
On the extraordinary use of the

method of Interpolation in the

doctrine of Series*

Leonhard Euler

In the method of interpolation a relation of such a kind between the two
variables x and y is in question that, if to the one successively the given values

a, b, c, d etc.

are attributed, the other y hence also obtains the given values

p, q, r, s etc.,

or what reduces to the same, an equation for a curved line of such a kind is
in question, which goes trough arbitrarily many given points. Therefore, the
greater the number of these points was, the more the curved line is limited;
nevertheless, I already observed on another occasion, even if the number of
points is augmented to infinity, that always still infinitely many curved lines
can be exhibited, which equally will go through all the same points. Since the
method of interpolation for each case yields a determined curved line, this
solution is always to be considered as highly particular; but this circumstance
itself implies a certain singular nature of the found solution, which deserves a
more accurate consideration. But this nature of the solution especially depends
on the method, by which this interpolation is done, or on the form, which
is attributed to the general form, in which the equation in question must be

*original title: „De eximio usu methodi interpolationum in serierum doctrina“, first published
in „Opuscula Analytica 1, 1783, pp. 157-210“, reprinted in „Opera Omnia: Series 1, Volume 15,
pp. 435 - 497“, Eneström-Number E555, translated by: Alexander Aycock for the project
„Euler-Kreis Mainz“
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contained. Since this form can be constituted in infinitely many ways, I will
restrict my investigation to this form

y = αx + βx3 + γx5 + δx7 + εx9 + etc.,

which certainly only contains odd powers of x, such that, which values of y
correspond to any arbitrary positive values of x, the same taken negatively
also correspond to the same negative values of x; by this innumerable other
curved lines are excluded, which would go through the same points.

PROBLEM 1

§1 To find an equation between the two variables x and y of this form

y = αx + βx3 + γx5 + δx7 + εx9 + etc.,

that, if to x the given values
a, b, c, d etc.

are attributed, the other variable y likewise obtains the values

p, q, r, s etc.

SOLUTION

That the general assumed equation can be accommodated to this case more
easily, exhibit it in this form

y = Ax + Bx(xx− aa) + Cx(xx− aa)(xx− bb)

+ Dx(xx− aa)(xx− bb)(xx− cc)

+ Ex(xx− aa)(xx− bb)(xx− cc)(xx− dd)

+ etc.,

which, even though it might proceed to infinity, if the number of conditions is
infinite, of course, nevertheless for the single propounded conditions yields
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the following finite equations:

I. p = Aa,

II. q = Ab + Bb(bb− aa),

III. r = Ac + Bc(cc− aa) + Cc(cc− aa)(cc− bb),

IV. s = Ad + Bd(dd− aa) + Cd(dd− aa)(dd− bb),

+ Dd(dd− aa)(dd− bb)(dd− cc),

etc.,

which shall be represented this way

I.
p
a
= A,

II.
q
b
= A + B(bb− aa),

III.
r
c
= A + B(cc− aa) + C(cc− aa)(cc− bb),

IV.
s
d
= A + B(dd− aa) + C(dd− aa)(dd− bb)

+ D(dd− aa)(dd− bb)(dd− cc)

etc.

Now subtract the first from the single following ones and divide the differences
by the coefficients of B, that these equations arise:

aq− bp
ab(bb− aa)

= q′ = B,

ar− cp
ac(cc− aa)

= r′ = B + C(cc− bb),

as− dp
ad(dd− aa)

= s′ = B + C(dd− bb) + D(dd− bb)(dd− cc)

etc.
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Now, in similar manner subtracting the first from the following ones and
dividing the them by the coefficients of C we will get to these equations:

r′ − q′

cc− bb
= r′′ = C,

s′ − q′

dd− bb
= d′′ = C + D(dd− cc)

etc.

and further to this one
s′′ − r′′

dd− cc
= D.

Therefore, from the given quantities a, b, c, d etc. and p, q, r, s etc. the
coefficients A, B, C, D etc. will be determined most conveniently this way:
First, from the given quantities derive these

P =
p
a

, Q =
q
b

, R =
r
c

, S =
s
d

etc.

and hence form these:

Q′ =
Q− P
bb− aa

, R′ =
R− P

cc− aa
, S′ =

S− P
dd− aa

, T′ =
T − P
ee− aa

etc.,

R′′ =
R′ −Q′

cc− bb
, S′′ =

S′ −Q′

dd− bb
, T′′ =

T′ −Q′

ee− bb
, etc.,

S′′′ =
S′′ − R′′

dd− cc
, T′′′ =

T′′ − R′′

ee− cc
, etc.,

T′′′′ =
T′′′ − S′′′

ee− dd
, etc.,

Having found these values we will have

A = P, B = Q′, C = R′′, D = S′′′, E = T′′′′ etc.

