
On the motion of bodies attracted

to two fixed centres of force *

Leonhard Euler

§1 Since there is certainly no doubt anymore that celestial bodies are moved
as if they would mutually attract each other in the squared reciprocal ratio
of the distances, the theory of Astronomy would be elevated to the highest
ground, if any motion of bodies attracting each other in that ratio could be
determined. Hence the perfection of Astronomy is to be expected from Mecha-
nics, since from its principles that motions are easily reduced to differential
equations, the whole task depends on Analysis, and on that part of it which
concerns the resolution of differential equations. Therefore, what has not been
explored sufficiently in Astronomy, the understanding of it is to be concluded
from Analysis alone, the significant advance of which is still desired, before
we can give the perfect explanation of even one single phenomenon.

§2 But what has been able to be achieved in this task until now, contains
such a small part of the whole theory that is almost to be considered as
insignificant; for, not more could be achieved by the authors who have treated
this subject than that they taught to define the motion of just two bodies which
attract each other in the squared reciprocal ratio of the distances. But as soon
as three bodies attracting each other according to this law are propounded,
which case is nevertheless still far away from the designated goal, since the
number of bodies attracting each other on earth is very large, all artifices
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which have been found in Analysis up to this point, still do not suffice to solve
it at all. And who has tackled this problem, has not achieved more than that
they assigned the motion just approximately in the case in which the force of
one body is very small compared to the other two.

§3 From this source everything is taken, what has been explored about lunar
motion and about perturbations affecting the motions of planets, where it
conveniently happened that the force by which the moon is pulled towards
the earth supersedes the force directed towards the sun by a lot, but on
planets the force directed towards the sun is a lot greater than the force by
which they act on each other. If it were not for this circumstance, all effort
in the determination of the motions would be in vain. Concerning lunar
motion, whose motion has still been able to be defined sufficiently exactly
by approximations, if it would be farther away from earth, I do not see, how
we could obtain hardly any notion of its motion, if it would be so far away
from earth, that it would be free from its destiny as earth’s satellite, i.e. it
would go over into the constellation of primary planets. For, then its motion
would follow a certain average law of the motion of a satellite of earth and
the motion of primary planets, whose nature could hardly be understood in
any way, since the approximations can not be applied anymore.

§4 If the moon would be closer to earth than it actually is, the perturbing
force exerted by the sun would be weakened, and hence the moon in its
motion around the earth would follow Kepler’s law more exactly; but the
aberration would be defined more easily and more certain; but the further
away we assume the moon to be from earth, the greater aberrations will enter
into its motion, until it reaches a region of such a kind where the force pulling
towards the sun exceeds the force of the earth by a lot, - and at this point
it essentially leaves earth -, it will begin to follow the nature of the motion
the primary planets, but it will nevertheless still be subject to perturbations
caused by the force of earth, which perturbations again, but in another way,
will be able to be investigated by approximations, precisely as perturbations
in the motions of the primary planets are usually represented.

§5 But the motion of the moon would be quite impossible to determine, if
it would be away from earth four or five times as much than it actually is,
and if it would have pleased God to assign the motion in such a region to
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the moon, astronomers would certainly be exhausted by the mere ways for
its investigation, and maybe even without any success, since which without
the help of theory they then could not determine the position of the moon at
a given time without notable error, in this case they would always commit
huge mistakes in the assignation of the position of the moon, even though
they might would have had collected innumerable observational data. Yes, it
is not even possible to suspect what kind of form would then be convenient
to give the astronomical tables, and it is not clear, how the table of the general
motion can be constructed, since it is not possible to refer them to earth or
to the sun, and it is understood a lot less, which arguments would to made
for the definition of anomalies. So we have to consider it as an extraordinary
convenience for Astronomy that at least in our solar system there are no
bodies of such a kind on which there is doubt whether they must be counted
to the primary or secondary planets.

§6 But our ignorance about celestial motion would be most severe, if earth
itself would be positioned among the other bodies in such a way that it
would follow neither the law of primary nor secondary planets; since then the
apparent motion of the sun, on which the cognition of the remaining motions
is based, would be completely inexplicable to us, even though we would have
collected the observational data for many centuries. The one single way to
get to the notion of Astronomy would be by Analysis, by means of which
the problems on the motion of three or more bodies attracting each other
would have to be resolved, and not equipped with this tool we could not
achieve anything in this science. But the solution of this problem would still
by of highest utility, since we could assign the celestial motions accurately,
given that we can only find them only approximately; such that just then the
study of Astronomy is to be considered to be elevated to the highest degree
of perfection.

§7 Therefore, since the expansion of the case of many bodies it not even to be
expected before the case of three bodies was solved, this must be considered
as the foundation of a more complete astronomical understanding, which is
therefore to be seen to be completely worth one’s while that all Geometers
join forces for its resolution. Certainly very huge difficulties occur which
the Geometers have unsuccessfully tried to overcome, but the results to be
hoped for from the attempts are too precious than that it is convenient to
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be intimidated by a further investigation. And if we tackling this problem
try every dead-end, this has been often be a help in other tasks, while the
treatment of other related questions has led to the desired goal eventually,
let us do the same here, and focus all efforts on other similar questions, even
though they do not seem to have any use per se, trusting that hence some
light will be thrown on those shadows which we want to remove.

§8 Therefore, following this outline, I undertook to treat that problem that
given two fixed bodies I investigate the motion of a third body that is attracted
to each of them. Of course, let the bodies be fixed at A and B (Fig. 1)

This figure was scanned and taken from the Opera Omnia Version.

the masses of which shall also be indicated by A and B, but let the third body,
the motion of which I assume to take place in the same plane the points A and
B live in and the motion of which must be assigned, be located at the point M
after the time t. This problem, even though in the real world a similar case
does not occur, is nevertheless detected to be impacted by the same difficulties
as the case on which whole Astronomy is based, which difficulties seem to
be able to be overcome more easily since here the two bodies A and B are
assumed to be immobile; for, it contains some per se perspicuous cases, whose
consideration seems to lead to a general expansion.

§9 For, first I observe, if the mass of the one of the bodies A and B vanishes,
that the motion of the body M will follow Kepler’s laws, such that it would
then describe a conic section around one of the points A or B. The same will
happen approximately, if the body M was positioned in such a way that it
remains close to the one body but keeps so much distance from the other
one that the force pulling it in that direction is very small compared to the
other one. Hence it is plain that the motion deviates from Kepler’s laws the
more the less equal the distances from the points A and B are; and in this
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case the motion of the body M even seems to be similar to the one it would
follow, if the bodies A and B would not be fixed, that hence nothing for the
understanding of the problem could be hoped for. Indeed, then here also the
case deserves to be mentioned in which both bodies A and B are equal to
each other and the body M is moved in such a way that its orbit is referred to
both of them equally; for, in this case the motion will also be detected to take
place on a conic section.

§10 Therefore, having observed these things let us set the constant distance
AB = a and the variable distances AM = v, BM = u; but then having
dropped the perpendicular MP from M to AB, let AP = x and PM = y, and
hence BP = a− x and

v =
√

xx + yy and u =
√
(a− x)2 + yy.

