
On Solids whose surface can be

unfolded onto a plane *

Leonhard Euler

§1 The property of the cylinder and the cone that their surface can be
unfolded onto a plane is very well-known and this property is even extended
to all cylindrical and conic bodies whose bases have any arbitrary shape; the
sphere on the other hand does not enjoy this property, since its surface can
not be unfolded onto a plane by any means and it can not be covered by a
planar surface; this gives rise to the curious and intriguing question, whether
except for cones and cylinders other classes of solids exist whose surface can
be unfolded onto the plane in the same way or not. Therefore, I decided to
consider the following problem in this dissertation:

To find a general equation for all solids whose surface can be unfolded onto a plane,

whose solution I will attempt to give in various ways.

*Original title: “ De solidis quorum superficiem in planum explicare licet“, first published in
„Novi Commentarii academiae scientiarum Petropolitanae (1771), 1772, pp. 3-34“, reprinted in
„Opera Omnia: Series 1, Volume 28, pp. 161 - 186 “, Eneström-Number E419, translated by:
Alexander Aycock, for the „Euler-Kreis Mainz“
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FIRST SOLUTION DERIVED FROM MERE ANALYTICAL PRINCIPLES

§2 Let (Fig. 1) Z be an arbitrary point on the surface of the solid in question;
let the location of this point, as it customary now, be expressed by three
mutually orthogonal coordinates AX = x, XY = y and YZ = z such that an
equation between these three coordinates is to be found by means of which
the problem will then be solved.

Fig. 1 
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Further, let us assume that the surface of a solid of such a kind has already
been unfolded onto the plane and it is represented in figure 2, in which the
point Z falls on V; next define location of this point V by two orthogonal
coordinates in such a way that it is OT = t and TV = u. Then it is manifest
that the first three coordinates x, y and z have to depend on these two t and
u in a certain way, and hence every single one of them can be considered a
certain function of t and u.
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§3 In order to introduce this condition into the calculation in a more conve-
nient way let us consider it in terms of differentials and, since x, y and z are
functions of the two variables t and u, let us define their differentials by these
formulas:

dx = ldt + λdu, dy = mdt + µdu and dz = ndt + νdu;

here, since the letters l, m, n and λ, µ, ν in the same way denote certain
functions of the two variables t and u, it is clear from the nature of functions
of such a kind1 that is has to be:(

dl
du

)
=

(
dλ

dt

)
,
(

dm
du

)
=

(
dµ

dt

)
and

(
dn
du

)
=

(
dν

dt

)
.

§4 Now, in the unfolded surface (Fig.2) let us,

O T t

V v’

v

Fig. 2

1Euler means functions of two and more variables and refers to what we nowadays know as
Schwartz’s theorem for the partial derivatives of functions of two or more variables
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except for the point V, contemplate two other points infinitely close to it2, v
and v′; for the first of them let the coordinates be

OT = t and Tv = u + du,

for the latter on the other hand:

Ot = t + dt and tv′ = u,

such that the points V and v have the common abscissa OT = t, but the points
V and v′ have the common ordinate = u. Having drawn the infinitely short
lines Vv′ and vv′ the sides of the elementary triangle Vvv′ are determined in
such a way that it is:

Vv = du, Vv′ = dt and vv′ =
√

du2 + dt2,

and now it is easily understood that the same triangle has to be found also in
the surface of the solid in question.

§5 Therefore, in the surface of the solid let z and z′ be the points correspon-
ding to the points v and v′ and let us see, how the three coordinates behave
for those points z and z′. But, the way how the point Z is defined by these
three coordinates, the first = x, the second = y, the third = z, which are all
functions of the two variables t and u, since for the point v the abscissa t
remains the same, but the ordinate u on the other hand is augmented by its
differential du, the three coordinates for the point z of the solid will behave as
this:

I. x + λdu, II. y + µdu and III. z + νdu;

in like manner, because for the point v′ the ordinate u remains the same, the
abscissa t on the other hand is augmented by its differential dt, the three
coordinates for the point z′ will be:

I. x + ldt, II. y + mdt and III. z + ndt.

2Euler always had the idea that there exists a smallest number which is greater than zero. He
explains this idea in his book Ïnstitutiones calculi differentialisïn the context of infinitesimal
calculus. We mention this here, because the concept of infinitely small quantities will occur
several times in this paper.
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§6 But it is known, if for any arbitrary point on the surface of a solid
the coordinates were x, y and z, but for another infinitely close point the
coordinates were x′, y′ and z′, that then the distance of the points will be:

=
√
(x− x′)2 + (y− y′)2 + (z− z′)2;

hence, we will have for the single sides of the triangle Zzz′:

1◦ Zz = du
√

λ2 + µ2 + ν2,

2◦ Zz′ = dt
√

l2 + m2 + n2

and
3◦ zz′ =

√
(λdu− ldt)2 + (µdu−mdt)2 + (νdu− ndt)2

or

zz′ =
√

dt2(ll + mm + nn) + du2(λλ + µµ + νν)− 2dtdu(lλ + mµ + nν).

§7 Now, because the surface of the solid has to agree completely with the
planar figure (Fig. 2), it is necessary that the triangles Zzz′ and Vvv′ are not
only equal but also similar and hence the sides equal homologues3, namely:

I◦. Zz = Vv, II◦. Zz′ = Vv′ and III◦. zz′ = vv′,

whence we obtain the following equations:

I◦. λ2 + µ2 + ν2 = 1

II◦. l2 + m2 + n2 = 1

III◦. dt2(l2 + m2 + n2) + du2(λ2 + µ2 + ν2)− 2dtdu(lλ + mµ + nν) = dt2 + du2;

the third equation, using the first two, is reduced to this one:

lλ + mµ + nν = 0;

these three equations contain the solution of our problem, whence it is under-
stood that it can be reduced to the following analytical problem:

3By this Euler means that the triangles must actually be identical; confer the following
equations.
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ANALYTICAL PROBLEM

Having propounded the two variables t and u to find six functions l, m, n and λ, µ, ν

of them of such a kind that the following six conditions are fulfilled:

I◦.
(

dl
du

)
=

(
dλ

dt

)
, II◦.