COROLLARY 1

§2 Since it is P = p
a , the first coefficient will be

A =
p
a

;
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for the following on the other hand because of

Q′ =
aq− bp

ab(bb− aa)
, R′ =

ar− cp
ac(cc− aa)

, S′ =
as− dp

ad(dd− aa)
, T′ =

at− ep
ae(ee− aa)

etc.

the second coefficient will be

B =
aq− bp

ab(bb− aa)

or
B =

p
a(bb− aa)

+
q

b(bb− aa)
.

COROLLARY 2

§3 Further, because it is

R′′ =
ar− cp

ac(cc− aa)(cc− bb)
− aq− bp

ab(bb− aa)(cc− bb)
,

it will be

C =
p

a(aa− bb)(aa− cc)
+

q
b(bb− aa)(bb− cc)

+
r

c(cc− aa)(cc− bb)

COROLLARY 3

§4 In similar manner by prosecuting the calculation further it will be found

D =
p

a(aa− bb)(aa− cc)(aa− dd)
+

q
b(bb− aa)(bb− cc)(bb− dd)

+
r

c(cc− aa)(cc− bb)(cc− dd)
+

s
d(dd− aa)(dd− bb)(dd− cc)

,

whence it is possible to conjecture the form of the following quantities E, F, G
etc. already quite safely.

SCHOLIUM 1

§5 But in most cases the values of the single coefficients A, B, C, D, E etc.
are defined from the preceding ones. For, from the fundamental equations the

5



following formulas are deduced:

A =
p
a

,

B =
q− bA

b(bb− aa)
,

C =
r− cA

c(c− aa)(cc− bb)
− B

cc− bb
,

D =
s− dA

d(dd− aa)(dd− bb)(dd− cc)
− B

(dd− bb)(dd− cc)
− C

dd− cc
,

E =
t− eA

e(ee− aa)(ee− bb)(ee− cc)(ee− dd)
− B

(ee− bb)(ee− cc)(ee− dd)

− C
(ee− cc)(ee− dd)

− D
ee− dd

etc.,

where in most cases soon a structure of such a kind is observed, whence
the following ones cane easily be derived, as it will become plain from the
following problems, in which I will accommodate this method to certain
particular cases.

SCHOLIUM 2

§6 But before I expand cases of this kind, it will be helpful to have observed
in general that, if for a certain case a satisfying equation between the two
variables x and y was found, which I will denote this way

y = X,

such that it is
X = αx + βx3 + γx5 + δx7 + etc.,

that then hence easily an equation extending much further any equally satis-
fying can be formed

Q = x · xx− aa
aa

· xx− bb
bb

· xx− cc
cc

· xx− dd
dd

· etc.,

which quantity vanishes for all propounded values of x

x = 0, x = ±a, x = ±b, x = ±c etc.,
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and all functions of Q vanishing together with Q itself will do the same; from
this it is manifest, if one sets

y = X + Q

or
y = X + f : Q,

that all conditions are equally satisfied. Therefore, since this function f : Q is
completely arbitrary, as along as vanishes for Q = 0, this equation

y = X + f : Q

is to be considered to exhibit the most general solution.

PROBLEM 2

§7 Let a, b, c, d etc. be any circular arcs while the radius is = 1, but let the values
p, q, r, s etc. be the sines of the same arcs, since in this case this property holds that to
negative arcs the same sines taken negatively correspond, hence to define the ratio of
the diameter to the circumference approximately.

SOLUTION

Since here it is

p = sin a, q = sin b, r = sin c etc.,

the equation between x and y will be of such a nature, that having taken x for
the circular arc the quantity yy will approximately be expressed by its sine
and it is

y = sin x.

Therefore, having defined the coefficients

A, B, C, D etc.

by means of the preceding problem one will have this equation

sin x = Ax + Bx(xx− aa) + Cx(xx− aa)(xx− bb) + etc.,

which therefore agrees with the truth, as often as it was

either x = 0 or x = ±a or x = ±b or x = ±c etc.
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Now let us set the arc x infinitely small, and since then its sine, sin x, becomes
equal to the arc x, this equation will arise

1 = A− Baa + Caabb− Daabbcc + Eaabbccdd− etc.

Let us substitute the values found above for the letters A, B, F, D etc. here
and we will get to this equation

1 =
p
a

(
1− aa

aa− bb
+

aabb
(aa− bb)(aa− cc)

− aabbcc
(aa− bb)(aa− cc)(aa− dd)

+ etc.
)

− q
b

(
aa

bb− aa
− aabb

(bb− aa)(bb− cc)
+

aabbcc
(bb− aa)(bb− cc)(bb− dd)

− etc.
)

+
r
c

(
aabb

(cc− aa)(cc− bb)
− aabbcc

(cc− aa)(cc− bb)(cc− dd)
+ etc.

)
− s

d

(
aabbcc

(dd− aa)(dd− bb)(dd− dd)
− etc.

