
On the formation of continued

fractions *

Leonhard Euler

§1 The universal principle leading to continued fractions is found in an
infinite series of quantities

A, B, C etc.,

three subsequent terms of which depend on each other according to a certain
law, which is either constant or somehow variable, in such a way that

f A = gB + hC, f ′B = g′C + h′D, f ′′C = g′′D + h′′E,

f ′′′D = g′′′E + h′′′F etc.

For, hence the following equalities are deduced:

*Original title: "De formatione fractionum continuarum" first published in: Acta Academiae
Scientarum Imperialis Petropolitinae 3, 1782, pp. 3-29, reprint in: Opera Omnia: Series 1,
Volume 15, pp. 314 - 337, Eneström-Number E522, translated by: Alexander Aycock for the
project „Euler-Kreis Mainz“.
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f A
B

= g +
hC
B

= g +
f ′h

f ′B : C
,

f ′B
C

= g′ +
h′D
C

= g′ +
f ′′h′

f ′′C : D
,

f ′′C
D

= g′′ +
h′′E
D

= g′′ +
f ′′′h′′

f ′′′D : E
,

f ′′′D
E

= g′′′ +
h′′′F

E
= g′′′ +

f ′′′′h′′′

f ′′′′E : F
,

etc.

If now the later values are continuously substituted in the earlier ones, imme-
diately the following continued fraction will emerge

f A
B

= g +
f ′h

g′ +
f ′′h′

g′′ +
f ′′′h′′

g′′′ +
f ′′′′h′′′

g′′′′ + etc.

whose value is therefore determined by the first two terms A and B of the
series only.

§2 Therefore, as often as one has such a progression of quantities A, B, C,
D, E etc., whose law is of such a nature that three subsequent terms of it
depend on each other according to an arbitrary law of the above kind, hence
a continued fraction is deduced whose value can be assigned. Therefore, if a
formula was of such a nature that its expansion leads to a series of quantities
A, B, C, D, E etc. of this kind, one can hence derive continued fractions; how
this happens, it most conveniently shown in some examples.

I. EXPANSION OF THE FORMULA s = xn(α− βx− γxx)

§3 In this formula the exponent n is considered as a variable successively
obtaining all values
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1, 2, 3, 4, 5, 6 etc.,

whence, as long as n > 0, this formula vanishes for x = 0, but then it also
vanishes for

x =
−β±

√
ββ + 4αγ

2γ
.

Having noted these things, differentiate this formula that

ds = nαxn−1dx− (n + 1)βxndx− (n + 2)γxn+1dx,

whence by integrating term by term and just indicating the integration it will
be

nα
∫

xn−1dx = (n + 1)β
∫

xndx + (n + 2)γ
∫

xn+1dx + s.

Hence, if after each integration done in such a way that the integral vanishes
for x = 0 one sets

x =
−β±

√
ββ + 4αγ

2γ
,

in which case s = 0, of course, it will be

nα
∫

xn−1dx = (n + 1)β
∫

xndx + (n + 2)γ
∫

xn+1dx,

which is a relation of such a kind among three subsequent integral formulas,
as we desire it for the formation of a continued fraction; thus, these integral
formulas, if one successively writes the numbers 1, 2, 3, 4, 5, 6 etc. instead of
n, provide us with the quantities A, B, C, D etc.

§4 Therefore, let us write the natural numbers 1, 2, 3, 4 etc. in order instead
of n that these relations result
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α
∫

dx = 2β
∫

xdx + 3γ
∫

xxdx,

2α
∫

xdx = 3β
∫

xxdx + 4γ
∫

x3dx,

3α
∫

xxdx = 4β
∫

x3dx + 5γ
∫

x4dx,

4α
∫

x3dx = 5β
∫

x4dx + 6γ
∫

x5dx

etc.,

Therefore, one will hence have

A =
∫

dx =
−β±

√
ββ + 4αγ

2γ
,

B =
∫

xdx =
1
2

xx =
1
2

(
−β±

√
ββ + 4α

2γ

)2

,

C =
∫

xxdx =
1
3

x3,

D =
∫

x3dx =
1
4

x4

etc.

