
Various Artifices to investigate the

Nature of Series *

Leonhard Euler

Many times series of such a kind occur, whose origin might be sufficiently
perspicuous, but whose law of progression and nature is highly mysterious
and whose properties can only be investigated applying extraordinary analytic
artifices. It certainly is hardly possible to propound artifices of this kind in
general in such a way that their use is clearly seen; but their applicability is
rather shown most conveniently in examples, whence at the same time the
reason and necessity to invent them is understood a lot more clearly. Therefore,
I will contemplate a completely singular series or progression of numbers
here, which results, if the powers of the trinomial 1 + x + xx are expanded
and from each expansion only the middle term is taken, i.e. the one with the
largest coefficient; for, this way an even more remarkable series of numbers
results, since the law of progression is not obvious. But having explored it,
most beautiful properties will be revealed, which is the main task of analytical
artifices. But this memorable series especially exhibits an example, how careful
we have to be when using the method of induction, which is usually applied
in investigations of this kind, since here an induction of such a kind occurs,
which, even though it seems to be correct, nevertheless leads to an error.

*Original Title: “Varia artificia in serierum indolem inquirendi“,first published in „Opuscula
Analytica 1 1783, pp. 48-63“, reprint in „Opera Omnia: Opera Omnia: Series 1, Volume 15,
pp. 383 - 399 “, Eneström-Number E551, translated by: Alexander Aycock for the project
„Euler-Kreis Mainz“
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EXPANSION OF THE POWERS OF THE TRINOMIAL

1 + x + x2

1 + 2x + 3x2 + 2x3 + x4

1 + 3x + 6x2 + 7x3 + 6x4 + 3x5 + x6

1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8

1 + 5x + 15x2 + 30x3 + 45x4 + 51x5 + 45x6 + 30x7 + 15x8 + 5x9 + x10

1 + 6x + 21x2 + 50x3 + 90x4 + 126x5 + 141x6 + 126x7 + 90x8 + 50x9 + 21x10 + 6x11 + x12

etc.

From these formulas I will only take the middle terms, which yield this
progression

x + 3x2 + 7x3 + 19x4 + 51x5 + 141x6 + etc.

whose nature I want to investigate here, where, omitting all powers of x, the
whole task is reduced to this numerical progression

1, 3, 7, 19, 51, 141, 393 etc.

CONSIDERATION I

1. Considering this series, it comes to mind that each term is well-approximated
by the triple of its predecessor, since this series, if continued to infinity, by
nature must obviously be confounded with the tripled geometric progression.
Therefore, I write the tripled preceding terms under the terms of the series
moved one term further to the right, but I denote the indices this way:

Indices 0 1 2 3 4 5 6 7 8 9

A 1 1 3 7 19 51 141 393 1107 3139

B 3 3 9 21 57 153 423 1179 3321

C 2 0 2 2 6 12 30 72 182

D 1 0 1 1 3 6 15 36 91

E 1 0 1 1 2 3 5 8 13
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where the series A is the propounded series itself, which subtracted from the
series B, its triple, leaves behind the series C; but having split this series into
two parts the series D results, whose single terms are the triangular numbers,
under which I wrote the respective indices, whence the series E resulted.

2. In this series E the structure seems be of such a kind that each term is
equal to the sum of the two preceding ones, and this conclusion based on
inspection, since it is confirmed by ten terms of the series, seems so certain
to be correct that one can neither doubt that all terms of the series D are the
triangular numbers, nor that their indices constitute that simple recurring
series, in which each term is the aggregate of the two preceding ones. We
certainly often trust induction, even if based on a less solid foundation, in
investigations of this kind.

3. If this induction would be true, it would be a discovery of highest im-
portance, since hence the general term of the propounded series A could be
assigned; of course, the term corresponding to the index n would be
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and our progression would arise from the following three recurring series:

Relation Scale

A 1 1 5 13 41 121 365 1093 3281 2 + 3

B 2 3 7 18 47 123 322 843 2207 3 − 1

C 2 1 3 4 7 11 18 29 47 1 + 1

D 5 5 15 35 95 255 705 1965 5535 and divinding by 5

E 1 1 3 7 19 51 141 393 1107 etc.