(
dm
du

)
=

(
dµ

dt

)
, III◦,

(
dn
du

)
=

(
dν

dt

)
,

IV◦. ll + mm + nn = 1, V◦. λλ + µµ + νν = 1,

VI◦ lλ + mµ + nν = 0,

which problem considered for itself seems to be most difficult for a long time;
we will nevertheless be able to exhibit a beautiful solution of it below.
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SECOND SOLUTION DERIVED FROM GEOMETRICAL PRINCIPLES

§8 In order to derive this solution from first principles let us consider eit-
her prismatic or pyramidal bodies which, having excluded the bases, are
understood to be covered by a chart, and on this chart rectilinear sharp bends
will then be detected which are either parallel to each other or converge to a
certain point, the vertex of the pyramid, of course. Denote these, either parallel
or converging, straight lines, by the letters Aa, Bb, Cc, Dd etc. Therefore, if
the chart is unfolded onto the plane, in it the same straight lines Aa, Bb, Cc
etc. will occur, and they will be either parallel to each other or converge to a
certain point. Hence vice versa, if such straight lines are drawn on the planar
chart, according to which the chart can be folded, it will be apt for covering a
certain prismatic or pyramidal body.

§9 It will even be possible to draw the lines Aa, Bb, Cc, Dd etc. on the chart
arbitrarily such that they are neither parallel to each other nor converge to a
certain point, as long as they never cross each other, as figure 3 shows;

A

a

B

b

C
c

D

d

Fig. 3

for, no matter how this chart is folded according to these lines, it will always
possible to conceive a solid of such a kind, which would then by covered by
this folded chart. From this it is plain that except for prismatic or pyramidal
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bodies also other classes of bodies exist which can be covered by a chart this
way and whose surface can therefore be unfolded onto a plane.

§10 Therefore, in the surface of these bodies any number of straight lines
Aa, Bb, Cc, Dd etc. will be given which, even though they are neither parallel
nor converge to a certain point, will nevertheless be of such a nature that any
two, very close4 to each other, such as Aa and Bb or Bb and Cc or Cc and
Dd etc., if they are not parallel, at least intersect in a single point if they are
elongated; for, if this would not happen, the space intercepted between two
lines infinitely close to each other of such a kind in the surface of the body
would not be planar and therefore it would not be possible to unfold the
surface onto the plane, although there are arbitrary many straight lines Aa, Bb,
Cc etc. in it. From this we conclude that it does not suffice for bodies, meeting
the condition that they can be unfolded onto the plane, that it is possible to
draw an arbitrary number of lines Aa, Bb, Cc etc. on them; but furthermore it
is required that two lines infinitely close to each other are in the same plane
and the space contained between them itself is planar.

§11 Now, let us increase the number of the straight lines Aa, Bb, Cc etc.
to infinity such that our body obtains a curved surface everywhere, as our
problem postulates it because of the law of continuity. And now it is indeed
immediately clear that a surface of such a kind has to be of such a nature that
from any arbitrary point assumed in it at least one straight line can be drawn
which lies in the surface completely; but this condition alone does not exhaust
the whole character of our problem, but additionally it is necessary that any
two lines, infinitely close to each other, of this kind lie in the same plane; this
means that, if they are not parallel, they at least meet in one point, if one
would elongate them. Hence, if those single lines are elongated to the point of
intersection this way, all these points of intersection will be found to lie on a
certain curve. Because this curve does not lie in one plane completely, it will
have two curvatures and will be of such a nature that its single elements, if
they are elongated, exhibit those lines Aa, Bb, Cc etc. mentioned above in the
surface of the body.

§12 Therefore, as any body convenient for our problem leads to a certain
curve with two curvatures, so vice versa having assumed a curve of this kind

4Euler means infinitely close by this
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arbitrarily we will be able to determine a body from it solving our problem.
But, at first project such a curve onto the plotting table plane, and let (Fig. 4)
its projection be aUu;

Fig. 4
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for this we want to put the abscissa AT = t and the ordinate Tu = u such
that an equation between t and u is considered as given, and let UM be the
tangent of this curve at the point U, the line um on the other hand the tangent
at point u infinitely close to U; having constituted all this let bVv be the curve
with the two curvatures, whose ordinate orthogonal to our plane shall be put
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UV = v, and let v be the closest point on the same curve, and draw tangents
starting from both points V, v; let the first of these tangents, VS, intersect the
line UM in the point S and let the other, vs, intersect the line rm in the point s.
Here, we certainly could have drawn the infinitely close tangents in the points
u and v, but, since it will be necessary in the following, it seemed advisable to
indicate them in the figure already here as we did.

§13 Therefore, because the nature of the curve bVv is expressed by two
equations between the coordinates AT = t, Tu = u and UV = v, the letters
u and v can be considered as a function of t, whence at the same time the
position of both tangents UM and VS will be defined; hence let us to call the
angles TUM = ζ and UVS = ϑ; and having put the element Tt = dt it will be

du =
dt

tan ζ
, Uu =

dt
sin ζ

,

then on the other hand it will be

dv =
dt

sin ζ tan ϑ

and finally the element of the curve will be

Vv =
dt

sin ζ sin ϑ
.

But, for the position of the tangents we will have

TM = u tan ζ, UM =
u

cos ζ
,

the line on the other hand

US = v tan ϑ and VS = v sec ϑ =
v

cos ϑ
.

