
On the Integration of the Formula∫ dx log x√
1−xx

extended from x = 0 to x = 1 *

Leonhard Euler

1. The most natural method to treat formulas of the kind
∫

pdx log x is to
reduce them to forms of the kind

∫
qdx, in which the letter q is an algebraic

function of x, since the rules for integration are mainly accommodated to such
formulas. But a reduction of this kind has no difficultly, whenever the function
p is of such a nature that the integral

∫
pdx can be exhibited algebraically.

For, if it was
∫

pdx = P so that the formula
∫

dp log x is propounded, it is
immediately reduced to this expression

P log x−
∫ Pdx

x
and so the whole task has already been reduced to the integration of the
formula

∫ Pdx
x . But whenever the formula

∫
pdx does not admit an algebraic

integration, as it happens for our propounded formula
∫ dx log x√

1−xx
, such a re-

duction is not successful. For, since
∫ dx√

1−xx
= arcsin x, this reduction would

give ∫ dx log x√
1− xx

= arcsin x log x−
∫ dx

x
arcsin x
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and so the new transcendental quantity arcsin x would appear in the integral,
whose integration is as inaccessible as the propounded one itself. Hence, after
applying a special method I had recently found that∫ dx log x√

1− xx

[
from x = 0
to x = 1

]
=

π

2
log 2,

this integral expression is to be considered to be even more remarkable, since
its investigation is not obvious at all; hence I figured it to be worth one’s while
to have shown its truth from other sources, before I explain the method, which
led me to it.

FIRST PROOF OF THE PROPOUNDED INTEGRATION

2. Since here one mainly has to resort to infinite series, but log x does not
have such a simple expansion, let us use the substitution

√
1− xx = y, whence

x =
√

1− yy and hence further

log x = −yy
2
− y4

4
− y6

6
− y8

8
− etc.;

therefore, this way the propounded integral formula
∫ dx log x√

1−xx
is transformed

into the following form

∫ dy√
1− yy

(
yy
2

+
y4

4
+

y6

6
+

y8

8
+ etc.

)
,

where, since y =
√

1− xx, one has to note that the integration must be
extended from y = 1 to y = 0; hence, if we want to permute these limits of
integration, one has to change the overall sign of the form.

3. But to be less confused by such a mutation of the sign, let us denote the
value in question by S that

S =
∫ dx log x√

1− xx

[
from x = 0
to x = 1

]
,

and after the substitution y =
√

1− xx, as we just mentioned, we will have

S = −
∫ dy√

1− yy

(
yy
2

+
y4

4
+

y6

6
+ etc.

) [
from y = 0
to y = 1

]
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But for these limits of integration, of course from y = 0 to y = 1, it is well-
known that the single parts which occur here, are reduced to the following
values:

∫ yydy√
1− yy

=
1
2
· π

2∫ y4dy√
1− yy

=
1 · 3
2 · 4 ·

π

2∫ y6dy√
1− yy

=
1 · 3 · 5
2 · 4 · 6 ·

π

2∫ y8dy√
1− yy

=
1 · 3 · 5 · 7
2 · 4 · 6 · 8 ·

π

2∫ y10dy√
1− yy

=
1 · 3 · 5 · 7 · 9

2 · 4 · 6 · 8 · 10
· π

2

etc.,

where obviously π
2 =

∫ dy√
1−yy

so that 1 : π expresses the ratio of the diameter

to the circumference of the circle.

4. Therefore, if we introduce these single values, we will obtain the following
infinite series for the value in question

S = −π

2

(
1
22 +

1 · 3
2 · 42 +

1 · 3 · 5
2 · 4 · 62 +

1 · 3 · 5 · 7
2 · 4 · 6 · 82 + etc.

)
and so now the whole task is reduced to this that the sum of this infinite
series is investigated; this might not seem to be less work than that what we
had to prosecute initially. But nevertheless, it will be easy for us to get to the
cognition of this series as follows.

5. Since

1√
1− zz

= 1 +
1
2

zz +
1 · 3
2 · 4z4 +

1 · 3 · 5
2 · 4 · 6z6 + etc.,

if we multiply by dz
z and integrate both sides, we will obtain
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∫ dz
z
√

1− zz
= log z +

1
22 zz +

1 · 3
2 · 42 z2 +

1 · 3 · 5
2 · 4 · 62 z6 + etc.,

and so we have been led to our series, whose value therefore has to be found

from the expression
∫ dz

z
√

1− zz
− log z, of course having taken the integral

in such a way, that it vanishes for z = 0; having done this set z = 1 and the
propounded series will result, i.e.

1
22 +

1 · 3
2 · 42 +

1 · 3 · 5
2 · 4 · 62 +

1 · 3 · 5 · 7
2 · 4 · 6 · 82 + etc.

Therefore, this way the whole task has been reduced to the integral formula∫ dz
z
√

1−zz
, which having put

√
1− zz = v goes over into the form −dv

1−vv , whose
integral is known to be

−1
2

log
1 + v
1− v

= − log
1 + v√
1− vv

.

If we substitute the value
√

1− zz for v again, the whole expression we are
after reads as follows:

∫ dz
z
√

1− zz
− log z = − log

1 +
√

1− zz
z

− log z+C = C− log
(

1 +
√

1− zz
)

,

where the constant must be taken in such a way that the value vanishes for
z = 0, and hence it will be C = log 2. Therefore, having put z = 1 the sum in
question will be log 2 and hence the value of the propounded integral formula
will be ∫ dx log x√

1− xx
= S = −π

2
log 2,

precisely as I had found by a completely different method, from which it is
already clearly seen that this truth is of greater profundity and hence worth
of the mathematicians’ attention.