But then one will have these values for the letters f , g, h etc.:

f = α, f ′ = 2α, f ′′ = 3α, f ′′′ = 4α etc.;

g = 2β, g′ = 3β, g′′ = 4β, g′′′ = 5β etc.;

h = 3γ, h′ = 4γ, h′′ = 5γ, h′′′ = 6γ etc.;

from these values the following continued fraction results
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αA
B

= 2β +
6αγ

3β +
12αγ

4β +
20αγ

5β +
30αγ

6β + etc.

whose value therefore is

4αγ

−β +
√

ββ + 4αγ
= β +

√
ββ + 4αγ.

§5 To simplify this continued fraction, let us write 1
2 δ instead of αγ and it

results

β +
√

ββ + 2δ = 2β +
3δ

3β +
6δ

4β +
10δ

5β +
15δ

6β + etc.

But since this expression seems to be truncated by its head, having added this
head, let us set

s = β +
δ

2β +
3δ

3β +
6δ

4β +
10δ

5β + etc.

and it will be

s = β +
δ

β +
√

ββ + 2δ
,

which expression is reduced to this one

s =
1
2

β +
1
2

√
ββ + 2δ.
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§6 But this continued fraction can be simplified even further, if we write 2ε

instead of δ, such that

1
2

β +
1
2

√
ββ + 4ε = β +

2ε

2β +
6ε

3β +
12ε

4β +
20ε

5β + etc.

If now the denominator and numerator of the first fraction are divided by 2,
of the second by 3, of the third by 4, of the fourth by 5, the following form
will result

1
2

β +
1
2

√
ββ + 4ε = β +

ε

β +
ε

β +
ε

β +
ε

β + etc.

which is very simple; if its sum is considered to be unknown and is called
= z, it will obviously be z = β + ε

z and hence zz = βz + ε, whence

z =
β +

√
ββ + 4ε

2
,

which is the same.

§7 But that very simple sum can be deduced immediately from the form
assumed initially, i.e.

s = xn(α− βx− γxx),

since we put which equal to zero, it will obviously be

α = βx + γxx

and in like manner

αx = βxx + γx3, αxx = βx3 + γx4 etc.,

such that for the series A, B, C, D etc. we have this simple series of powers
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1, x, x2, x3, x4 etc.;

but then the letters f , g, h etc. become α, β, γ etc., whence this continued
fractions originates

α

x
= β +

αγ

β +
αγ

β +
αγ

β + etc.

where

1
x
=

β +
√

ββ + 4αγ

2α
.

Therefore, the value of this fraction is

1
2

β +
1
2

√
ββ + 4αγ

as before, since αγ = ε.

II. EXPANSION OF THE FORMULA s = xn(a− x)

§8 Therefore, this formula vanishes putting x = a; but hence

ds = naxn−1dx− (n + 1)xndx,

which expression, since it consists only of two terms, must be reduced to a
fraction, whose denominator is α + βx, such that

ds =
naαxn−1dx + (βna− α(n + 1))xndx− β(n + 1)xn+1dx

α + βx
.

Therefore, having integrated each term separately, it will be

s = naα
∫ xn−1dx

α + βx
+ (nβa− (n + 1)α)

∫ xndx
α + βx

− β(n + 1)
∫ xn+1dx

α + βx
;

hence, if we set x = a after each integration, that s = 0, we will have this
reduction
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naα
∫ xn−1dx

α + βx
= ((n + 1)α− nβa)

∫ xndx
α + βx

+ (n + 1)β
∫ xn+1dx

α + βx
.

§9 Let us now successively substitute the numbers 1, 2, 3, 4 etc. for n and
having made the comparison to the general formulas we will have

A =
∫ dx

α + βx
, B =

∫ xdx
α + βx

, C =
∫ xxdx

α + βx
etc.,

where after the integration it must be x = a, of course. Furthermore, we will
have

f = aα, f ′ = 2aα, f ′′ = 3aα, f ′′′ = 4aα etc.;

g = 2α− βa, g′ = 3α− 2βa, g′′ = 4α− 3βa etc.;

h = 2β, h′ = 3β, h′′ = 4β, h′′′ = 5β etc.;

and from these the following continued fraction results

αaA
B

= (2α− βa) +
4aαβ

(3α− 2βa) +
9aαβ

(4α− 3βa) +
16aαβ

(5α− 4βa) + etc.