Because now the accelerating force, by which the body M is attracted to A, is
A
vv , and the force, by which is attracted to B, is as B

uu , hence the force in the
direction PA will result

=
Ax
v3 −

B(a− x)
u3

and in the direction MP

=
Ay
v3 +

By
u3 ;

from these, having assumed the temporal element dt to be constant, the
principles of Mechanics yield these formulas:

I. ddx = −2gdt2
(

Ax
v3 −

B(a− x)
u3

)
,

II. ddy = −2gdt2
(

Ay
v3 +

By
u3

)
,

which contain the determination of motion, where g is a certain constant
quantity introduced for absolute measures.
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§11 Since none of these equations admits an integration, one has to see,
whether they can be combined that hence an integrable equation results, and
it is necessary to achieve this in two ways. And one combination is certainly
obvious; for, having multiplied the first by dx and the other by dy the sum
results as

dxddx + dyddy = −2gdt2
(

A(xdx + ydy)
v3 +

B(ydy− (a− x)dx)
u3

)
,

which, because of

vdv = xdx + ydy and udu = ydy− (a− x)dx,

goes over into this one

dxddx + dyddy = −2gdt2
(

Adv
vv

+
Bdu
uu

)
,

the integral of which, having introduced a new constant, is

dx2 + dy2 = 4gdt2
(

A
v
+

B
u
+

C
a

)
;

since here
√

dx2 + dy2 expresses the element of the curve described by the
body M in the infinitely small time interval dt,

dx2 + dy2

dt
will be the velocity of the body M which is therefore conveniently determined
by the distances v and u.

§12 Having done one integration, to find another one additionally, let us
throw out the other mass from the formulas found first, and so we will obtain
these equations

(a− x)ddy + yddx = −2gdt2 · Aay
v3 ,

xddy − yddx = −2gdt2 · Bay
u3 ,
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from which we seem to get hardly anything lucrative. But if we consider that

d
x
v
=

(xx + yy)dx− x(xdx + ydy)
v3 =

y(ydx− xdy)
v3

and

d
a− x

u
=
−dx((a− x)2 + yy)− (a− x)(ydy− (a− x)dx)

u3 = −y(ydx + (a− x)dy)
u3 ,

let us multiply the first by xdy− ydx and the second by (a− x)dy + ydx, and
we will have

(xdy− ydx)((a− x)ddy + yddx) = 2gAadt2 · d x
v

,

((a− x)dy + ydx)(xddy− yddx) = 2gBadt2 · a− x
u

.

§13 Now since

(a− x)ddy + yddx = d((a− x)dy + ydx)

and

xddy− yddy = d(xdy− ydx),

it conveniently happens that the sum of these equations is integrable, while
the integral results as

(xdy− ydx)((a− x)dy + ydx) = 2gadt2
(

Ax
v

+
B(a− x)

u
+ D

)
,

and so we already deduced the problem to differential equations of first order,
to which point it has not been possible to get in the solution of the problem
on three mobile bodies. If we now throw out the time element dt from this,
we get to this simple differential equation

a(dx2 + dy2)

(
Ax
v

+
B(a− x)

u
+ D

)
= 2(xdy− ydx)((a− x)dy + ydx)

(
A
v
+

B
u
+

C
a

)
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between the two variables x and y, by which the nature of the curve in
question is determined; such that now the whole task has been reduced to the
differential equation of first order, for the solution of which Analysis provides
a lot of auxiliary tools.

§14 But here two obstacles occur, the one that the differentials dx and dy
ascend to two dimensions, the other consists in the irrational constants v and
u. To be able to remove these obstacles more easily, let us put the angles
BAM = ζ, ABM = η, and it will be x = v cos ζ, y = v sin ζ = u sin η and
a− x = u cos η, whence one concludes

dx2 + dy2 = dv2 + vvdζ2 = du2 + uudη2,

xdy− ydx = vvdζ

and

(a− x)dy + ydx = uudη,

by which values our equation is reduced to this simpler form:

a(dv2 + vvdζ2)(A cos ζ + B cos η + D) = 2vvuudζdη

(
A
v
+

B
u
+

C
a

)
.

Further, because of

v =
a sin η

sin(ζ + η)
and u =

a sin ζ

sin(ζ + η)
, it will be x =

a cos ζ sin η

sin(ζ + η)

and

y =
a sin ζ sin η

sin(ζ + η)
, and hence dx = −−adζ sin η cos η + adη sin ζ cos ζ

sin2(ζ + η)

and

dy =
adζ sin2 η + adη sin2 ζ

sin2(ζ + η)
,

whence

dx2 + dy2 =
aa(dζ2 sin2 η + dη2 sin2 ζ − 2dζdη sin ζ sin η cos(ζ + η))

sin4(ζ + η)
= dv2 + vvdζ2.
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§15 If we reduce our equations to just the two angles ζ and η by means of
these values, we will obtain:

(dζ2 sin2 η + dη2 sin2 ζ − 2dζdη sin ζ sin η cos(ζ + η))(A cos ζ + B cos η + D)

= 2dζdη sin2 ζ sin2 η

(
A sin(ζ + η)

sin η
+

B sin(ζ + η)

sin ζ
+ C

)
= 2dζdη sin ζ sin η(A sin ζ sin(ζ + η) + B sin η sin(ζ + η) + C sin ζ sin η),

which is reduced to this much simpler form:

(dζ2 sin2 η + dη2 sin2 ζ)(A cos ζ + B cos η + D)

= 2dζdη sin ζ sin η(A cos η + B cos ζ + C sin ζ sin η + D cos(ζ + η)).

Or, because of

cos(ζ + η) = cos ζ cos η − sin ζ sin η,

let us set C− D = E that we have:

dζ2 sin2 η + dη2 sin2 ζ =
2dζdη sin ζ sin η(A cos η + B cos ζ + D cos ζ cos η + E sin ζ sin η)

A cos ζ + B cos η + D
,

whence, if for the sake of the brevity we put

A cos η + B cos ζ + D cos ζ cos η + E sin ζ sin η = P

and

A cos ζ + B cos η + D = Q,

extracting the root we deduce:

dζ sin η

dη sin ζ
=

P±
√

PP−QQ
Q

.
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§16 Since there is no way to resolve equations of this kind, let us contemplate
cases, in which the resolution is possible, which are, whenever A = 0 or B = 0;
for, even though in these cases the last equation seems hardly manageable,
nevertheless from the principal formulas the solution is easily deduced. For, if
we put B = 0, the first integration yields:

dx2 + dy2 = 4gdt2
(

A
v
+

C
a

)
,

but then from paragraph 12, because of B = 0, we obtain

xddy− yddx = 0 and hence xdy− ydx = Const. dt,

therefore, let us put

(xdy− ydx)2 = 4gFadt2,

and it will be

Fa(dx2 + dy2) = (xdy− ydx)2
(

A
v
+

C
a

)
= v4dζ2

(
A
v
+

C
a

)
and after the substitution indicated above:

F(dζ2 sin2 η + dη2 sin2 ζ − 2dζdη sin ζ sin η cos(ζ + η))

= dζ2 sin4 η

(
A sin(ζ + η)

sin η
+ C

)
or

dζ2 sin2 η

(
1− A sin η sin(ζ + η) + C sin2 η

F

)
+ dη2 sin2 ζ

= 2dζdη sin ζ sin η cos(ζ + η),

the resolution of which certainly seems to be hardly simpler than of the
preceding; but having extracted the square root it becomes sufficiently obvious.
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§17 But before we got to this last equation among ζ and η, we had already
obtained an equation containing only the two letters v and ζ, i.e.:

Fa(dv2 + vvdζ2) = v4dζ2
(

A
v
+

C
a

)
from which immediately this one is found

Fadv2 = vvdζ2
(

Av +
Cvv

a
− Fa

)
or

Fadv2 = v4dζ2
(

C
a
+

A
v
− Fa

vv

)
,

whence

dv
vv

√
Fa = dζ

√
C
a
+

A
v
− Fa

vv
,

from which the nature of conic sections is found as usual. For, having put
1
v = z

a ,

−dz = dζ

√
C + Az

F
− zz,

whence it follows

ζ + α = arccos
2Fz− A√
AA + 4CF

and hence

2Fz = A + cos(ζ + α)
√

AA + 4CF,

such that

v =
2Fa

A + cos(ζ + α)
√

AA + 4CF
=

a sin η

sin(ζ + η)
.