ANOTHER PROOF OF THE PROPOUNDED INTEGRATION

6. Since dx√
1−xx

is the element of the circle, whose sine is = x, let us put this

angle = ϕ, so that x = sin ϕ and dx√
1−xx

= dϕ, and after this substitution the
value of the quantity S we want to find will be represented this way
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S =
∫

dϕ log sin ϕ

[
from ϕ = 0
to ϕ = 90◦.

]
For, since the limits of integration had been x = 0 and x = 1, they now become
ϕ = 0 and ϕ = 90◦ or ϕ = π

2 . Therefore, here the whole task reduces to this
that the formula log sin ϕ is conveniently converted into an infinite series. For
this purpose, let us put log sin ϕ = s and it will be ds = dϕ cos ϕ

sin ϕ . But we know
that

cos ϕ

sin ϕ
= 2 sin 2ϕ + 2 sin 4ϕ + 2 sin 6ϕ + 2 sin 8ϕ + etc.

For, if we multiply by sin ϕ on both sides, because of

2 sin nϕ sin ϕ = cos(n− 1)ϕ− cos(n + 1)ϕ

it obviously results

cos ϕ = cos ϕ + cos 3ϕ + cos 5ϕ + cos 7ϕ + cos 9ϕ + etc.

− cos 3ϕ− cos 5ϕ− cos 7ϕ− cos 9ϕ− etc.

Therefore, using this series for cos ϕ
sin ϕ , it will be

s = C− cos 2ϕ− 1
2

cos 4ϕ− 1
3

cos 6ϕ− 1
4

cos 8ϕ− 1
5

cos 10ϕ− etc.,

where, since s = log ϕ and hence s = 0, whenever sin ϕ = 1 and hence ϕ = π
2 ,

the constant C must be determined in such a way that for ϕ = π
2 = 90◦ we

have s = 0, from which one concludes that

C = −1 +
1
2
− 1

3
+

1
4
− 1

5
+ etc. = − log 2.

7. Therefore, since

log sin ϕ = − log 2− cos 2ϕ− 1
2

cos 4ϕ− 1
3

cos 6ϕ− 1
4

cos 8ϕ− etc.,

the value of the propounded formula will be
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∫
dϕ log sin ϕ = C− ϕ log 2− 1

2
sin 2ϕ− 1

8
sin 4ϕ− 1

18
sin ϕ

− 1
32

sin 8ϕ− 1
50

sin 10ϕ− etc.;

since this expression must vanish for ϕ = 0, this constant entering here will
be C = 0, so that in general

∫
dϕ log sin ϕ = −ϕ log 2− 2 sin 2ϕ

22 − 2 sin 4ϕ

42 − 2 sin 6ϕ

62 − 2 sin 8ϕ

82

−2 sin 10ϕ

102 − 2 sin 12ϕ

122 − etc.

If we now take ϕ = 90◦ = π
2 , the sine of all the angles 2ϕ, 4ϕ, 6ϕ, 8ϕ, which

occur here, vanish and the value in question will be

S =
∫

dϕ log sin ϕ

[
from ϕ = 0
to ϕ = 90◦

]
= −π

2
log 2,

as we demonstrated in the first proof.

8. But this proof is much better than the preceding one, since it not only
provides us with the value of the propounded formula in the case 90◦, but also
shows its true value, whatever value is taken for ϕ, what can be transferred to
the initially propounded formula

∫ dx log x√
1−xx

, whose value we will therefore be
able to assign for each arbitrary value of x. For, if we would desire the value
of this formula from x = 0 to x = a, find the angle α, whose sine is equal to a,
and one will always have

∫ dx log x√
1− xx

[
from ϕ = 0
to ϕ = a

]
= −α log 2− 2 sin 2α

22 − 2 sin 4α

42 − 2 sin 6α

62 − 2 sin 8α

82 − etc.

Hence it is plain, if it was α = iπ
2 , while i denotes an arbitrary integer number,

since all sines vanish, that the value of the formula can be expressed finitely
by − iπ

2 log 2 in these cases; in all other cases on the other hand the value of
our formula will be expressed by a nice series. So, if one takes a = 1√

2
that

α = π
4 , the value of our formula will be

6



−π

4
log 2− 2

22 +
2
62 −

2
102 +

2
142 −

2
182 +

2
222 − etc.,

which series can expressed more elegantly this way

−π

4
log 2− 1

2

(
1− 1

32 +
1
52 −

1
72 +

1
92 −

1
112 + etc.

)
,

and so the memorable series

1− 1
9
+

1
25
− 1

49
+

1
81
− 1

121
+ etc.

occurs, whose sum can not be reduced to known measures by any means at
this point.

9. Since a so extraordinary series appeared here against all expectation, let
us also expand other more beautiful cases and let us take a = 1

2 so that
a = 30◦ = π

6 , and in this case the value of our formula will be

−π

6
log 2−

√
3

22 −
√

3
42 +

√
3

82 +

√
3

102 −
√

3
142 −

√
3

162 + etc.,

which expression can be exhibited this way

−π

6
log 2−

√
3

4

(
1 +

1
22 −

1
42 −

1
52 +

1
72 +

1
82 −

1
102 −

1
112 + etc.

)
,

in which series the squares of three are missing.
In like manner let us now take a =

√
3

2 that α = 60◦ = π
3 , and the value of our

formula in this case will result to be

−π

3
log 2−

√
3

22 +

√
3

42 −
√

3
82 +

√
3

102 −
√

3
142 +

√
3

162 − etc.

or will be expressed this way

−π

3
log 2−

√
3

4

(
1− 1

22 +
1
42 −

1
52 +

1
72 −

1
82 +

1
102 −

1
112 + etc.

