
On various kinds of integrability*

Leonhard Euler

§1 If the variable quantity p is considered without any restrictions and one
asks of what nature the quantity V has to be such that the formula Vdp
becomes integrable, then there is no doubt that the quantity V has to be a
certain function of p. For, I assume the term integrability to be understood in
the broadest sense that, whatever function of p the letter V was, I say that the
formula Vdp is always integrable, and it is of no interest, whether its integral
is expressed algebraically or by logarithms or circular arcs or any higher
transcendental quantities, since it is always possible to exhibit the integral
formula

∫
Vdp by means of quadrature of a certain curve.

§2 But matters behave quite differently, whenever the quantity p is referred
to other variable quantities in a certain way; for, then aside from the functions
of p, it is also possible to attribute other values to the quantity V, which render
the formula Vdp integrable. For the sake of an example, if p is related to the
two coordinates x and y in such a way that

dy = pdx or p =
dy
dx

,

then one can also take x instead of V, since the formula xdp is indeed inte-
grable, since obviously∫

xdp = px −
∫

pdx, because of
∫

pdx = y,
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it will be ∫
xdp = px − y,

of course.

§3 Yes, the same will also happen in the primitive differentials dx and dy;
namely, that the formula Vdx is integrable is not only the case, if V was an
arbitrary function of x, but also in the case V = p, since∫

pdx = y,

in like manner, for the the function
∫

Vdy to become integrable, one will not
only be able to take an arbitrary function of y for V, but also in the case

V =
1
p

it is
∫ dy

p
= x.

§4 To prosecute this subject in more generality, let us call the quantity V
a multiplier, by which a certain differential formula is rendered integrable,
whence from the things mentioned in advance it is clear, if the differential
formula was

either dp or dx or dy,

that the multiplier then is

either V = x or V = p or V =
1
p

.

§5 Although all this might seem trivial and obvious, nevertheless the investi-
gation of multipliers of this kind is often detected to be highly difficult, and
since it is so extremely useful, this way it is possible to solve differential equa-
tion so of second as of higher degrees sufficiently conveniently, which aside
through these tools seem to be completely inaccessible. For, I have already
noted more often that the main task in the integration of differential equations
is reduced to finding appropriate multipliers, from which the investigation
of multipliers of this kind is without a doubt to be considered of highest
importance.
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§6 The occasion to investigate this more accurately was given to me by the
question in which the curve expressed by the coordinates x and y is asked for,
whose radius of curvature is equal to the line√

xx + yy;

for, since having put dy = pdx the radius of curvature is

=
dx
dp

(1 + pp)
3
2 ,

one has to solve this equation

dp

(1 + pp)
3
2
=

dx√
xx + yy

,

each of both sides of which I, not without admiration, discovered to become
integrable by means of the multiplier x + py; for, then for the right-hand side

dx(x + py)√
xx + yy

=
xdx + ydy√

xx + yy
,

whose integral is √
xx + yy;

for the left-hand side on the other hand matters are not so obvious; but having
put

y = px + v

such that

dy = pdx = pdx + xdp + dv and hence dv = −xdp,

we will have

dp(x + py) = xdp + ypdp = x(1 + pp)dp + vpdp = −dv(1 + pp) + vpdp

such that the left-hand side becomes

−dv(1 + pp) + vpdp

(1 + pp)
3
2

,
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whose integral obviously is

= − v√
1 + pp

=
px − y√
1 + pp

,

and so the whole integral equation will be√
xx + yy + C =

px − y√
1 + pp

.

§7 Therefore, considering this I do not doubt any more that all differential
formulas of this kind admit two multipliers such that, if such a formula is
already integrbale per se, which we will call dv in general, aside from natural
multiplier, which are functions of v, also multipliers of a different nature are
given, which are not functions of v, as we saw it to happen in the mentioned
examples.

§8 But as soon as one single multiplier was known, from it infinitely many
other multipliers can be concluded; since the multiplier of the formula dx is p
and

∫
pdx = y, then any arbitrary function of y, which we call Y, if multiplied

by p, will also give a suitable multiplier; for, dx multiplied by Yp gives Ydy,
which is obviously integrable. Further, if X denotes an arbitrary function of x,
the formula dy will have the multiplier X

p ; for, then

Xdy
p

= Xdx

results. Since in like manner ∫
xdp = px − y,

if V denotes an arbitrary function of the formula px − y, then Vx will be a
multiplier of dp, since it will be

Vxdp = V · d(px − y);

but multipliers of this kind, that are concluded in this way from a certain
known multiplier, are all to be considered of the same nature, whence in each
class I will call the most simple of them the primitive one, having known
which, all the remaining ones become known.
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§9 Therefore, if in general a differential formula of this kind is given:

Pdp + Qdx + Rdy,

where P, Q, R are arbitrary functions of x, y and p, which is rendered
integrable by means of the multipliers M, all the remaining multipliers of the
same kind can be found in the following way. Set

M(Pdp + Qdx + Rdy) = dv

such that dv is a true differential, and let V be an arbitrary function of v, and
it will be obvious that also VM will be a multiplier, since then one will have

VM(Pdp + Qdx + Rdy) = Vdv,

which formula is integrable by assumption.

