]dy = 0,

it will be rendered integrable, if it is divided by

(mg− n f )(mx + ny) + δm− αn

or by

mx + ny +
δm− αn
mg− n f

.

But if it was mg− n f = 0, the propounded equation itself is already integrable.

PROBLEM 9

§56 Having propounded this differential equation:

dy + Pydx + Qyydx + Rdx = 0,

where P, Q and R are functions of x only, if it is known that this equation is
satisfied y = v, where v is a function of x, to find multiplicators, which render
this equation integrable.

SOLUTION

Since the value y = v satisfies the equation, it will be

dy + Pvdx + Qvvdx + Rdx = 0;

therefore, if one puts y = v + 1
z , one will have

−dz
zz

+
Pdx

z
+

2Qvdx
z

+
Qdx
zz

= 0

or
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dz− (P− 2Qv)zdx−Qdx = 0,

which is rendered integrable by means of the multiplicator

e−
∫
(P+2Qv)dx.

Therefore, this multiplicator multiplied by zz will satisfy the propounded equa-
tion. Therefore, because z = 1

y−v is a multiplicator rendering the propounded
equation integrable, it will be:

1
(y− v)2 e−

∫
(P+2Qv)dx.

For the sake of brevity let it be

e−
∫
(P+2Qv)dx = S.

Since the integral of the equation

dz− (P + 2Qv)zdx−Qdx = 0

is

Sz−
∫

QSdx = Const.,

all multiplicators in question will be contained in this form:

S
(y− v)2 funct.

(
S

y− v
−
∫

QSdx
)

,

where by assumption v is a known function of x, and hence also S =
e−
∫
(P+2Qv)dx.

COROLLARY 1

§57 Therefore, the multiplicator, which reveals itself at first, is

S
(y− v)2 ,

then also

33



S
S(y− v)− (y− v)2

∫
QSdx

will be a multiplicator, even if which contains the integral formula
∫

QSdx, it
can often become simpler than that one.

COROLLARY 2

§58 For, if S is an exponential quantity, it can happen that
∫

QSdx takes
a form of this kind ST, where T is an algebraic function, in which case the
multiplicator will be

1
y− v− (y− v)2T

=
1

(y− v)(1− Ty + Tv)

and hence algebraic, which cannot happen in the first form.

COROLLARY 3

§59 Because in these two cases the multiplicator is a fraction, only whose
denominator the variable y goes into, and there does not ascend higher than a
square, innumerable other multiplicators of this kind can be exhibited: For,
let
∫

QSdx = V, and it will be possible to multiply the denominator of the
fraction S

(y−v)2 by

A + B
(

S
y− v

−V
)
+ C

(
S

y− v

)2

,

and so a more general form of the multiplicator will be:

S
A(y− v)2 + BS(y− v)− BV(y− v)2 + CSS− 2CSV(y− v) + CVV(y− v)2

or:

S
(A− BV + CVV)y2 − (2Av− BS− 2BVv + 2CSV + 2CVVv)y + Avv− BSv− BSv− BVvv + CSS + 2CSVv + CV2v2 .
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COROLLARY 4

§60 Therefore, if this formula

dy + Pydx + Qyydx + Rdx
Lyy + My + N

was integrable, the denominator must be of such a nature that it is

SL = A− BV + CVV, SM = S(B− 2CV)− 2v(A− BV + CVV)

and

SN = CSS− Sv(B− 2CV) + vv(A− BV + CVV)

where

dv + Pvdx + Qvvdx + Rdx = 0, S = e−
∫
(P+2Qv)dx

and V =
∫

QSdx.

PROBLEM 10

§61 Having propounded the preceding differential equation:

dy + Pydx + Qyydx + Rdx = 0

to find function L, M and N of x that it divided by the formula

Lyy + My + N

becomes integrable.

SOLUTION

Therefore, because this formula must be integrable:

dy + dx(Py + Qyy + R)
Lyy + My + N

,

it is necessary by means of the general property, after we multiplied by

(Lyy + My + N)2
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that it is:

−yydL
dx
− ydM

dx
− dN

dx
=

+ QMyy− 2RLy + NP

− PLyy + 2QNy− RM

Hence for the determination of the functions L, M and N we obtain these
equations:

I. dL = PLdx−QMdx

II. dM = 2RLdx− 2QNdx

II I. dN = RMdx− PNdx,

from the first of which we deduce:

M =
PL
Q
− dL

Qdx

and from the second:

N =
RL
Q
− dM

2Qdx
,

which values substituted for M and N in the third give:

dN =
PdM
2Q
− RdL

Q
.

But because, having assumed the differential dx to be constant, it is

dM =
PdL + LdP

Q
− PLdQ

QQ
− ddL

Qdx
+

dQdL
QQdx

,

it will be

N =
RL
Q
− PdL

2QQdx
− LdP

2QQdx
+

PLdQ
2Q3dx

+
ddL

2QQdx2 −
dQdL

2Q3dx2

and

dN =
PPdL
2QQ

+
PLdP
2QQ

− PPLdQ
2Q3 − PddL

2QQdx
+

PdQdL
2Q3dx

− RdL
Q

,

which therefore must be equal to the differential of the latter, whence it is
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0 = QQd3L− 3QdQddL− PPQQdLdx2 − 2QQdPdLdx

+ 3dQ2dL + 2PQdQdLdx−QdLddQ + 4Q3RdLdx2

− PQQLdPdx2 + PPQLdQdx2 −QQLdxddP + PQLdxddQ

+ 3QLdPdQdx− 3PLdQ2dx + 2Q3LdRdx2 − 2Q2RLdQdx2.

