
Summation of the progressions

sinλ ϕ + sinλ 2ϕ + sinλ 3ϕ + · · ·+ sinλ nϕ
and

cosλ ϕ + cosλ 2ϕ + cosλ 3ϕ + · · ·+
cosλ nϕ *

Leonhard Euler

§1 Setting

cos ϕ +
√
−1 · sin ϕ = p

and

cos ϕ−
√
−1 · sin ϕ = q

it is known that

cos nϕ =
pn + qn

2
and

sin nϕ =
pn − qn

2
√
−1

,

*Original title: "Summation Progessionum sinλ ϕ + sinλ 2ϕ + sinλ 3ϕ + · · ·+ sinnλ ϕ, cosλ ϕ +
cosλ 2ϕ + cosλ 3ϕ + · · ·+ cosλ nϕ", first published in: Novi Commentarii academiae scien-
tiarum Petropolitanae 18, 1774, pp. 24-36, reprint in: Opera Omnia: Series 1, Volume 15,
pp. 168 - 184, Eneström-Number E447, translated by: Alexander Aycock for the project
„Euler-Kreis Mainz“.
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furthermore that pq = 1. Having constituted all this, it is evident that the
summation of these series can always be reduced to the following two series,
more precisely geometric progressions

pα + p2α + p3α + · · · + pnα =
p(n+1)α − pα

pα − 1
=

pα(1− pnα)

1− pα
,

qα + q2α + q3α + · · · + qnα =
q(n+1)α − qα

qα − 1
=

qα(1− qnα)

1− qα
.

§2 If these two progressions are added such that this one results

pα + p2α + p3α + · · ·+ pnα + qα + q2α + q3α + · · ·+ qnα,

its sum will be

pα − p(n+1)α

1− pα
+

qα − q(n+1)α

1− qα

pα − p(n+1)α − pαqα + p(n+1)αqα + qα − q(n+1)α − pαqα + pαq(n+1)α

1− pα − qα + pαqα
,

which expression, because of pq = 1, is transformed into this one

pα − p(n+1)α − 1 + pnα + qα − q(n+1)α − 1 + qnα

2− pα − qα
,

which further, because of

pα + qα = 2 cos αϕ

and

p(n+1)α + q(n+1)α = 2 cos(n + 1)αϕ

and

pnα + qnα = 2 cos nαϕ,

is reduced to this form

cos αϕ− cos(n + 1)αϕ− 1 + cos nαϕ

1− cos αϕ
= −1 +

cos nαϕ− cos(n + 1)αϕ

1− cos αϕ
,
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which is thus the sum of the propounded series.

§3 If the the second of our progressions is subtracted from the first such that
one has this one

pα + p2α + p3α + · · ·+ pnα − qα − q2α − q3α − · · · − qnα,

its sum will be

pα − p(n+1)α

1− pα
− qα − q(n+1)α

1− qα
,

which parts brought to the common denominator will give+ pα − p(n+1)α − pαqα + p(n+1)αqα

− qα + q(n+1)α + pαqα − q(n+1)α pα

 : (1− pα − qα + pαqα);

since pq = 1, this expression is reduced to pα − p(n+1)α − 1 + pnα

− qα + q(n+1)α + 1 − qnα

 : (2− pα − qα)

and further because of

pα − qα = 2
√
−1 · sin αϕ

and

p(n+1)α − q(n+1)α = 2
√
−1 · sin(n + 1)αϕ

and

pnα − qnα = 2
√
−1 · sin nαϕ,

it is transformed into this expression

sin αϕ− sin(n + 1)αϕ + sin nαϕ

1− cos αϕ

√
−1.
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§4 For the sake of brevity, let us denote the sums of these series by writing
the summation sign

∫
in front of the last term such that the two cases that we

discussed give the following summations∫
(pnα + qnα) = −1 +

cos nαϕ− cos(n + 1)αϕ

1− cos αϕ

and ∫
(pnα − qnα) =

sin αϕ + sin nαϕ− sin(n + 1)αϕ

1− cos αϕ

√
−1;

it will be easy to deduce all cases that are propounded from these formulas.

