
Proof of the Newtonian Theorem on

the Expansion of the Powers of the

Binomial for the cases in which the

Exponents are not integer numbers *

Leonhard Euler

§1 The theorem, which is usually represented this way

(a + b)n = an +
n
1

an−1b +
n
1
· n − 1

2
an−2b2 +

n
1
· n − 1

2
· n − 2

3
an−3b3 + etc.,

if extended as far as possible, i.e.,assumed to hold for all possible numbers
assumed for the exponent n, constitutes the foundation of whole elementary
analysis; hence it is necessary to demonstrate its truth most rigorously. But
the way, how this theorem was obtained, namely by multiplying the quantity
a + b by itself several times, is of such a nature that only positive integer
numbers result for the exponent n, since by multiplying the quantity a +
b by itself several times, only those powers can result whose exponents
indicate the number of factors, which can obviously only be an integer number.
Nevertheless, there seems to be hardly any doubt that, if this formula was true
for all integer numbers assumed for n, the same will also be true for completely
all numbers, no matter whether they are fractional or even irrational numbers;
although this conclusion is true in this case, this is for other reasons, since one
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can exhibit other cases of such a kind, in which a certain formula is detected
to be true, if the exponent n was a positive integer, but the same formula
can not hold by any means, if fractional values are attributed to the same
exponent.

§2 To illustrate this with an example, let the following series be propounded

1 − an

1 − a
+

(1 − an)(1 − an−1)

1 − a2 +
(1 − an)(1 − an−1)(1 − an−2)

1 − a3

+
(1 − an)(1 − an−1)(1 − an−2)(1 − an−3)

1 − a4 + etc.,

whose value, if the exponent n was a positive integer, is always detected to
be equal to that exponent, and nevertheless it is not possible to conclude
from this that this equality also holds, if one takes other numbers for n; this
property indeed also holds for n = 0; for, then, because of an = 1, the first
term immediately vanishes together with all the following ones, which have
the factor 1 − an = 0, such that in this case our series becomes = 0, i.e. equal
to the exponent n = 0; but then, having taken n = 1, the first term becomes

1 − a
1 − a

= 1,

but the second term, because of 1 − an−1 = 0, vanishes together with all the
following ones, such that in this case n = 1 our series becomes = 1. Let us
also consider the case n = 2, in which the first term becomes

1 − a2

1 − a
= 1 + a,

but the second term yields

(1 − a2)(1 − a)
1 − a2 = 1 − a,

the third term on the other hand vanishes together with all the following ones
because of the factor 1 − an−2 = 0, whence the sum of our series will be = 2,
i.e. equal to n. Let us also set n = 3 and the first term will give

1 − a3

1 − a
= 1 + a + a2,
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the second term gives

(1 − a3)(1 − a2)

1 − a2 = 1 − a3

and the third
(1 − a3)(1 − a2)(1 − a)

1 − a3 = 1 − a − aa + a3,

the fourth term and all the following ones on the other hand, since they
contain the factor 1 − an−3 = 0, vanish, whence our series in this case n = 3
becomes = 3. And in like manner one can show, whatever integer number is
taken for n, that our series will be equal to that number; but it is easily seen,
if one would take n = 1

2 , that this series would deviate immensely from the
value 1

2 .

§3 Therefore, since this formula

n =
1 − an

1 − a
+

(1 − an)(1 − an−1)

1 − a2 +
(1 − an)(1 − an−1)(1 − an−2)

1 − a3 + etc.

is always true, if n was a positive integer number, but this equality does not
hold for other numbers, it is not certain, whether our theorem

(a + b)n = an +
n
1

an−1b +
n
1
· n − 1

2
an−2b2 +

n
1
· n − 1

2
· n − 2

3
an−3b3 + etc.

is true in general, even though we are certain that it is true, if the exponent
n was a positive integer number. Therefore, it is even more necessary to
demonstrate its truth rigorously. I certainly once gave a proof derived from
the analysis of the infinite; but since this analysis is based on our theorem, I
now see that it is to be rejected being based on that source; a proof not based
on this was given by Aepinus in Tomo VIII Novor. Commentar., where he,
assuming the general series

Axn + Bxn−1 + Cxn−2 + etc.

for the formula (x + 1)n, applying a most ingenious method derived the
values of several of the coefficients A, B, C, D etc. and from their agreement
with Newton’s series was then able to conclude that also all the remaining
ones follow the same rule; nevertheless, that extraordinary proof was based
mainly on induction, furthermore it should also be noted that the second
coefficient B can not be obtained by that method, but has to be derived from
other rather unnatural conditions. Hence I am confident that the Geometers
will be grateful for my proof, since in it nothing is based on induction.
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§4 First, we note that, since

a + b = a
(

1 +
b
a

)
,

it will also be

(a + b)n = an
(

1 +
b
a

)n

and hence the whole task is reduced to the expansion of this power(
1 +

b
a

)n

,

which, by putting b
a = x, is further reduced to (1 + x)n, which we know, if the

exponent n was a positive integer number, to be equal to this series

1 +
n
1

x +
n
1
· n − 1

2
x2 +

n
1
· n − 1

2
· n − 2

3
x3 +

n
1
· n − 1

2
· n − 2

3
· n − 3

4
x4 + etc.;

but, if n was not a positive integer number, let us consider the value of this
series as not known and use the sign [n] for it, such that in general we have

[n] = 1 +
n
1

x +
n
1
· n − 1

2
x2 + etc.,

about which we now even do not know more than that in the case, in which n
is a positive integer number, it will be

[n] = (1 + x)n;

but let us investigate, which values this sign [n] obtains in the remaining cases;
it will become clear that it will also in general be

[n] = (1 + x)n,

whatever number is taken for the exponent n, having demonstrated which we
will have proved the theorem.