But if this equation is multiplied by L
Q4 , it can be integrated, and its integral

will be

Const. =
LddL
QQ

− LdLdQ
Q3 − dL2

2QQ
− PPLLdx2

2QQ
− LLdPdx

QQ
+

PLLdQdx
Q3 +

2RLLdx2

Q
,

which goes over into this form:

2EQ3dx2 = 2QLddL− 2LLdQ−QdL2 − PPQLLdx2 − 2QLLdPdx

+2PLLdQdx + 4QQRLLdx2.

If one puts L = zz, the equation will obtain this form:

2EQ3dx2

z3 = 4Qddz− 4dQdz− z(PPQdx2 + 2QdPdx− 2PdQdx− 4QQRdx2).

COROLLARY 1

§62 Therefore, as often as by means of the preceding problem the value of L
can be assigned, so often the differential equation of third order found here
and the one of second order, to which I reduced the latter, can be solved in
general: This resolution, because it would be most difficult otherwise, is to be
carefully noted.

COROLLARY 2

§63 If v was a function of x of such a kind, which put instead of y, satisfies
the equation

dy + Pydx + Qyydx + Rdx = 0,
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take
S = e−

∫
(P+2Qv)dx

and set V =
∫

QSdx, having done which for our differential equation of third
order it will be

L =
A− BV + CVV

S
,

since which value contains three arbitrary constants, it will therefore be the
complete integral of that equation.

COROLLARY 3

§63 If it is P = 0, Q = 1 and R any arbitrary function of x, the differential
equation of third degree will obtain the form:

0 = d3L + 4RdLdx2 + 2LdRdx2,

for the invention of whose complete integral at first find a function of x which
shall be = v and which satisfies this equation

dy + vvdx + Rdx = 0;

then put

V =
∫

e−2
∫

vdxdx,

and it will be

L = (A− BV + CVV)e+2
∫

vdx.

COROLLARY 4

§64 Therefore, the same integral will satisfy this differential equation of
second degree:

2Edx2 = 2LddL− dL2 + 4RLLdx2

and, having out L = zz, also this one:

Edx2

2z3 = ddz + Rzdx2,
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for which it therefore is

z = e+
∫

vdx
√

A− BV + CVV.

SCHOLIUM

§65 Therefore, this integration, which can hardly be achieved from other
principles, completely deserves some consideration. Hence we obtain the
complete integration of the following sufficiently far-extending differential
equation second order:

ddz + Sdxdz + Tzdx2 =
Edx2

z3 e−2
∫

Sdx.

For, first find the value of v from this differential equation of first degree;

dv + vvdx + Svdx + Tdx = 0,

having found which therefore for the sake of brevity put

V =
∫

e−2
∫

vdx−
∫

Sdxdx

and it will be

z = e
∫

vdx
√

A + BV + CVV,

if only the arbitrary constants A, B, C are taken in such a way that it is

AC− 1
4

BB = E,

and so still two constant are still arbitrary, as the nature of a complete integra-
tion requires it.

EXAMPLE 1

§66 Let this differential equation be propounded

dy + ydx + yydx− dx
x

= 0,

whose multiplicators, which render it integrable, are to be investigated.

Therefore, by transferring Problem 9 to this, it will be

39



P = 1, Q = 1, and R = −1
x

,

and since the value y = 1
x satisfies this equation, it will be v = 1

x . Hence it will
be

S = e−
∫
(1+ 2

x )dx =
1

xx
e−x

and one will have the multiplicator, which reveals itself at first,

= e−x 1
(xy− 1)2 .

But it is further possible to multiply this by any arbitrary function of this form

e−x 1
x(xy− 1)

−
∫

e−x dx
xx

;

but because this formula cannot be integrated, no other suitable multiplicators
can be assigned. Therefore, because of the first this formula is integrable:

e−x 1
(xy− 1)2

(
dy + ydx + yydx− dx

x

)
,

whose, if x is assumed to be constant, integral is

−ex

x(xy− 1)
+ X,

which differentiated, having put y to be constant, yields

e−xdx(xxy + 2xy− x− 1)
xx(xy− 1)2 + dX,

which must become equal to the other term

e−x

(xy− 1)2

(
ydx + yydx− dx

x

)
,

whence it is

dX =
e−xdx

xx(xy− 1)2 (xxyy− 2xy + 1) = e−x dx
xx

;

and so the complete integral of our equation is
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−e−x

x(xy− 1)
+
∫

e−x dx
xx

= Const.

EXAMPLE 2

§67 To find suitable multiplicators, which render this equation integrable:

dy + yydx− adx
(α + βx + γxx)2 = 0.

A singular case satisfying this equation is

y =
k + γx

α + βx + γxx
= v

while

k =
1
2

β±
√

1
4

ββ− αγ + a.

Because now it is P = 0 and Q = 1, it will be

S = e−
∫ 2kdx+2γxdx

α+βx+γxx

or having put for the sake of brevity

±
√

1
4

ββ− αγ + a =
1
2

n

it will be

S =
1

α + βx + γxx
e−
∫ ndx

α+βx+γxx

and ∫
Sdx = − 1

n
e−
∫ ndx

α+βx+γxx .

Therefore, the multiplicator found first is

e−
∫ ndx

α+βx+γxx · α + βx + γxx
((α + βx + γxx)y− k− γx)2 ,

which can further be multiplied by any arbitrary function of this kind
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e−
∫ ndx

α+βx+γxx

(
1

(α + βx + γxx)y− k− γx
+

1
n

)
.

