
Analytical Observations *

Leonhard Euler

Considering the powers which result from the expansion of the trinomial
formula

1 + x + xx,

the middle terms are found to have the largest numerical coefficients; alt-
hough this is rather obvious, it seems worth of one’s complete attention, since
speculations of this kind are often quite fruitful for analysis. Therefore, first I
will present the powers for small exponent in a clear way:

Exponent of Power in

the power expanded Form

0 1

1 1 + x + xx

2 1 + 2x + 3x2 + 2x3 + x4

3 1 + 3x + 6x2 + 7x3 + 6x4 + 3x5 + x6

4 1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8

6 1 + 5x + 15x2 + 30x2 + 45x4 + 51x5 + 45x6 + 30x7 + 15x8 + 5x9 + x10

etc;

*Original title: "Observationes analyticae", first published in: Novi Commentarii academiae
scientiarum Petropolitanae 11, 1767, pp. 124-143, reprint in: Opera Omnia: Series 1, Volume
15, pp. 50 - 69, Eneström-Number E326, translated by: Alexander Aycock for the project
„Euler-Kreis Mainz“.
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if the middle terms from each power are written in order, this progression
results

1, 1x, 3x2, 7x3, 19x4, 51x5, 141x6 etc.;

it seems worth of one’s while to investigate according to which law these
numbers progress such that not only the general term, i.e. the coefficient
corresponding to the power xn, is found but also the extraordinary properties
of this series are explored. To this end, I want to propound the following
problems, the solution of which will later on lead to other quite interesting
speculations.

PROBLEM 1

§1 Having expanded the indefinite power (1 + x + xx)n, to find the coefficient of
the middle term, i.e. the coefficient of the power xn.

SOLUTION

Represent the power given in this way as a binomial (x(1 + x) + 1)n; if this is
expanded in the usual way, it gives

xn(1 + x)n +
n
1

xn−1(1 + x)n−1 +
n(n− 1)

1 · 2 xn−2(1 + x)n−2

+
n(n− 1)(n− 2)

1 · 2 · 3 xn−3(1 + x)n−3 + etc.;

if it is expanded further, from that expansion each term of the form xn must
be found. The first member obviously gives

xn,

whereas all remaining powers of x that result from its expansion will be higher.
But from the second member this term results for the power xn:

n
1

xn−1 · n− 1
1

x =
n(n− 1)

1 · 1 xn;

in like manner, from the third member we obtain

n(n− 1)
1 · 2 xn−2 · (n− 2)(n− 3)

1 · 2 x2 =
n(n− 1)(n− 2)(n− 3)

1 · 2 · 1 · 2 xn
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etc.

if all these parts are collected into one sum, one obtains the coefficient in
question of the power xn

1+
n(n− 1)

1 · 1 +
n(n− 1)(n− 2)(n− 3)

1 · 2 · 1 · 2 +
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

1 · 2 · 3 · 1 · 2 · 3 + etc.

COROLLARY 1

§2 Therefore, this series, which terminates for each integer number n, gives
the coefficient of the power xn for the propounded series

1 + x + 3x2 + 7x3 + 19x4 + etc.

and in this way, by means of it, every term, no matter how far away from the
initial term, can be found without the preceding ones.

§3 If we substitute the numbers 1, 2, 3 etc. for n successively, the following
values are found:
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n coefficient of xn

0

1

2

3

4

5

6

7

8

9

10

11

12

1

1

1 + 2 = 3

1 + 6 = 7

1 + 12 + 6 = 19

1 + 20 + 30 = 51

1 + 30 + 90 + 20 = 141

1 + 42 + 210 + 140 = 393

1 + 56 + 420 + 560 + 70 = 1107

1 + 72 + 756 + 1680 + 630 = 3139

1 + 90 + 1260 + 4200 + 3150 + 252 = 8953

1 + 110 + 1980 + 9240 + 11550 + 2772 = 25653

1 + 132 + 2970 + 18480 + 34650 + 16632 + 924 = 73789

etc. etc.