§10 In like manner, if for the same given formula

Pdp + Qdx + Rdy

still another primitive multiplier N had been found, then from it one will
also be able to find infinitely many of the same kind such that this way one
obtained two general formulas for the multipliers of the given differential
formula. Thus, hence the question of greatest importance arises, which will
be worth the effort to consider it separately.

PROBLEM

If the formula

Pdp + Qdx + Rdy

becomes integrable so by the multiplier M as the other one N of different
nature, to find the general expression that contains completely all possible
multipliers of the same formula in it.
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SOLUTION

Since M and N are multipliers, let us put

M(Pdp + Qdx + Rdy) = dv

and

N(Pdp + Qdx + Rdy) = du

and the quantities u and v will be known functions, now let z denote an
arbitrary function of these two variables v and u, whose differential therefore
will have a form of this kind:

dz = Sdv + Tdu,

where the functions S and T will be known from the function z; having already
found this form, I say that the general expression, containing completely all
multipliers in it, will be

= SM + TN;

for, then one will have

(SM + TN)(Pdp + Qdx + Rdy) = Sdv + Tdu = dz,

whose integral by assumption is z, where for z one can take any function of
the two variables v and u as one desires.

§11 To illustrate this with an example, let the formula dp be given, whose
multipliers are known

M = 1 and N = x, thus, hence

dp = dv and xdp = du, and hence

v = p and u = px − y,

thus, if z denotes an arbitrary function of these two variables v and u and

dz = Sdv + Tdu,

the universal multiplier will be S + Tx.
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§12 About this formula it is to be noted that it is absolutely not necessary
that the values of the letters S and T are derived from a certain function z. For,
as long as for the letters S and T functions of v and u of such a kind are taken
that

(
dS
du

)
=
(

dT
dv

)
, then the formula SM + TN will be a suitable multiplier of

the differential formula

Pdp + Qdx + Rdy,

and the integral of the product will be that function z, which can be easily
found from the letters S and T.

§13 But that this formula SM + TN contains completely all multipliers of
the given differential formula in it, is clear since one can always exhibit just
two primitive multipliers M and N of this kind that do not depend on each
other; for, if more multipliers of such a kind could find a place, then that form
would certainly not be general, but another much more general one could
be exhibited; but the reason why only two multipliers of this kind can take
place is that just one relation between our three variables x, y and p is given,
namely p = dy

dx ; for, if we want to proceed further and introduce the letter q
such that

dp = qdx or q =
dp
dx

,

any arbitrary differential formula would even admit three multipliers, as it is
evident from the most simple form dq, which first is integral, or the multiplier
is = 1, the second multiplier is y, since∫

ydq = qy −
∫

qdy but
∫

qdy =
∫

pqdx =
∫

pdp =
pp
2

,

whence ∫
ydq = qy − pp

2
,

the third multiplier is x, since ∫
xdq = xq − p,

from which it is sufficiently clear that three kinds of integrability occur here.
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§14 But let us contemplate only the three variables x, y and p here, while
p = dy

dx , and for it to become clearer that there are always two multipliers, let
us focus on simpler cases, in which it was possible to find these multipliers,
either by a divination or in any other way, which cases we want to add as
follows.

I. αxdp + βpdx.

§15 This formula first is integrable per se, since its integral is

α(px − y) + βy

such the first multiplier is = 1. The other multiplier will be pα−1xβ−1, for
then the integral becomes pαxβ. Therefore, for finding the universal multiplier
from § 10 it will be M = 1 and N = pα−1xβ−1, hence

v = α(px − y) + βy = αpx + (β − α)y and u = pαxβ;

hence, if it was

dz = Sdv + Tdu,

the general multiplier will be

S · 1 + Tpα−1xβ−1.

§16 But in the one case, in which α = 1 and β = 1, this solution becomes
incongruent, in which both multipliers are not different anymore; for, both
of them would become = 1, and this inconvenience even occurs, if β = α; for,
then the first integral is αpx and the other multiplier pα−1xβ−1 would be its
power, and would therefore not be different form the first multiplier, which is
certainly obvious per se, since the whole task just depends on the ratio of α

and β, whence here the new questions arises, whether the in the case β = α

another multiplier can be exhibited, and how it will be expressed, which case
we want to discuss separately.