For, from the recurring series A, B, C by addition of the single terms the series
D results, whose terms divided by 5 produce our progression our series, at
least up to ten terms.
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4. It is important to teach, how I found the expression of this general term,
since the above induction, no matter how well-grounded it might seem,
nevertheless is false. For, if our progression is continued and the operations
applied in par. 1 are done, we find:

Indices 5 6 7 8 9 10 11

A 51 141 393 1107 3139 8953 25653

B 57 153 423 1179 3321 9417 26859

C 6 12 30 72 182 464 1206

D 3 6 15 36 91 232 603

E 2 3 5 8 13 − −
in the series D the terms 232 and 603 are not triangular numbers and hence
the law of the series E is not valid anymore. Therefore, this example of an
erroneous induction is even more remarkable, since I have never found a case
of such a kind before, in which a so specious induction is actually wrong.

CONSIDERATION II

5. Therefore, leaving all induction aside, I attempt to investigate the nature
of our series from its origin. And first it is certainly clear, if in this series

x, 3x2, 7x3, 19x4, 51x5, 141x6, 391x7 etc.

the term corresponding to the index n is put

= Nxn,

that Nxn will be the term of this power of x, which results from the expansion
of (1 + x + xx)n. Therefore, I, having combined the first two terms, treat the
trinomial 1 + x + xx as a binomial and it will be

(1 + x + xx)n = (1 + x)n +
n
1

xx(1 + x)n−1 +
n(n− 1)

1 · 2 x4(1 + x)n−2

+
n(n− 1)(n− 2)

1 · 2 · 3 x6(1 + x)n−3 + etc.

from whose single terms one has to take the power xn, and hence the sum of
all together will give our term Nxn in question.
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6. But from the first term (1 + x)n or (x + 1)n after the expansion it results

xn;

but for the second member one has to take the second term from the expansion
of the formula (x + 1)n−1, i.e.

n− 1
1

xn−2.

Further, for the third member (x + 1)n−2 the third term

(n− 2)(n− 3)
1 · 2 xn−4

multiplied by the factor n(n−1)
1·2 x4 yields

n(n− 1)(n− 2)(n− 3)
1 · 1 · 2 · 2 xn

and likewise for all remaining members; hence we obtain

N = 1+
n(n− 1)

1 · 1 +
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 +
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

1 · 1 · 2 · 2 · 3 · 3 + etc.,

the number of which parts to be added is finite for each integer number n; and
so the value of the term N can be easily assigned. But the same expression is
found more easily, if the power of the trinomial is expanded this way

(x(1 + x) + 1)n = xn(1 + x)n +
n
1

xn−1(1 + x)n−1

+
n(n− 1)

1 · 2 xn−2(1 + x)n−2 + etc.,

where the coefficient of the power xn from the first term is seen to be 1, from
the second n

1 ·
n−1

1 , from the third n(n−1)
1·2 · (n−2)(n−3)

1·2 etc. as above.

CONSIDERATION III

7. Having found an expression, by which the coefficient of the power xn

is defined in general in our progression, first I observe that it can not be
simplified by any means, i.e. be reduced to a finite expression. For, even though
the invention of the number N can be reduced to a differential equation of
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second order, it nevertheless is of such a nature, that it can not be solved by
any means. Therefore, since all efforts to find a more convenient form of the
expression for N would be pointless, I will focus on finding the law, by which
an arbitrary term in our progression can be defined from several preceding
ones.

