
Observations on harmonic

Progressions *

Leonhard Euler

§1 Under the name of harmonic progressions all series of fractions are un-
derstood, whose numerators are equal to each other but whose denominators
on the other hand constitute an arithmetic progression. Therefore, a general
series of this kind is

c
a

,
c

a + b
,

c
c + 2b

,
c

a + 3b
etc.

For, each three contiguous terms, as

c
a + b

,
c

a + 2b
,

c
a + 3b

,

have this property that the differences of the outer term from the middle term
are proportional to the outer terms themselves. Of course, it is

c
a + b

− c
a + 2b

:
c

a + 2b
− c

a + 3b
=

c
a + c

:
c

a + 3b
.

But because this is the property of the harmonic proportion, series of fractions
of this kind were called harmonic progressions. They could also have been called
reciprocals of first order, since in the general term c

a+(n−1)b the index n has
one, more precisely one negative, dimension.

*Original title: “ De Progressionibus harmonicis Obersavatioes“, first published in „Commenta-
rii academiae scientiarum Petropolitanae 7 (1734/35), 1740, p. 150-161 “, reprinted in in „Opera
Omnia: Series 1, Volume 14, pp. 87 - 100 “, Eneström-Number E43, translated by: Alexander
Aycock for „Euler-Kreis Mainz“
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§2 Although in these series the terms continuously decrease, the sum of an
infinite series of this kind is nevertheless always infinite. To demonstrate this
no method to sum these series is necessary, but the truth of the statement
will easily be seen using the following principle. An infinite series, which
has a finite sum, even if it is extended twice as far, will not become larger,
but everything, what is added after the infinitesimal term, will in reality be
infinitely small. For, if this would not be the case, the sum of the infinite series
would not be determined and therefore not finite. Hence it follows, if that,
what results from the continuation beyond the infinitesimal term, is of finite
magnitude, that the sum of the series must necessarily be infinite. Therefore,
applying this principle we will be able to decide, whether the sum of a given
series is infinite or finite.

§3 Therefore, let the series

c
a

,
c

a + b
,

c
a + 2b

etc.

be continued to infinity and let the infinitesimal term be c
a+(i−1)b , while i is

an infinite number, which is the index of this term. Now, continue this series
further from the term c

a+ib to the term c
a+(ni−1)b corresponding to the index ni.

Therefore, the number of additionally added terms is (n− 1)i. But their sum
will be smaller than

(n− 1)ic
a + ib

,

but larger than

(n− 1)ic
a + (ni− 1)b

.

But because i is infinitely large, a can be neglected in each of both denomina-
tors. Hence the sum will be greater than

(n− 1)c
nb

,

but smaller than

(n− 1)c
b

.
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Hence it is perspicuous that this sum is finite and as a logical consequence
the sum of the propounded series c

a , c
a+b etc., if it is continued to infinity, is

infinitely large.

§4 But closer boundaries of this sum of the terms from i to ni are found
using the following properties of the harmonic proportion. Of course, every
harmonic proportion is of such nature that the middle term is smaller than
the third part of the sum of all three. Therefore, the term in the middle of c

a+ib
and c

a+(ni−1)b , which is c
a+ ni+i−1

2 b
, multiplied by the number of terms (n− i)i or

(n− 1)ic
a + ni+i−1

2 b

will be smaller than the sum of the terms. Or the sum of the terms hence will
be greater than

2(n− 1)c
(n + 1)b

because of the infinite i. Furthermore, the arithmetic mean of the most outer
terms is greater than the third part of the sum of the terms. Hence it follows
that also in the harmonic series the sum of terms will be smaller than (n− 1)i
times the arithmetic mean of the most outer terms, which is

(2a + (ni + i− 1)b)c
2(a + ib)(a + (ni− 1)b)

or
(n + 1)c

2nib
.

Hence the sum will be smaller than

(n2 − 1)c
2nb

,

so that these two boundaries are

2(n− 1)c
(n + 1)b

and
(n2 − 1)c

2nb

and hence the sum approximately is

=
(n− 1)c

b
√

n
,

which is the geometric mean of the boundaries.
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§5 From these things is it possible to conclude, in which cases this more
general series

c
a

,
c

a + b
,

c
a + 2αb

etc. to infinity to
c

a + iαb
has a finite or infinite sum. For, let (n− 1)i terms follow after the last term
and the sum of these will be smaller than

(n− 1)c
iα−1b

,

but greater than

(n− 1)c
nαiα−1b

.