II. xdp + pdx.
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§17 Concerning the first multiplier = 1, there is no difficulty, since the
integral is pdx, the other multiplier on the the other hand does not reveal
itself so easily; but having studied this more diligently the multiplier shows
itself to be = Lx; for, it will be∫

(xdp + pdx)Lx = pxLx − y,

but in like manner another multiplier is calculated to be y
ppxx ; for, the integral

will become

=
−y
px

+
∫ dy

px
=

−y
px

+ Lx,

and this third multiplier does not differ from the first two, since from the first

M = 1, v = px and N = Lx, u = pxLx − y,

it is obvious that the third integral is a function of u and v, since

u
v
= Lx − y

px
.

Therefore, it is understood from this example that it can often seem that there
are many different multipliers, although they can be reduced to two; to decide
about this, from two multipliers just find the letters v and u, from which one
will always find the remaining integrals, no matter how they were found, to
be constructed.

III. αydp + βpdy.

§18 Here again one multiplier reveals itself immediately, namely pα−1yβ−1,
to which the integral pαyβ corresponds or, what goes back to the same, having
taken the multiplier 1

py , the integral will be

= αLp + βLy = Lpαyβ,

since which is the logarithm of the latter, it is also to be considered to not differ
from the first; but having studied this more diligently the other multiplier is
calculated to be 1

α xy
β−α

α ; for, the integral will be

xpy
β
α −

(
α

β + α

)
y

β+α
α ,
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then the multiplier 1
pp is seen immediately; for, it will be

∫
αydp

pp
= −αy

p
+
∫

αdy
p

= −αy
p

+ αx and
∫ pdy

pp
=
∫ dy

p
= x,

whence the whole integral will be

=
−αy

p
+ (α + β)x,

but this is already contained in the two preceding ones; for, it will be

M = pα−1yβ−1 and v = pαyβ,

N = xyp
β
α and u = xpy

β
α −

(
α

β + α

)
y

β+α
α ,

whence dividing u by

v
1
α

α + β
=

py
β
α

α + β

the integral is (α + β)x − αy
p .

But this reduction does not succeed in the case β = −α, which case we want
to discuss separately.

IV. ydp − pdy.

§19 Since in this case α = 1 and β = −1, the first multiplier will be 1
yy ;

furthermore, one calculates the multiplier x
yy ; for, then it will be∫ x(ydp − pdy)

yy
=

px
y

− Ly,

for, this formula, if differentiated, yields

x(ydp − pdy)
yy

=
pdx + xdp

y
− dypx

yy
− dy

y
because of dy = pdx;

since now we have two multipliers, the one M = 1
yy and the other N = x

yy ,
whence
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v =
p
y

and u =
px
y

− Ly,

if z denotes an arbitrary function of the two quantities v and u, the general
multiplier will be

= M
(

dz
dv

)
+ N

(
dz
du

)
=

1
yy

(
dz
dv

)
+

x
yy

(
dz
du

)
.

V. pdp + xdx.

§20 First, this formula is integrable per se such that

M = 1 and v =
1
2
(pp + xx),

but then another multiplier is detected as the arc, whose tangent is x
p = N;

for, then it will be

∫
(pdp + xdx) arctan

x
p
=

1
2
(pp + xx) arctan

x
p
−
∫ 1

2
(pp + xx)d · arctan

x
p

=
1
2
(pp + xx) arctan

x
p
−
∫ 1

2
(pdx − xdp);

but ∫ 1
2
(pdx − xdp) = y − px

2
,

whence the integral in question will be

1
2
(pp + xx) arctan

x
p
− y +

px
2

.

§21 From these examples it is abundantly clear that finding of multipliers of
this kind is not obvious at all, in most cases it is actually so difficult that it can
even seem that it exceeds the powers of analysis. Nevertheless, I will present
a method here, accommodated to the task at hand, by means of which it is
possible to find such multipliers in most cases.
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§22 Since the reason of two multipliers lies in the fact that the differential
formulas of this kind are of second degree, whence it happens that each of
both multipliers just involves one single integration, and two integrations
also require two multipliers, hence vice versa it will be possible to find both
multipliers, if we perform each of both integrations. Therefore, we will teach
in the following examples, how this method has to be used.