Therefore, multiply it by

e
∫ ndx

α+βx+γxx · (α + βx + γxx)y− k− γx
(α + βx + γxx)y + n− k− γx

and this algebraic multiplicator will arise:

α + βx + γxx
((α + βx + γxx)y− k− γx)((α + βx + γxx)y + n− k− γx)

,

which is reduced to this form:

1

(α + βx + γxx)
(

y− 2γx+β+
√

ββ−4αγ+4α

2(α+βx+γxx)

)(
y +

2γx+β+
√

ββ−4αγ+4α

2(α+βx+γxx)

) .

But the complete integral of the equation is

e−
∫ ndx

α+βx+γxx
(α + βx + γxx)y + n− k− γx
(α + βx + γxx)y− k− γx

= Const.,

while n =
√

ββ− 4αγ + 4a and k = β+n
2 .

Hence the complete integral equation will be

e−
∫ ndx

α+βx+γxx · 2(α + βx + γxx)y + n− β− 2γx
2(α + βx + γxx)y− n− β− 2γx

= Const.,

whose nature is manifest, as long as

n =
√

ββ− 4αγ + 4a

is a real number.

But if the value of n is imaginary, say n = m
√
−1, because of

ep
√
−1 = cos p +

√
−1 sin p,

the integral can be reduced to reality this way. Let
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−
∫ dx

α + βx + γxx
= p and 2(α + βx + γxx)y− β− 2γx = q,

and it will be:

(cos p +
√
−1 sin p) · q + m

√
−1

q−m
√
−1

= Const. = A + B
√
−1,

hence it is:

q cos p−m sin p + (m cos p + q sin p)
√
−1 = AQ + Bm + (Bq− Am)

√
−1,

equate the real and imaginary terms separately:

q cos p−, sin p = Aq + Bm, m cos p + q sin p = Bq− Am,

which two equations agree, if one takes AA + BB = 1. Therefore, let the
arbitrary constant be A = cos θ that it is B = sin θ and in the case in which it
is
√

ββ− 4αγ + 4a = m
√
−1, the real equation will be

q cos p−m sin p = q cos θ + m sin θ or q =
m(sin p + sin θ)

cos p− cos θ
= m cot

θ − p
2

.

Hence the complete integral equation of the differential equation

dy + yydx +
(mm + ββ− 4αγ)dx

4(α + βx + γxx)2 = 0,

having put

p =
∫ −mdx

α + βx + γxx
,

is

2(α + βx + γxx)y = β + 2γx + m cot
θ − p

2
or

y =
1
2 β + γx + 1

2 m cot θ−p
2

α + βx + γxx
,
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or let θ = 180◦ − ζ, and one will have

y =
1
2 β + γx + 1

2 m tan ζ+p
2

α + βx + γxx
.

But in this case it is to be noted that the special integral from which we
deduced all this becomes imaginary, what is nevertheless no obstruction that
hence the complete integral can be exhibited in a real form.

EXAMPLE 3

§68 Having propounded the Riccati equation

dy + yydx− axmdx = 0,

to find suitable multiplicators for the cases of the exponent m, in which it can be
separated.

Let y = v the satisfying value, and because it is

P = 0, Q = 1 and R = −axm,

the first multiplicator rendering the equation integrable will be

e−2
∫

vdx 1
(y− v)2 ,

if it is multiplied by which, the complete integral becomes

e−2
∫

vdx 1
y− v

−
∫

e−2
∫

vdxdx = Const.

Hence, if Z denotes any arbitrary function of this quantity, all multiplicators
will be contained in this form:

e−2
∫

vdx Z
(y− v)2 .

Hence, if one puts ∫
e−2

∫
vdxdx = V,

all multiplicators contained in this form
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1
Lyy + My + N

will be obtained [§ 60], if one takes:

L = e2
∫

vdx(A− BV + CVV)

M = B− 2CV − 2ve2
∫

vdx(A− BV + CVV)

N = Ce−2
∫

vdx − v(B− 2CV) + vve2
∫

vdx(A− BV + CVV).

But this value of L at the same time is the complete integral of this differential
equation of degree three:

0 = d3L− 4axmdLdx2 − 2maLxm−1dx3

and hence also of this one of degree two:

Edx2 = 2LddL− dL2 − 4aLLxmdx2

while

E = 4AC− BB.

SCHOLIUM

§69 Having studied the subject with more attention I even resolved the
differential equation of third order by a direct method and detected that the
same complete integral of it, which was assigned here, can be found. For, let
this equation be propounded:

d3L + 4RdLdx2 + 2LdRdx2 = 0,

where R is an arbitrary function of x, haven taken the differential dx to be
constant. Now, I ask for a function of x, multiplied by which this differential
equation becomes integrable. Let S be this function, and the integral of the
equation

Sd3L + 4SRdLdx2 + 2SLdRdx2 = 0

will be
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SddL− dSdL + L(ddS + 4SRdx2) = 2Cdx2,

as long as it is

d3S + 2SdRdx2 + 4RdSdx2 = 0.

It suffices, of course, to have taken a certain particularly satisfying value. But
this equation multiplied by S having neglected the constant gives the integral:

SddS− 1
2

dS2 + 2SSRdx2 = 0.

Put S = e2
∫

vdx, and it will be

2dv + 2vvdx + 2Rdx = 0,

whence the task reduces to this that for v at least a particular value is investi-
gated, which satisfies this differential equation of first degree:

dv + vvdx + Rdx = 0,

which I therefore assume as conceded. Hence our equation integrated one,
because of S = e2

∫
vdx will be

ddL− 2vdxdL + L(2dvdx + 4vvdx2 + 4Rdx2) = 2Ce−2
∫

vdxdx2.