COROLLARY 3

§4 The series of these numbers is of such a nature that it seems that every
term can conveniently be compared with the triple of the precursor, from
which comparison the following differences result:

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139 etc.

3, 3, 9, 21, 57, 153, 423, 1179, 3321 etc.

2, 0, 2, 2, 6, 12, 30, 72, 182 etc.

SCHOLIUM 1

4



A MEMORABLE EXAMPLE OF FALSE INDUCTION

§5 If we consider these differences more accurately, it seems to be the case
that they are the pronic numbers, i.e. doubled triangular numbers of the
form mm+; and if we consider the indices of these pronic numbers, which
constitute this series

1, 0, 1, 1, 2, 3, 5, 8, 13 etc.,

it is obviously a recurring series, each term of which is the sum of two prece-
ding ones. Since this structure is detected up to the tenth term, who would
doubt that it extends to the whole series? Certainly, less certain inductions have
turned out to be correct. Therefore, it will be worth of one’s while to consider
this example more accurately; since the number 13 of the series corresponds
to the terms x9, to the general power xn this number will correspond:

1√
5

(
1 +
√

5
2

)n−2

− 1√
5

(
1−
√

5
2

)n−2

;

the corresponding pronic number is

1√
5

(
1 +
√

5
2

)n−2

− 1√
5

(
1−
√

5
2

)n−2

+
1
5

(
1 +
√

5
2

)2n−4

+
1
5

(
1−
√

5
2

)2n−4

−2
5
(−1)n−2.

If in the propounded series two contiguous terms are in general exhibited in
this way:

1 + x + 3x2 + 7x3 + 10x4 + · · ·+ Pxn + Qxn+1 + etc.,

it will be

3P−Q =
1√
5

(
1 +
√

5
2

)n−1

− 1√
5

(
1−
√

5
2

)n−1

+
1
5

(
1 +
√

5
2

)2n−2

+
1
5

(
1 +
√

5
2

)2n−2

−2
5
(−1)n−1,
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whence we conclude

P =
3n + (−1)n

10
+

1
5

(
3 +
√

5
2

)n

+
1
5

(
3−
√

5
2

)n

+
1
5

(
1 +
√

5
2

)n

+
1
5

(
1−
√

5
2

)n

such that even the propounded series itself would be a recurring series with
the scale of relation

6, −8, −8, 14, 4, −3,

according to which it will be

3139 = 6 · 1107− 8 · 393− 8 · 141 + 14 · 51 + 4 · 19− 3 · 7.

SCHOLIUM 2

§6 But no matter how probable this law of progression might seem, while it
holds for the first ten terms, it is nevertheless found to be false, while it fails
in the eleventh term 8953; for, having subtracted this from the triple of the
preceding term, 9417, the remainder 464 is not even a pronic number, even less
does it have the pronic index 21 = 13 + 8; for, 212 + 21 = 462, which number
differs from 464, which would have to result according to the observed law,
by two. For this reason, I will now investigate the true law of progression of
this series such that it becomes clear how each term is actually defined via
several preceding terms.

PROBLEM 2

§7 Given the series

1, x, 3x2, 7x3, 19x4, 51x5 etc.

to investigate the law, according to which each term is determined by several preceding
ones.

6



SOLUTION

Consider several subsequent terms of this series in general

1, x, 3x2, 7x3 · · · Pxn, Qxn+1, Rxn+2 etc.,

and since in the preceding problem we saw that

P = 1+
n(n− 1)

1 · 1 +
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 +
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

1 · 1 · 2 · 2 · 3 · 3 + etc.,

in like manner, it will be

Q = 1 +
(n + 1)n

1 · 1 +
(n + 1)n(n− 1)(n− 2)

1 · 1 · 2 · 2 +
(n + 1)n(n− 1)(n− 2)(n− 3)(n− 4)

1 · 1 · 2 · 2 · 3 · 3 + etc.,

R = 1 +
(n + 2)(n + 1)