§10 But having done the integration∫ dx
α + βx

=
1
β

log
α + βx

α
,

since the integrals must vanish for x = 0. Therefore, now let

x = a

and it will be

A =
1
β

log
α + βx

α
.

Further,
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∫ xdx
α + βx

=
1
β

(
x− α

β
log

α + βx
α

)
and for x = a it will be

B =
a
β
− α

ββ
log

α + βa
α

,

for which reason the value of our continued fraction will be

αaβ log α+βa
α

aβ− α log α+βa
α

;

but it is evident that without loss of generality one can take a = 1; for, then it
will be

αβ log α+β
α

β− α log α+β
α

= (2α− β) +
4αβ

(3α− 2β) +
9αβ

(4α− 3β)
+ etc.

§11 But this whole expression obviously just depends on the ratio of the
numbers α and β; hence let us take α = 1 and β = n and this continued
fraction will result

n log(1 + n)
n− log(1 + n)

= (2− n) +
4n

(3− 2n) +
9n

(4− 3n) +
16n

(5− 4n) + etc.

if, according to the structure, we write 1 + n in front of which and set the sum
= s, that

s = 1 +
n

(2− n) +
4n

(3− 2n) +
9n

(4− 3n) +
16n

(5− 4n) + etc.

it will be
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s = 1 +
n(n− log(1 + n))

n log(1 + n)
= 1 +

n− log(1 + n)
log(1 + n)

=
n

log(1 + n)
.

§12 Let us run through several examples and first let n = 1; it will be

1
log 2

= 1 +
1

1 +
4

1 +
9

1 +
16

1 + etc.
But for n = 2 it will be

2
log 3

= 1 +
2

0 +
8

−1 +
18

−2 +
32

−3 +
50

−4 + etc.
which expression, because if the negative quantities, is not sufficiently con-
venient; since this happens, whenever n > 1, it will be worth one’s while to
expand the cases, in which n is taken smaller than 1.

§13 That this can be done more easily, let us return to the expression contai-
ning the letters α and β and, having added the head which had been missing,
this form results

β

log α+β
α

= α +
αβ

(2α− β) +
4αβ

(3α− 2β) +
9αβ

(4α− 3β) + etc.

Now let us put

α = n−m and β = 2m,

that we obtain the following form
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2m
log n+m

n−m
= n−m +

2m(n−m)

2n− 4m +
8m(n−m)

3n− 7m +
18m(n−m)

4n− 10m + etc.
whence the following special cases are deduced.

If m = 1 and n = 3, it will be

2
log 2

= 2 +
4

2 +
16

2 +
36

2 +
64

2 + etc.
which fraction, having divided it by 2 and simplified it, yields this one

1
log 2

= 1 +
1

1 +
4

1 +
9

1 +
16

1 + etc.
which was found above already.

Let m = 1 and n = 4; it will be

2
log 5

3

= 3 +
6

4 +
24

5 +
54

6 +
96

7 + etc.

= 3 +
6 · 1

4 +
6 · 4

5 +
6 · 9

6 +
6 · 16

7 + etc.
Let m = 1 and n = 5; it will be
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2
log 3

2

= 4 +
8

6 +
32

8 +
72

10 +
128

12 + etc.
or

1
log 3

2

= 2 +
2

3 +
8

4 +
18

5 +
32

6 + etc.

= 2 +
2 · 1

3 +
2 · 4

4 +
2 · 9

5 +
2 · 16

6 + etc.

III. EXPANSION OF THE FORMULA s = xn(1− x2)

§14 Therefore, this formula vanishes in the cases x = 0 and x = 1. But since
hence

ds = nxn−1dx− (n + 2)xn+1dx,

reduce this differential to the denominator α + βxx and it will be

ds =
nαxn−1dx + (nβ− (n + 2)α)xn+1dx− (n + 2)βxn+3dx

α + βxx
.

Hence by integrating again

s = nα
∫ xn−1dx

α + βxx
+ (nβ− (n + 2)α)

∫ xn+1dx
α + βxx

− (n + 2)β
∫ xn+3dx

α + βxx
.