Therefore, since because of

Rdx = −dv− vvdx

we have

ddL− 2vdxdL− 2Ldxdv = 2Ce−2
∫

vdxdx2,

its integral manifestly is:

dL− 2Lvdx = Bdx + 2Cdx
∫

e−2
∫

vdxdx

and by multiplying the integral again by e−2
∫

vdx it will arise

e−2
∫

vdxL = A + B
∫

e−2
∫

vdxdx + 2C
∫

e−2
∫

vdxdx
∫

e−2
∫

vdxdx.
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Hence, if for the sake of brevity one puts
∫

e−2
∫

vdxdx = V, we will have

L = e2
∫

vdx(A + BV + 2CVV)

completely as we found before.

PROBLEM 11

§70 Having propounded the Riccati equation

dy + yydx = axmdx

to find its particular integrals in the cases in which it is separable.

SOLUTION

By putting a = cc and m = −4n, attribute this form to the equation:

dy + yydx− ccx−4ndx = 0.

For, since the question is about particular integrals, it is not important, whether
they are real or not. But to find these cases, in which y can be expressed by
means of a function of x, in an easier way and in one operation let us set

y = cx−2n +
dz

zdx
and having assumed dx to be constant, we will obtain this differential equation
of second degree:

−2ncx−2n−1dx +
ddz
zdx

+
2cx−2ndz

z
= 0,

or

ddz
dx2 +

2cdz
x2ndx

− 2ncz
x2n+1 = 0,

whose value shall be assumed to be:

z = Axn + Bx3n−1 + Cx5n−2 + Dx7n−3 + Ex9n−4 + etc.,

after having substituted which in the correct way we will obtain:
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0 = n(n− 1)Axn−2 + (3n− 1)(3n− 2)Bx3n−3 + (5n− 2)(5n− 3)Cx5n−4 + etc.

+ 2ncAx−n−1 + 2(3n− 1)cB + 2(5n− 2)cC + 2(7n− 3)cD

− 2ncA − 2ncB 2ncC − 2ncD

whence the assumed coefficients are determined this way:

2(2n− 1)cB + n(n− 1)A = 0, B =
−n(n− 1)A
2(2n− 1)c

2(4n− 1)cC + (3n− 1)(3n− 2)B = 0, C =
−(3n− 1)(3n− 2)B

4(2n− 1)c

2(6n− 3)cD + (5n− 2)(5n− 3)C = 0, D =
−(5n− 2)(5n− 3)C

6(2n− 1)
etc.

Therefore, if one coefficient vanishes, all following ones at the same time
vanish, what happens in these cases:

n = 0, n =
1
3

, n =
2
5

, n =
3
7

, etc.

n = 1, n =
2
3

, n =
3
5

, n =
4
7

, etc.

Therefore, while i denotes any integer, as often as it was

n =
i

2i± i
,

so often the resolution of the equation can be exhibited. For, it will be

y = c−2n +
dz

zdx
,

where

z = Axn + Bx2n−1 + Cx5n−2 + Dx7n−3 + Ex9n−4 + etc.
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Therefore, this particular value of y will arise:

y = cx−2n +
nAxn−1 + (3n− 1)Bx3n−1 + (5n− 2)Cx5n−3 + etc.

Axn + Bx3n−1 + Cx5n−2 + etc.

COROLLARY 1

§71 Therefore, if this particular value of y is called = v, a suitable multipli-
cator of the propounded equation will be

= e−2
∫

vdx · 1
(y− v)2 .

And if one puts ∫
e−2

∫
vdxdx = V,

having taken A = 0 and C = 0, another simpler factor will be [§ 68]

1
e2
∫

vdxVyy− (1 + 2ce2
∫

vdxV)y + v + vve2
∫

vdxV
.

COROLLARY 2

§72 But it is∫
vdx =

−c
(2n− 1)x2n−1 + log(Axn + Bx2n−1 + Cx5n−1 + etc.),

whence it is

e−2
∫

vdx = e
2n

(2n−1) x2n−1 1
(Axn + Bx3n−1 + Cx5n−2 + etc.)2 ,

from which further one finds the value of

V =
∫

e−2
∫

vdxdx,

if which was of this kind

e−2
∫

vdxT,

while T is an algebraic function, the superior multiplicator will algebraic.
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COROLLARY 3

§73 Having found the value v, or a particular integral of the propounded
equation, hence one will immediately have the complete integral of the same,
which will be:

e−2
∫

vdx

y− v
−
∫

e−2
∫

vdxdx = Const.

CASE 1 IN WHICH IT IS n = 0

§74 Therefore, for this equation

dy + yydx = ccdx,

because of B = 0, C = 0 etc. a particular value will be y = c. Hence having
put v = c, it will be

e−2
∫

vdx = e−2cx and V =
∫

e−2
∫

vdxdx = − 1
2c

e−2cx;

hence the complete integral is

e−2cx

y− c
+

y
2c

e−2cx = Const..

or

e−2cx(y+c)

y− c
= Const.

Further, because of

e2
∫

vdxV = − 1
2c

and v = c,

an algebraic multiplicator will be:

1
− 1

2c yy + 1
2 c

,

which is reduced to

1
yy− cc

as it is perspicuous per se.
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CASE 2 IN WHICH IT IS n = 1

§75 Therefore, for this equation

dy + yydx =
ccdx

x4

because of B = 0, C = 0 a particular value will be

y =
c

xx
+

1
x

.

Hence having put

v =
c

xx
+

1
x

,

it will be

e−2
∫

vdx =
e

2c
x

xx
and V = − 1

2c
e

2c
x .

Hence the complete integral is

e
2c
x

xxy− x− c
+

e
2c
x

2c
= Const.

or

e
2c
x · xxy− x + c

xxy− x− c
= Const.