1 · 1 +
(n + 2)(n + 1)n(n− 1)

1 · 1 · 2 · 2 +
(n + 2)(n + 1)n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 · 3 · 3 + etc.,

whence, subtracting each term from the respective following term, we calculate

Q − P =
2n
1

+
2n(n− 1)(n− 2)

1 · 1 · 2 +
2n(n− 1)(n− 2)(n− 3)(n− 4)

1 · 1 · 2 · 2 · 3 + etc.,

R − Q =
2(n + 1)

1
+

2(n + 1)n(n− 1)
1 · 1 · 2 +

2(n + 1)n(n− 1)(n− 2)(n− 3)
1 · 1 · 2 · 2 · 3 + etc.;

hence let us take this form

n + 2
n + 1

(R−Q) =
2(n + 2)

1
+

2(n + 2)n(n− 1)
1 · 1 · 2 +

2(n + 2)n(n− 1)(n− 2)(n− 3)
1 · 1 · 2 · 2 · 3 + etc.;

if Q− P is subtracted from this one such that

n + 2
n + 1

(R−Q)− (Q− P) = 4 +
4n(n− 1)

1 · 1 +
4n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 + etc.;

since this series is = 4P, we will have
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R = Q +
(n + 1)(Q− P)

n + 2
+

4(n + 1)P
n + 2

or

R =
(2n + 3)Q + 3(n + 1)P

n + 2
.

COROLLARY 1

§8 Therefore, lo and behold the law by which each term of this series is
determined by the two preceding ones and which is

R = Q +
n + 1
n + 2

(Q + 3P),

whence from the two following terms Q and R the preceding one P is defined
in this way

P =
(n + 2)R− (2n + 3)Q

3(n + 1)
.

COROLLARY 2

§9 That it becomes clear how this law holds in the propounded series, let us
illustrate this in some cases:

if n = 0, 3 = 1 +
1
2
( 1 + 3· 1);

if n = 1, 7 = 3 +
2
3
( 3 + 3· 1);

if n = 2, 19 = 7 +
3
4
( 7 + 3· 3);

if n = 3, 51 = 19 +
4
5
(19 + 3· 7);

if n = 4, 141 = 51 +
5
6
(51 + 3·19)

etc.
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COROLLARY 3

§10 Since the exponent n enters into the relation, which holds between three
contiguous terms, from this it is easily concluded that this series is not a
recurring series.

COROLLARY 4

§11 But a relation not involving the letter n between the four contiguous
letters P, Q, R, S can be exhibited; since from the preceding three

n =
2R− 3Q− 3P
3P + 2Q− R

,

in like manner, it will be

n + 1 =
2S− 3R− 3Q
3Q + 2R− S

,

whence we conclude that

S = R + Q +
3P(Q + R) + 2QR

6P + 3Q− R
,

which is a constant relation by which the a term is determined by the preceding
three contiguous terms.

SCHOLIUM 1

§12 After having found the law by which each term of our series depends
on the two preceding ones, it is now a lot easier to continue this progression
arbitrarily far. Since the powers x11 and x12 have the coefficients 25653 and
73789, respectively, because of n = 11 the coefficient of the following power
x13 reads as

73789 +
12
13

(73789 + 3 · 25653) = 212941

and the coefficient of the power as

212941 +
13
14

(212941 + 3 · 73789) = 616227,

whence our progression continued to the twentieth power will look as follows:

9



1

1x 25653x11

3x2 73789x12

7x3 212941x13

19x4 616227x14

51x5 1787607x15

141x6 5196627x16

393x7 15134931x17

1107x8 44152809x18

3139x9 128996853x19

8953x10 377379369x20

I observe about these numbers that none of them is divisible by 5, but the
coefficients of the powers x3α+2 are divisible by 3, and those of the powers
x7α+3 by 7; and from this nothing about the nature of these numbers can be
concluded. But using the law of progression we found here we will be able to
define its infinite sum, to which the following problem is devoted.