If one sets x = 1 after the integration, this reduction of integrals will result

nα
∫ xn−1dx

α + βxx
= ((n + 2)α− nβ)

∫ xn+1dx
α + βxx

+ (n + 2)β
∫ xn+3dx

α + βxx
.
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§15 Since here the powers of x are increased by two, let us successively
attribute the values 1, 3, 5, 7, 9 etc. to the exponent n and set

A =
∫ dx

α + βxx
, B =

∫ xxdx
α + βxx

, C =
∫ x4dx

α + βxx
etc.

Further, the letters f , g, h etc. with its derivatives will be

f = α, f ′ = 3α, f ′′ = 5α, f ′′′ = 7α etc.;

g = 3α− β, g′ = 5α− 3β, g′′ = 7α− 5β, g′′′ = 9α− 7β etc.;

h = 3β, h′ = 5β, h′′ = 7β, h′′′ = 9β etc.;

whence the following continued fraction results

αA
B

= 3α− β +
9αβ

5α− 3β +
25αβ

7α− 5β +
49αβ

9α− 7β + etc.

§16 Since

B =
∫ xxdx

α + βxx
,

it will be

B =
1
β

∫
dx− α

β

∫ dx
α + βxx

and hence

B =
1
β
− α

β
A,

having substituted which value we will have

αβA
1− αA

= 3α− β +
9αβ

5α− 3β +
25αβ

7α− 5β + etc.
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in front of which, since the head is missing, we want to write α + β + αβ; but
then the sum will be β + 1

A such that we have

β +
1
A

= α + β +
αβ

3α− β +
9αβ

5α− 3β +
25αβ

7α− 5β + etc.

while

A =
∫ dx

α + βxx

having taken the integral in such a way that it vanishes for x = 0 but then
having taken x = 1.

§17 First let us expand the simplest cases in which α = 1 and β = 1, where
it will be A = π

4 , whence we will have

1 +
4
π

= 2 +
1

2 +
9

2 +
25

2 +
49

2 + etc.
or it will be

4
π

= 1 +
1

2 +
9

2 +
25

2 + etc.
which is the continued fraction once given by Brouncker first, whose investi-
gation, whereas it was found by Wallis through very tedious calculations, was
an immediate corollary of our formula here.

§18 But our general form gives infinitely many other similar expressions,
depending on how the letters α and β are taken. And first, if α and β were
positive numbers, the value of the letter A will always be expressed in terms
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of circular arcs, otherwise in terms of logarithms. Therefore, first let β = 1
and it will be

A =
∫ dx

α + xx
=

1√
α

arctan
x√
α
=

1√
α

arctan
1√
α

,

whence this continued fraction arises:

1 +
√

α

arctan 1√
α

= α + 1 +
α

3α− 1 +
9α

5α− 3 +
25α

7α− 5 + etc.

Therefore, hence, if one takes α = 3, since arctan 1√
3
= π

6 , we will have

1 +
6
√

3
π

= 4 +
3

8 +
27

12 +
75

16 +
147

20 + etc.
or

1 +
6
√

3
π

= 4 +
3 · 1

8 +
3 · 9

12 +
3 · 25

16 +
3 · 49

20 + etc.

§19 Now let β be any positive number, and since

A =
∫ dx

α + βxx
=

1
β

∫ dx
α
β + xx

,

by integration

A =
1√
αβ

arctan

√
β

α
.

Therefore, hence we will have
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β +

√
αβ

arctan
√

β
α

= α + β +
αβ

3α− β +
9αβ

5α− 3β− etc.

Therefore, let us set

α + β = 2n and α− β = 2m;

that

α = m + n and β = n−m;

having put these values it will be

n−m +

√
nn−mm

arctan
√

n−m
n+m

= 2n +
nn−mm

2n + 4m +
9(nn−mm)

2n + 8m + etc.

§20 Therefore, let us also consider the case in which β is a negative number,
and putting

β = −γ,

it will be

A =
∫ dx

α− γxx
=

1
γ

∫ dx
α
γ − xx

,

whose integral is

A =
1

2
√

αγ
log

√
α
γ + x√
α
γ − x

;

therefore, having put x = 1, it will be

A =
1

2
√

αγ
log
√

α +
√

γ√
α−√γ

,

whence this continued fraction arises
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−γ +
2
√

αγ

log
√

α+
√

γ√
α−√γ

= α− γ− αγ

3α + γ− 9α

5α + 3γ−
25αγ

7α + 5γ− etc.

and this way we obtained new continued fractions whose values can also be
exhibited in terms of logarithms and which differ completely from those we
found before.