Further, because of

e2
∫

vdxV = − xx
2c

and v =
x + c

xx
,

one will have the algebraic multiplicator:

1
xxyy− 2xy + 1− cc

xx
=

1
(xy− 1)2 − cc

xx

or the propounded equation

dy + yydx− ccdx
x4 = 0

becomes integrable, if it is divided by

(xy− 1)2 − cc
xx

.
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CASE 3 IN WHICH IT IS n = 1
3

§76 Therefore, for this equation

dy + yydx− ccx−
4
3 dx = 0

it is B = − A
3c , C = 0, etc. whence a particular integral is

y = cx−
2
3 +

cx−
2
3

3cx−
1
3 − 1

=
3ccx−

1
3

3cx
1
3 − 1

= v

and

e−2
∫

vdx = e−6cx
1
3 Const.(

x
1
3−

1
3c

)2 = e−6cx
1
3 1(

3cx
1
3 − 1

)2

and hence

V =
∫

e−6cx
1
3 dx(

3cx
1
3 − 1

)2 = −e−6cx
1
3 3cx

1
3 + 1

18c3
(

3cx
1
3 − 1

) .

Hence the complete integral is

e−6cx
1
3(

3cx
1
3 − 1

)2
y− 3ccx−

1
3

(
3cx

1
3 − 1

) +
e−6cx

1
3
(

3cx
1
3 + 1

)
18c4

(
3cx

1
3 − 1

) = Const.

or

e−6cx
1
3

y
(

1 + 3cx
1
3

)
+ 3ccx−

1
3

y
(

1− 3cx
1
3

)
− 3ccx−

1
3

= Const.

Then, because of

e2
∫

vdxV =
1− 9ccx

2
3

18c3 ,

this divisor rendering the equation integrable will arise:(
y + 3ccx−

1
3

)2
− 9ccx

2
3 yy.
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CASE 4 IN WHICH IT IS n = 2
3

§77 Therefore, for this equation

dy + yydx− ccx−
8
3 dx = 0

it is B = + A
3c , C = 0 etc., whence the particular integral is:

y = cx−
4
3

2cx−
1
3 + 1

3cx
2
3 + x

=
3ccx−

2
3 + 3cx−

1
3 + 1

3cx
2
3 + x

= v

and

e−2
∫

vdx = e6cx−
1
3 · 1

(3cx
2
3 + x)2

;

hence it is further found:

V =
∫ e6cx−

1
3 dx

(3cx
2
3 + x)2

=
−e6cx−

1
3 (3cx

2
3 − x)

18c3(3cx
2
3 + x)

.

Hence the complete integral will be:

e6cx−
1
3 (x− 3cx

2
3 )y− 1 + 3cx−

1
3 − 3ccx−

2
3

(x + 3cx
2
3 )y− 1− 3cx−

1
3 − 3ccx−

2
3
= Const.

Then because of

e2
∫

vdxV =
xx− 9ccx

4
3

18c3

an algebraic divisor rendering the propounded equation integrable arises as:

((x + 3cx
2
3 )y− 1− 3cx−

1
3 − 3ccx−

2
3 )((x + 3cx

2
3 )y− 1 + 3cx−

1
3 − 3ccx−

2
3 ).

CASE 5 IN WHICH IT IS n = 2
5

§78 Therefore, for the equation

dy + yydx− ccx−
8
5 = 0

it will be
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B = −3A
5c

; C = − B
5c

= +
3A

35cc
; D = 0 etc.

and hence a particular integral:

y = cx−
4
5 +

2
5 x−

3
5 − 1

5 ·
3
5c x−

4
5

x
2
5 − 3

5c x
1
5 + 3

25cc

= cx−
4
5 +

10ccx−
3
4 − 3cx−

4
5

25ccx
2
5 − 15cx

1
5 + 3

or

y =
25c3x−

2
5 − 5ccx−

3
5

25ccx
2
5 − 15cx

1
5 + 3

= v.

Hence the complete integral arises:

e−10cx
1
3 · (3 + 15cx

1
5 + 25ccx

2
5 )y + 5ccx−

3
5 + 25c3x−

2
5

(3− 15cx
1
5 + 25ccx

2
5 )y + 5ccx−

3
5 − 25c3x−

2
5
= Const.

And if in this fraction one puts

the numerator (3 + 15cx
1
5 + 25ccx

2
5 )y + 5ccx−

3
5 + 25c3x−

2
5 = P and

the denominator (3− 15cx
1
5 + 25ccx

2
5 )y + 5ccx−

3
5 − 25c3x−

2
5 = Q,

the divisor rendering the propounded equation integrable will be = PQ.

CASE 6 IN WHICH IT IS n = 3
5

§79 Therefore, for this equation

dy + yydx− ccx−
12
5 dx = 0

it will be

B =
3A
5c

and C =
B
5c

=
3A

25cc
, D = 0 etc.

and hence the particular integral arises as:

y = cx−
6
5 +

15ccx−
2
5 + 12cx−

1
5 + 3

25ccx
3
5 + 15cx

4
5 + 3x

or
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y =
25c3x−

3
5 + 30ccx−

2
5 + 15cx−

1
5 + 3

25ccx
3
5 + 15cx

4
5 + 3x

= v,

whence the complete integral is obtained:

e10cx−
1
5 · (3x− 15cx

4
5 + 25ccx

3
5 )y− 3 + 15cx−

1
5 − 30ccx−

2
5 + 25c3x−

3
5

(3x + 15cx
4
5 + 25ccx

3
5 )y− 3− 15cx−

1
5 − 30ccx−

2
5 − 25c3x−

3
5
= Const.