)
+ etc.,

which is reduced to this one, in which all series are similar to each other

1 =
p
a

(
1− aa

aa− bb
+

aabb
(aa− bb)(aa− cc)

− aabbcc
(aa− bb)(aa− cc)(aa− dd)

+ etc.
)

− aaq
b(bb− aa)

(
1 +

bb
cc− bb

+
bbcc

(cc− bb)(dd− bb)
+

bbccdd
(cc− bb)(dd− bb)(ee− bb)

+ etc.
)

+
aabbr

c(cc− bb)(cc− bb)

(
1 +

cc
dd− cc

+
ccdd

(dd− cc)(ee− cc)
+ etc.

)
− aabbccs

d(dd− aa)(dd− bb)(dd− cc)

(
1 +

dd
ee− dd

+ etc.
)

+ etc.

But every single one of these series is immediately summable; for; the terms
of the first series combined give

bb
bb− aa

;

but if to it the third is added, it arises

bbcc
(bb− aa)(cc− aa)
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and hence further the fourth term added yields

bbccdd
(bb− aa)(cc− aa)(dd− aa)

and so forth, such that the first series of our equation becomes

p
a
· bb

bb− aa
· cc

cc− aa
· dd

dd− aa
· ee

ee− aa
· etc.

But in similar manner it is found for the second

−q
b
· aa

bb− aa
· cc

cc− bb
· dd

dd− bb
· ee

ee− bb
· etc.

and so our equation is finally reduced to this form

1 =
p
q
· bb

bb− aa
· cc

cc− aa
· dd

dd− aa
· ee

ee− aa
· etc.

+
q
b
· aa

bb− aa
· cc

cc− bb
· dd

dd− bb
· ee

ee− bb
· etc.

+
r
c
· aa

aa− cc
· bb

bb− cc
· dd

dd− cc
· ee

ee− cc
· etc.

+
s
d
· aa

aa− dd
· bb

bb− dd
· cc

cc− dd
· ee

ee− dd
· etc.

+
t
e
· aa

aa− ee
· bb

bb− ee
· cc

cc− ee
· dd

dd− ee
· etc.

+etc.,

whence, if the given arcs a, b, c, d etc. have a known ratio to half of the
circumference π, the value of this quantity π will be defined

COROLLARY 1

§8 If the number of these arcs a, b, c, d etc. was finite, then the circumference
of the circle will be defined the more accurately, the greater that number is and
at the same time the smaller arcs occur among them. But having augmented
the amount of propounded arcs to infinity the true ratio of the circumference
to the diameter will be derived from this.
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§9 In similar manner the sine of the indefinite arc x can be defined in general.
For, having substituted the found values instead of the coefficients A, B, C, D
etc. the equation will be reduced to this form

sin x
x

=
p
a
· bb− xx

bb− aa
· cc− xx

cc− aa
· dd− xx

dd− aa
· etc.

+
q
b
· aa− xx

aa− bb
· cc− xx

cc− bb
· dd− xx

dd− bb
· etc.

+
r
c
· aa− xx

aa− cc
· bb− xx

bb− cc
· dd− xx

dd− cc
· etc.

+
s
d
· aa− xx

aa− dd
· bb− xx

bb− dd
· cc− xx

cc− dd
· etc.

+etc.,

which equation having taken a vanishing arc x goes over into that one.

COROLLARY 3

§10 But this reduction extends a lot further, not having taken into account
the arcs. For, if an equation of such a kind between the two variables x and y
is in question, that having taken

x = 0, a, b, c, d, e etc.

it is
x = 0, p, q, r, s, t etc.,

this equation can be represented in general this way

y
x
=

p
a
· bb− xx

bb− aa
· cc− xx

cc− aa
· dd− xx

dd− aa
· ee− xx

ee− aa
· etc.

+
q
b
· aa− xx

aa− bb
· cc− xx

cc− bb
· dd− xx

dd− bb
· ee− xx

ee− bb
· etc.

+
r
c
· aa− xx

aa− cc
· bb− xx

bb− cc
· dd− xx

dd− cc
· ee− xx

ee− cc
· etc.

+
s
d
· aa− xx

aa− dd
· bb− xx

bb− dd
· cc− xx

cc− dd
· ee− xx

ee− dd
· etc.