§21 Here, one case is more remarkable than all the remaining ones, namely
when

γ = α

or, what reduces to the same,

α = 1 and γ = 1;

for, since then

log
√

α +
√

γ√
α−√γ

= log ∞ = ∞,

we will have

−1 = 0−
1

4−
9

8−
25

12− etc.
or, having changed the signs,

1 =
1

4−
9

8−
25

12− etc.
Hence the first denominator
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4−
9

8−
25

12− etc.
must be = 1. Therefore, it will be

0 = 3−
9

8−
25

12− etc.
or

1 =
3

8−
25

12− etc.
where the denominator must be = 3; hence

0 = 5−
25

12− etc.
whose denominator must be = 5; hence

0 = 7−
49

16−
81

20− etc.
from which structure the truth is easily seen.

§22 Let us take

α = 4 and γ = 1

and we will obtain this fraction

−1 +
4

log 3
= 3−

4 · 1

13−
4 · 9

23−
4 · 25

33−
4 · 49

43− etc.
But if we take
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α = 9 and γ = 1,

it will be

−1 +
6

log 2
= 8−

9 · 1

28−
9 · 9

48−
9 · 25

68−
9 · 49

88− etc.

EXPANSION OF THE FORMULA s = xneαx(1− x)

§22a Here e denotes the number whose hyperbolic logarithm is 1, such that

d.eαx = αdxeαx.

Therefore, hence it will be

ds = nxn−1dxeαx + (α− (n + 1))xndxeαx − αxn+1dxeαx.

Therefore, if after the integration one sets x = 1, it will be

n
∫

xn−1dxeαx = (n + 1− α)
∫

xndxeαx + α
∫

xn+1dxeαx.

§23 If we now successively write the numbers 1, 2, 3, 4 etc. instead of n and
set

A =
∫

eαxdx =
1
α
(eα − 1) and B =

∫
xdxeαx =

α− 1
αα

eα +
1

αα
,

f = 1, f ′ = 2, f ′′ = 3, f ′′′ = 4 etc.;

g = 2− α, g′ = 3− α, g′′ = 4− α, g′′′ = 5− α etc.;

h = α, h′ = α, h′′ = α, h′′′ = α etc.;

this continued fraction will result
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A
B

= 2− α +
2α

3− α +
3α

4− α +
4α

5− α + etc.
Let us also add 1− α + α at the top; its value will be

1− α +
(α− 1)eα + 1

eα − 1
=

α

eα − 1
,

whence one will have this sufficiently convenient continued fraction

α

eα − 1
= 1− α +

α

2− α +
2α

3− α +
3α

4− α− etc.
whence it is plain that, if α = 0, because of eα − 1 = α, it will be 1 = 1, of
course.

§24 Let us consider some special cases; and first, if α = 1, it will be

1
e− 1

= 0 +
1

1 +
2

2 +
3

3 +
4

4 + etc.
which fraction is easily transformed into this one

1
e− 1

=
1

1 +
1
1

1 +
1
2

1 +
1
3

1 +
1
4

1 + etc.
whence
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e− 1 = 1 +
1
1

1 +
1
2

1 +
1
3

1 + etc.
But this, freed from partial fractions, further gives

e− 1 = 1 +
1

1 +
1

2 +
2

3 +
3

4 +
4

5 + etc.
whence it follows

1
e− 2

= 1 +
1

2 +
2

3 +
3

4 +
4

5 + etc.
which forms seem most remarkable for their simplicity. From the penultimate,
by which

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + etc.
successively taking 1, 2, 3 and more terms the following approximations will
result:
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e = 2, 0000,

e = 3, 0000,

e = 2, 6666,

e = 2, 7272,

e = 2, 7169,

which values, alternately too large and too small, converge to the truth suffi-
ciently fast.

§25 Let us take α = 2; it will be

2
ee− 1

= −1 +
2

0 +
4

1 +
6

2 +
8

3 + etc.
From this fraction further this one is deduced

2(ee− 1)
ee + 1

= 0 +
4

1 +
6

2 +
8

3 + etc.
and in like manner, if greater numbers are taken for α, one will be able to do
the reduction.