And having neglected the exponential factor e10cx−
1
3 the product of the nu-

merator and the denominator will yield the divisor, divided by which the
propounded equation becomes integrable.

PROBLEM 12

§80 While i denotes any integer number to exhibit the resolution of this
equation:

dy + yydx− ccx
−4i

2i+1 dx = 0.

SOLUTION

Therefore, because it is n = i
2i+1 , one will find

B = − (i + 1)i
2(2i + 1)c

A

C = +
(i + 2)(i + 1)i(i− 1)

2 · 4(2i + 1)2c2 A

D = − (i + 3)(i + 2)(i + 1)i(i− 1)(i− 2)
2 · 4 · 6(2i + 1)3c3 A

E = +
(i + 4)(i + 3)(i + 2)(i + 1)i(i− 1)(i− 2)(i− 3)

2 · 4 · 6 · 8(2i + 1)4c4 A

etc.,

on the other hand the particular integral will be:

y = cx
−2i

2i+1 +
i

2i+1 Ax
−i−1
2i+1 + i−1

2i+1 Bx
−i−2
2i+1 + i−2

2i+1 Cx
−i−3
2i+1 + i−3

2i+1 Dx
−i−4
2i+1 + etc.

Ax
i

2i+1 + Bx
i−1

2i+1 + Cx
i−2

2i+1 + Dx
i−3

2i+1 + etc.
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to reduce which to the same denominator, let us set:

A = cA

B− i(i− 1)
2(2i + 1)

A

C +
(i + 1)i(i− 1)(i− 2)

2 · 4(2i + 1)2c
A

D − (i + 2)(i + 1)i(i− 1)(i− 2)(i− 3)
2 · 4 · 6(2i + 1)3c2 A

etc.,

whence it will be:

y =
Ax

−i
2i+1 +Bx

−i−1
2i+1 + Cx

−i−2
2i+1 +Dx

−i−3
2i+1

Ax
i

2i+1 + Bx
i−1

2i+1 + Cx
i−2

2i+1 + Dx
i−3

2i+1
.

Further, for the sake of brevity let us put:

Ax
i

2i+1 + Bx
i−1

2i+1 + Cx
i−2

2i+1 + Dx
i−3

2i+1 + etc. = P

Ax
i

2i+1 − Bx
i−1

2i+1 + Cx
i−2

2i+1 − Dx
i−3

2i+1 + etc. = Q

Ax
−i

2i+1 +Bx
−i−1
2i+1 + Cx

−i−2
2i+1 +Dx

−i−3
2i+1 + etc. = P

− Ax
−i

2i+1 +Bx
−i−1
2i+1 − Cx

−i−2
2i+1 +Dx

−i−3
2i+1 − etc. = Q

and the complete integral will be:

e−2(2i+1)cx
+1

2i+1 Qy−Q

Py−P
= Const.

But then the divisor rendering the propounded equation integrable will be
= (Py−P)(Qy−Q).

COROLLARY 1

§81 Therefore, if in the equation

dy + yydx + αx
−4i

2i+1 dx = 0
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the coefficient α was a negative quantity, such that having put α = −cc c is
a real quantity, the complete integral found here has a real form, and can
be easily exhibited in each case, equally as the divisor, which renders the
equation integrable.

COROLLARY 2

§82 But if α was a positive quantity, say α = aa that one has this equation:

dy + yydx + aax
−4i

2i+1 dx = 0,

it will be c = a
√
−1, and the coefficients B, D, F etc. and A, C, E will become

negative; hence the particular values y = P
P and y = Q

Q will arise as imaginary.

COROLLARY 3

§83 Nevertheless in the case, in which it is c = a
√
−1 and cc = −aa, P + Q

and P+Q will become real quantities, but p−Q and P−Q imaginary ones.
Therefore, if one puts

P + Q = 2R, P−Q = 2S
√
−1, P+Q = 2R and P−Q = 2S

√
−1,

R, S, R and S will be real quantities and because of

P = R + S
√
−1, Q = R− S

√
−1, P = R+S

√
−1, Q = R−S

√
−1

the divisor rendering the equation integrable will become

(RR + SS)yy− 2(RR+ SS)y +RR+SS

and hence real.

COROLLARY 4

§84 But in the same case c = a
√
−1 because of

e−p
√
−1 = cos p−

√
−1 sin p,

it will be
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e−2(2i+1)αx
1

2i+1
√
−1 = cos 2(2i + 1)αx

1
2i+1 −

√
−1 sin 2(2i + 1)αx

1
2i+1

whence having put for the sake of brevity

2(2i + 1)αx
1

2i+1 = p,

the complete integral will be:

(cos p−
√
−1 sin p) · (R + S

√
−1)y−R+S

√
−1

(R− S
√
−1)y−R−S

√
−1

= Const.,

which form is imaginary.

COROLLARY 5

§85 But attribute such a form to the constant: α− β
√
−1, and having expan-

ded the integral equation, it will be:

(Ry−R) cos p− (Ry−R) sin p
√
−1− (Sy−S) cos p

√
−1− (Sy−S) sin p

= (Ry−R)α− (Ry−R)β
√
−1 + (Sy−S)α

√
−1 + (Sy−S)β.

Now equate the real and imaginary parts separately:

(Ry−R) cos p− (Sy−S) sin p = α(Ry−R) + β(Sy−S)

(Ry−R) sin p + (Sy−S) cos p = β(Ry−R)− α(Sy−S),

which two equations agree, if it only is

αα + ββ = 1.