§18 Therefore, hence the integral equation among the angles ζ and η is
expressed in such a way that

2F sin(ζ + η)

sin η
= A + cos(ζ + α)

√
AA + 4CF
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or, that form given the angle ζ the angle η can be found more easily, because
of

sin(ζ + η) = sin ζ cos η + cos ζ sin η,

it will be

2F sin ζ cot η + 2F cos ζ = A + cos(ζ + α)
√

AA + 4CF

or, having changed the form of the constants,

cot η + cot ζ =
A + M cos ζ + N sin ζ

2F sin ζ
.

And hence we understand at the same time, if we put A = 0, that it will be

cot ζ + cot η =
B + M′ cos η + N′ sin η

2F′ sin η
.

Hence now the forms are known to which the integral of the differential
equation given in paragraph 15 is reduced in the cases in which either A = 0
or B = 0, such that the way to get to these integrals can be investigated.

FOR THE CASE B = 0

§19 In this case the principal equation found in paragraph 15 goes over into
this form:

dζ2 sin2 η + dη2 sin2 ζ =
2dζdη sin ζ sin η(A cos η + D cos ζ cos η + E sin ζ sin η)

A cos ζ + D
,

the integral of which we therefore know to have a form of this kind:

cot η + cot ζ =
A + M cos ζ + N sin ζ

2F sin ζ

or more briefly

cot η = α +
β + γ cos ζ

sin ζ
,

how which is to be found from the differential must thus be investigated.
Even though this is easily seen by a calculation accommodated immediately
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from the beginning to this case, nevertheless the consideration of the body B
changes the calculation in such a way that this conclusion seems that it can be
arrived at only in a non intuitive way. But first we understand that instead of
the angle η its cotangent will not be introduced without use; therefore, having
divided the equation by sin4 η, we have

dζ2

sin2 η
+ sin ζ2(d cot η)2 = −2dζ sin ζd cot η(A cot η + D cos ζ cot η + E sin ζ)

A cos ζ + D
.

§20 Let us put cot η = z, because of

sin η =
1√

1 + zz
,

it will be:

dζ2(1 + zz) + dz2 sin2 ζ = −2dζdz sin ζ(z(A + D cos ζ) + E sin ζ)

A cos ζ + D
,

whence by extracting the root

dz sin η

dη
=

−z(A + D cos ζ)− E sin ζ +
√
(AA− DD)zz sin2 ζ + 2E(A + D cos ζ)z sin ζ + EE sin2 ζ − (A cos ζ + D)2

A cos ζ + D
,

where it is to be noted that the quantity under the square root sign can be
represented this way:

(
z sin ζ

√
AA− DD +

E(A + D cos ζ)√
AA− DD

)2

− (A− DD + EE)(A cos ζ + D)2

AA− DD
.

Hence having put

z sin ζ
√

AA− DD +
E(A + D cos ζ)√

AA− DD
=

s(A cos ζ + D)
√

AA− DD + EE)
AA− DD

,

the quantity under the square root sign will be

(A cos ζ + D)
√

AA− DD + EE√
AA− DD

√
ss− 1.
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§21 For the sake of brevity put this quantity equal to the irrational quantity
= V, and since our equation is

dz sin ζ(A cos ζ + D) + zdζ(A + D cos ζ) + Edζ sin ζ = Vdζ,

divide it by (A cos ζ + D)2 and it will be possible to represent it this way

d
Az sin ζ + E

A(A cos ζ + D)
=

Vdζ

(A cos ζ + D)2 .

But by our substitution

Az sin ζ + E =
−DE(A cos ζ + D) + As(A cos ζ + D)

√
AA− DD + EE

AA− DD
,

having substituted which value and the same time having substituted the
value of V again it will be

d · −DE + As
√

AA− DD + EE
A(AA− DD)

=
dζ
√

AA− DD + EE
(A cos ζ + D)

√
AA− DD

√
ss− 1

or

ds√
AA− DD

=
dζ
√

ss− 1
A cos ζ + D

or
ds√

ss− 1
=

dζ(AA− DD)

A cos ζ + D
,

which can also be represented this way:

− ds√
1− ss

=
dζ
√

DD− AA
A cos ζ + D

,

the integral of which is

arccos s = arccos
A + D cos ζ

A cos ζ + D
+ α.

§22 Since now

arccos
A + D cos ζ

A cos ζ + D
= arcsin

sin ζ
√

DD− AA
A cos ζ + D

,

it will be

14



s =
(A + D cos ζ) cos α− sin α sin ζ

√
DD− AA

A cos ζ + D

or this way:

s =
n(A + D cos ζ)− sin ζ

√
(1− nn)(DD− AA)

A cos ζ + D
,

if here D < A, the number n must be taken > 1.
Therefore, having substituted this value the integral equation in question

will be:

sin ζ cot η =
E(A + D cos ζ)

DD− AA

+
−n(A + D cos ζ) + sin ζ

√
(1− nn)(DD− AA)

DD− AA

√
AA− DD + EE

and having put

n =
E− F√

AA− DD + EE

it will be

sin ζ cot η =
F(A + D cos ζ)

DD− AA
+

sin ζ
√

AA− DD + 2EF− FF√
DD− AA

,

where F is an arbitrary constant quantity introduced by the new integration.
But having changed it it will be

sin ζ cot η =
A + D cos ζ

G
+ sin ζ

√
2E
G

+
AA− DD

GG
− 1.

FOR THE CASE A = B AND D = E = 0

§23 In like manner, the case A = 0 is covered, and the integral equation does
not differ from the preceding, except that the letters A and B as the angles
ζ and η are permuted. But in this case, in which A = B and D = E = 0, our
equation becomes

dζ2 sin2 η + dη2 sin2 ζ = 2dζdη sin ζ sin η,
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which manifestly yields dζ sin η = dη sin ζ, and hence by integration

log tan
1
2

ζ = Const. + log tan
1
2

η,

whence

m tan
1
2

ζ = n tan
1
2

η or m(1− cos ζ) sin η = n(1− cos η) sin ζ,

such that the tangents of the half of the angles BAM and ABM always have
the same ratio. Since now having introduced the coordinates x and y we have
cos ζ = x

v , sin ζ = y
v , cos η = a−x

u and sin η = y
u , it will be

m(v− x)y
vu

=
n(u− a + x)y

vu
or

m(v− x) = n(u− a + x)

such that m(AM− AP) = n(BM− BP).