§14 Since now the whole line VS lies in the surface of the body in question,
let us take an indefinite point Z on that curve, whence having dropped the
perpendicular ZY to the plotting table plane from that point Z and having
drawn the normal YX from the point Y to the axis AT, we will have the three
coordinates we contemplated above, of course AX = x, XY = y and YZ = z,
for the surface in question; therefore, the correct equation between them, by
which the nature of this surface is expressed is to be investigated.
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§15 For this aim, let us call the indefinite interval VZ = s which therefore is
a variable quantity not depending on the point V and hence is to be distin-
guished carefully from the variable t; recall that not only the two ordinates
TU = u and UV = v are functions of this variable t, but also the two angles ζ

and ϑ are. Hence, we obtain

ZY = z = v− s cos ϑ

and the interval

UY = s sin ϑ,

whence we further conclude

XY = y = u− s sin ϑ cos ζ

and

XT = s sin ϑ sin ζ,

and so we finally obtain the abscissa

AX = x = t− s sin ϑ sin ζ,

such that by means of the two variables t and s our three coordinates are
succinctly determined this way:

I◦. x = t− s sin ϑ sin ζ,

II◦. y = u− s sin ϑ cos ζ,

III◦. z = v− s cos ϑ.

§16 Therefore, against all expectations it happens here that we even found
algebraic formulas for the three coordinates x, y, z, if one takes algebraic
functions of t for the quantities u and v. For, these functions are completely
arbitrary; but having assumed them, the two angles ζ and ϑ are determined
in such a way that it is tan ζ = dt

du or

sin ζ =
dt√

dt2 + du2
and cos ζ =

du√
dt2 + du2

,
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then on the other hand

tan ϑ =
dt

dv sin ζ
=

√
dt2 + du2

dv
and hence

sin ϑ =

√
dt2 + du2

√
dt2 + du2 + dv2

and cos ϑ =
dv√

dt2 + du2 + dv2
.

But therefore, if vice versa the two angles ζ and ϑ were given in terms of the
variables t, the ordinates u and v will be found expressed by the following
integral formulas

u =
∫ dt

tan ζ
and v =

∫ dt
sin ζ tan ϑ

.

§17 Therefore, completely all solids whose surface can be unfolded onto the
plane are necessarily contained in these formulas. Therefore, it will especially
be worth one’s while to show how the conic bodies are contained in them,
since the cylindrical bodies are seen to be already contained in the conic
bodies by moving the vertex to infinity. Therefore, let the point V be the vertex
of the cone; since this vertex is fixed, the variables t, u and v will also have
constant values. Since there is no obstruction that this vertex is taken in the
fixed point A itself, we will be able to put t = 0, u = 0 and v = 0; but then
because of

tan ζ =
dt
du

and tan ϑ =
dt

dv sin ζ
=

√
dt2 + du2

dv
these angles ζ and ϑ turn out to be indefinite; nevertheless they are indefinite
only in such a way that the one can be considered as a certain function of
the other, since all things extending to the position of the lines VS are to be
referred to one single variable.

§18 Therefore, because it is t = 0, u = 0 and v = 0, we will have:

I◦. x = −s sin ϑ sin ζ,

II◦. y = −s sin ϑ cos ζ,

and III◦. z = −s cos ϑ,
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whence it is x
y
= tan ζ and

x
z
= tan ϑ sin ζ,

from which it is concluded

sin ζ =
x√

xx + yy

and hence from this it follows

tan ϑ =

√
xx + yy

z
;

therefore, since tan ϑ becomes equal to an arbitrary function of tan ζ, we will
have such an equation:

√
xx + yy

z
= Φ :

(
x
y

)
,

and so the quantity
√

xx+yy
z will become equal to a homogeneous function of

no dimension of x and y5 and hence further the quantity z will become equal
to a homogeneous function of one dimension of x and y, or, what reduces to
the same, the equation between x, y and z will be of such a nature that in it
the three variables x, y and z will add up to the same number of dimensions
everywhere. Therefore, if one of the coordinates x, y and z becomes infinite,
the equation for the solid will only contain the two remaining variables which
is a criterion for cylindrical bodies.

§19 We do not spend more time on the consideration of other solids solving
our problem here, because below we will explain a third method, by which we
are able to cognize all species of bodies of this kind a lot more easily. While
this second method provided us with such a simple solution, although by
means of the first method hardly any solution could be hoped for, we will
nevertheless now also be able to expand the first solution further and even
resolve those analytical formulas, what on first sight seemed to be exceedingly
difficult; having done this it will illustrate the whole analysis very well. To do
this it will only be necessary that we carefully reduce this second solution to
the elements of the first.

5Euler means that this is a homogeneous function with degree of homogeneity = 0. The term
degree of homogeneity did not exist back then, of course.
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APPLICATION OF THE SECOND METHOD TO THE FIRST SOLUTION

§20 Since in the second solution we have already found formulas for the
three coordinates x, y and z, in which formulas the nature of the solid is
contained, we will have to elaborate on this a bit more in order to investigate
also formulas for the planar figure onto which the surface of the solid is
unfolded. Here, especially that curve bVv with the two curvatures is to be
studied more accurately, which by unfolding the surface is also reduced to the
plane. But because this curve by means of inflections can be reduced to the
plane in infinitely many ways and can even be stretched out into a straight
line this way, it is especially to be inquired, how this reduction to the plane has
to be actually done. From the things mentioned above it is indeed manifest
that this reduction has to happen in such a way that (Fig. 4) any two infinitely
close tangents VS and vs conserve the same mutual position to each other
or that the angle Svs enclosed between them remains the same. Of course,
the curve bVv itself is to be reduced to the plane in such a way that any two
infinitely close elements of it conserve the same inclination to each other.