§5 Therefore, first let λ = 1 such that one has to sum these two series

s = sin ϕ + sin 2ϕ + sin 3ϕ + · · ·+ sin nϕ

or

s =
∫

sin nϕ

and

t = cos ϕ + cos 2ϕ + cos 3ϕ + · · ·+ cos nϕ

or

t =
∫

cos nϕ;

since

sin nϕ =
pn − qn

2
√
−1

and

cos nϕ =
pq + qn

2
,

we will have

2s
√
−1 =

∫
(pn − qn)
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and

2t =
∫
(pn + qn)

such that from the preceding paragraph, because of α = 1, we obtain imme-
diately

2s
√
−1 =

sin ϕ + sin nϕ− sin(n + 1)ϕ

1− cos ϕ

√
−1

and

2t = −1 +
cos nϕ− cos(n + 1)ϕ

1− cos ϕ

and hence

s =
sin ϕ + sin nϕ− sin(n + 1)ϕ

2(1− cos ϕ)

and

t = −1
2
+

cos nϕ− cos(n + 1)ϕ

2(1− cos ϕ)
.

§6 Now let λ = 2, and again set

s = sin2 ϕ + sin2 2ϕ + · · ·+ sin2 nϕ

or

s =
∫

sin2 nϕ

and

t = cos2 ϕ + cos2 2ϕ + · · ·+ cos2 nϕ

or

t =
∫

cos2 nϕ;

since

5



sin2 nϕ =
p2n − 2pnqn + q2n

−4
=

1
2
− p2n + q2n

4
and

cos2 nϕ =
p2n + 2pnqn + q2n

4
=

1
2
+

p2n + q2n

4
,

we will have these formulas

4s = 2
∫

1−
∫
(p2n + q2n)

and

4t = 2
∫

1 +
∫
(p2n + q2n),

where, since the number of terms is n, obviously
∫

1 = n; since α = 2, from
the above results∫

(p2n + q2n) = −1 +
cos 2nϕ− cos 2(n + 1)ϕ

1− cos 2ϕ
,

after the substitution of these values and a division by 4 we will obtain

s =
n
2
+

1
4
− cos 2nϕ− cos 2(n + 1)ϕ

4(1− cos 2ϕ)

and

t =
n
2
− 1

4
+

cos 2nϕ− cos 2(n + 1)ϕ

4(1− cos 2ϕ)

and hence it is clear immediately that

s + t = n,

as the matter of things require it.

§7 Let us set λ = 3 now and represent the series that we have to sum in this
way

s = sin3 ϕ + sin3 2ϕ + · · ·+ sin3 nϕ

or
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s =
∫

sin3 nϕ

and

t = cos3 ϕ + cos3 2ϕ + · · ·+ cos3 nϕ

or

t =
∫

cos3 nϕ.

Since

sin3 nϕ =
p3n − 3p2nqn + 3pnq2n − q3n

−8
√
−1

and

cos3 nϕ =
p3n + 3p2nqn + 3pnq2n + q3n

8
,

and because of pq = 1 we obtain

s =
−1

8
√
−1

∫ (
p3n − q3n − 3pn + 3qn) = −1

8
√
−1

∫ (
p3n − q3n)+ 3

8
√
−1

∫
(pn − qn) ,

but then

t = +
1
8

∫ (
p3n + q3n)+ 3

8

∫
(pn + qn) ;

if we substitute the values that we found above here, both sums in question
will result expressed in this way

s =
− sin 3ϕ− sin 3nϕ + sin 3(n + 1)ϕ

8(1− cos 3ϕ)
+

3 sin ϕ + 3 sin nϕ− 3 sin(n + 1)ϕ

8(1− cos ϕ)
,

t = −1
2
+

cos 3nϕ− cos 3(n + 1)ϕ

8(1− cos 3ϕ)
+

3n cos ϕ− 3 cos(n + 1)ϕ

8(1− cos ϕ)
.
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§8 Let λ = 4 such that these sums are in question

s = sin4 ϕ + sin4 2ϕ + · · ·+ sin4 nϕ

or

s =
∫

sin4 nϕ

and

t = cos4 ϕ + cos4 2ϕ + · · ·+ cos4 nϕ

or

t =
∫

cos4 nϕ.