EXAMPLE 1

§23 Given the differential formula xdp + pdx, to find each of its two multi-
pliers. Since this formula is integrable per se, and hence M = 1, put

xdp + pdx = dv and it will be px = v,

and so one integration has been done, for the other, since p = v
x , multiplying

by dx because of pdx = dy we will have dy = vdx
x , whence by integration we

find

y = vLx −
∫

dv · Lx and hence

∫
dvLx = vLx − y = pxLx − y,

whence we understand the formula dvLx to be integrable, since its integral is
pxLx − y; since dv denotes our given formula, xdp + pdx, it is clear that its
multiplier will be Lx.

§24 In the same way one can even find other multipliers; for, since

dy =
vdx

x
, it will also be

dy
v

=
dx
x

,

hence by integrating

y
v
+
∫ ydv

vv
= Lx, thus,

∫ ydv
vv

= Lx − y
v
= Lx − y

px
,

hence the integrable formula is

ydv
vv

or dv · y
vv

,
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and so the multiplier will be

y
vv

=
y

ppxx
,

which can therefore be taken instead of N, whence, since

v = px and u = Lx − y
px

,

if z denotes an arbitrary function of v and u, the general multiplier will be(
dz
dv

)
+

y
ppxx

(
dz
du

)
;

for example, if it was z = vu, it will be(
dz
dv

)
= u and

(
dz
du

)
= v,

whence this multiplier arises:

u +
y

ppxx
v = Lx − y

px
+

y
px

= Lx,

which is the multiplier found first.

EXAMPLE 2

§25 Given the differential formula

αxdp + βpdx,

to find both of its multipliers. Since this formula is already integrable per se,
it will be M = 1, and having put

αxdp + βpdx = dv it will be v = αpx + (β − α)y,

whence one calculates

p =
v

αx
+

(α − β)y
αx

,

which, if multiplied by dx, yields

dy = pdx =
vdx
αx

+
α − β

α
· ydx

x
,
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and hence

dx
x

=
αdy

v + (α − β)y
;

thus, by integrating we will obtain

Lx =
α

α − β
L[v + (α − β)y]−

∫
α

α − β
· dv

v + (α − β)y
,

and so it will be

α
∫ dv

v + (α − β)y
= αL[v + (α − β)y]− (α − β)Lx,

whence it is clear that multiplier of our formula dv will be

α

v + (α − β)y
=

1
px

,

as it is obvious per se; for, then the integral will be

αLp + βLx.

EXAMPLE 3

§26 Given the formula pdp + xdx, to find both of its multipliers. Here, again
the first multiplier is M = 1 and having put

pdp + xdx = dv it will be pp + xx = 2v, whence p =
√

2v − xx

and by multiplying by dx

dy = pdx = dx
√

2v − xx,

put 2v = ss, and it will be

y =
1
2

x ·
√

ss − xx +
ss
2

arcsin
x
s
−
∫ ( xsds

2
√

ss − xx
+ sds arcsin

x
s
− sxds

2
√

ss − xx

)
=

1
2

x ·
√

ss − xx +
ss
2

arcsin
x
s
−
∫

sds arcsin
x
s
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and hence ∫
sds · arcsin

x
s
=

1
2

x
√

ss − xx +
ss
2

arcsin
x
s
− y

=
px
2

+
1
2
(pp + xx) arcsin

x√
pp + xx

− y,

but

sds = pdp + xdx,

whence it is clear that the multiplier of our formula is

arcsin
x√

pp + xx
or arctan

x
p

.

§27 But this operation is too tedious for us to be able to use more complicated
formulas in it; thus, let us try to simplify it as follows. Since we found

dy = dx
√

ss − xx,

let us set x = sz here and it will be

dy = ssdz
√

1 − zz + zsds
√

1 − zz,

which divided by s gives

dy
ss

= dz
√

1 − zz +
zds
s

√
1 − zz

and by integrating

y
ss

+ 2
∫ yds

s3 =
∫

dz
√

1 − zz +
∫ zds

s

√
1 − zz,

where the penultimate term ∫
dz
√

1 − zz

is given absolutely, since it is a certain function of z = x
s , but the last term,

having resubstituted the value x
s for z, goes over into∫ xds

s3

√
ss − xx,
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whence by combining the two integrals affected by ds
s3 we obtain∫ ds

s3 (2y − x
√

ss − xx) =
∫

dz
√

1 − zz − y
ss

,

from where it is clear that the multiplier of our formula

pdp + xdx = sds

is

1
s4 (2y − x

√
ss − xx),

which because of ss = pp + xx is transformed into this form:

2y − px
(pp + xx)2 ,

if which is put = N, it will be

u =
∫

dz
√

1 − zz − y
pp + xx

, while z =
x√

pp + xx
,

and hence it is possible to find the general multiplier easily.