SCHOLIUM 2

§13 If each term of our progression is subtracted from the triple of the
preceding term, the differences constitute this progression

1 · 2, 2 · 1, 3 · 2, 4 · 3, 5 · 6, 6 · 12, 7 · 26, 8 · 58, 9 · 134, 10 · 317,

11 · 766, 12 · 1883, 13 · 4698, 14 · 11871, 15 · 30330, 16 · 78249, 17 · 203662,

18 · 533955 etc.,

for which in general we want to set

mp, (m + 1)q, (m + 2)r,
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where it is remarkable that the first factors of these terms progress in the
series of the natural numbers, the second factors on the other hand are of such
a nature that they are composed from the two preceding ones in this way

r =
3mp + 2(m + 1)q

m + 4
.

PROBLEM 3

§14 If in our series

1 + x + 3x2 + 7x3 + 19x4 + etc.

is continued to infinity, to investigate its sum.

SOLUTION

Since the relation of each term to the two preceding ones was defined, let us
set

s = 1 + x + 3x2 + · · ·+ Pxn + Qxn+1 + Rxn+2 + etc.,

where one has to note that

(n + 2)R− (2n + 3)Q− 3(n + 1)P = 0;

to satisfy this condition, let us take the differential

ds
dx

= 1 + 6x + · · ·+ nPxn−1 + (n + 1)Qxn + (n + 2)Rxn+1 + etc.,

which multiplied by 1− 2x− 3xx gives

ds
dx

(1− 2x− 3xx) = 1 + 6x + 21xx + · · · + nPxn−1 + (n + 1)Qxn + (n + 2)Rxn+1 + etc.,

− 2 − 12 + − 2Pn − (2n + 2)Q

− 3 − 3nP
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which is reduced to this one

1 + 4x + 6xx + · · ·+ (Q + 3P)xn+1 + etc.

But the propounded series multiplied by 1 + 3x gives

s(1 + 3x) = 1 + 4x + 6xx + · · ·+ (Q + 3P)xn+1 + etc.,

whence it is manifest that

ds
dx

(1− 2x− 3xx) = s(1 + 3x)

and hence

ds
s

=
dx(1 + 3x)

1− 2x− 3xx
,

the integral of which gives

s =
1√

1− 2x− 3xx
=

1√
(1 + x)(1− 3x)

,

which is the sum of the propounded series, if it is continued to infinity.

COROLLARY 1

§15 Therefore, it is clear that the sum of this series is imaginary, if one does
not take x < 1

3 , but becomes infinite in the case x = 1
3 . Attributing negative

values to x, say x = −y, the sum becomes finite for y < 1, but in the case
y > 1 it becomes imaginary. For example, setting x = − 1

2

2√
5
= 1− 1

2
+

3
4
− 7

8
+

19
16
− 51

32
+

141
64
− etc.

COROLLARY 2

§16 Therefore, we know now that our series results, if the irrational formula

(1− 2x− 3xx)−
1
2

is expanded into a series in the usual manner; since this formula can be
represented in this way
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s = ((1− x)2 − 4xx)−
1
2 ,

it results

s =
1

1− x
+

2
1
· xx
(1− x)3 +

2 · 6
1 · 2 ·

x4

(1− x)5 +
2 · 6 · 10
1 · 2 · 3 ·

x6

(1− x)7 + etc.;

from its further expansion this results

s = 1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

+ 2 · 1 + 2 · 3 + 2 · 6 + 2 · 10 + 2 · 15 + 2 · 21 + 2 · 28 + 2 · 36 + 2 · 45

6 · 1 + 6 · 5 + 6 · 15 + 6 · 35 + 6 · 70 + 6 · 126 + 6 · 210

+ 20 · 1 + 20 · 7 + 20 · 28 + 20 · 84 + 20 · 210

+ 70 · 1 + 70 · 9 + 70 · 45

+ 252 · 1

etc.