Since

sin4 nϕ =
p4n − 4p3nqn + 6p2nq2n − 4pnq3n + q4n

16
and

cos4 nϕ =
p4n + 4p3nqn + 6p2nq2n + 4pnq3n + q4n

16
and because of pq = 1 these values follow

s =
1

16

∫ (
p4n + q4n

)
− 1

4

∫ (
p2n + q2n)+ 3

8

∫
1

and

t =
1
16

∫ (
p4n + q4n

)
+

1
4

∫ (
p2n + q2n)+ 3

8

∫
1;

having substituted the values that we gave above we will find

s =
3n
8

+
3

16
+

cos 4nϕ− cos 4(n + 1)ϕ

16(1− cos 4ϕ)
− cos 2nϕ− cos 2(n + 1)ϕ

4(1− cos 2ϕ)

and

t =
3n
8
− 5

16
+

cos 4nϕ− cos 4(n + 1)ϕ

16(1− cos 4ϕ)
+

cos 2nϕ− cos 2(n + 1)ϕ

4(1− cos 2ϕ)

and so it will be easy to expand even greater values of the exponent λ.
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§9 If it is question sums of which kind will result, if those series are continued
to infinity, one will have to be very careful. For, if the exponent λ was an
even number, it is evident that for an infinite number n the sums of these
series will also be infinitely large; on the other hand, if λ is an odd number,
there is no reason why these sums should become infinite; for, then the whole
question reduces to this that the values of the formulas sin nαϕ and cos nαϕ

are assigned, if an infinitely large number is taken for n; but it is perspicuous
that these values can vary from the limit −1 to the limit +1 in this case,
as if n would be a finite number; if this is considered separately, nothing
certain can be confirmed about these sums, since, whatever sum is presented,
if additionally one or more terms are added, a completely different sum
would result. Nevertheless, the illustrious author of the preceding dissertation
assigned the sums in this case using arguments from metaphysics in an
ingenious way such that we can be satisfied in analysis.

§10 Since in these series as in all other non convergent series the notion
of a sum does not make any sense, since, no matter how many terms are
actually added, one nevertheless never arrives at a definite sum, I, basing it on
most solid reasons, emphasised that in these cases another meaning has to be
attributed to the word sum; I think that this new notion must be constituted
in such a way that a sum of an infinite series, no matter whether it converges
or diverges, is the analytical formula from the expansion of which the series
originated; and having admitted this definition, all doubts about summations
of this kind vanish immediately.

§11 That it becomes more clear, let us consider the first series exhibited
above, i.e.

s = sin ϕ + sin 2ϕ + sin 3ϕ + · · ·+ sin nϕ,

for which we found

sin ϕ + sin nϕ− sin(n + 1)ϕ

2(1− cos ϕ)
;

the formulas sin nϕ and sin(n + 1)ϕ enter into this expression because of the
last term; therefore, if this series would actually be continued to infinity these
formulas would go out of the sum such that in this case
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s =
sin ϕ

2(1− cos ϕ)
,

which is the formula, from the expansion of which this series is found; hence
according to my definition, this formula can be considered as the sum of this
series; the same is true for the other series

t = cos ϕ + cos 2ϕ + cos 3ϕ + · · ·+ cos nϕ,

for which we found

t = −1
2
+

cos nϕ− cos(n + 1)ϕ

2(1− cos ϕ)
;

for, omitting the last member that depends just on the last term, by my
definition we will find t = − 1

2 ; since this is not seen that easily, one has to
note that this value originated from the formula

t =
cos ϕ− 1

2(1− cos ϕ)
;

that this value is equal to the propounded series can be shown in this way:
Multiply both sides by 2− 2 cos ϕ and it must be

cos ϕ− 1 = 2 cos ϕ + 2 cos 2ϕ + 2 cos 3ϕ + 2 cos 4ϕ + etc.