§21 Therefore, the main task reduces to this that we find the infinitely small
angle Svs; for this aim one has to start from the angle MUm. But because it is

angle TUM = ζ and angle tum = ζ + dζ,

it manifestly follows that the angle Mum = dζ; further, because we already
found US = v tan ϑ above, from the nature of differentials it will be:

us = v tan ϑ + d(v tan ϑ) = v tan ϑ + dv tan ϑ +
vdϑ

cos2 ϑ
,

where

dv =
dt

sin ζ tan ϑ
;

therefore, because it is

Uu =
dt

sin ζ
,

it will be

Us = v tan ϑ + dv tan ϑ +
vdϑ

cos2 ϑ
− dt

sin ζ
= v tan ϑ +

vdϑ

cos2 ϑ
.
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Therefore, from S drop the perpendicular Sr to Us that one has

rs =
vdϑ

cos2 ϑ
,

then it will indeed be

Sr = vdζ tan ϑ,

whence also the element Ss could be defined, if it would be of any necessity.

§22 Now, from the point r let us drop the perpendicular rρ to the tangent vs,
that having drawn Sρ it becomes normal to vs, where it is to be noted that the
triangle Srρ will have an right angle at r, because Sr is normal to the plane
sUV itself. Because

angle rsρ = 90◦ − ϑ,

it will be

rρ = sr · sin rsρ =
vdϑ

cos ϑ
,

whence it is calculated

Sρ =

√
vvdζ2 tan2 ϑ +

vvdϑ2

cos2 ϑ
=

v
cos ϑ

√
dζ2 sin2 ζ + dϑ2.

Therefore, because it is VS = v
cos ϑ , hence it is concluded

angle SVs =
Sρ

VS
=
√

dζ2 sin2 ϑ + dϑ2.

§23 Therefore, we found the angle SVs which the two infinitely close ele-
ments of the curve enclose; from this one can determine the radius of curvature
of this curve in the point V very quickly; of course, it is

Vv
SVs

=
dt

sin ζ sin ϑ
√

dζ2 sin2 ϑ + dϑ2
,

which task is therefore not impeded by the two curvatures; it is enough to
have remembered this in the transition. But because here the main issue is the
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determination of the elementary angle SVs, let us call the angle SVs = dω

such that it is

dω =
√

dζ2 sin2 ϑ + dϑ2 or dω2 − dϑ2 = dζ2 sin2 ϑ;

here, because the two angles ζ and ϑ are determined by the variable t and the
two ordinates u and v are also functions of t, it is clear that also the angle ω

has to be considered as a function of the same variable t.

§24 Now, according to the prescriptions given above (Fig. 5)

Fig. 5
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let the curve bVv with the two curvatures be described in the plane, such that
the angle SVs between two tangents infinitely close to each other will be = dω,
and having related this curve to the axis OP by means of the ordinate PV it
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is evident that the angle PVS will be = ω. But let us put these coordinates
OP = p and PV = q, and we will have

dp
dq

= tan ω,

and the element of the curve is

Vv =
dp

sin ω
,

but on the other hand by means of the preceding coordinates t, u and v with
the angle ζ and ϑ the same element was

Vv =
dt

sin ζ sin ϑ
,

whence as a logical consequence we obtain

dt sin ω = dp sin ζ sin ϑ,

which combined with the equation dp
dq = tan ω will give the following integral

values for the present coordinates p and q

p =
∫ dt sin ω

sin ζ sin ϑ
and q =

∫ dt cos ω

sin ζ sin ϑ
;

having found these quantities p and q, which likewise are functions of the
same variable t, take the interval VZ = s, which is the other variable to be
introduced into the calculation, and having dropped the perpendicular ZT
from the point Z to the axis, we find

OT = p− s sin ω and TZ = q− s cos ω.

§25 Therefore, since we obtained the determination for the point Z reduced
to the plane, let us put its coordinates OT = T and TZ = U, which are defined
by the two variables t and s in such a way that it is

T = p− s sin ω =
∫ dt sin ω

sin ζ sin ϑ
− s sin ω,

U = q − s cos ω =
∫ dt cos ω

sin ζ sin ϑ
− s cos ω,
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where it is to be noted that the angle ω depends on the angles ζ and ϑ in such
a way that it is

dω =
√

dζ2 sin2 ϑ + dϑ2.

These coordinates T and U are indeed the same we denoted by the letters
t and u in the first solution; hence having made the same change there the
formulas found for the solid there reduce to these

dx = ldT + λdU, dy = mDT + µdU, dz = ndT + νdU

while the conditions, we found there, remain the same, of course:

ll + mm + nn = 1, λλ + µµ + νν = 1, and lλ + mµ + nν = 0.

But here for the same coordinates x, y and z for the solid we found the
following values:

x = t− s sin ϑ sin ζ, y = u− s sin ϑ cos ζ and z = v− s cos ϑ,

which because of

du =
dt

tan ζ
and dv =

dt
sin ζ tan ϑ

,

differentiated yield:

dx = dt− ds sin ϑ sin ζ − sdζ sin ϑ cos ζ − sdϑ sin ζ cos ϑ,

dy =
dt

tan ζ
− ds sin ϑ cos ζ + sdζ sin ζ sin ϑ− sdϑ cos ζ cos ϑ,

dz =
dt

sin ζ tan ϑ
− ds cos ϑ + sdϑ sin ϑ.

§27 Before we proceed any further, it will not be out of place to have noted
the principal relations among these formulas, and at first by eliminating s we
obtain these relations for the finite formulas:
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x cos ζ − y sin ζ = t cos ζ − u sin ζ,

x sin ζ + y cos ζ = t sin ζ + u cos ζ − s sin ϑ,

x sin ζ cos ϑ + y cos ζ cos ϑ− z sin ϑ = t sin ζ cos ϑ + u cos ζ cos ϑ− v sin ϑ.

Further, for the differentials we find the the following:

I◦. dx cos ζ − dy sin ζ = −sdζ sin ϑ,

II◦. dx sin ζ + dy cos ζ =
dt

sin ζ
− ds sin ϑ− sdϑ cos ϑ

and III◦. dx sin ζ cos ϑ + dy cos ζ cos ϑ− dz sin ϑ = −sdϑ.