§28 Hence it is clear, if the formula αpdp + βxdx was given, in which case
again

M = 1 and v =
αpp

2
+

βxx
2

,

that the other multiplier will be found to be

N =
2y − xp

(αpp + βxx)2 ;

for, then the integral arising from this will be

u =
∫ sds

s4 (2y − px) =
∫

dz

√
1 − βzz

α
− y

αpp + βxx
,

while

z =
x
s
=

x√
αpp + βxx

.
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EXAMPLE 4

§29 Given the differential formula

pn−1dp + βxn−1dx,

to find its multiplier. Since the one multiplier = 1 is known again, having put
our formula = dv, it will be

pn + βxn = nv,

whence

p = (nv − βxn)
1
n ,

and hence

dy = pdx = dx(nv − βxn)
1
n ,

now set

nv = sn, let x = sz,

we will have

dy = (sdz + zds)s(1 − βzn)
1
n ,

which divided by ss gives

dy
ss

= dz(1 − βzn)
1
n +

zds
s
(1 − βzn)

1
n ,

hence by integrating

y
ss

+
∫ 2yds

s3 =
∫

dz(1 − βzn)
1
n +

∫ zds
s
(1 − βzn)

1
n ,

where the penultimate term is determined, a certain function of

z =
x
s
=

x

(nv)
1
n

,

the last term on the other hand, if one sets z = x
s in it again, goes over into∫ xds

s3 (sn − βxn)
1
n ,
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and because of

(sn − βxn)
1
n = p

it will be ∫ xds
s3 (sn − βxn)

1
n =

∫ pxds
s3 ,

having substituted which it will be∫ ds
s3 (2y − x) =

∫
dz(1 − βzn)

1
n − y

ss
.

But since s = (nv)
1
n , it will be

ds = (nv)
1
n−1dv and

ds
s3 =

dv

(nv)
2+n

n
,

from which the first term will become∫ dv

(nv)
2+n

n
(2y − px),

since whose integral has already been found, it is plain that the multiplier of
the given formula dv is

=
2y − px

(nv)
2+n

n
=

2y − px

(pn + βxn)
2+n

n
.

EXAMPLE 5

§30 Having given the differential formula:

pn−1dp + βxn−1dx = dv,

to finds its our multiplier. Since hence

v =
1
m

pm +
β

n
xn, it will be

p = (mv − mβ

n
· xn)

1
m and dy = pdx = dx(mv − mβ

n
· xn)

1
m ;
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here, again set

mv = sn and x = sz, it will be

dy = (sdz + zds)s
n
m

(
1 − mβ

n
· zn
) 1

m

,

which divided by s
m+n

m yields

dy
s

m+n
m

= dz
(

1 − mβ

n
· zn
) 1

m

+
zds
s

(
1 − mβ

n
· zn
) 1

m

,

hence by integrating

y
s

m+n
m

+
∫ m + n

m
· yds

s
2m+n

m
=
∫

dz
(

1 − mβ

n
· zn
) 1

m

+
∫ zds

s

(
1 − mβ

n
· zn
) 1

m

,

where the penultimate term is a known function of z, but the last term, having
substituted the value x

s instead of z, goes over into∫ xds

s
2m+n

m
(sn − mβ

n
· xn)

1
m =

∫ pxds

s
2m+n

m
,

whence we calculate

∫ ds

s
2m+n

m

(
m + n

m
y − px

)
=
∫

dz
(

1 − mβ

n
· zn
) 1

m

− y
s

m+n
m

,

but since

s = (mv)
1
n , it will be ds =

1
n
· m

1
n v

1
n−1dv

and

ds

s
2m+n

m
=

1
n
· dv

m
m+n
mn v

m+n
mn +1

,

from which one concluded that the multiplier of our given formula is

m+n
m y − px

v
m+n
mn +1

=
m+n

m y − px(
1
m pm + β

n xn
) m+n

mn +1
.
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§31 Up to this point we have considered formulas of such kind that are both
integrable per se and contain just the two variables p and x; but in like manner
it will be possible to treat those formulas that just involve these two variables
p and y, where we certainly assume that they are integrable per se.