−2 cos2 ϕ− 2 cos ϕ cos 2ϕ− 2 cos ϕ cos 3ϕ− etc.;

since in general

2 cos a cos b = cos(a− b) + cos(a + b),

it will be
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2 cos2 ϕ = 1 + cos 2ϕ,

2 cos ϕ cos 2ϕ = cos ϕ + cos 3ϕ,

2 cos ϕ cos 3ϕ = cos 2ϕ + cos 4ϕ,

2 cos ϕ cos 4ϕ = cos 3ϕ + cos 5ϕ,

2 cos ϕ cos 5ϕ = cos 4ϕ + cos 6ϕ,

2 cos ϕ cos 6ϕ = cos 5ϕ + cos 7ϕ

etc.;

having substituted these values the equality is obvious, of course; for, it will
result

cos ϕ − 1 = 2 cos ϕ + 2 cos 2ϕ + 2 cos 3ϕ + 2 cos 2ϕ + etc.

− 1 − 2 cos ϕ − cos 2ϕ − cos 3ϕ − cos 4ϕ − etc.

− cos 2ϕ − cos 3ϕ − cos 4ϕ − etc.

§12 Having observed these things, even for the case λ = 3, for which we set

s = sin3 ϕ + sin3 2ϕ + sin3 3ϕ + sin4 ϕ + etc. to infinity

and

t = cos3 ϕ + cos3 2ϕ + cos3 3ϕ + cos3 4ϕ + etc. to infinity,

the sums of these infinite series will be expressed in this way

s = − sin 3ϕ

8(1− cos 3ϕ)
+

3 sin ϕ

8(1− cos ϕ)
and t = −1

2
;

it is not immediately clear that the expansions of these formulas lead to these
series; nevertheless, it is certain that this is a perfect equality, which will be
understood by those who are experienced in this kind of calculus. Despite all
this, it will be illustrative to show the validity of the last summation in this
way: Since

cos3 a =
3
4

cos a +
1
4

cos 3a,
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this series is resolved into the two following ones

t =
3
4
(cos ϕ + cos 2ϕ + cos 4ϕ + etc.)

+
1
4
(cos 3ϕ + cos 6ϕ + cos 9ϕ + etc.),

but from the preceding the sum of the first series is

3
4
· −1

2
= −3

8
,

the sum of the second sum, for the same reason, reads as

1
4
· −1

2
= −1

8
,

whence both combined give the sum

−1
2

.

GENERAL SUMMATION OF OTHER INFINITE

PROGRESSIONS OF THIS KIND

THEOREM

If the sum of this progression was known

Az + Bz2 + Cz3 + Dz4 + · · ·+ Nzn,

it will always be possible to sum the following progressions, too

S = Ax sin ϕ + Bx2 sin 2ϕ + Cx3 sin 3ϕ + · · ·+ Nxn sin nϕ

and

T = Ax cos ϕ + Bx2 cos 2ϕ + Cx3 cos 3ϕ + · · ·+ Nxn cos nϕ.
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PROOF

Since the sum of the progression

Az + Bz2 + Cz3 + · · ·+ Nzn

is a certain function of the variable quantity z, denote it by the formula ∆ : z;
then, as before, setting

p = cos ϕ +
√
−1 · sin ϕ

and
q = cos ϕ−

√
−1 · sin ϕ

such that

sin nϕ =
1

2
√
−1

(pn − qn)

and

cos nϕ =
pn + qn

2
,

if these formulas are substituted in the propounded series, their sums will be
obtained expressed in this way:

2S
√
−1 = ∆ : px− ∆ : qx

and

2T = ∆ : px + ∆ : qx,

where one has to note that in each of both formulas the imaginary quantities
connected to the letters p and q cancel each other such that real values will
result for the sums S and T; and this summation will succeed, no matter
whether the propounded series is continued to infinity or terminates at some
point.
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EXAMPLE 1

Let all coefficients A, B, C, · · · be = 1 and continue the series to infinity; thus,

∆ : z =
z

1− z
;

therefore, for the first series

S = x sin ϕ + x2 sin 2ϕ + x3 sin 3ϕ + x4 sin 4ϕ + · · · to infinity

we will have

2S
√
−1 =

px
1− px

− qx
1− qx

=
(p− q)x

1− (p + q)x + pqx2 ,

which equation because of

p− q = 2
√
−1 · sin ϕ

and

p + q = 2 cos ϕ

and pq = 1 will give

S =
x sin ϕ

1− 2x cos ϕ + x2 .