)
,
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STILL ANOTHER PROOF OF THE PROPOUNDED INTEGRATION

10. Introduce the angle ϕ, whose cosine is = x, into our formula, or let
x = cos ϕ and our formula will obtain the form −

∫
dϕ log cos ϕ, which

integral is to be extended from ϕ = 90◦ to ϕ = 0. But if we permute these
limits, the value S we are looking for will be expressed this way

S =
∫

dϕ log cos ϕ

[
from ϕ = 0
to ϕ = 90◦

]
.

To convert log cos ϕ into a suitable series, let us as before set s = log cos ϕ and

it will be ds = −dϕ sin ϕ

cos ϕ
. But it is known that by means of a series

sin ϕ

cos ϕ
= 2 sin 2ϕ− 2 sin 4ϕ + 2 sin 6ϕ− 2 sin 8ϕ + etc.

Therefore, since in general

2 sin nϕ cos ϕ = sin(n + 1)ϕ + sin(n− 1)ϕ,

if we multiply by cos ϕ on both sides, it will result

sin ϕ = sin 3ϕ− sin 5ϕ + sin 7ϕ− sin 9ϕ + etc.

+ sin ϕ − sin 3ϕ− sin 5ϕ + sin 7ϕ− sin 9ϕ + etc.;

hence, since ds = − dϕ sin ϕ
cos ϕ , it will now be

s = C +
cos 2ϕ

1
− cos 4ϕ

2
+

cos 6ϕ

3
− cos 8ϕ

4
+

cos 10ϕ

5
− etc.

Therefore, since s = log cos ϕ, it is evident that for ϕ = 0 it has to be s = 0,
whence it follows

C = −1 +
1
2
− 1

3
+

1
4
− 1

5
+ etc. = − log 2,

and so it will be

log cos ϕ = − log 2 +
cos 2ϕ

1
− cos 4ϕ

2
+

cos 6ϕ

3
− cos 8ϕ

4
+ etc.,

which series multiplied by dϕ and integrated yields
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S =
∫

dϕ log cos ϕ = C− ϕ log 2+
sin 2ϕ

2
− sin 4ϕ

8
+

sin 6ϕ

18
− sin 8ϕ

32
+

sin 10ϕ

50
− etc.,

since which expression vanishes for ϕ = 0, it is plain that C = 0 and so we
will have

∫
dϕ log cos ϕ = −ϕ log 2+

1
2

(
sin 2ϕ

1
− sin 4ϕ

22 +
sin 6ϕ

3
− sin 8ϕ

42 +
sin 10ϕ

52 − etc.
)

Therefore, having taken ϕ = π
2 = 90◦, then, as before, S = −π

2 log 2 results.
Furthermore, the integral can hence also be extended to each arbitrary limit.

11. If we subtract the last formula from the preceding one, we will in general
obtain this integration∫

dϕ log tan ϕ = − sin 2ϕ− 1
32 sin 6ϕ− 1

52 sin 10ϕ− etc.,

whence it is plain that this integral vanishes in the cases ϕ = 90◦ and is
general ϕ = iπ

2 . Therefore, after we demonstrated that integration in three
ways, I will explain the analysis which led me to it.

1 ANALYSIS LEADING TO THE INTEGRATION OF THE

FORMULA
∫ dx log x√

1−xx
AND OTHER SIMILAR ONES

12. This whole analysis is based on the following lemma I once proved:
For the sake of brevity having put

(1− xn)
m−n

n = X,

if hence these two integral formulas are formed∫
Xxp−1dx and

∫
Xxq−1dx,

which are to be extended from x = 0 to x = 1, the ratio of these values can be
reduced to an infinite product as follows
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∫
Xxp−1dx∫
Xxq−1dx

=
(m + p)q
p(m + q)

· (m + p + n)(q + n)
(p + n)(m + q + n)

· (m + p + 2n)(q + 2n))
(p + 2n)(m + q + 2n)

· etc.,

where obviously the single factors so of the numerator as of the denominator
are continuously increased by the same quantity n. Here it is to be noted that
this theorem can only hold, if the single letters m, n, p and q denote positive
numbers, which can nevertheless always be considered as integers.

13. Concerning these two integral formulas extended from x = 0 to x = 1,
two cases, in which the integration actually succeeds and the true value can
be assigned absolutely, are especially worth mentioning. The first case occurs,
when p = n, so that the formula is

∫
Xxn−1dx. For, having put xn = y it will

be

X = (1− y)
m−n

n and xn−1dx =
1
n

dy

and so this formula will become 1
n

∫
dy(1− y)

m−n
n , likewise to be extended

from y = 0 to y = 1, which further, having put 1− y = z goes over into the
formula − 1

n

∫
z

m−n
n dz to be extended from z = 1 to z = 0; therefore, the value

of the integral manifestly is − 1
m z

m
n + 1

m , whence the value for z = 0 will be
= 1

m . As a logical consequence for the case p = n we will have∫
Xxn−1dx

[
from x = 0
to x = 1

]
=

1
m

and so, if it was either p = n or q = n, the integral becomes known absolutely.