§24 Therefore, since m(v− x) = n(u− a + x), note that

x =
aa + vv− uu

2a
and a− x =

aa + uu− vv
2a

,

whence

m(uu− (a− v)2) = n(vv− (a− u)2)

or

m(u + v− a)(u + a− v) = n(v + u− a)(v + a− u),

which divided by (u + v− a) yields

m(a + u− v) = n(a + v− u) or (m + n)(u− v) = (n−m)a,

such that

u− v =
(n−m)a

m + n
,
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which shall be compared to this one:

nu−mv = na− (m + n)x,

whence one concludes

(n−m)u =
(mm + nn)a

m + n
− (m + n)x

and

(n−m)v =
2mna
m + n

− (m + n)x,

which squared yields

(n−m)2yy + (n−m)2xx =
4mmnnaa
(m + n)2 − 4mnax + (m + n)2xx

or

(n−m)2yy =
4mmnnaa
(m + n)2 − 4mnax + 4mnxx.

§25 Let us take the abscissas from the middle point C, and let CA = CB = b
and hence a = 2b and put CP = z; but then set m + n = b and n−m = c, and,
because of x = b− z, we will have

cv = bz− cc and cu = bz + cc

and hence

yy =
bb− cc

cc
(zz− cc),

whence it is plain that this curve is a hyperbola described around the center
C, whose semiaxis is = c and the distance of the focal point is CA = CB = b,
and that it will be

tan
1
2

ζ : tan
1
2

η = b + c : b− c.

Further, since

dy =
zdz√

zz− cc
·
√

bb− cc
c

,
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it will be

dx2 + dy2 = dy2 + dz2 =
dz2(bbzz− c4)

cc(zz− cc)
;

hence, since because of C = D + E = 0 and B = A we have

dx2 + dy2 = 4Agdt2
(

c
bz− cc

+
c

bz + cc

)
=

8Abcgzdt2

bbzz− c4 ,

the velocity in M will be

=

√
dx2 + dy2

dt
=

2
√

2Abcgz√
bbzz− c4

;

and having put z = c the velocity at the vertex of the hyperbola results as

=
2
√

2Abg√
bb− cc

.

Therefore, even though the hyperbola goes over into an ellipse for c > b,
nevertheless it is evident that the motion can not describe an ellipse, since
the velocity would be imaginary such that in this case the body M can not be
moved in a hyperbola.

§26 But of what nature this motion on the hyperbola will be, will be conclu-
ded from the property of time. Of course, since

√
dx2 + dy2 =

dz
c

√
bbzz− c4

zz− cc
,

it will be

2dt
√

2Abcg =
dz(bbzz− c4)

c
√

z(zz− cc)

and hence

2ct
√

2Abcg =
∫ dz(bbzz− c4)√

z(zz− cc)
.

But by integration by parts it is known to be
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∫ zzdz√
z(zz− cc)

=
2
3

√
z(zz− cc) +

1
3

cc
∫ dz√

z(zz− cc)
,

whence the time t is determined in such a way that

2ct
√

2Abcg =
2
3

√
z(zz− cc) +

1
3

cc(bb− 3cc)
∫ dz√

z(zz− cc)
.

Therefore, the determination of time depends on the integration of the formula∫ dz√
z(zz− cc)

,

which is known to be not reducible to the quadrature of the circle or the
hyperbola.

§27 Let us reduce this determination to the angle BAM = ζ, too, and since

tan
1
2

ζ =
v− x

y
=

v− b + z
y

,

we will have

tan
1
2

ζ =

√
b + c
b− c

· z− c
z + c

and hence

z =
c(b− c cos ζ)

c− b cos ζ
,

whence

v =
bb− cc

c− b cos ζ
.

Further, hence we obtain

√
zz− cc =

c sin ζ
√

bb− cc
c− b cos ζ

and

dz = − c(bb− cc)dζ sin ζ

(c− b cos ζ)2 .
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Therefore,

dz√
zz− cc

= −
√

bb− cc
c− b cos ζ

dζ

and
dz√

z(zz− cc)
= −dζ

√
(bb− cc)(c− b cos ζ)√

c(b− c cos ζ)
,

whence we conclude

2ct
√

2Abcg =
2bbc sin ζ

√
(bb− cc)c(b− c cos ζ)

3(c− b cos ζ)
√

c− b cos ζ
,

−1
3

cc(bb− 3cc)
∫ dζ

√
(bb− cc)(c− b cos ζ)√

c(b− cos ζ)

or

2t
√

2Abg√
bb− cc

=
2bb sin ζ

√
b− c cos ζ

3(c− b cos ζ)
3
2
− 1

3
(bb− 3cc)

∫ dζ√
(b− c cos ζ)(c− b cos ζ)

.

§28 Here a remarkable case occurs in which bb = 3cc, since then the time
can be assigned. But then the velocity in the vertex of the hyperbola will be

= 2

√
Ag
√

3
c

= 2

√
3Ag

b
.

If this velocity is called = k, it will be

kt =
2cc sin ζ

c− b cos ζ

√
b− c cos ζ

c− b cos ζ
=

2c sin ζ

1− cos ζ ·
√

3

√ √
3− cos ζ

1− cos ζ ·
√

3
,

or shorter this way:

t
c
√

2ABcg =
√

z(zz− cc),

to define the position of the body M from this one has to solve this cubic
equation:

z3 − czz =
2Abcgtt

cc
= 2Agtt

√
3.
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But for other cases than the ones treated it will hardly be possible to define the
motion; indeed, this provides the opportunity to apply artifices of such kind
which might can have some use in the further treatment of this subject. Let us
nevertheless add the case in which the body will be moved on an ellipse, both
focal points of which are at the points A and B.

ON THE MOTION OF THE BODY M ON AN ELLIPSE

§29 Since we saw in the preceding case that the body can be moved on a
hyperbola, there is no doubt that in a certain case the motion can happen on
an ellipse, which case will be different from the preceding one in which it was
D = 0 and E = 0 while A = B. But for an ellipse to result it is necessary that

tan
1
2

ζ tan
1
2

η = m,

or, keeping the values CP = z and CA = CB = b, that

(v− b + z)(u− b− z) = myy.

But since either

yy = vv− (b− z)2 = (v− b + z)(v + b− z),

or

yy = uu− (b + z)2 = (u− b− z)(u + b + z),

having used each of them separately it will be either

u− b− z = m(v + b− z)

or

v− b + z = m(u + b + z),

having added which it results

u + v− 2b = m(u + v + 2b),

such that
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u + v =
2(1 + m)b

1−m
= 2c,

or

m =
c− b
c + b

,

while 2c denotes the transverse axis. Therefore, since uu− vv = 4bz, having
divided this equation by the last it will be

u− v =
2bz

c
and v = c− bz

c

and u = c + bz
c , and hence

yy =
cc− bb

cc
(cc− zz).

§30 Since now

log tan
1
2

ζ + log tan
1
2

η = log m,

by differentiation it will be

dζ

sin ζ
+

dη

sin η
= 0,

and hence

dζ sin η

dη sin ζ
= −1.

Hence from paragraph 15 it is necessary that

P−
√

PP−QQ
Q

= −1,

and hence P + Q = 0, whence it must be

(A + B)(cos ζ + cos η) + D + D cos ζ cos η + E sin ζ sin η = 0,

where the constants are to be defined in such a way that this equation agrees
with the nature of the ellipse
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tan
1
2

ζ tan
1
2

η = m =
c− b
c + b

or this one

(1− cos ζ)(1− cos η)

sin ζ sin η
= m =

c− b
c + b

.

Therefore, since

sin ζ sin η =
1− cos ζ − cos η + cos ζ cos η

m
,

having substituted this value there

m(A + B)(cos ζ + cos η) + mD + mD cos ζ cos η − E(cos ζ + cos η)

+E + E cos ζ cos η = 0,

for which reason these conditions are required that

E = m(A + B) and D = − E
m

= −A− B

and hence

E =
c− b
c + b

(A + B) and C = D + E = − 2b
c + b

(A + B).