COROLLARY 3

§17 From this we conclude that in general the numerical coefficient of the
power xn results expressed in this way

1 +
2
1
· n(n− 1)

1 · 2 +
2 · 6
1 · 2 ·

n(n− 1)(n− 2)(n− 3)
1 · 2 · 3 · 4 + etc.,

which form does not differ from that one which we found in the first problem.

SCHOLIUM

§18 If we consider the form of this sum more accurately, we will easily find
a method which extends a lot further and by means of which even the more
general power (a + bx + cxx)n can be treated such that not only the middle
term of each power but even the terms equally far away from the middle
term can be assigned. Therefore, I will present this method in the following
problem.
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PROBLEM

§19 If each power of the trinomial a + bx + xx is expanded and both the middle
terms and the terms equally far away from the middle term are arranged into series,
to investigate the nature and the sum of these series.

SOLUTION

Consider this formula

1
1− y(a + bx + cxx)

,

which, in expanded form, gives

1 + y(a + bx + cxx) + yy(a + bx + xx)2 + y3(a + bx + cxx)3 + etc.;

since each power of the propounded trinomial occurs here, having expanded
them, it will result

1

y(a + bx + cxx)

y2(a2 + 2abx + 2acx2 + 2bcx3 + ccx4)

+ bb

y3(a3 + 3a2bx + 3a2cx2 + 6abcx3 + 3bbcx4+3bccx5 + c3x6)

+ 3ab2 + b3 + 3aac

etc.;

if first the middle terms, then the terms equally far away from the middle
terms are taken, the following series will result:
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1 + bxy + (2ac + bb)xxyy + (6abc + b3)x3y3 + etc.,

y(a + cxx)(1 + 2bxy + (3ac + 3bb)xxyy + etc.),

y2(a2 + c2x4)(1 + 3bxy + etc.),

y3(a3 + c3x6)(1 + 4bxy + etc.),

y4(a4 + c4x8)(1 + 5bxy + etc.)

etc.

Therefore, having omitted these factors, since powers of xy occur in the series,
let us set xy = z and indicate these series this way:

1 + bz + (2ac + bb)zz + (6abc + b3)z3 + etc. = P,

1 + 2bz + (3ac + 3bb)zz + etc. = Q,

1 + 3bz + etc. = R,

1 + 4bz + etc. = S,

etc.

such that, because of y = z
x , we have

1
1− bz− z

( a
x + cx

)
= P + z

( a
x
+ cx

)
+ zz

( aa
xx

+ ccxx
)

R + z3
(

a3

x3 + c3x3
)

S + etc;

multiply both sides by

1− bz− z
( a

x
+ cx

)
,

and since the quantities P, Q, R etc. depend only on z, arrange all terms
according to both positive and negative powers of z; having done this we will
obtain
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1 = P(1− bz) + Qz(1− bz)cx + Rzz(1− bz)c2x2 + Sz3(1− bz)c3x3 + etc.

− Pzcx − Qzzccx2 − Rz3c3x3

−2Qaczz − Rz3accx − Sz4ac3x2 − Tz5ac4x3

+Qz(1− bz)
a
x
+ Rzz(1− bz)

a2

x2 + Sz3(1− bz)
a3

x3 + etc.,

−Pz · a
x

− Qzz · aa
xx

− Rz3 · a3

x3

−Rz3ac · a
x

− Sz4ac · aa
xx

− Tz5ac · a3

x3

where it is evident that the negative powers of z are reduced to zero by the
same conditions as the positive powers. Therefore, we obtain the following
equations

Q =
P(1− bz)− 1

2aczz
,

R =
Q(1− bz)− P

aczz
,

S =
T(1− bz)−Q

aczz
,

T =
S(1− bz)− R

aaczz

etc.

Therefore, we see that the quantities P, Q, R, S etc. progress as recurring series
with the scale of relation

1− bz
aczz

, − 1
aczz

;

if indices are attributed these quantities, i.e.