§28 But because in this new calculation we reduced everything to the two
variables t and s, while in the first calculation we used the two variables T
and U, let us see, how these are expressed by those, and from the formulas
found for T and U we indeed have

dT =
dt sin ω

sin ζ sin ϑ
− ds sin ω − sdω cos ω

and dU =
dt cos ω

sin ζ sin ϑ
− ds cos ω + sdω sin ω;

if we substitute these values in the formulas dx, dy and dz found before and
carefully distinguish the two variables t and s, we will obtain the following
expression:

dx = dt
l sin ω + λ cos ω

sin ζ sin ϑ
− sdω(l cos ω− λ sin ω) − ds(l sin ω + λ cos ω),

dy = dt
m sin ω + µ cos ω

sin ζ sin ϑ
− sdω(m cos ω− µ sin ω)− ds(m sin ω + µ cos ω),

dz = dt
n sin ω + ν cos ω

sin ζ sin ϑ
− sdω(n cos ω− ν sin ω) − ds(n sin ω + ν cos ω),

which we want to compare to those which arose in the last solution which are
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dx = dt − sdζ sin ϑ cos ζ − sdϑ sin ζ cos ϑ − ds sin ζ sin ϑ,

dy =
dt

tan ζ
+ sdζ sin ζ sin ϑ − sdϑ cos ζ cos ϑ− ds cos ζ sin ϑ,

dz =
dt

sin ζ tan ϑ
+ sdϑ sin ϑ − ds cos ϑ;

and first, the terms affected by ds have to be equal on both sides, whence we
obtain these equations:

I◦. l sin ω + λ cos ω = sin ζ sin ϑ,

II◦. m sin ω + µ cos ω = cos ζ sin ϑ,

III◦. n sin ω + ν cos ω = cos ϑ.

§29 Therefore, if these values are now substituted in the first terms, which
involve the differential dt and those depending on it, namely dζ, dϑ and dω,
we will obtain the following equations:

l cos ω − λ sin ω =
dζ cos ζ sin ϑ + dϑ sin ζ cos ϑ

dω
=

d(sin ζ sin ϑ)

dω
,

m cos ω− µ sin ω =
−dζ sin ζ sin ϑ + dϑ cos ζ cos ϑ

dω
=

d(cos ζ sin ϑ)

dω
,

n cos ω − ν sin ω = −dϑ sin ϑ

dω
=

d cos ϑ

dω
.

Here it is especially remarkable that the one variable s went out of these
formulas found here completely such that now the quantities l, λ, m, µ, n, ν

are determined by the single variable t and do not involve the other s at all,
whereas the quantities T and U contain both variables t and s.

§30 Now, we found these two equations for defining the functions l and λ:

l cos ω + λ cos ω = sin ζ sin ϑ,

l cos ω− λ sin ω =
d(sin ζ sin ϑ)

dω
.
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Hence, the first equation multiplied by sin ω+ the second equation multiplied
by cos ω gives:

l = sin ζ sin ϑ sin ω + cos ω
d(sin ζ sin ϑ)

dω
,

but I. cos ω−II. sin ω gives:

λ = sin ζ sin ϑ cos ω− sin ω
d(sin ζ sin ϑ)

dω
.

In the same way the remaining letters will be found as follows:

m = cos ζ sin ϑ sin+ cos ω
d(cos ζ sin ϑ)

dω
,

µ = cos ζ sin ϑ cos ω− sin ω
d(cos ζ sin ϑ)

dω
,

n = cos ϑ sin ω +
cos ω d cos ϑ

dω
,

ν = cos ϑ cos ω− sin ω d cos ϑ

dω
.

Behold these suitable values for the letters l, λ, m, µ and n, ν which are of such
a nature that those three formulas ldT + λdU, mdT + µdT and ndT + νdU
become integrable and even the integrals can easily be exhibited, which of
course are

x = t− s sin ϑ sin ζ, y = u− s sin ϑ cos ζ, z = v− s cos ϑ.

§31 Since our two solutions have to be completely identical to each other,
there is no doubt that the remaining conditions mentioned above are also
fulfilled, it will certainly be:

ll + mm + nn = 1, λλ + µµ + νν = 1, lλ + mµ + nν = 0.

To show this, for the sake of brevity let us put

sin ζ sin ϑ = p, cos ζ sin ϑ = q and cos ϑ = r,

such that it is

pp + qq + rr = 1 and hence pdp + qdq + rdr = 0,
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now, because we have

l = p sin ω +
dp
dω

cos ω,

m = q sin ω +
dq
dω

cos ω,

n = r sin ω +
dq
dω

cos ω,

λ = p cos ω− dp
dω

sin ω,

µ = q cos ω − dq
dω

sin ω,

ν = r cos ω − dr
dω

sin ω,

having done the calculation we will hence find:

1◦ ll + mm + nn = (pp + qq + rr) sin2 ω +
2 sin ω cos ω

dω
(pdp + qdq + rdr)

+
cos2 ω

dω2 (dp2 + dq2 + dr2)

or

ll + mm + nn = sin2 ω +
cos2 ω

dω2 (dp2 + dq2 + dr2),

and so the whole question is now shifted to the investigation of the value
dp2 + dq2 + dr2. But because it is

dp = +dζ cos ζ sin ϑ + dϑ sin ζ cos ϑ,

dq = −dζ sin ζ sin ϑ + dϑ cos ζ cos ϑ

and dr = −dϑ sin ϑ,

we conclude

dp2 + dq2 + dr2 = dζ2 sin2 ϑ + dϑ2 = dω2,

so that it is certain that it is
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dp2 + dq2 + dr2

dω2 = 1,

whence it is manifest that it will be:

ll + mm + nn = sin2 ω + cos2 ω = 1.