8. For this purpose I represent our progression this way

x, 3x2, 7x3, 19x4, 51x5, · · · pxn−2, qxn−1, rxn,

and will investigate, how the number r can be determined in terms of the
preceding q and p. But one has the values p, q, r from the series found above
for N, which values, in order to be able to manipulate them analytically, I
express as follows:

p = 1 +
(n− 2)(n− 3)

1 · 1 z2 +
(n− 2)(n− 3)(n− 4)(n− 5)

1 · 1 · 2 · 2 z4 + etc.

q = 1 +
(n− 1)(n− 2)

1 · 1 z2 +
(n− 1)(n− 2)(n− 3)(n− 4)

1 · 1 · 2 · 2 z4 + etc.

r = 1 +
n(n− 1)

1 · 1 z2 +
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 z4 + etc.,

whence, by subtracting each one from the following one, we first conclude

q− p
2

=
n− 2

1
z2 +

(n− 2)(n− 3)(n− 4)
1 · 1 · 2 z4 +

(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
1 · 1 · 2 · 2 · 3 z6 + etc.

r− q
2

=
n− 1

1
z2 +

(n− 1)(n− 2)(n− 3)
1 · 1 · 2 z4 +

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
1 · 1 · 2 · 2 · 3 z6 + etc.

9. But having differentiated the values q and r we obtain

dq
2dz

=
(n− 1)(n− 2)

1
z +

(n− 1)(n− 2)(n− 3)(n− 4)
1 · 1 · 2 z3 + etc.

dr
2dz

=
n(n− 1)

1
z +

n(n− 1)(n− 2)(n− 3)
1 · 1 · 2 z3 + etc.,
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which series is easily compared to the preceding ones, since obviously

(b− 1)(q− p)
2

=
zdq
2dz

and
n(r− q)

2
=

zdr
2dz

,

whence we conclude that it will be

dq = (n− 1)(q− p) · dz
z

and

dr = n(r− q) · dz
z

.

10. Further, if differentiated, the last formulas of the preceding paragraph
yield:

dq− dp
4dz

= (n− 2)z +
(n− 2)(n− 3)(n− 4)

1 · 1 z3 +
(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

1 · 1 · 2 · 2 z5 + etc.

dr− dq
4dz

= (n− 1)z +
(n− 1)(n− 2)(n− 3)

1 · 1 z3 +
(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

1 · 1 · 2 · 2 z5 + etc.,

which differ from the first formulas only in that regard that here the coeffi-
cients have one more factor; but by means of differentiation the same factors
can easily added there as follows

d.pz2−n

dz
= −(n− 2)z1−n − (n− 2)(n− 3)(n− 4)

1 · 1 z3−n

− (n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
1 · 1 · 2 · 2 z5−n − etc.

d.qz1−n

dz
= −(n− 1)z−n − (n− 1)(n− 2)(n− 3)

1 · 1 z2−n

− (n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
1 · 1 · 2 · 2 z4−n − etc.,

whence it is obvious that

dq− dp
4dz

+
znd.pz2−n

dz
= 0
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and

dr− dq
4dz

+
zn+1d.q1−n

dz
= 0

and after the expansion

dq− dp + 4zzdp− 4(n− 2)pzdz = 0,

dr − dq + 4zzdq − 4(n− 1)qzdz = 0.

11. Therefore, since above we found the differentials dq and dr expressed in
terms of dz, if we substitute these values in the last equation, we will obtain

n(r− q)
z

− (n− 1)(q− p)
z

+ 4(n− 1)(q− p)− 4(n− 1)qz = 0,

so that, having removed the differentials, we found a finite relation among p,
q and r, which reads as follows

n(r− q) = (n− 1)(q− p)(1− 4zz) + 4(n− 1)qzz

or

n(r− q) = (n− 1)(q + p(4zz− 1)).