Hence, if α was a number greater than 1, the sum of these following terms
will be = 0 and therefore the sum of the progression will be finite. But if it is
α < 1, the sum of the following terms will be infinite, which is why the sum of
the progression itself will be infinite of an infinitely larger degree. Therefore,
among these progressions only the harmonic progression, in which it is α = 1,
has this property that its sum, if continued to infinity, is infinitely large but
the sum of the terms following after the infinitesimal term on the other hand
is finite.

§6 But I investigate in the following way, how large the sum of terms from
the term of the index i to the term of the index ni is. Put the sum of the series

c
a

,
c

a + b
, · · · ,

c
a + (i− 1)b

up to the term of the index i = s, which is a quantity to be determined from a,
b, c and i. Let i grow by 1 and s will be augmented by the following term c

a+ib .
Hence it will be

di : ds = 1 :
c

a + ib
or ds =

cdi
a + ib

.

Hence one finds

s = C +
c
b

log(a + ib),
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while C denotes a certain constant quantity. But it is also clear from this form
that the sum of the same series continued from the beginning to the term of
the index ni will be

= C +
c
b

log(a + nib).

Therefore, the difference of these sums

c
b

log
a + nib
a + ib

=
c
b

log n (while a vanishes)

will give the sum of the terms from c
a+ib to c

a+nib . But because we assigned the

boundaries of this sum above, c
b log n will be greater than 2(n−1)c

(n+1)b and smaller

than (n2−1)c
2nb , or

log >
2(n− 1)

n + 1
and log n <

n2 − 1
2n

.

§7 Below we will show that that quantity C is finite and we will try to
determine it. Therefore, C can be neglected in the sum and the sum of the
progression

c
a

,
c

a + b
, · · · c

a + (i− 1)b
,

while the number of terms is infinite = i, will become

=
c
b

log(a + ib) =
c
b

log i.

Therefore, the sum will approximately be the logarithm of the number of
terms and hence infinitely smaller than the root of arbitrary large power of
the number of terms; nevertheless the sum is infinitely large.

§8 From this consideration innumerable series result which can be used to
express the logarithms of certain numbers. At first, let us take this harmonic
progression

1 +
1
2
+

1
3
+

1
4
+ etc.,

for which it is a = 1, b = 1, c = 1. Therefore, the difference of this series
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1 +
1
2
+

1
3
+ · · ·+ 1

i
continued to the term of the index i to the same

1 +
1
2
+

1
3
+ · · ·+ 1

ni
continued to the term of the index ni will be = log n. Hence that series
subtracted from this one gives log n. But since the number of terms of the
second series is n times greater than the number of the first, from n terms of
the series

1 +
1
2
+ · · ·+ 1

ni
one has to subtract one of the other series

1 +
1
2
+ · · ·+ 1

i
,

that the subtraction to infinity can be done uniformly. Hence it will be

log n = 1 +
1
2
+ · · ·+ 1

n
+

1
n + 1

+ · · ·+ 1
2n

+
1

2n + 1
+ · · ·+ 1

3n
+ etc.

− 1 − 1
2

− 1
3

Therefore, if the single terms of the lower series are actually subtracted from
the terms written over them of the upper series and the integer numbers 2,
3, 4 · · · etc. are substituted for n, we will successively obtain the following
series of logarithms:

log 2 = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+

1
9
− 1

10
+

1
11

+
1
12

+ etc.,

log 3 = 1 +
1
2
− 2

3
+

1
4
+

1
5
− 2

6
+

1
7
+

1
8
− 2

9
− 1

10
+

1
11
− 2

12
+ etc.,

log 4 = 1 +
1
2
+

1
3
− 3

4
+

1
5
+

1
6
+

1
7
− 3

8
+

1
9
+

1
10

+
1

11
− 3

12
+ etc.,

log 5 = 1 +
1
2
+

1
3
+

1
4
− 4

5
+

1
6
+

1
7
+

1
8
+

1
9
− 4

10
+

1
11

+
2
12

+ etc.,

log 6 = 1 +
1
2
+

1
3
+

1
4
+

1
5
− 5

6
+

1
7
+

1
8
+

1
9
+

1
10

+
1

11
− 5

12
+ etc.
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etc.,

Hence a convergent series is easily found for the logarithm of each number.