14. In the other remarkable case we have p = n − m so that the integral
formula becomes

∫
Xxn−m−1dx; for, then, if one sets x(1− x)

−1
n or x

(1−xn)
1
n
= y,

having put x = 0 we will find y = 0, but having put x = 1 we will find y = ∞;
but then it will be

yn−m =
xn−m

(1− xn)
n−m

n
= Xxn−m,

whence the formula to be integrated will be
∫

yn−m dx
x . Therefore, since x

(1−xn)
1
n

,

whose differential yields dx
x = dy

y(1+yn)
, having substituted which value our

formula which is to be integrated will be
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∫ yn−m−1dy
1 + yn

to be extended from y = 0 to y = ∞, which formula is remarkable, since it
does not contain any irrationality anymore.

15. Therefore, since in this case we have been led to a rational formula, it is
known from the elements of integral calculus that its integration can always
be achieved by logarithms and circular arcs; but then for this case not so long
ago I showed that the integral of this formula

∫ xm−1dx
1+xn extended from x = 0

to x = ∞ is reduced to the value π
n sin mπ

n
. Therefore, after the application, for

our case we will have

∫ yn−m−1dy
1 + yn =

π

n sin (n−m)π
n

=
π

n sin mπ
n

;

therefore, for the case p = n−m the value of the integral can be expressed
absolutely as follows and it will be∫

Xxn−m−1dx
[

from x = 0
to x = 1

]
=

π

n sin mπ
n

,

which is also true, if q = n−m.

16. Having mentioned these things in advance, for the sake of brevity, let us
further put

∫
Xxp−1dx

[
from x = 0
to x = 1

]
= P and

∫
Xxq−1

[
from x = 0
to x = 1

]
= Q

and the mentioned lemma gives us this equation

P
Q

=
(m + p)q
p(m + q)

· (m + p + n)(q + n)
(p + n)(m + q + n)

· (m + p + 2n)(q + 2n)
(p + 2n)(m + q + 2n)

· etc.

Therefore, taking logarithms we deduced from this

log P− log Q = log(m + p)− log p + log(m + p + n)− log(p + n) + log(m + p + 2n)− log(p + 2n) + etc.

+ log q− log(m + q) + log(q + n)− log(m + q + n) + log(q + 2n)− log(m + q + 2n) + etc.
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and this equation always holds, whatever values are attributed to the letters
m, n, p and q, if they were just positive.

17. Therefore, since this equality holds in general, it will also be true, whe-
never some of the letters m, n, p and q are interchanged or considered as
variables. Hence let us consider only the quantity p as a variable, so that the
remaining letters m, n and q remain constant, and hence also Q will be a
constant quantity while p varies; from this, by differentiating we will obtain
this equation

dP
P

=
dp

m + p
− dp

p
+

dp
m + p + n

− dp
p + n

+
dp

m + p + 2n
− dp

2n

+
dp

m + p + 3n
− dp

p + 3n
+ etc.,

where the whole task reduces to find out, how the differential of the formula
P, which is the integral, must be expressed.

18. Therefore, since P is an integral formula involving only the quantity x
as variable, since in its integration the exponent p has to be considered as
a constant, the quantity P can just after the integration be considered as a
function of the two variables x and p, whence the question reduces to this,
how the value usually expressed by the character

(
dP
dp

)
must be investigated;

if it is indicated by the letter Π, the equation found before will have this form

Π
P

=
1

m + p
− 1

p
+

1
m + p + n

− 1
p + n

+
1

m + p + 2n
− 1

p + 2n
+ etc.

But this infinite series can easily be reduced to a finite expression this way.
Put

s =
vm+p

m + p
− vp

p
+

vm+p+n

m + p + n
− vp+n

p + n
+

vm+p+2n

m + p + 2n
− vp+2n

p + 2n
+ etc.

so that, having put v = 1, the letter s gives us the value Π
P in question; but a

differentiation on the other hand will give us

ds
dv

= vm+p−1 − vp−1 + vm+p+n−1 − vp+n−1 + vm+p+2n−1 − vp+2n−1 + etc.,
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the sum of which infinite series obviously is

vm+p−1 − vp−1

1− vn =
vp−1(vm − 1)

1− vn .

Therefore, hence vice versa we conclude that it will be

s =
∫ vp−1(vm − 1)dv

1− vn ,

which integral formula is to be extended from v = 0 to v = 1; and so we will
have

Π
P

=
∫ vp−1(vm − 1)dv

1− vn

[
from v = 0
to v = 1

]
.

19. But to investigate the value
(

dP
dp

)
, which we denoted by the letter Π here,

it is well-known from the principles of integral calculus applied to functions
of two variables, that the differential of the integral formula P =

∫
Xxp−1dx

to result from the variability of p only is obtained, if in the formula under the
integral sign Xxp−1 is differentiated with respect to p only and the element
dp is pulled out of the integral sign; but since X on the other hand does not
contain p, it has to be considered as a constant here, but the differential of the
power xp−1 will be xp−1dp log x; therefore, the final result of this differentiation
will be

dP = dp
∫

Xxp−1dx log x,

so that the factor log x additionally entered the integral, from which it is
manifest that it will be

Π =
∫

Xxp−1dx log x
[

from x = 0
to x = 1

]
;

hence we will be able to formulate the following general theorem.

GENERAL THEOREM

20. For the sake of brevity having put X = (1− xn)
m−n

n , if the following integral
formulas are extended from x = 0 to x = 1, the following equality will always be true
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∫
Xxp−1dx log x∫

Xxp−1dx
=
∫ xp−1(xm − 1)dx

1− xn .

For, there is no obstruction that we wrote x instead of v, since these values
only depend on the limits of the integration.