+etc.,

from which form it is manifest at the same time, how the single conditions
are satisfied.
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SCHOLIUM

§11 I do not spend more time on the cases, in which the number of of
prescribed conditions a, b, c, d etc. is assumed as finite, since hence only
approximations for the measure of the circle are obtained. Nevertheless, it will
not be off topic to have observed, if only four arcs are taken, which shall be

a = ϕ, b = 2ϕ, c = 3ϕ, d = 4ϕ,

that from the solution of the problem it will be

ϕ =
sin ϕ

1
· 2 · 2

1 · 3 ·
3 · 3
2 · 4 ·

4 · 4
3 · 5

− sin 2ϕ

2
· 1 · 1

1 · 3 ·
3 · 3
1 · 5 ·

4 · 4
2 · 6

+
sin 3ϕ

3
· 1 · 1

2 · 4 ·
2 · 2
1 · 5 ·

4 · 4
1 · 7

− sin 4ϕ

4
· 1 · 1

3 · 5 ·
2 · 2
2 · 6 ·

3 · 3
1 · 7

=
8
5

sin ϕ− 2
5

sin 2ϕ +
8

105
sin 3ϕ− 1

140
sin 4ϕ,

which expression comes the closer to the truth the smaller the angle ϕ is taken;
nevertheless, even though it is augmented up to the quadrant, that it is

ϕ =
π

2
,

the error does not become enormous; for, it arises

π

2
=

8
5
− 8

105
=

32
21

and so
π = 3

1
21

.

But if we take
ϕ = 30° =

π

6
,

it is
π

6
=

8
5
· 1

2
− 2

5
·
√

3
2

+
8

105
− 1

140
·
√

3
2

or

π =
184
35
− 171

√
3

140
,
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which value differs from the true one by the hundred-thousandth parts of the
unit. But having put aside this consideration I want to go through some cases,
where the number of propounded arcs a, b, c, d etc. proceeding in a certain
law is infinite.

EXAMPLE I

§12 Let the arcs a, b, c, d etc. proceed according to the series of natural numbers
and let

a = ϕ, b = 2ϕ, c = 3ϕ, a = 4ϕ, etc. to infinity;

from their sines p, q, r etc. the truth longitude of the arc ϕ is to be determined.

Therefore, the solution of the problem for this case yields this equation

ϕ =
sin ϕ

1
· 2 · 2

1 · 3 ·
3 · 3
2 · 4 ·

4 · 4
3 · 5 ·

5 · 5
4 · 6 · etc.

− sin 2ϕ

2
· 1 · 1

1 · 3 ·
3 · 3
1 · 5 ·

4 · 4
2 · 6 ·

5 · 5
3 · 7 · etc.

+
sin 3ϕ

3
· 1 · 1

2 · 4 ·
2 · 2
1 · 5 ·

4 · 4
1 · 7 ·

5 · 5
2 · 8 · etc.

− sin 4ϕ

4
· 1 · 1

3 · 5 ·
2 · 2
2 · 6 ·

3 · 3
1 · 7 ·

5 · 5
1 · 9 · etc.

+
sin 5ϕ

5
· 1 · 1

4 · 6 ·
2 · 2
3 · 7 ·

3 · 3
2 · 8 ·

4 · 4
1 · 9 · etc.

+etc.;

but all these products are found to have the same value = 2, such that it is

1
2

ϕ = sin ϕ− 1
2

sin 2ϕ +
1
3

sin 3ϕ− 1
4

sin 4ϕ +
1
5

sin 5ϕ− etc.,

the truth of which series in the case, in which the angle ϕ is infinitely small, is
manifest per se. Therefore, let us expand the following cases:

1.Let
ϕ = 90° =

π

2
and the Leibniz series arises

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− etc.
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2. Let
ϕ = 45° =

π

4
and this series will arise

π

8
=

1√
2
− 1

2
+

1
3
√

2
∗ − 1

5
√

2
+

1
6
− 1

7
√

2
∗+ 1

9
√

2
− 1

10
+

1
11
√

2
− etc.,

which is resolved into these two

π

8
=

1√
2

(
1 +

1
3
− 1

5
− 1

7
+

1
9
+

1
11
− 1

13
− 1

15
+ etc.

)

−1
2

(
1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ etc.

)
,

such that it is

1 +
1
3
− 1

5
− 1

7
+

1
9
+

1
11
− 1

13
− 1

15
+ etc. =

π

2
√

2
.

3. Let
ϕ = 60° =

π

3
and it will be

π

6
=

√
3

2
− 1

2
·
√

3
2
∗+1

4
·
√

3
2
− 1

5
·
√

3
2

+ etc.

or

π

3
√

3
= 1− 1

2
+

1
4
− 1

5
+

1
7
− 1

8
+

1
10
− 1

11
+ etc.

4. Let
ϕ = 30° =

π

6
and it will be

π

12
=

1
2
− 1

2
·
√

3
2

+
1
3
− 1

4
·
√

3
2

+
1
5
· 1

2
∗ −1

7
· 1

2
+

1
8
·
√

3
2
− etc.
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or
π

12
=

1
2

(
1 +

1
5
− 1

7
− 1

11
+

1
13

+
1
17
− 1

19
− 1

23
+ etc.

)
−
√

3
4

(
1 +

1
2
− 1

4
− 1

5
+

1
7
+

1
8
− 1

10
− 1

11
+ etc.