§26 One can also take negative numbers for α. So, if α = −1, it will be

e
e− 1

= 2−
1

3−
2

4−
3

5−
4

6− etc.
which is reduced to this form
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e
e− 1

= 2 +
1

−3 +
2

4 +
3

−5 +
4

6 + etc.
and in like manner, larger values can be handled.

§27 Let us also set α = 1
2 and one will find this expression

1
2(
√

e− 1)
=

1
2
+

1
2

3
2 +

1

5
2 +

3
2

7
2 +

4
2

9
2 + etc.

which, freed from partial fractions, becomes

1
−1 +

√
e
= 1 +

2

3 +
4

5 +
6

7 +
8

9 + etc.

In like manner, if we take α = 1
3 , it will be

1
3( 3
√

e− 1)
= 2 : 3 +

1 : 3

5 : 3 +
2 : 3

8 : 3 +
3 : 3

11 : 3 +
4 : 3

14 : 3 + etc.
which, freed from partial fractions, gives
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1
−1 + 3

√
e
= 2 +

3

5 +
6

8 +
9

11 +
12

14 + etc.

but if one sets α = 2
3 , this continued fraction results

2
3( 3
√

ee− 1)
= 1 : 3 +

2 : 3

4 : 3 +
4 : 3

7 : 3 +
6 : 3

10 : 3 +
8 : 3

13 : 3 + etc.
which, freed from partial fractions, becomes

2
3
√

ee− 1
= 1 +

6

4 +
12

7 +
18

10 +
24

13 + etc.

§28 Having expanded these formulas as the principal and simpler ones, in
like manner, it will be possible to treat other a lot more general ones which
will lead to more complicated continued fractions, as it will become clear from
the cases which follow.

V. EXPANSION OF THE FORMULA s = xn(a− bxθ − cx2θ)λ

§29 Therefore, it will hence be

ds = (a− bxθ − cx2θ)λ−1

(naxn−1dx− b(n + λθ)xn+θ−1dx

−c(n + 2λθ)xn+2θ−1dx

 ,

whence integrating term by term, but then setting

a− bxθ − cx2θ = 0,
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which happens, if it was

xθ =
−b +

√
bb + 4ac

2c
,

one will have this general reduction

na
∫

xn−1dx(a− bxθ − cx2θ)λ−1

= (n + λθ)b
∫

xn+θ−1dx(a− bxθ − cx2θ)λ−1

+(n + 2λθ)c
∫

xn+2θ−1dx(a− bxθ − cx2θ)λ−1.

§30 If we now want to compare this form to our general one given initially,
the values to be assumed successively for the letter n must be increased by the
difference θ. Further, it is not necessary that the first value of n, as we have
done up to this point, is taken = 1; therefore, let us set its first value = α and
find the values of the two following integral formulas, i.e.

A =
∫

xα−1dx(a− bxθ − cx2θ)λ−1

and

B =
∫

xα+θ−1dx(a− bxθ − cx2θ)λ,

which integrals are to be taken in such a way that they vanish for x = 0,
having done which that value must be attributed to x which renders the
formula a− bxθ − cx2θ = 0. But since this can not be achieved in general, we
have to be content to indicate those values by the letters A and B, which we
will therefore consider to be known.

§31 Furthermore, the letters f , g, h with its derivatives will have the following
values

f = αa, f ′ = (α + θ)a, f ′′ = (α + 2θ)a, f ′′′ = (α + 3θ)a etc.

g = (α + λθ)b, g′ = (α + θ + λθ)b, g′′ = (α + 2θ + λθ)b etc.

h = (α + 2λθ)c, h′ = (α + θ + 2λθ)c, h′′ = (α + 2θ + 2λθ)c etc.
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From these the following continued fraction will be formed

αaA
B

= (α+λθ)b+
(α + θ)(α + 2λθ)ac

(α + θ + λθ)b +
(α + 2θ)(α + θ + 2λθ)ac

(α + 2θ + λθ)b +
(α + 3θ)(α + 2θ + 2λθ)ac
(α + 3θ + λθ)b + etc.

which form is obviously very general; but we will not spend more time on its
further expansion.