§32 In like manner we will find for the Greek letters:

λλ + µµ + νν = (pp + qq + rr) cos2 ω− 2 sin ω cos ω

dω
(pdp + qdq + rdr)

+
sin2 ω

dω2 (dp2 + dq2 + dr2),

which manifestly, as before, yields

λλ + µµ + νν = cos2 ω + sin2 ω = 1.

Therefore, it remains to examine the third property, for which we obtain:

lλ pp sin ω cos ω− pdp
dω

sin2 ω +
pdp
dω

cos2 ω− dp2

dω2 sin ω cos ω,

mµqq sin ω cos ω − qdq
dω

sin2 ω +
qdq
dω

cos2 ω − dq2

dω2 sin ω cos ω,

nν rr sin ω cos ω − rdr
dω

sin2 ω +
rdr
dω

cos2 ω − dr2

dω2 sin ω cos ω;

having collected these into one sum, it will be

lλ + mµ + nν = sin ω cos ω− sin ω cos ω = 0.

And this way we solved the analytical problem mentioned above (§ 7), which
solution can be given in short form as follows.
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ANALYTICAL PROBLEM

§33 Having propounded the two variables T and U to find six functions l, m, n and
λ, µ, ν of them of such a nature that the following six conditions are satisfied:

I◦.
(

dl
dU

)
=

(
dλ

dT

)
, II◦.

(
dm
dU

)
=

(
dµ

dT

)
, III◦.

(
dn
dU

)
=

(
dν

dT

)
,

IV◦ ll + mm + nn = 1, V◦. λλ + µµ + νν = 1,

VI◦. lλ + mµ + nν = 0.

SOLUTION

Having introduced the two new variables s and t into the calculation, introduce
two functions ζ and ϑ of the letter t, which functions are to be considered as
angles, of course; from these form the angle ω in such a way that it is

dω =
√

dζ2 sin2 ϑ + dϑ2.

Then from this the two variables T and U are indeed determined in such a
way that it is

T =
∫ dt sin ω

sin ζ sin ϑ
− s sin ω,

U =
∫ dt cos ω

sin ζ sin ϑ
− s cos ω;

having done this the six functions in question will behave as this

l = sin ζ sin ϑ sin ω +
cos ω

dω
d(sin ζ sin ϑ),

λ = sin ζ sin ϑ cos ω− sin ω

dω
d(sin ζ sin ϑ),

m = cos ζ sin ϑ sin ω +
cos ω

dω
d(cos ζ sin ϑ),

µ = cos ζ sin ϑ cos ω− sin ω

dω
d(cos ζ sin ϑ),

n = cos ϑ sin ω +
cos ω

dω
d cos ϑ,

ν = cos ϑ cos ω− sin ω

dω
d cos ϑ.
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But by means of these three values the following three differential formulas:

I◦. ldT + λdU, II◦. mdT + µdU, III◦. ndT + νdU,

in which the first three conditions are contained, of course, are not only
rendered integrable, but also the integrals will be expressed as follows:

I◦.
∫
(ldT + λdU) = t− s sin ϑ sin ζ,

II.◦.
∫
(mdT + µdU) =

∫ dt
tan ζ

− s sin ϑ cos ζ,

III.◦.
∫
(ndT + νdU) =

∫ dt
sin ζ tan ϑ

− s cos ϑ,

which solution is therefore to be considered as complete because it contains
two arbitrary functions.

§34 This expansion without any doubt is of greatest importance and especi-
ally deserves it that we inquire its single elements with all eagerness. And at
first, because having introduced the letters p, q and r in such a way that it is

pp + qq + rr = 1, and dp2 + dq2 + dr2 = dω2,

we found

l sin ω + λ cos ω = p and l cos ω− λ sin ω =
dp
dω

,

if we differentiate the first equation, we will have

dl sin ω + dλ cos ω + ldω cos ω− λdω sin ω = dp

and hence

dl sin ω + dλ cos ω = 0,

such that it is

dλ

dl
= − tan ω.

In like manner we will indeed also find
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dµ

dm
= − tan ω and

dν

dn
= − tan ω.

Therefore, behold this most beautiful property which intercedes among our
six functions l, m, n and λ, µ, ν and which can also be represented in this way
that it is

dl : dλ = dm : dµ = dn : dν = − cos ω : sin ω.

§35 Therefore, if we consider those things carefully, we will discover certain
traces and following them we will be able to find a direct solution of this most
difficult problem. Of course, having constituted these equations:

dx = ldT + λdU, dy = mdT + µdU, dz = ndT + νdU

it is convenient to observe at first that the quantities l, m, n and λ, µ, ν have
to be functions of one single new variable, which nevertheless has a certain
relation to the two principal variables T and U. Therefore, let ω be this new
variable and let also our six quantities be certain functions of it. And we have
already seen, if the letters p, q and r are such functions of ω, that it then is

pp + qq + rr = 1 and dp2 + dq2 + dr2 = dω2,

that then by putting:

l = p sin ω +
dp
dω

cos ω,

m = q sin ω +
dq
dω

cos ω,

n = r sin ω +
dr
dω

cos ω,

λ = p cos ω− dp
dω

sin ω,

µ = q cos ω − dq
dω

sin ω,

ν = r cos ω − dr
dω

sin ω,

now these three conditions are already fulfilled, namely:
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ll + mm + nn = 1, λλ + µµ + νν = 1 and lλ + mµ + nν = 0;

furthermore, from this we already deduced the extraordinary property that it
is

dλ = −dl tan ω, dµ = −dm tan ω and − dn tan ω,

which will be of immense use for us to fulfill the remaining conditions, as it
will become clear soon.