12. Therefore, we found a relation among the three consecutive values p, q,
r, by means of which, given two of them, the third is easily defined and this a
lot more general than it is necessary for our case, since this relation holds for
any number z. Therefore, since in our case z = 1, it will be

n(r− q) = (n− 1)(q + 3p)

or

r = q +
n− 1

n
(q + 3p),

by means of which formula our progression can easily be continued arbitrarily
far as follows:
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A 1 3 7 19 51 141 393 1107 3139

B 3 9 21 57 153 423 1179

C 6 16 40 108 294 816 2286

D 3 4 5 6 7 8 9

E 2 4 8 18 42 102 254

F 4 12 32 90 252 714 2032

Of course, the series A, as far as it had already been continued, is written over
the same terms tripled and moved to the right one place, leading to series
B; then the sum A + B will give the series C, which is written over the the
arithmetic progression D; the division C : D yields the series E, whence C− E
gives the series F, whose terms added to the corresponding term of the series
A gives its next term.

13. Therefore, let us continue our progression this way:

A 1107 3139 8953 25653 73789 212941 616227

B 1179 3321 9417 26859 76959 221367

C 2286 6460 18370 52512 150748 434308

D 9 10 11 12 13 14

E 254 646 1670 4376 11596 31022

F 2032 5814 16700 48136 139152 403286

whence having added the powers of x, since the term corresponding to x0

certainly is 1, as it also follows from the law of progression we found, our
progression will look as follows:

1, 1x, 3x2, 7x3, 19x4, 51x5, 141x6, 393x7, 1107x8, 3139x9, 8953x10,

25653x11, 73789x12, 212941x13, 616227x14 etc.

· · · pxn−2, qxn−1, rxn

and the law of progression is of such a nature that
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r = q +
n− 1

n
(q + 3p) = 2q + 3p− 1

n
(q + 3p).

14. But here especially the artifice, by which we got to this relation among
three consecutive terms through differentials, should be noted, since in the
final formula indeed no variable is contained anymore. Now it is easy to see
that the same relation can be found without differentiation, if in the three
series of par. 8. one uses this multiplication that (A + azz)p + Bq + Cr = 0.
For, it will quickly become clear that one can attribute values of such a kind
to the letters A, a, B and C, that all powers of z vanish, which then leads to
the above relation. But considering this at the beginning certainly is a less
obvious thing to do.

CONSIDERATION IV

15. Having found this law of progression, this raises the equally interesting
question, in which the sum of the same progression continued to infinity is
investigated. Therefore, let us put

s = 1 + x + 3x2 + 7x3 + · · ·+ pxn−2 + qxn−1 + rxn + etc.,

and since we found

n(r− 2q− 3p) + q + 3p = 0,

differentiating this equality let us introduce it as follows:

ds
dx

= 1 + 6x + 21x2 + · · · + (n− 2)pxn−3 + (n− 1)qxn−2 + nrxn−1

−2d.xs
dx

= −2 − 4x − 18x2 − · · · − 2(n− 1)pxn−2 − 2nqxn−1

−3d.x2s
dx

= − 6x − 9x2 − · · · − 3npxn−1

s = 1 + x + 3x2 + · · · + qxn−1

3xs = 3x + 3x2 + · · · + 3pxn−1
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whence we obtain

ds− 2d.xs− 3d.x2s
dx

+ s + 3xs = 0

or

(1− 2x− 3xx)ds− sdx− 3xsdx = 0.

From this equation it follows

ds
s

=
dx + 3xdx

1− 2x− 3xx
and hence by integration

s =
1√

1− 2x− 3xx
=

1√
(1 + x)(1− 3x)

.

16. Therefore, lo and behold the new origin of our series, which now results
from the expansion of this form

(1− 2x− 3xx)−
1
2 ,

whence after the calculation this series is detected to result

1 + x + 3x2 + 7x3 + 19x4 + 51x5 + 141x6 + etc.

But at the same time hence it is clear, how large the sum of this series, if
continued to infinity, will be for each value of x; here certainly it has to be
noted, if either x = −1 and x = 1

3 , that the sum will be infinite; but if x > 1
3 ,

the sum is imaginary. But the sum will be finite, if x is contained within the
limits 1

3 and −1; but outside these limits always an imaginary sum results. So,
having taken x = 1

4 , it will be

1 +
1
4
+

3
42 +

7
43 +

19
44 +

51
45 + etc. =

4√
5

.