EXAMPLE 6

Given the formula

pm−1dp + βyn−1dy = dv,

to investigate its multiplier. First, by integrating we find

v =
1
m

pm +
β

n
yn,

whence

p =

(
mv − mβ

n
· yn
) 1

m

and

dy = pdx = dx(mv − mβ

n
· yn)

1
m

and hence

dx =
dy

(mv − mβ
n · yn)

1
m

,

which equation divided by s
m−n

m gives

dx
s

m−n
m

=
dz(

1 − mβ
n · zn

) 1
m
+

zds

s
(

1 − mβ
n · zn

) 1
m

;

this equation is integrated in the same way as above, and from the penultimate
term again a certain function of z arises; if we resubstitute the value y

s instead
of z in the last term, we obtain

x
s

m−n
m

+
∫ m − n

m
· xds

s
2m−n

m
=
∫ dz(

1 − mβ
n · zn

) 1
m
+
∫ yds

p · s
2m−n

m
;

20



thus, from all this we conclude f∫ ds
s2− n

m

((
1 − n

m

)
x − y

p

)
=
∫ dz(

1 − mβ
n · zn

) 1
m
− x

s
m−n

m
,

since now s = (mv)
1
n , it will be

ds =
1
n
· m

1
n v

1
n−1,

hence

ds
s2− n

m
=

1
n

dv · 1

m
1
n−

1
m v

1
n−

1
m+1

,

whence we conclude that the multiplier of our given formula will be(
1 − n

m

)
x − y

p

v
1
n−

1
m+1

=

(
1 − n

m

)
x − y

p(
1
m pm + β

n yn
) 1

n−
1
m+1

.

§32 Even though these examples seem to extend sufficiently far, nevertheless,
if the matter itself is concerned, they are even still extremely particular ones,
since for v a binomial formula arises for each of both cases, involving the
letters p and x in the penultimate example, but p and y in the last one, and
hence it is hardly clear how these operations have to be executed, if more terms
occur in the value of v. Nevertheless, that investigation can be generalised
quite a bit as follows.

PROBLEM

If Ω was a function of the quantities p and x that it, having put p = xλq, takes
this form xnQ such that Q is a function of q only, then, given the differential
formula dΩ, to find its multiplier.

SOLUTION

Having put dΩ = dv as before such that v = Ω, set p = xλq and by assumption
it will be
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v = xnQ, hence Q =
v
xn ,

now further set xn = v
z that Q = z; now, no matter how many dimensions

of q are contained in the function Q, even if the resolution of this equation
exceeds the possibilities of analysis, nevertheless it is certain that the value of
the root q is expressed by a certain function of z, which we will call Z, such
that q = Z; hence

p = xλZ and dy = pdx = xλZdx,

since now

xn =
v
z

, it will be xλ+1 =
(v

z

) λ+1
n

and

xλdx =
1
n
· zdv − vdz

zz

(v
z

) λ+1
n −1

=
1
n

(
dv · v

λ+1
n −1

z
λ+1

n
− dz · v

λ+1
n

z
λ+1

n +1

)
and multiplying by n

v
λ+1

n
we will have

ndy

v
λ+1

n
=

Zdv

v · z
λ+1

n
− Zdz

z
λ+1

n +1
,

where the last term containing the variable z will give a determined function
of z, the penultimate on the other can, having resubstituted the value v

xn for z,
because of Z = p

xλ goes over into pxdv

v
λ+1

n +1
, whence by integrating we will have

ny

v
λ+1

n
+
∫
(λ + 1)

ydv

v
λ+1

n +1
=
∫ pxdv

v
λ+1

n +1
−
∫ Zdz

z
λ+1

n +1
,

whence ∫ dv

v
λ+1

n +1
(px − (λ + 1)y) =

∫ Zdz

z
λ+1

n +1
+

ny

v
λ+1

n
.

Therefore, we conclude that the multiplier in question of our formula dv = dΩ
is

px − (λ + 1)y

(Ω)
λ+1

n +1
.
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PROBLEM

§33 If Ω was a function of p and y of such a kind that, having put p = yλq,
it obtains this form ynQ, while Q is function of q, then, given the differential
formula dΩ, to find its multiplier.

SOLUTION

Having put dΩ = dv again, it will be v = Ω, and having put p = yλq it will
be v = ynQ and hence Q = v

yn ; now set yn = v
z such that Q = z; since hence

Q is a function of q, by the resolution of the equation q will become equal to a
certain of z, which we will call Z, such that

q = Z hence p = yλZ

and dy = pdx = yλZdx, whence dx =
dy

yλZ
,

but since yn = v
z , it will be

y =
v

1
n

z
1
n

and dy =
1
n

(
dv · v

1
n−1

z
1
n

− v
1
n dz

z
1
n+1

)
,

from where one will have

dx =
1
n

v
1
n−

λ
n −1dv

z
1−λ

n ·Z
− 1

n
· v

1−λ
n dz

Z · z
1−λ

n +1
,

which multiplied by n · v
λ−1

n will yield

ndx · v
λ−1

n =
dv

v · z
1−λ

n · Z
− dz

z
1−λ

n +1 · Z
;

here the integral of the last term obviously is a certain power of z that can at
least be exhibited by means of quadratures; the penultimate term on the other
hand because of