§31 To determine the nature of the motion on this ellipse, because of

dy = − zdz√
cc− zz

·
√

cc− bb
c

,

it will be

dz2 + dy2 =
dz2(c4 − bbzz)

c
√

cc− zz

and √
dz2 + dy2 =

dz
√

c4 − bbzz
c
√

cc− zz
,

but above we found that
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dx2 + dy2 = 4gdt2
(

A
v
+

B
u
+

C
2b

)
or

dx2 + dy2 = 4gdt2
(

Ac
cc− bz

+
Bc

cc + bz
− A + B

c + b

)
,

which goes over into this form:

dx2 + dy2 =
4bgdt2(A(c + z)(cc + bz) + B(c− z)(cc− bz))

(c + b)(c4 − bbzz)
,

whence we conclude

4bccgdt2

b + c
=

dz2(c4 − bbzz)2

(cc− zz)(A(c + z)(cc + bz) + B(c− z)(cc− bz)

and hence by integration

2ct

√
bg

b + c
=
∫

(c4 − bbzz)dz√
(cc− zz)(A(c + z)(cc + bz) + B(c− z)(cc− bz)

.

§32 If we put B = 0, the case is reduced to one single centre of force A, the
calculation of which we discussed above; but this solution does not agree
with that one at all, whence the method used here is rendered quite suspect. I,
going to investigate the reason for this extraordinary phenomenon, observe
that by the above equation (paragraph 30) the two letters D and E are not
even determined. For, from the equation

(1− cos ζ)(1− cos η) = m sin ζ sin η

squared we conclude

(1− cos ζ)(1− cos η) = mm(1 + cos ζ)(1 + cos η),

whence

(1−mm)(1 + cos ζ cos η) = (1 + mm)(cos ζ + cos η).

Since now it must be
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(E + mD)(1 + cos ζ cos η) = (E−m(A + B))(cos ζ + cos η),

it suffices that

E(1 + mm) + Dm(1 + mm) = E(1−mm)− (A + B)m(1−mm) = 0,

whence

2Em + D(1 + mm) + (A + B)(1−mm) = 0,

or

E = − (A + B)(1−mm)

2m
− D(1 + mm)

2m
and hence

C = D + E = − (A + B)(1−mm)

2m
− D(1−m)2

2m
.

§33 Hence the deficiency of the method we used here becomes a lot more
clear. For, since the quantity D remains undetermined, even though the curve
described by the body M is given, the velocity of the body M would not be
determined at each point of its orbit, but would rather be arbitrary. For, for
the vertex of the ellipse closer to the focal point A, in which the distance is
v = c− b and u = c + b, or because of

c− b
c + b

= m, v =
2mb

1−m
and u =

2b
1−m

,

the square of the velocity will be

dx2 + dy2

dt2 =
2g
b

(
A(1−m)

2m
+

B(1−m)

1
− (A + B)(1−mm)

2m
− D(1−m)2

2m

)
=

g
mb
(
−Am(1−m)2 − B(1−m)2 − D(1−m)2)

and hence the velocity itself

√
dx2 + dy2

dt
=

√
(1−m)2g

mb
(A− B− D),
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since which can not be undetermined in any way, it is obvious hat the method
used in paragraph 30 is erroneous, what is seen even more clearly, if we
assume both bodies A and B as vanishing, in which case the body M would
certainly travel on a straight line, and therefore not an ellipse as we assumed
here, even though our calculation indicates differently. Therefore, it will be
very interesting to know the error of this method, that we, using a similar
method on another occasion, do not commit any mistakes.

§34 Since in the calculation no error is detected, the reasoning itself we gave
here is necessarily false, which is based on that foundation that the differential
equation

dζ sin η

dη sin ζ
=

P +
√

PP−QQ
Q

from paragraph 15 is satisfied by this finite equation

(1− cos ζ)(1− cos η) = m sin ζ sin η

(which is for an ellipse, of course), if one of the constants C and D is assumed
in a certain way. But on another occasion I observed that it can happen that a
differential equation is satisfied by a finite equation which is nevertheless not
contained in the equation deduced from it by integration at all. As, e.g., this
equation

ds
√

1− zz = dz

is obviously satisfied by the value z = 1, which is nevertheless not contained
in the integral equation

s = α + arcsin z

or z = sin(s− α) by any means, whatever value is attributed to the constant α.
Therefore, there is no doubt that for a similar reason the method applied here
led to an error.

§35 When I inquired the origin of this error more accurately, against all
expectation I stumbled upon the complete solution of the propounded pro-
blem, from which everything that had been desired in this subject until now
will be seen clearly, and at the same time the origin of the error made here
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will be understand so lucidly that we can easily avoid errors in other similar
cases of this kind. And this way the treatment of the mechanical problem
provided such great explanations in Analysis which we might would have
been searching for without any success in other circumstances, what is not
to be considered as unusual, since the most artifices which have been found
in Analysis are to be referred to be gained from questions in Mechanics and
Physics. For, in these often investigations of such a kind occur which provide
us with the opportunity to explore the nature of the equation more accurately,
and hence very often the commission of an mistake was compensated by
beautiful findings, as it happened to me treating this problem, the solution
of which, if I had not made the mentioned error, I would certainly never had
found.

COMPLETE SOLUTION OF THE PROPOUNDED PROBLEM

§36 Since the propounded problem depends on the integration of this diffe-
rential equation:

dζ sin η

dη sin ζ
=

P +
√

PP−QQ
Q

,

for the sake of brevity having set

P = A cos η + B cos ζ + D cos ζ cos η + E sin ζ sin η,

Q = A cos ζ + B cos η + D,

I reduce it to this form:

dζ sin η + dη sin ζ

dζ sin η − dη sin ζ
=

P + Q +
√

PP−QQ
P−Q +

√
PP−QQ

=

√
P + Q√
P−Q

.

Then having put tan 1
2 ζ = p and tan 1

2 η = q, since hence

dζ

sin ζ
=

dp
p

and
dη

sin η
=

dq
q

,

our equation which is to be solved will be

qdp + pdq
qdp− pdq

=

√
P + Q
P−Q

.
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§37 But having put tan 1
2 ζ = p and tan 1

2 η = q, it will be

sin ζ =
2p

1 + pp
, cos ζ =

1− pp
1 + pp

sin η =
2q

1 + qq
, cos η =

1− qq
1 + qq

.

Since hence

P + Q = (A + B)(cos ζ + cos η) + D(1 + cos ζ cos η) + E sin ζ sin η,

it will be

P + Q =
2(A + B)(1− ppqq) + 2D(1 + ppqq) + 4Epq

(1 + pp)(1 + qq)
.

Further, since

P−Q = (A− B)(cos η − cos ζ)− D(1− cos ζ cos η) + E sin ζ sin η,

it will be

P−Q =
2(A− B)(pp− qq)− 2D(pp + qq) + 4Epq

(1 + pp)(1 + qq)
.

Therefore, having introduced these values, our equation which is to be solved
will be

qdp + pdq
qdp− pdq

=

√
(A + B)(1− ppqq) + D(1 + ppqq) + 2Epq
(A− B)(pp− qq)− D(pp + qq) + 2Epq

which is easily plain to be reducible to the separation of variables, since the
numerator of the second there is a function of pq, but in the denominator the
quantities p and q add up to two dimension everywhere.