21. Therefore, this way we have been led to the integration of the formula∫
Xxp−1dx log x, in which the logarithm log x is contained in the integrand

as a factor, and we are now able to express the values of these formulas by
ordinary integral formulas, since

∫
Xxp−1dx log x =

∫
Xxp−1dx ·

∫ xp−1(xm − 1)dx
1− xn ,

having extended the integration from x = 0 to x = 1, of course, where, for the
sake of brevity, we put (1− xn)

m−n
n = X. Therefore, for two memorable cases

explained above [par. 13 - 15] we already derived two particular theorems.

PARTICULAR THEOREM 1 IN WHICH p = n

22. Since above [par. 13] we saw that in the case p = n we have
∫

Xxn−1dx =
1
m , having substituted this value, we have this elegant equation

∫
Xxn−1dx log x =

1
m

∫ xn−1(xm − 1)dx
1− xn ,

while both integrals are extended from x = 0 to x = 1.

PARTICULAR THEOREM 2 IN WHICH p = n−m

23. Since for this case, in which p = n−m, above [par. 15] we showed that∫
Xxm−n−1dx =

π

n sin mπ
n

,

we are now led to the following most remarkable integration

∫
Xxn−m−1dx log x =

π

n sin mπ
n

∫ xn−m−1(xm − 1)dx
1− xn ,

if both these integrals are extended from x = 0 to x = 1, of course, where still
X = (1− xn)

m−n
n .
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24. Here it should carefully be noted that the general theorem extends very
far, since it contains three indefinite exponents, namely m, n and p, which are
completely arbitrary, which can therefore be defined in infinitely may ways,
as long as positive values are attributed to them, so that the value of this
integral formula

∫
Xxp−1dx log x, which because of the factor log x has to be

considered as transcendental quantity, can always be expressed by ordinary
integral formulas; since these are most general, it will be worth one’s while to
expand several special cases.

I. EXPANSION OF THE CASE IN WHICH m = 1 AND n = 2

25. Therefore, in this case it will be X = 1√
1−xx

, whence for this case the
theorem reads as follows

∫ xp−1dx log x√
1− xx

= −
∫ xp−1dx√

1− xx
·
∫ xp−1dx

1 + x
,

if these single integrals are extended from x = 0 to x = 1. Therefore, since
here only the exponent p is arbitrary, hence let us go through the following
examples.

26. Therefore, in this case the above equation becomes∫ dx log x√
1− xx

= −
∫ dx√

1− xx
· int

dx
1 + x

,

where, having extended the integrals from x = 0 to x = 1, it is known to be∫ dx√
1− xx

=
π

2
and

∫ dx
1 + x

= log 2,

so that we now have∫ dx log x√
1− xx

[
from x = 0
to x = 1

]
= −π

2
log 2,

which is the formula we treated initially and whose validity we proved in
three different ways already.
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27. The same value can be found from the second particular theorem, in
which it was p = n− m, since now because of n = 2 and m = 1 it will be

p = 1; for, hence because of X =
1√

1− xx
this theorem yields∫ dx log x√

1− xx
=

π

2 sin π
2

∫
− dx

1 + x
= −π

2
log 2.

EXAMPLE 2 IN WHICH p = 2

28. Therefore, in this case the above equation has this form∫ xdx log x√
1− xx

= −
∫ xdx√

1− xx
·
∫ xdx

1 + x
.

Now, having extended the integrals from x = 0 to x = 1, it is known to be∫ xdx√
1− xx

= 1 and
∫ xdx

1 + x
= 1− log 2,

so that we have ∫ xdx log x√
1− xx

[
from x = 0
to x = 1

]
= log 2− 1.

29. Since in this formula the integral
∫ xdx√

1−xx
can be exhibited algebraically,

that integral is = 1−
√

1− xx, the value in question can be found by usual
reductions, since∫ xdx log x√

1− xx
= (1−

√
1− xx) log x−

∫ dx
x
(1−

√
1− xx);

and having put x = 1 it will be∫ xdx log x√
1− xx

= −
∫ dx

x
(1−

√
1− xx),

to integrate which formula let

1−
√

1− xx = z,

whence one finds xx = 2z− zz, therefore, 2 log x = log z + log(2− z), and so
it will be

16



dx
x

=
dz(1− z)
z(2− z)

,

having substituted which values it will be

+
∫ dx

x
(1−

√
1− xx) = +

∫ dz(1− z)
2− z

,

which value will therefore be = C− z− log(2− z). Therefore, since having
put x = 0 we have z = 0, the constant will be C = + log 2; therefore, for x = 1,
since then z = 1, the value of this integral will be log 2− 1, precisely as before.

30. The theorem mentioned first above, in which it was p = n− 2, yields
the same value; for, hence immediately

∫ xdx log x√
1−xx

=
∫
− xdx

1+x . But we have seen

before that
∫ xdx

1+x = 1− log 2 so that also from this the value in question
results to be log 2− 1.

EXAMPLE 3 IN WHICH p = 3

31. Therefore, in this case the equation mentioned in the general theorem
will have this form∫ xxdx log x√

1− xx
= −

∫ xxdx√
1− xx

·
∫ xxdx

1 + x
.

But by commonly known reductions it is found to be∫ xxdx√
1− xx

[
from x = 0
to x = 1

]
=

1
2
· π

2
;

but the spurious fraction xx
1+x is resolved into these parts

x− 1 +
1

1 + x
,

whence it will be ∫ xxdx
1 + x

=
1
2

xx− x + log(1 + x),

which integral already vanishes from x = 0; therefore, for x = 1 its value will
be = − 1

2 + log 2; therefore, the integral in question will be

17



∫ xxdx log x√
1− xx

[
from x = 0
to x = 1

]
= −π

4

(
log 2− 1

2

)
.