Z = q =
p

yλ
goes over into

dvyλ

pv · z
1−λ

n

and having substituted its value v
yn for z is transformed into
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ydv

p · v
1−λ

n +1
,

whence, by integrating the first term by parts, we obtain

nx · v
λ−1

n −
∫
(λ − 1)x · v

λ−1
n −1dv =

∫ ydv · v
λ−1

n −1

p
−
∫ dz · z

λ−1
n −1

Z
,

and hence one concludes

∫
dv · v

λ−1
n −1

(
(λ − 1)x +

y
p

)
= nx · v

λ−1
n +

∫ dz · z
λ−1

n −1

Z
,

since therefore dv = dΩ, it is clear that the given formula dΩ is rendered
integrable, if it is multiplied by

(Ω)
λ−1

n −1
(
(λ − 1)x +

y
p

)
,

which therefore is the multiplier in question.

§34 Since in the penultimate problem the multiplier of the formula dΩ is

px − (λ + 1)y

(Ω)
λ−1

n +1
,

the multiplier of this formula

dΩ

(Ω)
λ+1

n +1
,

which is even a true differential, whose integral obviously is

n
λ + 1

· 1

(Ω)
λ+1

n
,

will be

px − (λ + 1)y;

since in like manner in the last problem the multiplier of the formula dΩ was
found to be
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(Ω)
λ−1

n −1
(
(λ − 1)x +

y
p

)
,

the multiplier of this formula

dΩ(Ω)
λ−1

n −1,

which also is a true differential, whose integral is

n
λ − 1

· (Ω)
λ−1

n ,

will be

(λ − 1)x +
y
p

;

because of the simplicity of the multipliers these two cases seem to be es-
pecially noteworthy such that it will be worth one’s while to investigate all
differential formulas in general that have such a multiplier, for which aim we
mention this Lemma in advance.

LEMMA

§35 If the multiplier of the differential formula dΩ was V, then vice versa Ω
will be the multiplier of the differential formula dV; for, since∫

ΩdV = VΩ −
∫

VdΩ,

since the formula VdΩ is integrable by assumption, it is necessary that the
formula

∫
ΩdV is also integrable.

PROBLEM

§36 To find all differential formulas dΩ that have this multiplier

αy + px,

while α denotes an arbitray number.
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SOLUTION

Since because of dv = pdx

d(αy + px) = (α + 1)pdx + xdp,

the multiplier of this formula has to be Ω, from which condition one can
determine the quantity Ω. Therefore, let this differential formula be given

(α + 1)pdx + xdp,

for which one has the multiplier

M = 1 and it will be v = αy + px,

the other multiplier will be

N = xα, and then it will then be u = p · xα+1;

thus, if Z denotes an arbitrary function of the two variables

v = αy + px and u = p · xα+1,

the multiplier of our formula in general will be

M
(

dZ
dv

)
+ N

(
dZ
du

)
such that, since

Ω =

(
dZ
dv

)
+ xα

(
dZ
du

)
,

its differential dΩ will contain all differential formulas that have the multiplier
αy + px.

§37 If one takes an arbitrary function of u for Z, it will be(
dZ
dv

)
= 0

and
(

dZ
du

)
will be a certain function of u, which we will call f : u; hence our

Ω will be
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xα · f : u = xα f : p · xα+1,

which form agrees perfectly with the problem in § 32 [see also § 34], where
the multiplier was px − (λ + 1)y, such that α = −(λ + 1). Further, since here
Ω is what

was
dv

v
λ+1

n +1
there,

and so what is Ω here,

was
n

λ + 1
· dv

v
λ+1

n
there,

but there it was

v = xnQ = xnΦ :
p

xλ

such that from this

1

v
λ+1

n
= x−(λ+1) · ∆ :

p
xλ

,

that which form is contained in that one is quite obvious. Thus, hence it is
clear that that problem is a highly particular case of this problem and the
solution of this one extends infinitely further.

PROBLEM

§38 To find all differential formulas dΩ that have the multiplier αx + y
p .