§38 To this end, let us set

pq = r and
p
q
= s,

that
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p =
√

rs and q =

√
r
s

,

whence, because of pdq + qdp = dr and qdp− pdq, it will be

dr
qqds

=

√
(A + B)(1− rr) + D(1 + rr) + 2Er

qq((A + B)(ss− 1)− D(ss + 1) + 2Es

or

dr
ds

=

√
r((A + B)(1− rr) + D(1 + rr) + 2Er)
s((A− B)(ss− 1)− D(ss + 1) + 2Es

,

from which form the separation of the variables r and s is obvious; for, it will
be

dr√
r(A + B + D + 2Er− (A + B− D)rr)

=
ds√

s(−A + B− D + 2Es + (A− B− D)ss
.

Or, if we set r = xx and s = yy, one will have

dx√
A + B + D + 2Exx− (A + B− D)x4

=
dy√

−A + B− D + 2Eyy + (A− B− D)y4
.

But since the values r and s could have negative values, this transformation
could cause inconveniences.

§39 But even though this way we got to a separated equation, nevertheless
the integration of each of both sides is extremely difficult, since it can be
done neither by the the quadrature of the circle nor by logarithms; but the
construction by arcs of conic sections would hardly lead to any understanding
here. And this difficulty is not lowered, even if we set B = 0, in which case the
solution is nevertheless known from elsewhere; yes, even the case A = 0 and
B = 0, in which the curve described by the body M certainly is a line, is also
not any easier. Therefore, it is necessary that in the cases both transcendental
quantities arising from the respective integrations have a relation of such a
kind that they are contained in an algebraic equation between x and y. From
this a new field of inquiring algebraic equations, which are maybe contained
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in differential equations of this kind, is opened. And in this task there is no
other method known than the one I explained several years ago, and by means
of which I have compared infinitely many arcs, so of ellipses as of hyperbolas,
to each other, which at that time seemed that it will have an immense use
sometime in the future.

§40 But before I escape to this method, it will be in order to indicate the
origin of the error made above which is now manifest. For, since we got to a
separated differential equation between r and s, it is evident that it is satisfied,
if either a constant value α of such a kind is attributed to r that

A + B + D + 2Er− (A + B− D)rr = 0,

or a constant value β of such a kind to s that

−A + B− D + 2Es + (A− B− D)ss = 0,

both of which can be done in two ways. And from the first assumption
certainly r = α, it follows

pq = tan
1
2

ζ tan
1
2

η = α,

which is an equation for an ellipse, but from the other assumption s = β
p
q = β results or

tan
1
2

ζ = β tan
1
2

η,

which is the equation for the hyperbola. And indeed, these curves only solve
the problem, if the same values are contained in the integrated equation.
Therefore, it is evident that we will have made a similar error, if we would
have had assumed the motion of the body M to happen on a hyperbola.

§41 Now let us consider the integral equation which we found in the case
B = 0 above in paragraph 22 from our differential equation, which will be

sin ζ cos η

sin η
=

A + D cos ζ

G
+ sin ζ

√
2E
G

+
AA− DD

GG
− 1

and this, having put tan 1
2 ζ = p and tan 1

2 η = q and further pq = r and p
q = s,

goes over into this form:

30



GG(r + s)2 + 2G(A + D)(r− s)− 8EGrs + (A + D)2

+2G(A− D)rs(r− s)− 2(AA− DD)rs + (A− D)2rrss

 = 0,

which therefore is the complete integral equation corresponding to this diffe-
rential equation

dr√
r(A + D + 2Er− (A− D)rr)

=
ds√

s(−A− D + 2Es + (A− D)ss)
,

since in it the new constant G is contained.

§42 To inquire such an integral equation in general, for the sake of brevity,
let us put

A + B
2E

= m,
A− B

2E
= n and

D
2E

= k,

that the equation which is to be integrated, if it can be done, of course, is

dr√
r(m + k + r− (m− k)rr)

=
ds√

s(−n− k + s + (n− k)ss)
,

the integral of which we want to assume to be contained in this form:

A+ 2Br + 2βs + Crr + γss + 2Drs + 2Errs + 2εrss + Frrss = 0,

whence we deduce:

rr =
−2Br− 2Drs− 2εrss−A− 2βs− γss

C+ 2Es + Fss
and

ss =
−2βs− 2Drs− 2Errs−A− 2Br− Crr

γ + 2εr + Frr
.

But then by differentiation

dr(B+ Cr +Ds + 2Ers + εss + Frss)

+ds(β + γs +Dr + Err + 2εrs + Frrs) = 0.
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§43 But from those equations, extracting the root, we obtain

r(C+ 2Es + Fss) +B+Ds + εss = S

=
√
((B+Ds + εss)2 − (A+ 2βs + γss)(C+ 2Es + Fss)

and

s(γ + 2εr + Frr) + β +Dr + Err = −R

= −
√
(β +Dr + Err)2 − (A+ 2Br + Crr)(γ + 2εr + Frr)

which values in the applied differential yield

Sdr− Rds = 0 or
dr
R

=
ds
S

.

Therefore, it just remains that the irrational formulas R and S are made equal
to those our equation to be solved contains, or that

R =
√
(m + k)r + rr− (m− k)r3

and

S =
√
−(n + k)s + ss + (n− k)s3.

§44 Therefore, since here on both sides so the first terms are constants as the
last containing r4 and s4 are zero, it must be

BB−AC = 0, εε− γF = 0, ββ−Aγ = 0, EE− CF = 0.

Therefore, it will be

C =
BB

A
=

EE

F
and γ =

εε

F
=

ββ

A

and hence

A

F
=

BB

EE
=

ββ

εε
.

Further, because of the terms rr and ss it must be
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DD + 2Bε − AF − 4βE − γC = 1,

DD + 2BE − AF − 4βε − γC = 1,

whence

6Bε = 6βE or
B

E
=

β

ε
,

but then

DD− 2βE−AF− γC = 1,

or
DD− 2βE−AF− ββEE

AF
= 1,

and hence

AF(DD− 1) = (βE+AF)2

or

βE = −AF+
√

AF(DD− 1) = Bε

or since

F =
AEE

BB
,

it will be

DD = 2βE+
AAEE

BB
+

BBββ

AA
+ 1 =

(
AE

B
+

Bβ

A

)2

+ 1.

§45 The remaining terms give

2βD − 2Aε − 2Bγ = m + k,

2DE − 2Cε − 2BF = −m + k,

2BD − 2AE − 2βC = −n− k,

2Dε − 2γE − 2βF = n− k,
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the sum of which yields this equality:

D(β +B+ ε + E)−A(ε + E)− F(β +B)− Cε− γE−Bγ− βC = 0.

Since we already found B
E = β

ε , let us put B = λβ and C = λε, it will be

C =
λλββ

A
, γ =

ββ

A
and F =

εε

ββ
A,

whence further put A = µββ and F = µεε that

C =
λλ

µ
and γ =

1
µ

,

and hence

DD = 1 +
(

µβε +
λ

µ

)2

,

having substituted which values, except the last, there we will obtain

D(λ + 1)(β + ε)− µβε(λ + 1)(β + ε)− λ(λ + 1)(β + ε)

µ
= 0,

or

(λ + 1)(β + ε)

(
D− µβε− λ

µ

)
= 0,

the three factors of which equation yield as many solutions.