For the other series

T = x cos ϕ + x2 cos 2ϕ + x3 cos 3ϕ + x4 cos 4ϕ + · · · to infinity

we will have

2T =
px

1− px
+

qx
1− qx

=
(p + q)x− 2pqx2

1− (p + q)x + pqx2

or

T =
x cos ϕ− x2

1− 2x cos ϕ + x2 .

14



COROLLARY 1

Therefore, if x = 1, the summations given above result, i.e.

S =
sin ϕ

2(1− cos ϕ)
=

1
2

cot
1
2

ϕ

and

T = −1
2

,

which case is even more remarkable, since each term is a variable quantity,
although the sum is a constant quantity.

COROLLARY 2

But often it will be possible to assume the quantity x in such a way that the
sum of the given series becomes equal to a quantity a; for the first series of
sines we will have

x sin ϕ

1− 2x cos ϕ + x2 = a;

and if the letter a is determined from this equation, it will certainly be

a = x sin+x2 sin sin 2ϕ + x3 sin 3ϕ + · · · ,

and in like manner, if we set

x cos ϕ− x2

1− 2x cos ϕ + x2 = a,

find the letter x from this; we will thus also have

a = x cos ϕ + x2 cos 2ϕ + x3 cos 3ϕ + · · ·

EXAMPLE 2

Now let

∆ : z = z +
1
2

z2 +
1
3

z3 +
1
4

z4 + · · · to infinity = log
1

1− z
such that the propounded series are
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S = x sin ϕ +
1
2

x2 sin 2ϕ +
1
3

x3 sin 3ϕ + · · ·

and

T = x cos ϕ +
1
2

x2 cos 2ϕ +
1
3

x3 cos 3ϕ + · · · ;

we will have

2S
√
−1 = log

1
1− px

− log
1

1− qx
= log

1− qx
1− px

or

2S
√
−1 = log

1− x cos ϕ + x
√
−1 · sin ϕ

1− x cos ϕ− x
√
−1 · sin ϕ

;

for the reduction of this formula consider this form

log
f + g

√
−1

f − g
√
−1

,

about which we know, if we set

g
f
= tan ω,

that this logarithm will be = 2ω
√
−1; therefore, find the angle ω such that

tan ω =
x sin ϕ

1− x cos ϕ
,

whence it follows

S = ω.

For the other progression, since

2T = log
1

1− px
+ log

1
1− qx

= − log(1− 2x cos ϕ + x2),

we have

T = −1
2

log(1− 2x cos ϕ + x2).
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COROLLARY

Since for the first progression

x sin ϕ

1− x cos ϕ
= tan ω,

from this we find

x =
tan ω

sin ϕ + cos ϕ tan ω
=

sin ω

sin(ϕ + ω)
;

having substituted this value we will obtain this remarkable summation

ω =
sin ω sin ϕ

sin(ϕ + ω)
+

sin2 ω sin 2ϕ

2 sin2(ϕ + ω)
+

sin3 ω sin 3ϕ

3 sin3(ϕ + ω)
+

sin4 ω sin 4ϕ

4 sin4(ϕ + ω)
+ · · · ;

if ω = π
2 such that sin ω = 1 and sin(ϕ + ω) = cos ϕ, this extraordinary

summation results

π

2
=

sin ϕ

1 cos ϕ
+

sin 2ϕ

2 cos2 ϕ
+

sin 3ϕ

3 cos3 ϕ
+ · · · ,

which series I already obtain in my book Institutiones calculi differentialis from
most different principles; it seemed to be even more remarkable, since, no
matter what is taken for ϕ, the sum always remains the same, i.e. = π

2 .
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