§9 From these series others of the same form, which have a rational sum,
can be derived. For, since the double of the series = log 2 is log 4, if the series

1 +
1
2
+

1
3
− 3

4
+ etc.

is subtracted from this one

2− 2
2
+

2
3
− 2

4
+ etc.,

the remainder, namely this series

1− 3
2
+

1
3
+

1
4
+

1
5
− 3

6
+ etc.,

will be = 0, or

1
2
=

1
3
+

1
4
+

1
5
− 3

6
+

1
7
+

1
8
+

1
9
− 3

10
+ etc.

Similarly, if the series exhibiting log 6 is subtracted from the sum of the series
exhibiting log 2 and log 3, the residue, namely

1− 1
2
− 2

3
− 1

4
+

1
5
+

2
6
+

1
7
− 1

8
− 2

9
− 1

10
+ etc.,

will be = 0, or

1 =
1
2
+

2
3
+

1
4
− 1

5
− 2

6
− 1

7
+

1
8
+

2
9
+

1
10
− etc.

In like manner, one will be able to find innumerable other series of this kind.

§10 Those series expressing the logarithms certainly converge, but very
slowly; therefore, in order to find the logarithms conveniently using those
series, a certain artifice is required. To find this artifice it must be noted that
these series do not proceed uniformly, but have certain revolutions, which
are absolved in so many terms as n has units; therefore, I will call that many
terms taken simultaneously one member of the series. So in the series for
log 2 two terms will constitute one member, in the series for log 3 three, in
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the series for log 4 and so forth. Therefore, the members will constitute an
equal series and to find logarithms it is necessary to add several members.
For, let us put that m members have already been added to find the logarithm
of two and instead of all the following ones one will be able to add 1

4m , which
will come the closer to the truth, the greater the number m was. To find log 3
add 1

9m to m already added members instead of all the following ones. In like
manner for log 4 one must add 1

16m and so forth. These remarks follow from
the summation method applied in § 6; since in this method m must be a very
large quantity, I neglected the numbers added to m in the differential so that
the integration does not depend on logarithms.

§11 But to determine the sum, even though it is infinite, of the series 1 + 1
2 +

1
3 +

1
4 + · · ·+

1
i accurately, I express the single terms in the following way.

It is

1 = log 2 +
1
3
− 1

3
+

1
4
− 1

5
+

1
6
− 1

7
+ etc.

and

1
2
= log

3
2
+

1
2 · 4 −

1
3 · 8 +

1
4 · 16

− 1
5 · 32

+ etc.,

1
3
= log

4
3
+

1
2 · 9 −

1
3 · 27

+
1

4 · 81
− 1

5 · 243
+ etc.,

1
4
= log

5
4
+

1
2 · 16

− 1
3 · 64

+
1

4 · 256
− 1

5 · 1024
+ etc.

...
1
i
= log

i + 1
i

+
1
i2 −

1
3 · i3 +

1
4 · i4 −

1
5 · i5 + etc.

Having added these series it will result

1 +
1
2
+

1
3
+ · · ·+ 1

i
= log(i + 1) +

1
2

(
1 +

1
4
+

1
9

+
1

16
+ etc.

)
− 1

3

(
1 +

1
8
+

1
27

+
1

64
+ etc.

)
+

1
4

(
1 +

1
16

+
1
81

+
1

256
+ etc.

)
etc.
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Since these series are convergent, if they are summed approximately, it will
result

1 +
1
2
+

1
3
+ · · ·+ 1

i
= log(i + 1) + 0.577218.

If the sum is called s, it will be, as we did it above,

ds =
di

i + 1
and hence s = log(i + 1) + C.

Therefore, we detected the value of this constant C, which is C = 0.577218.

§12 If the series 1 + 1
2 +

1
3 + · · ·+

1
i is continued further to infinity and is

subdivided into members, of which each as the series itself contains i terms,
the member contained within 1

i and 1
2i will be = log 2, the following = log 3

2 ,
the third = log 4

3 etc. And because the series of the sum itself is the logarithm
of infinity, one can analogously put log 1

0 . And this way we will obtain the
following rather curious scheme:

Series

Sums

1 +
1
2
+ · · ·+ 1

i

log
1
0

+ · · ·+ 1
2i

log
2
1

+ · · ·+ 1
3i

log
3
2

+ · · ·+ 1
4i

log
4
3

+ · · ·+ 1
5i

log
5
4

etc.