Therefore, let α = cos ζ and β = sin ζ and from each of them it will arise

Ry−R

Sy−S
=

sin p + sin ζ

cos p + cos ζ
= cot

ζ − p
2

.
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COROLLARY 6

§86 Therefore, having taking any angle for ζ, if it is c = a
√
−1, the complete

integral of the propounded equation will be

Ry−R

Sy−S
= cot

ζ − p
2

or

y =
R sin ζ−p

2 −S cos ζ−p
2

R sin ζ−p
2 − S cos ζ−p

2

while p = 2(2i + 1)αx
1

2i+1 .

PROBLEM 13

§87 While i denotes any arbitrary integer number to exhibit the resolution
of this equation:

dy + yydx− ccx
−4i

2i−1 dx = 0.

SOLUTION

Since it is n = i
2i−1 , this resolution can be derived from the solution of the

preceding problem by putting −i instead of i. Hence, attribute the following
values to the letters B, C, D etc.:

B = +
i(i− 1)

2(2i− 1)c
A

C = +
(i + 1)i(i− 1)(i− 2)

2 · 4(2i− 1)2c2 A

D = +
(i + 2)(i + 1)i(i− 1)(i− 2)(i− 3)

2 · 4 · 6(2i− 1)3c3 A

etc.

But the determination of the other letters A, B, C, D will behave as this:
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A = cA

B = +
(i + 1)i

2(2i− 1)
A

C = +
(i + 2)(i + 1)i(i− 1)

2 · 4(2i− 1)2c
A

D = +
(i + 3)(i + 2)(i + 1)i(i− 1)(i− 2)

2 · 4 · 6(2i− 1)3c2 A

etc.

Having constituted these values for the sake of brevity put:

Ax
+i

2i−1 + Bx
+i+1
2i−1 + Cx

+i+2
2i−1 + Dx

+i+3
2i−1 + etc. = P

Ax
+i

2i−1 − Bx
+i+1
2i−1 + Cx

+i+2
2i−1 − Dx

+i+3
2i−1 + etc. = Q

Ax
−i

2i−1 +Bx
−i+1
2i−1 + Cx

−i+2
2i−1 +Dx

−i+3
2i−1 + etc. = P

− Ax
−i

2i−1 +Bx
−i+1
2i−1 − Cx

−i+2
2i−1 +Dx

−i+3
2i−1 − etc. = Q

and hence one immediately has two particular integrations:

I. y =
P

P
and II. y =

Q

Q
.

But then the complete integral equation will be:

e2(2i−1)cx
−1

2i−1 Qy−Q

Py−P
= Const.

and the divisor rendering the propounded equation integrable will be =
(Py−P)(Qy−Q).

COROLLARY 1

§88 But if the propounded equation was of this kind:

dy + yydx + aax
−4i

2i−1 dx = 0,

that it is cc = −aa and c = a
√
−1, the exhibited particular integrations will

become imaginary because of the imaginary B, D, F and A, C, E etc., whereas
the values of the remaining letters are real.
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COROLLARY 2

§89 But if one puts

P + Q = 2R, P−Q = 2S
√
−1, P+Q = 2R and P−Q = 2S

√
−1,

the quantities R, S, R and S will nevertheless, as before, be real, and the
divisor rendering the equation integrable will be:

(RR + SS)yy− 2(RR+ SS)y +RR+SS.

COROLLARY 3

§90 But then, of one for the sake of brevity puts

2(2i− 1)αx
−i

2i−1 = p,

the complete integral will be:

Ry−R

Sy−S
= cot

ζ + p
2

,

whence one finds:

y =
R sin ζ+p

2 −S cos ζ+p
2

R sin ζ+p
2 − S cos ζ+p

2

where the angle ζ takes the part of the arbitrary constant.

SCHOLIUM

§91 The solutions of these last two problems were not expanded so by
accurate analysis as derived by induction from the particular cases explained
above, since the progression from these cases to the following was sufficiently
manifest. But the foundation of these solution mainly lies in this, that a
particular solution, whence all are deduced is actually a double one, since
the quantity c, only whose square occurs in the differential equation, can be
taken negatively and positively. But as often as two particular solutions of
equations of this kind are known, from them the general solution and hence
the multiplicators rendering it integrable can be found a lot easier, which will
be worth one’s while to have explained it more clearly.

61



PROBLEM 14

§92 Having found to particular solutions of an equation of this kind:

dy + Pydx + Qyydx + Rdx = 0

to find its general solution and multiplicator which renders it integrable.

SOLUTION

Let M and N be functions of x of such a kind, which substituted instead of y
satisfy the propounded equation such that it is:

dM + PMdx + QM2dx + Rdx = 0

and

dN + PNdx + QN2dx + Rdx = 0.

Put

y−M
y− N

= z and y =
M− Nz

1− z
,

it will be

dy =
dM− zdM + Mdz− Ndz− zdN + zzdN

(1− z)2 ,

having substituted these values in the propounded equation and having
multiplied the whole equation by (1− z)2 it will arise:

(1− z)dM− z(1− z)dN + (M− N)dz + P(1− z)Mdx− P(1− z)Nzdx

+QMMdx− 2QMNzdx + QNNzzdx + R(1− z)2dx = 0.

Now substitute the values to arise from the two superior differentials for dM
and dN:
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− P (1− z)Mdx−Q(1− z)M2dx − R (1− z)dx

+ Pz(1− z)Ndx + Qz(1− z)N2dx + Rz(1− z)dx + (M− N)dx = 0

+ P (1− z)Mdx + QM2dx + R (1− z)2dx

− Pz(1− z)Ndx − 2QMNzdx

+ QN2zzdx,

having ordered which equation it will arise:

QzM2dx + QzN2dx− 2QMNzdx + (M− N)dz = 0

or

Q(M− N)dx +
dz
z

= 0,

such that it is:

z = Ce−
∫

Q(M−N)dx,

whence the general integrated equation will be:

e
∫

Q(M−N)dx y−M
y− N

= Const.