EXAMPLE 4 IN WHICH p = 4

32. Therefore, in this case the above equation will have this form∫ x3dx log x√
1− xx

= −
∫ x3dx√

1− xx
·
∫ x3dx

1 + x
.

By commonly known reductions it is known to be∫ x3dx√
1− xx

[
from x = 0
to x = 1

]
=

2
3

;

but then the spurious fraction x3

1+x is resolved into these parts

xx− x + 1− 1
x + 1

,

whence by integrating∫ x3dx
1 + x

=
1
3

x3 − 1
2

xx + x− log(1 + x),

from which the value of the formula will be = 5
6 − log 2. Therefore, having

substituted these values we obtain this integration∫ x3dx log x√
1− xx

[
from x = 0
to x = 1

]
= −2

3

(
5
6
− log 2

)
.

EXAMPLE 5 IN WHICH p = 5

33. Therefore, in this case the above equation will have this form

∫ x4dx log x√
1− xx

= −
∫ x4dx√

1− xx
·
∫ x4

1 + x
.

But it is known to be

∫ x4dx√
1− xx

[
from x = 0
to x = 1

]
=

1 · 3
2 · 4 ·

π

2
;
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but then the spurious fraction x4

1+x is obviously resolved into these parts

x3 − xx + x− 1 +
1

x + 1
,

whence by integrating

∫ x4dx
1 + x

=
1
4

x4 − 1
3

x3 +
1
2

xx− x + log(1 + x),

from which the value of the formula will be = − 7
12 + log 2. Therefore, having

substituted these values this integration will result

∫ x4dx log x√
1− xx

[
from x = 0
to x = 1

]
= −1 · 3

2 · 4 ·
π

2

(
log 2− 7

12

)
.

EXAMPLE 6 IN WHICH p = 6

34. Therefore, in this case the above equation will become∫ x5dx log x√
1− xx

= −
∫ x5dx√

1− xx
·
∫ x5dx

1 + x
.

But it is known that by usual reduction∫ x5dx√
1− xx

[
from x = 0
to x = 1

]
=

2 · 4
3 · 5;

but then the spurious fraction x5

1+x is resolved into these parts

x4 − x3 + xx− x + 1− 1
x + 1

,

whence by integration we obtain∫ x5dx
1 + x

=
1
5

x5 − 1
4

x4 +
1
3

x3 − 1
2

xx + x− log(1 + x),

from which the value of this formula will be = 47
60 − log 2; having substituted

these values the following integration will result∫ x5dx log x√
1− xx

[
from x = 0
to x = 1

]
= −2 · 4

3 · 5

(
47
60
− log 2

)
.
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II. EXPANSION OF THE CASE IN WHICH m = 3 AND n = 2

35. Therefore, here it will be X =
√

1− xx, whence our general theorem will
give us this equation

∫
xp−1dx log x ·

√
1− xx =

∫
xp−1dx

√
1− xx ·

∫ xp−1(x3 − 1)dx
1− xx

;

here, since

x3 − 1
1− xx

=
−xx− x− 1

x + 1
= −x− 1

x + 1
,

the last integral formula will be

−
∫

xpdx−
∫ xp−1dx

1 + x
,

which integrated from x = 0 to x = 1 gives

− 1
p + 1

−
∫ xp−1dx

1 + x
,

whence we will have

∫
xp−1dx log x ·

√
1− xx = −

∫
xp−1dx

√
1− xx ·

(
1

p + 1
+
∫ xp−1dx

1 + x

)
.

Therefore, hence it will be helpful to have noted the following examples.

EXAMPLE 1 IN WHICH p = 1

36. Therefore, for this case the last factor will become 1
2 + log 2 so that∫

dx log x ·
√

1− xx = −
(

1
2
+ log 2

) ∫
dx
√

1− xx.

But for the formula
∫

dx
√

1− xx set

√
1− xx = 1− vx

and it will be x = 2v
1+vv and

√
1− xx = 1−vv

1+vv and dx = 2dv(1−vv)
(1+vv)2 , whence it

will be
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dx
√

1− xx =
2dv(1− vv)2

(1 + vv)3 ,

whose integral is resolved into these parts

2v
(1 + vv)2 −

v
1 + vv

+ arctan v;

since this expression must be extended from x = 0 to x = 1, the first limit will
be v = 0, the other limit on the other hand is v = 1, so that that integral must
be extended from v = 0 to v = 1. But the expression immediately vanishes for
v = 0, but for v = 1 the value of the integral will be = π

4 ; therefore, we will
have ∫

dx log x ·
√

1− xx
[

from x = 0
to x = 1

]
= −π

4

(
1
2
+ log 2

)
.

37. Here we certainly presented a non straight-forward calculation; this is
due the reduction to rationality of the formula

√
1− xx; but the formula∫

dx
√

1− xx itself is immediately clear to express the area of the quadrant of
the circle, whose radius is = 1, which we know to be = π

4 . Furthermore, one
could have used this reduction∫

dx
√

1− xx =
1
2

x
√

1− xx +
1
2

∫ dx√
1− xx

,

whose value extended from x = 0 to x = 1 manifestly gives π
4 .

EXAMPLE 2 IN WHICH p = 2

38. Therefore, in this case the last factor is

1
3
+
∫ xdx

1 + x
=

4
3
− log 2

and so we will have∫
xdx log x ·

√
1− xx = −

(
4
3
− log 2

) ∫
xdx
√

1− xx;

but it is perspicuous to be
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∫
xdx
√

1− xx = C− 1
3
(1− xx)

3
2 ,

which value extended from x = 0 to x = 1 yields 1
3 , so that we have∫

dx log x ·
√

1− xx
[

from x = 0
to x = 1

]
= −1

3

(
4
3
− log 2

)
.