§36 These three conditions certainly demand that those differential formulas
exhibited for dx, dy and dz are rendered integrable; for this one has to find
the relation among the two variables T and U and ω. To achieve this, by
integrating convert these differential equations into the following forms:

x = lT + λU −
∫
(Tdl + Udλ),

y = mT + µU −
∫
(Tdm + Udµ),

z = nT + νU −
∫
(Tdn + Udν);

now, these three new integral formulas indeed will obtain the following forms:

x = lT + λU −
∫

dl (T −U tan ω),

y = mT + µU −
∫

dm(T −U tan ω),

z = nT + νU −
∫

dn (T −U tan ω).

Since l,m, n are functions of the same variable ω, it is manifest that these three
formulas are indeed rendered integrable, if the expression T −U tan ω was a
function of the new variable ω; hence, if such a function is indicated by the
letter Ω, we will have

T −U tan ω = Ω;

by means of these equations the equation in question between the variables T,
U and ω is determined.
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§37 Hence, if for Ω an arbitrary function of ω is taken, of which also, as we
saw, the letters p, q and r are certain functions, by means of which we already
defined the letters l, m, n and λ, µ, ν, the two variables T and U must be of
such a nature that it is T = Ω + U tan ω; of course, we want to keep only the
two variables U and ω in the calculation and therefore let us introduce this
value instead of T, then our three integral formulas can be represented this
way:

x = lΩ + lU tan ω + λU −
∫

Ωdl,

y = mΩ + mU tan ω + µU −
∫

Ωdm,

z = nΩ + nU tan ω + νU −
∫

Ωdn,

which expressions are easily transformed into the following ones

x = U(l tan ω + λ) +
∫

ldΩ =
Up

cos ω
+
∫

p sin ωdΩ +
∫ dpdΩ

dω
cos ω,

y = U(m tan ω + µ) +
∫

mdΩ =
Uq

cos ω
+
∫

q sin ωdΩ +
∫ dqdΩ

dω
cos ω,

z = U(n tan ω + ν) +
∫

ndΩ =
Ur

cos ω
+
∫

r sin ωdΩ +
∫ drdΩ

dω
cos ω.
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THIRD SOLUTION OF THE PRINCIPAL PROBLEM DERIVED FROM THE
THEORY OF LIGHT AND SHADOW

§38 What is usually treated in Optics on light and shadow, is mostly restric-
ted to the highly special case in which both the shining and the opaque body,
from which the shadow is projected, have a spherical shape; hence either a
cylindrical or a conic or a convergent or divergent shadow arises, depending
on whether the opaque body was either equal to or smaller or larger than
the shining body. But whenever the shape of either the shining or the opaque
body or of both recedes from that of a sphere, we hardly find anything, which
could content us, in the books written on this subject; if we wanted to treat
this subject in general, attributing any shapes to both bodies, the shining and
the opaque, a most difficult question would arise; and this question belongs to
that part of the analysis of the Infinite on functions of two or more variables
which was begun to be constructed not so long ago.

§39 But what especially extends to our undertaking from this theory, is that
the shapes of the shadows are always of such a nature that their surface can
be unfolded onto a plane; hence it is vice versa understood, if we were able to
determine the shape of the shadow for any figure of both the shining and the
opaque body, that then at the same time also our problem will be perfectly
solved.

§40 That the shape of the shadow is indeed always subjected to our problem
can easily be shown this way. Since the shadow is terminated by the most
outer rays of the shining body which at the same time touch upon the opaque
body, first it is plain that infinitely many straight lines are given in the surface
of a certain shadow, since the single rays proceed in straight lines; furthermore,
all these rays will touch upon both the shining and the opaque body, whence,
if any plane is imagined, which those two bodies touch at the same time and
the point of contact on the shining body is denoted by the letter M, on the
opaque on the other hand by the letter m, it is perspicuous that the straight
line Mm, if it is elongated, exhibits the ray of the light by which the shadow
is terminated, which is also to be understood about the other infinitely close
rays, which are emitted from the point M on the same tangential plane, which
rays can also be considered as the tangents of the opaque body, from which
the most excellent property of our problem arises that any two infinitely close
lines to be drawn in the surface at the same time are found in the same plane.
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§41 But this theory of light and shadow extends too far to be discussed here
in more detail; therefore, we will only take everything necessary to solve our
present problem from it. Having put the shape of both the shining and the
opaque body aside let us consider only the shape of a shadowy cone; for this
purpose, let us contemplate two parallel sections distant from a each by a
given interval. Because it is possible to attribute any arbitrary shape to these
sections, it is manifest that this consideration contains completely all shapes
of the shadows.

§42 Therefore, let (Fig. 6) these two sections be normal to the plotting table
plane and be based perpendicularly on the line Aa,

U’

U

Z

T’

T

B
Y

A X a

t

t’ b’

u’

u

Fig. 6

and at first let BUU′ be the curve, whose nature is to be expressed by an
equation between the coordinates AT = T and TU = U; in the same way let
buu′ be another curve different from the first, for which an equation between
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the coordinates at = t, tu = u is given, but put the interval between these
sections Aa = a; here, it will certainly be possible to consider the one section
BUU′ as shining planar disk, and while the other buu′ refers to a opaque
planar disk, the shadow-cone, we contemplate, will arise from the light rays.

§43 But let the points U and u be taken in such a way that the line Uu, if it is
elongated, represents the ray terminating the shadow; because it has to lie in
the plane touching both disks, it is necessary that both elements UU′ and uu′

lie in the same plane together with the line Uu. From this it is perspicuous that
these two elements are parallel to each other, whence it follows that the ratio
between the differentials has to be the same such that it is dT : dU = dt : du;
this is why, if it one puts dU = ϕdT, it will also be du = ϕdt.

§44 Therefore, consider this quantity ϕ as the principal variable, by which
all the remaining one are determined in the following way. For the first curve
BU let T be a function of ϕ, whose nature defines the properties of the curve
BUU′, but then it will be

dU = ϕdT and U =
∫

ϕdT;

it is evident that this way any arbitrary curve can be expressed by means
of the variable ϕ. In like manner for the other curve buu′ the abscissa t will
certainly become equal to a function of ϕ and then one will equally have

du = ϕdt and u =
∫

ϕdt,

whence, because the two curves are completely arbitrary, it is possible to
assume any functions of ϕ for the letters T and t; having done so at the same
time the two ordinates U and u are determined.