CONSIDERATION V

17. This investigation can be extended to a series of middle terms taken
from the expansion of the more general trinomial a + bx + cx2. For, having in
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general put Nxn for the middle term of the power (a + bx + cxx)n, the value
of the coefficient N can be determined this way: Since

(x(b + cx) + a)n = xn(b + cx)n +
n
1

axn−1(b + cx)n−1

+
n(n− 1)

1 · 2 a2xn−2(b + cx)n−2 + etc.,

collect the coefficients of the power xn from the single terms, and one will find

N = bn +
n(n− 1)

1 · 1 abn−2c +
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 a2bn−4c2 + etc.

or, for the sake of brevity having put,

ac
bb

= g,

it will be

N = bn
(

1 +
n(n− 1)

1 · 1 g +
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 g2 + etc.
)

.

Hence, since having taken n = 0 we have N = 1, if we represent this progres-
sion this way

1 + Ax + Bx2 + Cx3 + Dx4 + · · ·+ Nxn + etc.,

these coefficients will be:

A = b,

B = b2(1 + 2g),

C = b3(1 + 6g),

D = b4(1 + 12g + 6gg),

E = b5(1 + 20g + 30gg),

F = b6(1 + 30g + 90gg + 20g3).
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18. To investigate, how each term is determined by the two preceding ones,
let us represent the series this way

1, bx, (1+ 2g)b2x2, (1+ 6g)b3x3, · · · pbn−2xn−2, qbn−1xn−1, rbnxn

and writing g for zz we will have

p = 1 +
(n− 2)(n− 3)

1 · 1 z2 +
(n− 2)(n− 3)(n− 4)(n− 5)

1 · 1 · 2 · 2 z4 + etc.

q = 1 +
(n− 1)(n− 2)

1 · 1 z2 +
(n− 1)(n− 2)(n− 3)(n− 4)

1 · 1 · 2 · 2 z4 + etc.

r = 1 +
n(n− 1)

1 · 1 z2 +
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2 z4 + etc.,

which series are the same we treated above; and therefore, it will be

n(r− q) = (n− 1)(q + p(4zz− 1)).

Substituting g for zz in our series the term r is determined by the two prece-
ding ones in such a way that

r = q +
n− 1

n
(q + (4g− 1)p)

or

r = 2q + (4g− 1)p− 1
n
(q + (4g− 1)p).

19. Let us put 4g− 1 = h that

h =
4ac− bb

bb
,

and since the law of progression yields

r = 2q + hp− 1
n
(q + hp)

and omitting the powers bnxn the two initial terms are 1 and 1, our progression
will be
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0 1 2 3 4 5

1, 1,
3 + h

2
,

5 + 3h
2

,
35 + 30h + 3hh

8
,

63 + 70h + 15hh
8

,

whence having taken h = 3 the series treated before results. But if one takes
h = −1 or g = 0, all terms will go over into 1, which follows from the relation

n(r− q) = (n− 1)(q− p);

for, if two contiguous terms p and q are equal, all are necessary also equal to
them.

CONSIDERATION VI

20. Let us generalize the investigation of the sum of this progression a lot
more and let

s = A + Bx + Cx2 + · · ·+ pxn−2 + qxn−1 + rxn + etc.,

the law of progression of which series is understood to be of such a nature
that

n(ap + bq + cr) = f p + gq,

and repeating the calculation from above in par. 15 we will have:

ad.xxs
dx

= 2aAx + 3aBxx + · · · + napxn−1

bd.xs
dx

= bA + 2bBx + 3bCxx + · · · + nbqxn−1

cds
dx

= cB + 2cCx + 3cDxx + · · · + ncrxn−1

gs = Ag + gBx + gCxx + · · · + gqxn−1

f xs = f Ax + f Bxx + · · · + f pxn−1
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Therefore, from the nature of the series it necessarily is

ad.xxs + bd.xs + cds
dx

− ( f x + g)s = (b− g)A + cB

or

ds(axx + bx + c)
dx

+ s((2a− f )x + (b− g)) = (b− g)A + cB.