III. EXPANSION OF THE CASE IN WHICH m = 1 AND n = 3

39. Therefore, in this case it will be X = 1
3
√

(1−x3)2
, whence the general

theorem gives us this equation

∫ xp−1dx
3
√
(1− x3)2

=
∫ xp−1dx

3
√
(1− x3)2

·
∫ xp−1(x− 1)dx

1− x3 ,

where the last formula is reduced to −
∫ xp−1dx

xx+x+1 , so that we have

∫ xp−1dx log x
3
√
(1− x3)2

= −
∫ xp−1dx

3
√
(1− x3)2

·
∫ xp−1dx

xx + x + 1
.

Therefore, let us add the following example.

EXAMPLE 1 IN WHICH p = 1

40. Therefore, in this case the last factor becomes
∫ dx

xx+x+1 , whose indefinite

integral is found to be 2√
3

arctan x
√

3
2+x , which value, having put x = 1, goes

over into π
3
√

3
; therefore, in this case we will have∫ dx log x

3
√
(1− x3)2

= − π

3
√

3

∫ dx
3
√
(1− x3)2

;

but the integral formula
∫ dx

3
√

(1−x3)2
involves a peculiar transcendental quantity,

which can expressed neither by logarithms nor circular arcs.

EXAMPLE 2 IN WHICH p = 2

41. Therefore, in this case the second factor will be
∫ xdx

1+x+xx , which is resol-
ved into these parts
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1
2

∫ 2xdx + dx
1 + x + xx

− 1
2

∫ dx
1 + x + xx

,

where the integral of the first part is

1
2

log(1 + x + xx) =
1
2

log 3 (having put x = 1, of course),

but the integral of the other part is − 1
2 ·

π
3
√

3
; having substituted this value, we

will have ∫ xdx log x
3
√
(1− x3)2

= −1
2

(
log 3− π

3
√

3

) ∫ xdx
3
√
(1− x3)2

.

But now one can assign this integral formula conveniently by the reduction
mentioned above initially; for, since here m = 1 and n = 3, but then we took
p = 2, it will be p = n−m. But above (par. 15) we found that the integral will
be = π

n sin mπ
n

in this case, which value in our case goes over into π
3 sin π

3
= 2π

3
√

3
.

Therefore, having substituted this value we will be able to express our formula
by mere known quantities this way∫ xdx log x

3
√
(1− x3)2

[
from x = 0
to x = 1

]
= − π

3
√

3

(
log 3− π

3
√

3

)
.

IV. EXPANSION OF THE CASE IN WHICH m = 2 AND n = 3

42. Therefore, in this case it will be X = 1
3
√

(1−x3)
, whence the general

theorem yields this equation

∫ xp−1dx log x
3
√
(1− x3)

=
∫ xp−1dx

3
√
(1− x3)

·
∫ xp−1(xx− 1)dx

1− x3 ,

where the second formula is transformed into −
∫ xp−1dx(1+x)

1+x+xx ; hence it will be

∫ xp−1dx log x
3
√
(1− x3)

= −
∫ xp−1dx

3
√
(1− x3)

·
∫ xp−1dx(1 + x)

1 + x + xx
,

whence we want to go through the following examples.
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EXAMPLE 1 IN WHICH p = 1

43. Therefore, in this case the second term will be
∫ dx(1+x)

1+x+xx , whose integral
is split into these parts

1
2

∫ 2xdx + dx
1 + x + xx

+
1
2

∫ dx
1 + x + xx

,

whence for the case x = 1 manifestly 1
2

(
log 3 + π

3
√

3

)
results; therefore, our

equation will be∫ dx log x
3
√
(1− x3)

= −1
2

(
log 3 +

π

3
√

3

) ∫ dx
3
√
(1− x3)

.

But in this integral formula because of m = 2 and n = 3, since we took p = 1,
it will be p = n−m; therefore, for this case by par. 15 the value of this integral
formula can be expressed absolutely and it will be

∫ dx
3
√

(1−x3)
= 2π

3
√

3
; as a

logical consequence even in this case by absolute quantities we obtain this
formula ∫ dx log x

3
√
(1− x3)

[
from x = 0
to x = 1

]
= − π

3
√

3

(
log 3 +

π

3
√

3

)
.

44. If we combine this form with the last of the preceding case, which
likewise resulted expressed absolutely, first their sum will give∫ xdx log x

3
√
(1− x3)2

+
∫ dx log x

3
√
(1− x3)

= −2π log 3
3
√

3
,

but if the second is subtracted from the first, this equation will result∫ xdx log x
3
√
(1− x3)2

−
∫ dx log x

3
√
(1− x3)

=
2ππ

27
.

Since this way we have been led to rather simple expressions, it will be worth
one’s while to represent both equations in another form, in which both parts
of the integral can conveniently be combined into one; let us set

x
3
√
(1− x3)

= z,
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whence xx
3
√

(1−x3)2
= zz, and so the first formula will have the form

∫ zzdx log x
x ,

but the second this form
∫ zdx log x

x ; but then we will have x3

1−x3 = z3, whence

x3 = z3

1+z3 and hence

log x = log z− 1
3

log(1 + z3) = log
z

3
√
(1 + z3)

and hence further

dx
x

=
dz
z
− zzdz

1 + z3 =
dz

z(1 + z3)
,

whence using these values the first integral formula becomes
∫ zdz

1+z3 log z
3
√

(1+z3)
,

but the other formula will be
∫ dz

1+z3 log z
3
√

(1+z3)
.