§5 For this investigation let us multiply two series of this kind or two such
signs [n] and [m] by each other, so that we obtain a series equal to the product
[m] · [n], which is easily seen to be expressed by a form of this kind

1 + Ax + Bx2 + Cx3 + Dx4 + Ex5 + etc.;
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to find out how its coefficients A, B, C, D, E etc. are determined in terms of
the two letters m and n, let us at least start the multiplication

[m] = 1 +
m
1

x +
m
1
· m − 1

2
x2 + etc.,

[n] = 1 +
n
1

x +
n
1

· n − 1
2

x2 + etc.,

[m] · [n] = 1 +
m
1

x +
m
1
· m − 1

2
x2 + etc.,

+
n
1

x +
m
1
· n

1
x2 + etc.,

+
n
1

· n − 1
2

x2 + etc.

If we now compare this initial product to the assumed form

1 + Ax + Bx2 + Cx3 + etc.,

which we assumed to result for the product, it is immediately understood that
it will be

A = m + n and B =
m
1
· m − 1

1
+

m
1
· n

1
+

n
1
· n − 1

1
or

B =
mm − m

2
+ mn +

nn − n
2

,

whence
B =

m + n
1

· m + n − 1
2

.

§6 As it was possible here to determine the first coefficients A and B in terms
of the letters m and n, so it is manifest, if the above multiplication would be
continued, that hence also the following coefficients C, D, E etc. can be defined
in terms of the same letters m and n, although the calculation would become
cumbersome quickly and would require a lot of work. Nevertheless, we are
now able to conclude that all coefficients A, B, C, D, E etc. must be determined
in terms of the same two letters m and n, even though we do not know exactly
how; but here it should especially be stressed that this composition does not
depend on the nature of the letters m and n, but it will be this way, no matter
whether these letters m and n denote integer numbers or any other numbers.
This unusual way of reasoning should carefully be noted, since our whole
proof is based on it.
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§7 Hence this provides us with an easy way to find the true values of all
coefficients A, B, C, D, E etc., of course by considering the letters m and n as
integer numbers, since hence the same determinations result as if they would
denote any other numbers. But considering the letters m and n as integer
numbers we obviously have

[m] = (1 + x)m and [n] = (1 + x)n,

whence the product of these formulas will be

[m] · [n] = (1 + x)m+n;

but now this power expanded into this series is

1 +
m + n

1
x +

m + n
1

· m + n − 1
2

x2 +
m + n

1
· m + n − 1

2
· m + n − 2

3
x3 + etc.

Therefore, if we consider the letters m and n in general, this series must be
denoted by [m + n], whence we obtain this extraordinary truth that always is

[m] · [n] = [m + n],

no matter which numbers are used for these letters.

§8 Therefore, since two of the formulas [m] and [n], if multiplied by each
other, yield a simple formula of that nature, so also several formulas of this
kind, if multiplied by each other, will be reduced to a simple one; namely, we
will have the following reductions

[m] · [n] = [m + n],

[m] · [n] · [p] = [m + n + p],

[m] · [n] · [p] · [q] = [m + n + p + q]

etc.;

hence, if all these numbers m, n, p, q etc. are equal, say = m, we will obtain
the following reductions of the powers

[m]2 = [2m], [m]3 = [3m], [m]4 = [4m] etc.

whence in general it will be
[m]a = [am],

while a denotes an arbitrary integer number.
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§9 Having noted all this in advance, let i be an arbitrary positive integer
number and let us first set 2m = i that m = i

2 , and the first of the last formulas
will give [

i
2

]2

= [i];

but since i is an integer number, it will be

[i] = (1 + x)i

(see § 4) and so it will be [
i
2

]2

= (1 + x)i,

whence by extracting the square root[
i
2

]
= (1 + x)

i
2

and this way we already found that the Newtonian theorem is also true in the
cases in which the exponent n is a fraction of the form i

2 .

§10 If in like manner we put 3m = i that m = i
3 , the above formulas yield[

i
3

]3

= [i] = (1 + x)i;

hence by extracting the root we obtain[
i
3

]
= (1 + x)

i
3

and therefore out theorem is also true, if the exponent n was a fraction of the
form i

3 ; and hence it is manifest that in general it will be[
i
a

]
= (1 + x)

i
a ,

such that is has now been demonstrated that our theorem is true, if an arbitrary
fraction i

a is taken for the exponent n, whence the truth has been shown for
all positive numbers taken for the exponent n.
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§11 Therefore, it only remains to show the truth also for the cases, in which
the exponent n is a negative number. For this purpose recall the reduction we
found first

[m] · [n] = [m + n],

where m denotes a positive number, either an integer or a fraction, so that, as
we just demonstrated,

[m] = (1 + x)m;

further, set n = −m and it will be m + n = 0 and hence

[0] = (1 + x)0 = 1,

having substituted which values the above formula yields

(1 + x)m · [−m] = 1,

whence we conclude

[−m] =
1

(1 + x)m = (1 + x)−m;

and so it has now been demonstrated that the Newtonian theorem is also true,
if the exponent n is an arbitrary negative fraction; and hence this theorem has
been confirmed by most rigorous reasoning.
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