But for finding the multiplicator note that the propounded equation having
done the substitution at first was multiplied by (1− z)2, but then divided
by z(M− N) became integrable. Therefore, it multiplied (1−z)2

(M−N)z immediately

will become integrable: from this the factor will be (1−z)2

(M−N)z , which because of

z = y−M
y−N will obtain this form:

M− N
(y−M)(y− N)

.

PROBLEM 15

§93 Having propounded the equation

ydy + Pydx + Qdx = 0,

to find conditions of the functions P and Q that a multiplicator of this kind
(y + M)n renders it integrable.
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SOLUTION

Therefore, from the nature of differentials it must be:

1
dx

d.y(y + M) =
1

dy
d.(Py + Q)(y + M)n,

because hence M is a function of x only, it will be

ny(y + M)n−1 dM
dx

= P(y + M)n + n(Py + Q)(y + M)n−1,

which divided by (y + M)n−1 goes over into this one:

nydM
dx

= (n + 1)Py + PM + nQ,

whence it is necessary that it is:

P =
ndM

(n + 1)dx
and Q =

−PM
n

= − MdM
(n + 1)dx

.

Therefore, having substituted these values the equation

ydy +
nydM
n + 1

− MdM
n + 1

= 0

becomes integrable, if it is multiplied by (y + M)n.

COROLLARY 1

§94 Since this equation is homogeneous, it is also integrable, if it is divided
by

(n + 1)yy + nyM−MM = (y + M)((n + 1)y−M).

And therefore hence no new equations treatable by this method are obtained.

COROLLARY 2

§95 But since we have these two multiplicators

(y + M)n and
1

(y + M)((n + 1)y−M)
,
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if the one is divided by the other, the quotient equated to an arbitrary constant
will give the complete integral. Hence the equation

ydy +
nydM
n + 1

− MdM
n + 1

= 0

integrated generally yields:

(y + M)n+1((n + 1)y−M) = Const.

PROBLEM 16

§96 Having propounded the equation

ydy + Pydx + Qdx = 0,

to find the conditions of the functions P and Q that a multiplicator of this
kind

(yy + My + N)n

renders it integrable.

SOLUTION

From the nature of differentials it is necessary that it is:

1
dx

d.y(yy + My + N)n =
1

dy
d.(Py + Q)(yy + My + N)n.

Therefore, since M, N, P and Q by assumption are functions of x, it will be
having done the expansion:

ny(yy + My + N)n−1
(

y +
dM
dx

+
dN
dx

)
= P(yy + My + N)n + n(Py + Q)(1y + M)(yy + My + N)n−1

and after division by (yy + My + N)n−1:

nyy
dM
dx

+
nydN

dx
= (2n + 1)Pyy + (n + 1)PMy + PN

+ 2nQy + nQM.
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Hence it must be:

I. ndM = (2n + 1)Pdx

II. (n + 1)PMdx + 2nQdx

III. 0 = PN + nQM.

The first gives

P =
ndM

(2n + 1)dx

and the last

Q =
−PN
nM

or Q =
−NdM

(2n + 1)Mdx
,

which values substituted in the middle one yield:

ndN =
n(N + 1)MdM

2n + 1
− 2nNdM

(2n + 1)M
or

(2n + 1)MdN + 2NdM = (n + 1)MMdM,

which multiplied by M
−2n+1
2n+1 and integrated yields:

(2n + 1)M
2

2n+1 N = Const. + (n + 1)
∫

M
2n+3
2n+1 dM

or

(2n + 1)M
2

2n+1 N = Const. +
2n + 1

4
M

4n+4
2n+1 ,

whence it is

N = αM
−2

2n+1 +
1
4

M2.

Therefore, because it is

Pdx =
ndM

2n + 1
and Qdx = −αM

−2n−3
2n+1 dM

2n + 1
− MdM

4(2n + 1)
,

this differential equation:
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ydy +
nydM
2n + 1

− MdM
4(2n + 1)

− α

2n + 1
M
−2n−3
2n+1 dM = 0

is rendered integrable, if it is multiplied by(
yy + My +

1
4

M2 + αM
−2

2n+1

)n

.

COROLLARY 1

§97 If it was

−2n− 3
2n + 1

= 1 or n = −1,

the differential equation is homogeneous, and if

−2n− 3
2n + 1

= 0 or n = −3
2

,

it is of degree one. But in each of both cases there is no difficulty, since the
equation can easily be treated.

COROLLARY 2

§98 Therefore, the cases, in which the exponent −2n−3
2n+1 is neither 0 nor 1, will

be more strange. Therefore, let

−2n− 3
2n + 1

= m, whence it is 2n =
−m− 3
m + 1

,

and the differential equation

ydy +
1
4
(m + 3)ydM +

1
8
(m + 1)MdM +

1
2

α(m + 1)MmdM = 0

will be rendered integrable by the multiplicator

(yy + My +
1
4

MM + αMm+1)
−m−3

2(m+1) .
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COROLLARY 3

§99 If now for M any functions of x are substituted, one will be able to form
such complicated equations, how which have to treated by other methods is
hardly clear, although by this method their resolution is obvious.

SCHOLIUM

§100 I anyone wants to follow this path further, there is no doubt that this
method will soon obtain a lot greater increments, by which the whole field of
Analysis is significantly promoted. The specimens expanded here are also of
such a nature that they seem to pave the way to more profound investigations,
especially if additionally other classes of differential equations are treated in
similar manner. But these things, I presented up to now, seem to suffice to
encourage the Geometers to develop this method further, which goal I had
mainly set myself.
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