)
+

1
3

(
1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ etc.

)
,

the last of which sums becomes = π
12 ; hence it is concluded

1 +
1
5
− 1

7
− 1

11
+

1
13

+
1

17
− etc. =

√
3

2

(
1 +

1
2
− 1

4
− 1

5
+

1
7
+

1
8
− etc.

)
.

But both series become equal to the arc π
3 , which is certainly already manifest

in the first from the Leibniz series.

COROLLARY 1

§13 From the equation found here

1
2

ϕ = sin ϕ− 1
2

sin 2ϕ +
1
3

sin 3ϕ− 1
4

sin 4ϕ + etc.

many other not less remarkable ones can be derived. As having done a
differentiation it arises

1
2
= cos ϕ− cos 2ϕ + cos 3ϕ− cos ϕ + etc.,

the reason for which is manifest from that that by multiplying both sides by
2 cos 1

2 ϕ the identical equation cos 1
2 ϕ = cos 1

2 ϕ arises.

COROLLARY 2

§14 But if we integrate that equation multiplied by −dϕ, it arises

C− 1
4

ϕϕ = cos ϕ− 1
4

cos 2ϕ +
1
9

cos 3ϕ− 1
16

cos 4ϕ + etc.,

where from the case ϕ = 0 the constant entering by integration is determined,
namely

C = 1− 1
4
+

1
9
− 1

16
+ etc. =

ππ

12
,
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such that it is

ππ

12
− ϕϕ

4
= cos ϕ− 1

4
cos 2ϕ +

1
9

cos 3ϕ− 1
16

cos 4ϕ + etc.,

which series therefore having taken ϕ = π√
3

becomes = 0. But it approximately
is

π√
3
= 103°55′23′′ and cos

π√
3
= −0, 2406185.

COROLLARY 3

§15 If integrate this equation multiplied by dϕ again, it will arise

1
12

ππϕ− 1
12

ϕ3 = sin ϕ− 1
8

sin 2ϕ +
1
27

sin 3ϕ− 1
64

sin 4ϕ + etc.,

whence having taken the arc

ϕ = 90° =
π

2

it is obtained
1
32

π3 = 1− 1
27

+
1

125
− 1

343
+ etc.,

as is is already known from elsewhere.

SCHOLIUM

§16 About the found series

1
2

ϕ = sin ϕ− 1
2

sin 2ϕ +
1
3

sin 3ϕ− 1
4

sin 4ϕ + etc.

there could be some doubt that having taken the arc ϕ = 180◦ = π the single
terms of the series vanish and hence the sum can not become equal to 1

2 π. But
to resolve this doubt first set ϕ = π −ω and this equation will result

π −ω

2
= sin ω +

1
2

sin 2ω +
1
3

sin 3ω +
1
4

sin 4ω + etc.

but now assume the arc ω to be infinitely small, whence this is obtained

π −ω

2
= ω + ω + ω + ω + ω + etc.,

which does not any longer contain anything absurd. The same is to be said if
we want to take ϕ = 2π or ϕ = 3π etc.
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EXAMPLE II

§17 If the arcs a, b, c, d constitute an arbitrary arithmetic progression that it is

a = nϕ, b = (n + 1)ϕ, c = (n + 2)ϕ, d = (n + 3)ϕ etc.

from their sines to define the longitude of the arc ϕ.

The general solution exhibited before for this case gives

ϕ =
sin nϕ

n
· (n + 1)2

1(1 + 2n)
· (n + 2)2

2(2 + 2n)
· (n + 3)2

3(3 + 2n)
· (n + 4)2

4(4 + 2n)
· (n + 5)2

5(5 + 2n)
· etc.

− sin(n + 1)ϕ

n + 1
· n2

1(1 + 2n)
· (n + 2)2

1(3 + 2n)
· (n + 3)2

2(4 + 2n)
· (n + 4)2

3(5 + 2n)
· (n + 5)2

4(6 + 2n)
· etc.

+
sin(n + 2)ϕ

n + 2
· n2

2(2 + 2n)
· (n + 1)2

1(3 + 2n)
· (n + 3)2

1(5 + 2n)
· (n + 4)2

2(6 + 2n)
· (n + 5)2

3(7 + 2n)
· etc.

− sin(n + 3)ϕ

n + 3
· n2

3(3 + 2n)
· (n + 1)2

2(4 + 2n)
· (n + 2)2

1(5 + 2n)
· (n + 4)2

1(7 + 2n)
· (n + 5)2

2(8 + 2n)
· etc.

+
sin(n + 4)ϕ

n + 4
· n2

4(4 + 2n)
· (n + 1)2

3(5 + 2n)
· (n + 2)2

2(6 + 2n)
· (n + 3)2

1(7 + 2n)
· (n + 5)2

1(9 + 2n)
· etc.

+etc.