§13 It might certainly seem to be difficult to find these same properties of
harmonic and logarithmic expressions analytically and in the same way I did
elsewhere to sum series1. But everyone considering the subject with more
attention will easily see that this is not only possible but even possible in
much more generality. For, I consider not the simple harmonic progression
but the one connected to a geometric progression, namely this one

cx
a
+

cx2

a + b
+

cx3

a + 2b
+

cx4

a + 3b
+ etc.

I put its sum s and having multiplied both expressions by bx
a−b

b it will be

bx
a−b

b s =
bcx

a−b
b

a
+

bcx
a+b

b

a + b
+

bcx
a+2b

b

a + 2b
+ etc.

1Euler refers to E20 and E25 again.
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And having taken the differentials one will have

bD.x
a−b

b s = dx
(

cx
a−b

b + cx
a
b + cx

a+b
b + etc.

)
=

cx
a−b

b dx
1− x

.

Having taken integrals again it will be

bx
a−b

b s = c
∫ x

a−b
b dx

1− x
and

s =
c

bx
a−b

b

∫ x
a−b

b dx
1− x

.

From this series I now subtract this one

f xm

g
+

f x2m

g + h
+

f x3m

g + 2h
+ etc.,

whose sum we want to call t. Multiply it by

h
m

x
m(g−h)

h ;

it will be

h
m

x
m(g−h)

h t =
f hx

mg
h

mg
+

f hx
m(g+h)

h

m(g + h)
+

f hx
m(g+2h)

h

m(g + 2h)
+ etc.

And having taken differentials it will be

h
m

D.x
m(g−h)

h t = dx
(

f x
mg−h

h + f x
m(g+h)−h

h + f x
m(g+2h)−h

h + etc.
)
=

f x
mg−h

h dx
1− xm .

Hence one will have

t =
f m

hx
m(g−h)

h

∫ x
mg−h

h dx
1− xm .

And hence

s− t =
c

bx
a−b

b

∫ x
a−b

a dx
1− x

− f m

hx
m(g−h)

h

∫ x
mg−h

h dx
1− xm .
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But this subtraction has to be done in such a way that from the term of the
index m of the series s the first term of the series t is subtracted and from the
term of the index 2m of that series the second of this series and so forth.

§14 To find our logarithmic series, let it be a = b and g = h. Having done
this it will be

s =
c
b

∫ dx
1− x

=
c
b

log
1

1− x
and

t =
f
h

∫ mxm−1dx
1− xm =

f
h

log
1

1− xm .

Therefore

s− t = log
(1− xm)

f
h

(1− x)
c
b

.

But in order for this expression to become finite for x = 1, it must be f
h = c

b ;
therefore, let all these letters become = 1 and it will be

s− t = log
1− xm

1− x
= log(1 + x + x2 + · · ·+ xm−1).

This expression gives the difference of these series

x +
x2

2
+

x3

3
+

x4

4
+

x5

5
+ etc. and

xm

1
+

x2m

2
+

x3m

3
+ etc.

Hence, if it is m = 2, it will be

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ etc.;

if it is m = 3, it will be

log(1 + x + x2) = x +
x2

2
− 2x3

3
+

x4

4
+

x5

5
− 2x6

6
+ etc.

and in like manner

log(1 + x + x2 + x3) = x +
x2

2
+

x3

3
− 3x4

4
+ etc.
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If in these expressions it is x = 1, the same series for the logarithms of natural
numbers as those we gave before [§ 8] will result.

§15 If it is h = 2g, it will be

t =
f x

m
2

h

∫ mx
m−2

2 dx
1− xm .

Put xm = y; it will be

t =
f
√

y
h

∫ dy
(1− y)

√
y
=

f
√

y
h

log
1 +
√

y
1−√y

=
f x

m
2

h
log

1 + x
m
2

1− x
m
2

.

Furthermore, if it is a = b, it will be

s =
c
b

log
1

1− x
.

But s is the sum of this series

cx
a
+

cx2

2a
+

cx3

3c
+ etc.

and

tx
−m

2 =
f
h

log
1 + x

m
2

1− x
m
2

gives this series

f x
m
2

g
+

f x
3m
2

3g
+

f x
5m
2

5g
+ etc.

Let a = 1 and g = 1; it will be

s− tx
−m

2 = c log
1

1− x
− f

2
log

1 + x
m
2

1− x
m
2
= log

(
1− x

m
2

) f
2

(1− x)c
(

1 + x
m
2

) f
2

.