§46 Resolution I. Let λ = −1, it will be B = −β, E = −ε, C = 1
µ , γ = 1

µ ,
A = µββ, F = µεε, and hence

DD =

(
µβε− 1

µ

)2

+ 1,

whence the conditions which are to be satisfied will be:
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k = D(β − ε) +
β− ε

µ
− µβε(β − ε) = (β − ε)

(
D +

1
µ
− µβε

)
,

m = D(β + ε) +
β + ε

µ
− µβε(β + ε) = (β − ε)

(
D +

1
µ
− µβε

)
,

n = D(β + ε) +
β + ε

µ
− µβε(β + ε) = (β − ε)

(
D +

1
µ
− µβε

)
,

Therefore, hence it will be m = n and B = 0 such that this resolution can only
be accommodated to the case B = 0. Therefore, since in this case

m
k
=

β + ε

β− ε
,

put β + ε = m and β− ε = k that

β =
k + m

2
and ε =

m− k
3

;

and it must be D+ 1
µ − µβε = 1, whence it results

1 + 2
(

µβε− 1
µ

)
+

(
µβε− 1

µ

)2

= 1 +
(

µβε− 1
µ

)2

and hence

µµ =
1
βε

=
4

mm− kk
and µ =

2√
mm− kk

.

hence we conclude D = 1, and for the case m = n the integral equation will
be

A+ 2Br + 2βs + Crr + γss + 2Drs + 2Errs + 2εrss + Frrss = 0.

§47 But this integral equation, since it contains no new constant, is not the
complete one; the reason for this is that the quantities β− ε and β + ε are
not equal to the numbers k and m, but must be only proportional to them.
Therefore, let

β− ε =
k
ν

, β + ε =
m
ν

, it will be β =
m + k

2ν
, ε =

m− k
2ν
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and

D = ν + µβε− 1
µ
=

√
1 +

(
µβε− 1

µ

)2

,

whence

µβε− 1
µ
=

1− νν

2ν
and D =

1 + νν

2ν
,

where ν is an arbitrary constant in terms of which the number µ must be
defined. Therefore, since β and ε are given in terms of m and k and ν, the
integral will be

0 = µββ + 2β(s− r) +
1
µ
(rr + ss) +

1 + νν

ν
rs + 2εrs(s− r) + µεεrrss,

which, having substituted the values for β and ε, multiplying by µ goes over
into this form:

0 =
µµ(m + k)2

4νν
+

µ

ν
(m + k)(s− r) + rr + ss +

µµ

4νν
(m− k)2rrss

+
µ

ν
(m− k)rs(s− r) +

µ(1 + νν)

ν
rs.

Let µ
ν = 2 f that f is an arbitrary constant, and having taken

f (mm− kk) =
1
f
+ 1− νν,

the complete integral equation will be

0 = f f (m + k)2 + 2 f (m + k)(s− r) + rr + ss + f f (m− k)2rrss

+2 f (m− k)rs(s− r) + 2 f (1νν)rs.
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§48 But since

νν = 1 +
1
f
− f (mm− kk),

it will be

2 f (1 + νν) = 4 f + 2− 2 f f (mm− kk);

and hence the complete integral equation in expanded form will look as
follows:

0 = f f (m + k)2 + 2 f (m + k)(s− r) + (r + s)2 + f f (m− k)2rrss

+2 f (m− k)rs(s− r) + 4 f rs− 2 f f (mm− kk)rs,

which having extracted the square root takes this form:

s− r + f (m + k) + f (m− k)rs = 2
√

rs( f f (mm− kk)− f − 1)

and after having substituted s = p
q , r = pq again

p(1− qq)
q

+ f (m + k) + f (m− k)pp = 2p
√

f f (mm− kk)− f − 1,

which agrees with the complete integral exhibited above. But it is to be noted
carefully that this integral extends only to the case B = 0.

§49 Resolution II. Let us now put ε = −β, and first we will have

B = λβ, E = −λβ, C =
λλ

µ
, γ =

1
µ

, A = µββ, F = µββ

and

DD = 1 +
(

λ

µ
− µββ

)2

.

But then hence we conclude:
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k = β(1 − λ)

(
D − λ

µ
+ µββ

)
,

m = β(1 + λ)

(
D − λ

µ
+ µββ

)
= −n,

such that this resolution only holds if m + n = 0 and hence A = 0. But for
this case it will further be

k
m

=
1− λ

1 + λ
and hence λ =

m− k
m + k

,

whence it follows

k =
2βk

m + k

(
D− λ

µ
+ µββ

)
or D =

λ

µ
− µββ +

m + k
2β

;

therefore,

1 =
m + k

β

(
λ

µ
− µββ

)
+

(m + k)2

4ββ

and

λ

µ
− µββ =

β

m + k
− (m + k)

4β
,

and hence

D =
β

m + k
+

m + k
4β

.

The letter β remains undefined and µ is defined by this equation:

m− k
µ(m + k)

− µββ =
β

m + k
− (m + k)

4β
.

§50 Having substituted these values this complete integral equation for the
case A = 0 results:

0 = µββ + 2λβr + 2βs +
λλ

µ
rr +

1
µ

ss +
2βrs

m + k
+

(m + k)
2β

rs

−2λβrrs− 2βrss + µββrrss.
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Let us set µβ = f , it will be

m− k
m + k

− f f =
f

m + k
− µµ(m + k)

4 f

and that equation multiplied by µ will be

0 = f f + 2λ f r + 2 f s + λλrr + ss +
2 f rs

m + k
+

µµ(m + k)
2 f

rs

−2λ f rrs− 2 f rss + f f rrss,

which, because of

µµ(m + k)
f

=
2 f

m + k
+ 2 f f − 2λ,

takes this form:

0 = f f (1 + rs)2 + (λr− s)2 +
4 f rs

m + k
+ 2 f (λr + s)− 2 f rs(λr + s)

or this one:

0 = f f (1− rs)2 + (λr + s)2 + 2 f (1− rs)(λr + s) +
4 f rs

m + k
+ 4 f f rs− 4λrs,

which having extracted the square root yields

f (1− rs) + λr + s = 2

√
rs
(

m− k
m + k

− f f − f
m + k

)
.

And this solution is completely similar to preceding one, while that one was
restricted to the case B = 0, this one on the other hand is restricted to the case
A = 0.

§51 The third factor

D− µβε− λ

µ

shows nothing, since its annihilation can not be consistent with the equation
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DD = 1 +
(

µβε +
λ

µ

)2

,

and so we have just two cases admitting an algebraic solution, namely when
either B = 0 or A = 0. Furthermore, even the third case expanded above, in
which it was A = B and D = 0, E = 0, can be covered here without further
effort; for, then the equation of paragraph 38 goes over into this one:

dr√
(A + B)r(1− rr)

=
ds√
s · 0

,

which can only hold, if ds = 0, and hence

s =
p
q
=

tan 1
2 ζ

tan 1
2 η

= Const.,

by which equation a hyperbola is defined. In the remaining cases the construc-
tion of the equation

dr√
r(A + B + D + 2Er− (A + B− D)rr)

=
ds√

s(B− A− D + 2Es− (B− A + D)ss)

is to be called for help. For, that this equation does not admit an algebraic
integral is plain even from the case D = A + B, in which the left-hand side
depends of the quadrature of conic section, the right-hand side on the other
hand required higher quadratures.