45. But since the integrals must be extended from x = 0 and x = 1, it is to be
noted that in the case x = 0 also z = 0, but for x = 1 we have z = ∞, so that
these new formulas must be extended from z = 0 to z = ∞. Having observed
this the first of these formulas will give∫ zdz

1 + z3 log
z

3
√
(1 + z3)

[
from z = 0
to z = ∞

]
= −π log 3

3
√

3
+

ππ

27
,

the second on the other hand∫ dz
1 + z3 log

z
3
√
(1 + z3)

[
from z = 0
to z = ∞

]
= −π log 3

3
√

3
− ππ

27
.

Therefore, hence the sum of these formulas will be∫ dz(1 + z)
1 + z3 log

z
3
√
(1 + z3)

= −2π log 3
3
√

3
,

but the difference on the other hand∫ dz(z− 1)
1 + z3 log

z
3
√
(1 + z3)

=
2ππ

27
.
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46. It will be useful here to have noted that this logarithm log z
3
√

(1+z3)
can

conveniently be converted into a rather simple infinite series; for, since

log
z

3
√
(1 + z3)

=
1
3

log
z3

1 + z3 = −1
3

log
1 + z3

z3 ,

by a series it will be

log
z

3
√
(1 + z3)

= −1
3

(
1
z3 −

1
2z6 +

1
3z9 −

1
4z12 +

1
5z15 − etc.

)
;

but this resolution has no use for the expansion of the integrals into series,
since the powers of z occur in the denominators and hence the single parts
can not be integrated in such a way that they vanish for z = 0.

EXAMPLE 2 IN WHICH p = 2

47. Therefore, in this case the second factor becomes
∫ xdx(1+x)

1+x+xx , which is
split into these parts ∫

dx−
∫ dx

1 + x + xx
,

whose integral extended from x = 0 to x = 1 therefore is = 1− π
3
√

3
. Therefore,

we are hence led to the equation∫ xdx log x
3
√
(1− x3)

= −
(

1− π

3
√

3

) ∫ xdx
3
√
(1− x3)

.

But here it is to be noted that that integral formula can not be exhibited abso-
lutely by any means, but involves a certain peculiar transcendental quantity.

V. EXPANSION OF THE CASE IN WHICH m = 2 AND n = 4

48. Therefore, in this case it will be X = 1√
1−x4 , whence our general theorem

will give us this equation

∫ xp−1dx log x√
1− x4

= −
∫ xp−1dx√

1− x4
·
∫ xp−1dx

1 + xx
;

but the first particular problem on the other hand for this case yields
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∫ x3dx log x√
1− x4

= −1
2

∫ x3dx
1 + xx

.

But since ∫ x3dx
1 + xx

=
1
2
− 1

2
log 2,

in absolute quantities it will be∫ x3dx log x√
1− x4

[
from x = 0
to x = 1

]
= −1

4
(1− log 2),

but this case is the same as the one treated above (par. 28). For, if we put
xx = y here, having done which the limits of integration remain y = 0 and
y = 1, it will be log x = 1

2 log y and xdx = 1
2 dy; having substituted these

values our equation will go over into the form 1
4

∫ ydy log y√
1−yy

= − 1
4 (1− log 2) or∫ ydy log y√

1−yy
= log 2− 1, precisely as above.

49. But the other particular theorem accommodated to the present case will
give ∫ xdx log x√

1− x4
= −π

4

∫ xdx
1 + xx

;

but ∫ xdx
1 + xx

= log
√

1 + xx =
1
2

log 2.

so that we have ∫ xdx log x√
1− x4

[
from x = 0
to x = 1

]
= −π

8
log 2.

But if here we set xx = y as before, we will obtain
∫ dy log y√

1−yy
, which is the case

treated above (par. 26). In these two cases the exponent p was an even number,
whence it will be convenient to expand cases of odd numbers.

27



EXAMPLE 1 IN WHICH p = 1

50. Therefore, in this case the second integral formula will become∫ dx
1 + xx

= arctan x,

so that having put x = 1 π
4 results; but then our equation will be∫ dx log x√

1− x4
= −π

4

∫ dx√
1− x4

,

having extended the integrals from x = 0 to x = 1, of course; here the formula∫ dx√
1−x4 expresses the arc of the rectangular elastic curve and can hence not

be exhibited absolutely.

EXAMPLE 2 IN WHICH p = 3

51. Therefore, in this case the second integral formula will be∫ xxdx
1 + xx

=
∫

dx−
∫ dx

1 + xx
,

whose integral having put x = 1 becomes = 1− π
4 , so that our equation now

becomes ∫ xxdx log x√
1− x4

= −
(

1− π

4

) ∫ xxdx√
1− x4

,

which integral likewise can not be exhibited absolutely; for, it expresses the
ordinate of the rectangular elastic curve.

52. But although these two examples led to intractable formulas, nevertheless
I showed recently that the product of these two integrals,

∫ dx√
1−x4 ·

∫ xxdx√
1−x4

is equal to the area of the circle, whose diameter is = 1, or is = π
4 ; therefore,

combining these two examples we obtain the remarkable theorem that∫ dx log x√
1− x4

·
∫ xxdx log x√

1− x4
=

π2

16

(
1− π

4

)
.

But it is obvious that innumerable other theorems of this kind can be found
from this source, which considered separately are to be considered to be of
highest profundity.
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