In order for this expression to become finite, if it is x = 1, it is necessary that
it is f

2 = c or f = 2c. Therefore, let c = 1 and m = 2n; the difference of the
series
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x +
x2

2
+

x3

3
+

x4

4
+ etc.

and

2xn

1
+

2x3n

3
+

2x5n

5
+ etc.

will be

= log
1− xn

(1− x)(1 + xn)
.

Put n = 2; the difference will be = log 1+x
1+x2 and for x = 1 it will be = 0,

whence this series

1− 3
2
+

1
3
+

1
4
+

1
5
− 3

6
+

1
7
+ etc.

will be = 0, as we already found above [§ 9].

§16 One can now find infinitely many other series of this kind having a
rational sum from this form log 1+x

1+xx by assuming other similar forms, which
vanish for x = 1. For, from this form log 1+x

1+x2 , if it is expressed by means of a
series, the found series itself immediately results. For, it is

log(1 + x) =
x
1
− x2

2
+

x3

3
− x4

4
+

x5

5
− etc.

and

log(1 + x2) =
x2

1
− x4

2
+

x6

3
− x8

4
+

x10

5
− etc.

Therefore, this series subtracted from the upper gives this series

x
1
− 3x2

2
+

x3

3
+

x4

4
+

x5

5
− 3x6

6
+ etc.,

whose sum will be log 1+x
1+x2 . In like manner, log 1+x

1+x3 will give this series

x
1
− x2

2
− 2x3

3
− x4

4
+

x5

5
+

2x6

6
+

x7

7
− x8

8
− 2x9

9
− etc.

Therefore, having put x = 1 it will be
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0 = 1− 1
2
− 2

3
− 1

4
+

1
5
+

2
6
+

1
7
− 1

8
− 2

9
− etc.,

which same series we found already in § 9.

§17 In this way one will be able to find the sums of all irregular series of
this kind which nevertheless proceed regularly in members; for, they are
always to be considered as the difference of two series. Let, e.g., this series be
propounded

1− 2
2
+

1
3
+

1
4
− 2

5
+

1
6
+

1
7
− 2

8
+ etc.

This is the difference of the series

x +
x2

2
+

x3

3
+

x4

4
+

x5

5
+ etc.

and

3x2

2
+

3x5

5
+

3x8

8
+ etc.

for x = 1. But the sum of that series is log 1
1−x , the sum of the first on the

other hand is
∫ 3xdx

1−x3 or

log
1

1− x
+

1
2

log(x2 + x+ 1)+
√
−3
2

log
2x + 1−

√
−3

2x + 1 +
√
−3
−
√
−3
2

log
1−
√
−3

1 +
√
−3

.

Therefore, having subtracted this one from that one and having put x = 1

−1
2

log 3 +
√
−3
2

log
3 +
√
−3

3−
√
−3
−
√
−3
2

log
1 +
√
−3

1−
√
−3

will result for the sum of the propounded progression. But
√
−3
2 log 3+

√
−3

3−
√
−3

is

indeed the circumference of the circle divided by
√

3 having put the diameter
= 1 and

√
−3
2 log 1−

√
−3

1+
√
−3

is its half.
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§18 But even if the members themselves do not enter the series uniformly,
the sum is assigned without any difficulty. Let us take this series

1− 1
2
+

1
3
+

1
4
− 2

5
+

1
6
+

1
7
+

1
8
− 3

9
+

1
10

+
1

11
+

1
12

+
1
13
− 1

14
+ etc.

This is the difference of these series

1 +
1
2
+

1
3
+

1
4
+

1
5
+ · · ·+ 1

i · i+3
2

and

2
2
+

3
5
+

4
9
+

5
14

+ · · ·+ i + 1
i · i+3

2

continued to infinity in such a way that the most outer terms have the same
denominator i · i+3

2 . But the sum of the first of these series is C + log i + log(i +
3)− log 2, where C denotes the constant found in § 11, namely 0.577218. The
other series which is to be subtracted is resolved into these two

2
3

(
1 +

1
2
+

1
3
+

1
4
+ · · ·+ 1

i

)
and

4
3

(
1
4
+

1
5
+

1
6
+ · · ·+ 1

i + 3

)
The sum of the first series is 2

3 C + 2
3 log i, the sum of the second series on the

other hand is 4
3 C − 22

9 + 4
3 log(i + 3). These two, subtracted from that sum

C + log i + log(i + 3)− log 2, give −C + 22
9 − log 2 or approximately 1.174078

for the sum of the propounded series.
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