0 1 2 3 n

P, Q, R, S, · · · Z
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such that Z is the one which corresponds to the index n, from the nature of
recurring series

Z = A

(
1− bz−

√
(1− bz)2 − 4aczz
2aczz

)n

+ B

(
1− bz +

√
(1− bz)2 − 4aczz
2aczz

)n

;

since we know that the quantity Z is expressed by a series of such a kind that

Z = 1 + (n + 1)bz + · · · zz + · · · z3 + · · · z4 + etc.,

it is obvious that B must be = 0, since otherwise the terms from the preceding
term would result affected by negative powers of z. Therefore, having set
B = 0, it will be

Z = A

(
1− bz−

√
(1− bz)2 − 4aczz
2aczz

)n

.

Now let n = 0 and it has to be

A = P,

but for n = 1 it has to be

A · 1− bz−
√

1− 2bz + (bb− 4ac)zz
2aczz

= Q.

Since A = P and 2aczzQ + 1 = P(1− bz), it follows that

P(1− bz)− P
√

1− 2bz + (bb− 4ac)zz = P(1− bz)− 1

and hence

P =
1√

1− 2bz + (bb− 4ac)2
.

Therefore, the general term of our series P, Q, R, S, · · · Z is

Z =
1√

1− 2bz + (bb− 4ac)2zz

(
1− bz−

√
(1− bz)2 − 4aczz
2aczz

)n

.
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For y = 1 such that x = z, if all powers of the trinomial a + bz + czz are
expanded, the series of intermediate terms 1 + bz + (2ac + bb)zz + etc. will be
= P, but the sum of the terms removed from the middle terms by n places
towards the preceding ones is = anZ, but the sum of the terms removed by as
many placed towards the following terms is = cnznZ. But the sum of all these
series together is

=
1

1− a− bz− czz
.

COROLLARY 1

§20 Therefore, the quantities P, Q, R, S etc, constitute a geometric progressi-
on, the first term of which is

P =
1√

1− 2bz + (bb− 4ac)zz

and the denominator of the progression is

1− bz +
√

1− 2bz + (bb− 4ac)zz
2aczz

.

COROLLARY 2

§21 If we take a = 1, b = 1 and c = 1, the case discussed before results,
in which we considered the powers of the trinomial 1 + z + zz; their middle
terms constitute a series with a sum = 1√

1−2z−3zz
, as we saw above.

PROBLEM

§22 To convert the formula that we found in the preceding problem, i.e.

1√
1− 2bz + (bb− 4ac)zz

(
1− bz−

√
1− 2bz + (bb− 4ac)zz

2aczz

)n

,

into a series, the terms of which progress according to the powers of z.
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SOLUTION

For the sake of brevity, set bb− 4ac = e and put

s =
1√

1− 2bz + ezz

(
1− bz−

√
1− 2bz + ezz

2aczz

)n

,

which relation among z and s must be liberated from irrational quantities by
differentiation. To this end, set

1− bz−
√

1− 2bz + ezz
2aczz

= v

such that

acvvzz− (1− bz)v + 1 = 0,

whence by differentiation

dv(2acvzz− 1 + bz) + vdz(2acvz + b) = 0

or

dv
√

1− 2bz + ezz =
vdz

z
(1−

√
1− 2bz + ezz)

and hence

dv
v

=
dz

z
√

1− 2bz + ezz
− dz

z
.

After logarithmic differentiation of this equation we have

ds
s

=
dz(b− ez)

1− 2bz + ezz
− ndz

z
+

ndz
z
√

1− 2bz + ezz
.

Let us set

dt
t
=

ds
s
+

ndz
z
− dz(b− ez)

1− 2bz + ezz
such that

dt
t
=

ndz
z
√

1− 2bz + ezz
,
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whence by squaring the equation we conclude

zzdt2(1− 2bz + ezz) = nnt2dz2,

which equation differentiated again, where the element dz is assumed to be
constant, gives

zzddt(1− 2bz + ezz) + zdtdz(1− 3bz + 2ezz) = nntdz2

or

ddt
t

+
dz(1− 3bz + 2ezz)

z(1− 2bz + ezz)
· dt

t
− nndz2

zz(1− 2bz + ezz)
= 0.