But to investigate the values of these infinite products for the sake of brevity
let us put

ϕ = A
sin nϕ

n
−B

sin(n + 1)ϕ

n + 1
+ C

sin(n + 2)ϕ

n + 2
−D

sin(n + 3)ϕ

n + 3
+ etc.

and compare these coefficients to each other the following way

A

B
=

nn
(n + 1)2 ·

2(2 + 2n)
1(3 + 2n)

· 3(3 + 2n)
2(4 + 2n)

· 4(4 + 2n)
3(5 + 2n)

· etc.

which value is reduced to

nn
(n + 1)2 ·

(i− 1)(2 + 2n)
1(i + 2n)

,

while i denotes an infinite number and so it will be

A

B
=

2nn
n + 1

.

16



In similar manner it is concluded

C

B
=

1(1 + 2n)
2(2 + 2n)

· (n + 1)2

(n + 2)2 ·
(i− 3)((4 + 2n)

1(i + 2n)
=

(n + 1)(2n + 1)
2(n + 2)

,

but then further

D

C
=

(n + 2)(2n + 2)
3(n + 3)

,
E

D
=

(n + 3)(2n + 3)
4(n + 4)

and so forth; hence it follows that it will be

B =
2nn

1(n + 1)
A,

C =
2nn(2n + 1)
1 · 2(n + 1)

A,

D =
2nn(2n + 1)(2n + 2)

1 · 2 · 3(n + 3)
A,

E =
2nn(2n + 1)(2n + 2)(2n + 3)

1 · 2 · 3 · 4(n + 4)
A

etc.

and so the whole task goes back to the invention of the first letter

A =
(n + 1)2

1(2n + 1)
· (n + 2)2

2(2n + 2)
· (n + 3)2

3(2n + 3)
· (n + 4)2

4(2n + 4)
· etc.

But I already proved a long time ago that the value of this general product

a(b + c)
b(a + c)

· (a + d)(b + c + d)
(b + d)(a + c + d)

· (a + 2d)(b + c + 2d)
(b + 2d)(a + c + 2d)

· etc.

is expressed in such a way that it is

=

∫
xb−1dx(1− xd)

c−d
d∫

xa−1dx(1− xd)
c−d

d
,

having extended the integration from the boundary x = 0 to x = 1, of course.
Since from this for our case one has to take

a = n + 1, b + c = n + 1, b = 1, c = n and d = 1,

17



we will have

A =

∫
dx(1− x)n−1∫

xndx(1− x)n−1 =
1

n
∫

xndx(1− x)n−1

and hence the following expression for the arc ϕ

ϕ
∫

xndx(1− x)n−1 =
1

nn
sin nϕ− 2n

1(n + 1)2 sin(n + 1)ϕ

+
2n(2n + 1)

1 · 2(n + 2)2 sin(n + 2)ϕ− 2n(2n + 1)(2n + 2)
1 · 2 · 3(n + 3)2 sin(n + 3)ϕ

+
2n(2n + 1)(2n + 2)(2n + 3)

1 · 2 · 3 · 4(n + 4)2 sin(n + 4)ϕ + etc.

This series deserves even more attention, since it involve the integral formula∫
xndx(1− x)n−1.

COROLLARY 1

§18 It will be helpful to have noted at first about this integral formula∫
xndx(1− x)n−1,

if in the case n = λ it was 4, that it then in the case

n = λ + 1

will be
=

λ

2(2λ + 1)
4 .

So, since in the case n = 1 it is ∫
xdx =

1
2

,

it will be∫
x2dx(1− x) =

1
2
· 1

2 · 3,
∫

x3dx(1− x)2 =
1
2
· 1

2 · 3 ·
2

2 · 5 etc.

18



COROLLARY 2

§19 Therefore, if in general it is put∫
xndx(1− x)n−1 = f : n,

since its value can be considered as a function of n, it will be

f : 1 =
1
2

, f : 2 =
1
2
· 1

6
, f : 3 =

1
2
· 1

6
· 2

10
, f : 4 =

1
2
· 1

6
· 2

10
· 3

14
and in general

f : (n + 1) =
n

2(2n + 1)
f : n.

Hence, as often as n is an integer number, the value of this formula f : n is
easily assigned.

COROLLARY 3

§20 Now let n = 1
2 and it will be

f :
1
2
=
∫ dx

√
x√

1− x
= 2

∫ yydy√
1− yy

,

having put x = yy; but∫ yydy√
1− yy

=
1
2

∫ dy√
1− yy

=
π

4
,

whence it is
f :

1
2
=

π

2
and hence further

f :
3
2
=

1
8
· π

2
, f :

5
2
=

1
8
· 3

16
· π

2
, f :

7
2
=

1
8
· 3

16
· 5

24
· π

2
etc.