§52 But having found the relation between r and s whence at the same time
the ratio of the angles ζ and η becomes known, the cognition of the motion is
concluded from the nature of time. For, since

vvuudζdη = 2gadt2(A cos ζ + B cos η + D),

because of

v =
a sin η

sin(ζ + η)
and u =

a sin ζ

sin(ζ + η)

and

tan
1
2

ζ = p and tan
1
2

η = q,
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it will be

dζ =
dp sin ζ

p
and dη =

dq sin η

q
,

or

dζ =
2dp

1 + pp
and dη =

2dq
1 + qq

,

and hence further

v =
aq(1 + pp)

(p + q)(1− pq)
and u =

ap(1 + qq)
(p + q)(1− pq)

,

whence

4a3 ppqq(1 + pp)(1 + qq)dpdq
(p + q)4(1− pq)4 = 2gdt2

(
A(1− pp)

1 + pp
+

B(1− qq)
1 + qq

+ D
)

.

Further, let pq = r, p
q = s or pp = rs and qq = r

s , it will be

2pdp = rds + sdr and 2qdq =
sdr− rds

ss
,

therefore,

4pqdpdq =
ssdr2 − rrds2

ss
,

and hence finally:

a3(r + s)(1 + rs)(ssdr2 − rrds2)

rs(1 + s)4(1− r)4 = 2gdt2
(

A(1− rs)
1 + rs

+
B(s− r)

r + s
+ D

)
.

§53 Now, for the sake of brevity, let us set

RR = r(A + B + D + 2Er − (A + B − D)rr),

SS = s(B − A − D + 2Es − (B − A + D)ss),

that dr
R = ds

S , and let us set
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dr
R

=
ds
S

= dV,

that dr = RdV and ds = SdV and it will be

2gdt2 =
a3(r + s)2(1 + rs)2(RRss− SSrr)dV2

rs(1 + s)4(1− r)4(A(r + s)(1− rs) + B(s− r)(1 + rs) + D(s + r)(1 + rs))
.

But on the other hand

RRss− SSrr = rs(A(r + s)(1− rs) + B(s− r)(1 + rs) + D(r + s)(1 + rs)),

having substituted which value it results

2gdt2 =
a3(r + s)2(1 + rs)2dV2

(1 + s)3(1− r)4 ,

and hence

dt

√
2g
a

=
a(r + s)(1 + rs)dV
(1 + s)2(1− r)2 = adV

(
r

(1− r)2 +
s

(1 + s)2

)
,

such that

dt
√

2g
a
√

a
=

dr
√

r
(1− r)2

√
A + B + D + 2Er− (A + B− D)rr

+
ds
√

s
(1 + s)2

√
B− A− D + 2Es− (B− A + D)s2

,

and so even the determination of time is reduced to the integration of simple
formulas.

§54 Therefore, since this problem which on first sight seemed to be hardly
easier than that in which all three bodies are assumed as mobile, could be
resolved perfectly, we now have greater hope that sometime it will be that
even that problem which is to be considered as the foundation of whole
Astronomy is resolved. I personally think that I hence still do not see a way to
arrive at this goal, but believe that for this still many and maybe cumbersome
attempts are needed. Furthermore, I add an observation, probably interesting
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for the Geometers, on the problem I treated here, namely that aside from
the cases expanded here there are innumerable others, in which the curve
describes by the body M is algebraic, the investigation of which seems to lead
to increments of analysis not to be contemned.

§55 But although we reduced the solution of this problem to quadratures of
curves, it would nevertheless be bothersome to define the curve described by
the body M and a lot more bothersome to assign the position of the body at a
given time. But if cases of this kind would actually exist, it would be worth
one’s while to expand this solution more accurately, since this way it seems
to happen the most convenient way. Of course, for the case, after by many
attempts the constants A, B, D, E had become known approximately and were
then to be corrected, a table listing the values of r corresponding to the values
of s for each pair of values will have to be constructed, to which thereafter a
table exhibiting the time t must be added, from which further vice versa for
a given time t the values of the letters r and s and hence the angles ζ and η

could be concluded. If this determination would agree less with observations,
this would be an indication that the constants would not be assumed correctly,
and so eventually, having constructed many tables, the truth would easily be
found from this.

§56 But since it is especially convenient to know the location of the body
M, where its distance from one of the fixed points A and B is maximal or
minimal, let us see how this must be defined. Since the distance AM is

v =
a sin η

sin(ζ + η)
,

its differential

dv
a

=
dη cos η sin(ζ + η)− (dζ + dη) sin η cos(ζ + η)

sin2(ζ + η)
=

dη sin ζ − dζ sin η cos(ζ + η)

sin2(ζ + η)

set equal to zero or

dη

sin η
=

dζ

sin ζ
cos(ζ + η)

will indicate the locations at which the distance AM is maximal or minimal.
Therefore, having put tan 1

2 ζ = p and tan 1
2 η = q, because of
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cos(ζ + η) =
(1− pp)(1− qq)− 4pq

(1 + pp)(1 + qq)
,

we will have

dq
q

=
dp
p
· (1− pq)2 − (p + q)2

(1 + pp)(1 + qq)
.

And having further set pq = r, p
q = s, or p =

√
rs, q =

√ r
s , it will be

(
dr
r
− ds

s

)
(s(1 + rr) + r(1 + ss)) =

(
dr
r
+

ds
s

)
(s(1− r)2 − r(1 + s)2)

or

dr(1 + s)2 = ds(1− r)2.

Therefore, where

dr
(1− r)2 =

ds
(1 + s)2 ,

there the distance AM = v is either maximal or minimal.

§57 Therefore, since we found dr
R = ds

S above, for these locations we have

R
(1− r)2 =

S
(1 + s)2 ,

whence the relation among the finite quantities r and s is found which is:

r(1 + s)4(A + B + D + 2Er− (A + B− D)rr)

= s(1− r)4(B− A− D + 2Es− (B− A + D)ss),

whence, for the sake of brevity having set

A + B + D
2E

= m,
B− A− D

2E
= n,

A + B− D
2E

= µ,
B− A + D

2E
= ν,
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that µ + ν = m + n, this equation results

+ mr + rr − µr3 + 4(n− µ)r4s − nr4s − r4ss

− ns + 4(m + n)rs + (4− 6n)rrs + 4(m− ν)rs3 + (4− 6µ)r3ss − 4(µ + ν)r3s3 + νr4s3

− ss + (4 + 6m)rss + (4 + 6ν)rrs3 + rrs4 − µr3s4

+ νs3 + mrs4


= 0

which equation in general does not seem to have any factors. But the equation
among p and q will be

(p + q)4(m + pq− µppqq) = (1− pq)4(nqq + pq− νpp).

§58 But having substituted the angles ζ and η again, the equation between
them for the case in which the distance is maximal or minimal will look as
follows:

sin4
(

ζ + η

2

)
(D(1 + cos ζ cos η) + (A + B)(cos ζ + cos η) + E sin ζ sin η)

= cos4
(

ζ + η

2

)
(D(cos ζ cos η − 1) + (B− A)(cos ζ − cos η) + E sin ζ sin η),

where

sin4
(

ζ + η

2

)
=

1
4
(1− cos(ζ + η))2 and cos4

(
ζ + η

2

)
=

1
4
(1+ cos(ζ + η))2,

whence we conclude:

(1 + cos2(ζ + η))(A cos ζ + B cos η + D)

= 2 cos(ζ + η)(A cos η + B cos ζ + D cos ζ cos η + E sin ζ sin η),

which equation likewise hardly admits a resolution. Furthermore, since having
permuted the angles ζ, η and the masses A and B the equation is not changed,
it indicates the same position where the distance BM = u is maximal or
minimal. But having extracted the square root both cases are separated from
each other.
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