Since

ddt
t

= d.
dt
t
+

dt2

tt
,

it will be

ddt
t

=
dds

s
− ds2

ss
− ndz2

zz
+

dz2(e− 2bb− 2bez− eezz)
(1− 2bz + ezz)2 +

nndz2

zz
− 2ndz2(b− ez)

z(1− 2bz + ezz)

+
ds2

ss
+

2ndzds
sz

− 2dzds(b− ez)
s(1− 2bz + ezz)

+
dz2(bb− 2bez + eezz)

(1− 2bz + ezz)2 .

Therefore, after the substitution the above equation goes over into this form

dds
s

+
2ndz

z
· ds

s
− 2dz(b− ez)

1− 2bz + ezz
· ds

s
+

n(n− 1)dz2

zz
− 2ndz2(be− z)

z(1− 2bz + ezz)

+
dz2(e− bb)

(1− 2bz + ezz)2 +
dz(1− 3bz + 2ezz)

z(1− 2bz + ezz)
· ds

s
+

ndz2(1− 3bz + 2ezz)
zz(1− 2bz + ezz)

−dz2(b− (e + 3bb)z + 5bezz− 2eez3)

z(1− 2bz + ezz)2 − nndz2

zz(1− 2bz + ezz)
= 0,

where, if the terms divided by (1− 2bz + ezz)2 are collected into one sum, the
numerator and denominator of that fraction can be divided by 1− 2bz + ezz;
thus, after the reduction we obtain
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dds
s

+
2ndz

z
· ds

s
+

dz(1− 5bz + 4ezz)
z(1− 2bz + ezz)

· ds
s
− nndz2(2b− ez)

z(1− 2bz + ezz)
− 3ndz2(b− ez)

z(1− 2bz + ezz)

− dz2(b− 2ez)
z(1− 2bz + ezz)

= 0,

which, properly arranged, gives

zdds(1− 2bz + ezz) + dzds(2n + 1− (4n + 5)bz + 2(n + 2)ezz)

−sdz2((n + 1)(2n + 1)b− (n + 1)(n + 2)ez) = 0.

Since z = 1 for s = 1, let us assume this series

s = 1 + Az + Bzz + Cz3 + Dz4 + Ez5 + etc.;

after the substitution of this series the following form must be reduced to zero

+ 2Bz + 6Czz + 12Dz3 + 20Ez5

− 4Bb − 12Cb − 24Db

+ 2Be + 6Ce

(2n + 1)A + 2(2b + 1)B + 3(2n + 1)C + 4(2n + 1)D + 5(2n + 1)E

− (4n + 5)Ab − 2(4n + 5)Bb − 3(4n + 5)Cb − 4(4n + 5)Db

+ 2(n + 2)Ae + 4(n + 2)Be + 6(n + 2)Ce

−(n + 1)(2n + 1)b − (n + 1)(2n + 1)Ab − (n + 1)(2n + 1)Bb − (n + 1)(2n + 1)Cb − (n + 1)(2n + 1)Db

+ (n + 1)(n + 2)e + (n + 1)(n + 2)Ae + (n + 1)(n + 2)Be + (n + 1)(n + 2)Ce

etc.,

whence we derive these equation:
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A = (n + 1)b,

B =
(n + 2)((2n + 3)Ab− (n + 1)e

2(2n + 2)
,

C =
(n + 3)((2n + 5)Bb− (n + 2)Ae

3(2n + 3)
,

D =
(n + 4)((2n + 7)Cb− (n + 3)Be

4(2n + 4)
,

E =
(n + 5)((2n + 9)Db− (n + 4)Ce

5(2n + 5)

etc.,

where one should note that e = bb− 4ac. And so each term of the series in
question is determined by two preceding ones.
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