§45 Now, let us take an arbitrary point Z on the line Uu; because this
point lies on the surface we investigate, let us drop the perpendicular ZY
intersecting the line Tt to the plotting table plane from that point and from Y
let us draw the normal YX to our axis Aa that for the indefinite point Z we
obtain three coordinates we want to call:

AX = x, XY = y and YZ = z,
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and now it will be easy to find an equation between these three coordinates
by means of which the nature of the surface in question is expressed.

§46 The principles of geometry immediately give us these properties

T− t : a = T − y : x, or Tx − tx = aT − ay,

U−u : a = T − z : x, or Ux− ux = aU − az,

whence by means of the two variables ϕ and x it will be possible to define the
two coordinates y and z, since we will have:

y = T − x(T − t)
a

and z = U − x(U − u)
a

;

for, if the variable ϕ together with the ones depending on it T, t and U, u is
eliminated from these two equations, an equation expressing the nature of
our surface will result.

§47 But we do not want to do such an elimination explicitly, since the nature
of the surface can be seen a lot more clearly from the two equations we
found, which are already so simple that it would be a crime to desire a more
convenient solution; but it will nevertheless be useful to manipulate the forms
of these equations a little bit. In a more general way let us represent the values
for y and z as this

y = P + Qx and z = R + Sx,

where the letters P, Q, R, S now denote functions of the other variable ϕ, and
now the question is: Of what nature must these functions be that the two
exhibited equations define a surface which can be unfolded onto a plane?

§48 Therefore, let us compare these assumed forms to those we found before
and we will have:

P = T and R = U, Q =
t− T

a
, S =

u−U
a

;

here, because T and t are arbitrary functions of ϕ, it is evident that the
functions P and Q can be taken arbitrarily, and since U and u depend on T
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and t, the functions R and S will also have to depend on the first two P and
Q in a certain way. But because it is

T = P, t = P + aQ, U = R and u = R + aS,

let us substitute these values in the fundamental formulas

dU = ϕdT and du = ϕdt

and we will obtain

dR = ϕdP and dR + adS = ϕdP + aϕdQ

or dS = ϕdQ.

§49 Therefore, we will also be able to eliminate the quantity ϕ from the
calculation, because it either is ϕ = dR

dP or ϕ = dS
dQ , such that instead of it

one of the letters R and S are now arbitrary; hence, if P, Q and R were
any arbitrary functions of a certain variable, which is the same for all three
functions6, then S has be such a function of the same variable that it is:

dS =
dQdR

dP
or

dS
dR

=
dQ
dP

;

this solution can even be rendered more beautiful in such a way that we say
that for the letters P, Q, R, S one has to assume functions of certain variable
of such a kind that it is dS

dR = dQ
dP or even dS

dQ = dR
dP ; having done so these two

equations

y = P + Qx and z = R + Sx

will express the nature of the solid in question.

§50 It does not matter by which letter the variable, of which P, Q, R and S
are functions, is indicated; one can even take one of these P, Q, R, S for it. The
remaining ones are then to be understood as functions of that variable. Hence,
as long as one of them retains a constant value, the remaining ones will also
be constant, and then from the variability of x all straight lines which can be
drawn on the surface will arise.

6and not necessarily ϕ
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§51 The prescribed condition dS
dQ = dR

dP will manifestly be fulfilled by taking
the quantities P and R as constants; hence, a particular solution of our pro-
blems follows. For, let us assume that it is P = A and R = B, such that now
S is to be considered as a function of Q. But it is always possible to vary the
coordinates in such a way that A = 0 and B = 0; having done this, because of
Q = y

x , z
x = S will be a homogeneous function of no dimension of x and y, or

z will become equal to a homogeneous function of one dimension of x and y
which is the criterion for a surface of a cone.

§52 The condition is also fulfilled by taking Q = 0 and S = 0 such that R
remains a function of P, in which case a function of y will arise for z; because
the final equation involves only two variables,y and z, it will be an equation
for a cylindrical solid; the same happens, if we put either P = 0 and Q = 0
or R = 0 and S = 0; for, in the first case one has y = 0, in the second on the
other hand z = 0, in both cases it is the equation for a plane.

§53 But to cognize also other species of solids of this kind and to find the
simpler cases let us assume :

P = aϕα, Q = bϕβ, R = cϕγ, S = dϕδ,

and to fulfill the prescribed condition it is necessary that it is

bβ

aα
ϕβ−α =

dδ

cγ
ϕδ−γ,

whence two conditions arise, the first for the exponents

β− α = δ− γ,

the other for the coefficients:

bβ

aα
=

dδ

cγ
,

both of which conditions are met by taking the values as follows:

a =
f g

κ + λ
, b =

f h
κ + µ

, c =
gk

λ + ν
, d =

hk
µ + ν

,

α = κ + λ, β = κ + µ, γ = λ + ν, δ = µ + ν,
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then the equations will be:

y = aϕα + bϕβx, z = cϕγ + dϕδx.

§54 Therefore, substituting some explicit numbers for the powers let us
consider this example:

y = 2ϕ + 3ϕ2x and z = ϕ2 + 2ϕ3x,

whence after the elimination of the letter ϕ the following equation is found7

−4xy3 − y2 + 18xyz + 27x2z2 + 4z = 0,

which is therefore for a solid whose surface can be unfolded onto the plane.

7In Euler’s original paper he gives the equation: 4y3x+ 72y2xxz− yy− 18yxz+ 27xxzz+ 2z =
0; this equation does not give a developable surface. The following equation is correct as it
was pointed about by A. Speiser in the Opera Omnia version.
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