But if in general it is n = µ
ν , it is found

f :
µ

ν
=
∫

x
µ
ν dx(1− x)

µ
ν−1 = µ

∫
yµ+ν−1dy(1− yν)

µ
ν−1,

having put x = yν and hence having done the reduction

f :
µ

ν
=

ν

2

∫
yν−1dy(1− yν)

µ
ν−1,

which form involves transcendental quantities of each class.
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COROLLARY 4

§21 The value of the integral formula∫
xndx(1− x)n−1

in the case x = 1 is vice versa sufficiently elegantly determined from the
found series; for, having done a differentiation by considering only the arc ϕ

as a variable it arises∫
xndx(1− x)n−1 =

1
n

cos nϕ− 2n
1(n + 1)

cos(n+ 1)ϕ+
2n(2n + 1)
1 · 2(n + 2)

cos(n+ 2)ϕ

−2n(2n + 1)(2n + 2)
1 · 2 · 3(n + 2)

cos(n + 3)ϕ + etc.,

which series is therefore equal to this one arsing from the usual expansion
itself∫

xndx(1− x)n−1 =
1

n + 1
− n− 1

1(n + 2)
+

(n− 1)(n− 2)
1 · 2(n + 3)

− (n− 1)(n− 2)(n− 3)
1 · 2 · 3(n + 4)

+ etc.

.

SCHOLIUM 1

§22 Since we expanded the case n = 1 in the preceding example, let us here
mainly consider the case

n =
1
2

in which we saw that it is ∫
xndx(1− x)n−1 =

π

2
,

and it will therefore be

πϕ

2
=

4
1

sin
1
2

ϕ− 4
9

sin
3
2

ϕ +
4

25
sin

5
2

ϕ− 4
49

sin
7
2

ϕ + etc.

Let us put ϕ = 2ω and this more convenient series will arise

πω

4
=

1
1

sin ω− 1
9

sin 3ω +
1

25
sin 5ω− 1

49
sin 7ω + etc.,
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which first, if a vanishing arc ω is assumed, gives

π

4
= 1− 1

3
+

1
5
− 1

7
+ etc.

But let
ω =

π

2
and this also known series arises

ππ

8
=

1
1
+

1
9
+

1
25

+
1
49

+
1

81
+ etc.

But having taken the arc

ω = 45° =
π

4
it arises

ππ

8
√

2
= 1− 1

9
− 1

25
+

1
49

+
1
81
− 1

121
− 1

169
+ etc.

Let
ω = 30° =

π

6
;

it will be

ππ

24
=

1
2

(
1+

1
72 +

1
132 +

1
192 +

1
252 + etc.

)
− 1

(
1
32 +

1
92 +

1
152 +

1
212 + etc.

)
+

1
2

(
1
52 +

1
112 +

1
172 +

1
232 + etc.

)
,

where the middle one is = ππ
72 and the reason for the remaining ones is

perspicuous. Further, the differentiation of our series yields this remarkable
form

π

4
=

1
1

cos ω− 1
3

cos 3ω +
1
5

cos 5ω− 1
7

cos 7ω + etc.,

since completely all arcs assumed for ω yield the same sum. But then an
iterated differentiation yields

0 = sin ω− sin 3ω + sin 5ω− sin 7ω + etc.
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But by means of integration we find

C− πω2

8
=

1
1

cos ω− 1
33 cos 3ω +

1
53 cos 5ω− 1

73 cos 7ω + etc.,

where, since having taken ω = 0 it is

1− 1
33 +

1
53 −

1
73 + etc. =

π3

32
,

it will be

C =
π3

32
,

such that it is

π

8

(
ππ

4
−ωω

)
=

1
1

cos ω− 1
33 cos 3ω +

1
53 cos 5ω− 1

73 cos 7ω + etc.

SCHOLIUM 2

§23 Now let us in general put

ϕ = π,

and since it is

sin(n + 1)π = − sin nπ, sin(n + 2)π = + sin nπ etc.

our equation divided by sin nπ will obtain this form

π

sin nπ

∫
xndx(1− x)n−1 =

1
n2 +

2n
1(n + 1)2 +

2n(2n + 1)
1 · 2(n + 2)2

+
2n(2n + 1)(2n + 2)

1 · 2 · 3(n + 3)2 + etc.;

but having taken
ϕ = 2π

in similar manner it will be

2π

sin 2nπ

∫
xndx(1− x)n−1 =

1
n2 −

2n
1(n + 1)2 +

2n(2n + 1)
1 · 2(n + 2)2
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−2n(2n + 1)(2n + 2)
1 · 2 · 3(n + 3)2 + etc.,

that one of these series therefore divided by this one yields the quotient
= cos nπ, which seems to be wrong, since the quotient is smaller than unity.
But we already resolved a similar difficulty above, which arose from the
position ϕ = 2π; for, if we would have put ϕ = 3π, the first series itself would
emerge having the sum