SOLUTION

Since because of dx = dy
p

d ·
(

αx +
y
p

)
= (α + 1)

dy
p

− ydp
pp

,

let us consider this differential as the given formula, whose multiplier Ω is to
be investigated, and since the first multiplier is M = 1, it will be v = αx + y

p ,
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but the other multiplier is calculated to be N = yα, from where u = yα+1

p ;
hence, if Z denotes an arbitrary function of the two variables

v = αx +
y
p

and u =
yα+1

p
,

the general expression for the multiplier in question will be

Ω =

(
dZ
dv

)
+ yα

(
dZ
du

)
,

where one has to note, if a function of just the one variable u is taken for Z,
that this solution then leads to the case of the problem in § 33.

§39 What has been taught about the investigation of multipliers up to this
point is tremendously useful in the resolution of differential equations of
second degree; for, since because of dy = pdx all equations of this order can
be reduced to this form:

Rdp + Qdx + Rdy = 0,

it is obvious, if one multiplier is known, that then immediately a one time
integrated equation, which will be of first order, is obtained, which should
thereafter be treated according to the known rules; but if two multipliers of
the formula were known, then one will immediately be able to find a finite or
two times integrated equation such that repeated integration is not necessary,
which operation we will teach in the following.

PROBLEM

§40 Given the differential equation

Pdp + Qdx + Rdy = 0,

if two of its multipliers M and N are known, to find its finite two times
integrated equation.
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SOLUTION

Since M and N are known multipliers, let us put

M(Pdp + Qdx + Rdy) = dv

and

N(Pdp + Qdx + Rdy) = du,

hence one will have the quantities v and u, no matter how they are conflated
from the three variables p, x and y. Thus, because of the first multiplier it will
be v = a and because of the second u = b, where a and b are two constants,
each of them entering through integration; therefore, since one has two finite
equations between the three variables x, y and p, if p is eliminated from them,
a finite equation between the two coordinates x and y will result or, what is
essentially the same, one will be able to determined two of these letters in
terms of the third from this.

§41 One could easily illustrate this method from the preceding with many
examples, but the problem mentioned at the beginning of the dissertation will
be prototypical for all of them, in which the curve that is to be expressed as an
equation between the two coordinates x and y and whose radius of curvature
is equal to the formula 1

n
√

xx + yy is in question.

EXAMPLE

Given the differential equation of second degree

dp

(1 + pp)
3
2
− ndx√

xx + yy
= 0,

to find a finite equation between x and y by means of two multipliers. We
already above [ §6] that the first multiplier is x + py, whence

dv =
dp(x + py)

(1 + pp)
3
2
− n(xdx + ydy)√

xx + yy
,

and hence it will be

v =
px − y√
1 + pp

− n
√

xx + yy = a.
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But for the other multiplier, since it is not seen that easily, let us investigate so
it as the integral arising from it at the same time; first, let us put y = xz and
because of dy = pdx it will be

pdx = zdx + xdz and hence
dx
x

=
dz

p − z
,

having substituted which value our formula will be

dp

(1 + pp)
3
2
− ndz

(p − z)
√

1 + zz
= 0,

whence having further put z = p+q
1−pq , whence

p − z = −q(1 + pp)
1 − pq

,
√

1 + zz =

√
(1 + pp)(1 + qq)

1 − pq

and

dz =
dp(1 + qq) + dq(1 + pp)

(1 − pq)2 ,

our formula is transformed into this one:

dp

(1 + pp)
3
2
+

ndp(1 + qq) + ndq(1 + pp)

q(1 + pp)
3
2
√

1 + qq
=

(q
√

1 + qq + n(1 + qq))dp + ndq(1 + pp)

q(1 + pp)
3
2
√

1 + qq

or into

q + n
√

1 + qq
q
√

1 + pp

(
dp

1 + pp
+

ndq
q
√

1 + qq + n(1 + qq)

)
;

therefore, it is clear that for the other multiplier one has to take

N =
q
√

1 + pp
q + n

√
1 + qq

,

and then

du =
dp

1 + pp
+

ndq
q
√

1 + qq + n(1 + qq)
,

which formula is integrable and from this it will be
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u =
∫ dp

1 + pp
+
∫ ndq

q
√

1 + qq + n(1 + qq)
= b,

from which either q in terms of p or p in terms of q will be determined; but
then, since

z =
p + q

1 − pq
=

y
x

,

hence

y =
(p + q)x
1 − pq

,

which value, if substituted in the first equation, yields

−qx
√

1 + pp
1 − pq

− nx
√
(1 + pp)(1 + qq)

1 − pq
= a;

therefore, one can now find x, whence

x =
−a(1 − pq)

(q + n
√

1 + qq)
√

1 + pp
,

and since p is given in terms of q or q in terms of p, x will be defined in the
same way; further, it will be

y =
−a(p + q)

(q + n
√

1 + qq)
√

1 + pp
,

which is the complete solution of the problem.
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