VI. EXPANSION OF THE FORMULA s = xn(1− xθ)λ

§32 Therefore, hence

ds = nxn−1dx(1− xθ)λ − λθxn+θ−1(1− xθ)λ−1,

whence only two integral formulas would result; therefore, let us attribute the
arbitrary denominator a + bxθ to this differential that we have

ds =
(1− xθ)λ−1

a + bxθ

(
naxn−1dx− (a(n + λθ)− bn)xn+θ−1dx− b(n + λθ)xn+2θ−1dx

)
.

Therefore, now putting x = 1 after the integration we deduce this reduction

na
∫ xn−1dx(1− xθ)λ−1

a + bxθ
= (a(n + λθ)− bn)

∫ xn+θ−1dx(1− xθ)λ−1

a + bxθ

+b(n + λθ)
∫ xn+2θ−1dx(1− xθ)λ−1

a + bxθ
.

§33 But here it is evident again that the values of n must by increased by the
difference θ. But set the first value of n = α and for each case find the two
following integral formulas

A =
∫ xα−1dx(1− xθ)λ−1

a + bxθ
and B =

∫ xα+θ−1dx(1− xθ)λ−1

a + bxθ
,

where x was put = 1 after the integration, of course. Since, having found
these,
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f = αa, f ′ = (α + θ)a, f ′′ = (α + 2θ)a, f ′′′ = (α + 3θ)a etc.;

g = (α + λθ)a− αb, g′ = (α + θ + λθ)a− (α + θ)b,

g′′ = (α + 2θ + λθ)a− (α + 2θ)b etc.;

h = (α + λθ)b, h′ = (α + θ + λθ)b, h′′ = (α + 2θ + λθ)b etc.;

Hence the following continued fraction will be formed

αaA
B

= (α + λθ)a− αb

+
(α + θ)(α + λθ)ab

(α + θ + λθ)a− (α + θ)b +
(α + 2θ)(α + θ + λθ)ab

(α + 2θ + λθ)a− (α + 2θ)b +
(α + 3θ)(α + 2θ + λθ)ab

(α + 3θ + λθ)a− (α + 3θ)b + etc.

the further expansion of which formula we want to omit here.

VII. EXPANSION OF THE FORMULA s = xneαx(1− x)λ

§34 Therefore, hence

ds = eαx(1− x)λ−1
(

nxn−1dx− (n + λ− α)xndx− αxn+1dx
)

;

therefore, hence, if one sets x = 1 after the integration everywhere, in which
case s = 0, we will have this reduction

n
∫

xn−1dxeαx(1− x)λ−1

= (n + λ− α)
∫

xndxeαx(1− x)λ−1 + α
∫

xn+1dxeαx(1− x)λ−1.

§35 Therefore, in these formulas values increasing by 1 must be attributed
to the exponent n, but then let us take n = δ as the smallest value here, and
the values of the letters A and B must be found from these formulas, putting
x = 1 after the integration:

A =
∫

xδ−1dxeαx(1− x)λ−1, B =
∫

xδdxeαx(1− x)λ−1;

further, because of these values
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f = δ, f ′ = δ + 1, f ′′ = δ + 2, f ′′′ = δ + 3 etc.;

g = δ + λ− α, g′ = δ + 1 + λ− α, g′′ = δ + 2 + λ− α etc.

h = α, h′ = α, h′′ = α etc.

this continued fraction follows

δA
B

= δ + λ− α +
(δ + 1)α

δ + 1 + λ− α +
(δ + 2)α

δ + 2 + λ− α +
(δ + 3)α

δ + 3 + λ− α + etc.

where it must especially be noted that the exponents λ and θ have to taken
greater than zero, since otherwise the principal formula xneαx(1− x)λ would
not vanish in the case x = 1.

§36 If the value 1 is attributed to the letters δ and λ, the case treated above
already [§ 23] will result; and if integer numbers are assigned to these letters,
continued fractions of such a kind will result, which can be reduced to the first
by certain operations. But if we want to assign fractions to these letters δ and
λ, either to one or both of them, then forms completely irreducible to the first
will result and whose values can only be expressed by most transcendental
quantities. As if it was δ = 1

2 and λ = 1
2 , the value of the the letter A must be

found from this integral formula

A =
∫ eαxdx√

x− xx
,

whose integration leads to most transcendental quantities, such that the value
of such continued fraction results as highly intricate.
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