21. Therefore, since we have

ds +
sdx((2a− f )x− (b− g))

axx + bx + c
=

(b− g)Adx + cBdx
axx + bx + c

,

the integration of this equation has to be done in such a way that for x = 0
we have s = A, from which this summation has no difficulty. Therefore, let us
accommodate this to the series found before, which was

s = 1 + x +
3 + h

2
x2 +

5 + 3h
2

x3 + · · ·+ pxn−2 + qxn−1 + rxn + etc.,

for which

n(hp + 2q− r) = hp + q

and

A = 1, B = 1,

and after the application it will be

a = h, b = 2, c = −1, f = h, g = 1,

whence the value of the sum s has to be defined from this equation

ds +
sdx(hx + 1)
hxx + 2x− 1

=
Adx− Bdx

hxx + 2x− 1
= 0

and hence one concludes

s
√

hxx + 2x− 1 =
√
−1

or

s =
1√

1− 2x− hxx
.
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22. Let us substitute the value assumed in par. 19 again

h = 4g− 1 =
4ac− bb

bb
and let us write bx instead of x so that this series is to be summed

s = 1 + bx + (bb + 2ac)x2 + (b3 + 6abc)x3 + (b4 + 12abbc + 6aacc)x4 + etc.,

and its sum will be

s =
1√

1− 2bx + (bb− 4ac)xx
or

s =
1√

(1− bx)2 − 4acxx
.

But the origin of this series is that its single terms are the middle terms taken
from the powers (a + bx + cxx)n. But then the law of progression is of such a
nature that, having put three consecutive terms

pxn−2, qxn−1, rxn,

the coefficient r is determined by the other two in such a way that

r = bq +
n− 1

n
(bq + (4ac− bb)p)

or

r =
2n− 1

n
bq +

n− 1
n

(4ac− bb)p.

23. But if one puts bb = 4ac so that

a + bx + cxx = (
√

a + x
√

c)2,

each term of our progression is determined by the preceding one alone so that

r =
2n− 1

n
· 2q
√

ac.

In this case put
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a = 1, c = 1 and b = 2,

that our series consists of the middle terms of the powers

(1 + 2x + xx)n or (1 + x)2n,

and it will be

r =
2(2n− 1)

n
q

and the series itself

s = 1 + 2x +
2 · 6
1 · 2 x2 +

2 · 6 · 10
1 · 2 · 3 x3 +

2 · 6 · 10 · 14
1 · 2 · 3 · 4 x4 + etc.,

whose sum is

s =
1√

1− 4x
,

as it is manifest per se.

CONSIDERATION VII

24. From the sum of the preceding series

s = 1 + bx + (bb + 2ac)x2 + (b3 + 6abc)x3 + etc.

we found before, i.e.

s = ((1− bx)2 − 4acxx)−
1
2 ,

one can vice versa find the general term or the coefficient of the power xn. For,
since, having done the expansion in the usual way,

s =
1

1− bx
+

1
2
· acxx
(1− bx)3 +

2 · 6
1 · 2 ·

a2c2x4

(1− bx)5 +
2 · 6 · 10
1 · 2 · 3 ·

a3c3x6

(1− bx)7 + etc.,

collect the single powers xn from the single terms; from the first term it results

bnxn,
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from the second

2
1
· n(n− 1)

1 · 2 acbn−2xn,

from the third

2 · 6
1 · 2 ·

n(n− 1)(n− 2)(n− 3)
1 · 2 · 3 · 4 a2c2bn−4xn,

which collected into one sum will give

bnxn
(

1 +
n(n− 1)

1 · 1
ac
bb

+
n(n− 1)(n− 2)(n− 3)

1 · 1 · 2 · 2
aacc
b4 + etc.

)
,

precisely as we found from the origin of this series.
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