=
3π

sin 3π

∫
xndx(1− x)n−1,

which is only equal to that one, if n is a vanishing ratio. Hence only the first
series is to be considered to hold; to investigate its sum from its nature itself,
let us set

s =
1
n2 tn +

2n
(n + 1)2 tn+1 +

2n(2n + 1)
1 · 2(n + 2)2 tn+2 + etc.

and it will hence be

d.tds
dt2 = 1tn−1 +

2n
1

tn +
2n(2n + 1)

1 · 2 tn+1 + etc,

the sum of which series manifestly is

= tn−1(1− t)−2n,

such that it is
tds
dt

=
∫

tn−1dt(1− t)−2n

and

s =
∫ dt

t

∫ tn−1dt
(1− t)2n ,

and so having put x = 1 after the integration one will have

π

sin nπ

∫
xndx(1− x)n−1 =

∫ dt
t

∫ tn−1dt
(1− t)2n .

The comparison of these two integral formulas is even more memorable, since
among many others, which have been discovered, no one of this class is found,
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SCHOLIUM 3

§24 Let us put in general

ϕ =
π

2
and it will be

sin nϕ = sin
nπ

2
, sin(n + 1)ϕ = cos

nπ

2
,

sin(n + 2)ϕ =− sin
nπ

2
, sin(n + 3)ϕ = − cos

nπ

2
etc.,

whence this equation results

π

2

∫
xndx(1− x)n−1 = sin

nπ

2

(
1

nn
− 2n(2n + 1)

1 · 2(n + 2)2 +
2n(2n + 1)(2n + 2)(2n + 4)

1 · 2 · 3 · 4(n + 4)2 − etc.
)

− cos
nπ

2

(
2n

1(n + 1)2 −
2n(2n + 1)(2n + 2)

1 · 2 · 3(n + 3)2 + etc.
)

.

But from the superior reduction it is manifest that it will be

1− 2n(2n + 1)
1 · 2 t2 +

2n(2n + 1)(2n + 2)(2n + 3)
1 · 2 · 3 · 4 t4 − etc.

=
(1 + t

√
−1)−2n + (1− t

√
−1)−2n

2
,

2n
1

t− 2n(2n + 1)(2n + 2)
1 · 2 · 3 t3 + etc.

=
(1 + t

√
−1)−2n − (1− t

√
−1)−2n

2
√
−1

and hence it is concluded
π

2

∫
xndx(1− x)n−1

=
1
2

sin
nπ

2

∫ dt
t

∫ tn−1dt
(1 + t

√
−1)2n

+
1
2

sin
nπ

2

∫ dt
t

∫ tn−1dt
(1− t

√
−1)2n

,

− 1
2
√
−1

cos
nπ

2

∫ dt
t

∫ tn−1dt
(1 + t

√
−1)2n

+
1

2
√
−1

cos
nπ

2

∫ dt
t

∫ tn−1dt
(1− t

√
−1)2n

,
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where after the integration is must be put t = 1. But to free this expression
from imaginary quantities, let us put

t = tan ω =
sin ω

cos ω
;

it will be

dt =
dω

cos2 ω
,

dt
t

=
dω

sin ω cos ω
, tn−1dt =

dω sinn−1 ω

cosn+1 ω
,

but then
(1 + t

√
−1)−2n = cos2n ω(cos ω +

√
−1 · sin ω)−2n

= cos2n ω(cos 2nω−
√
−1 · sin 2nω),

(1− t
√
−1)−2n = cos2n ω(cos ω−

√
−1 · sin ω)−2n

= cos2n ω(cos 2nω +
√
−1 · sin 2nω).

Having substituted which values the imaginary quantities will cancel each
other and this equation will arise

π

2

∫
xndx(1− x)n−1 = sin

nπ

2

∫ dω

sin ω cos ω

∫
dω sinn−1 ω cosn−1 ω cos 2nω

+ cos
nπ

2

∫ dω

sin ω cos ω

∫
dω sinn−1 ω cosn−1 ω sin 2nω,

which is contracted to this simpler one

π

2

∫
xndx(1− x)n−1 =

∫ dω

sin ω cos ω

∫
dω sinn−1 ω cosn−1 ω sin (

nπ

2
+ 2nω)

or because of sin ω cos ω = 1
2 sin 2ω into this one

π

2

∫
xndx(1− x)n−1 =

1
2n

∫ 2dω

sin 2ω

∫
2dω sinn−1 2ω sin (

nπ

2
+ 2nω).

Now let the angle be 2ω = θ, that it more conveniently is

π

2

∫
xndx(1− x)n−1 =

1
2n

∫ 2dθ

sin θ

∫
dθ sinn−1 θ sin n(

π

2
+ θ),

where after the integration one must set θ = 90° = π
2 , that then it is ω = 45°

and t = tan ω = 1.
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EXAMPLE III

§25 If the arcs a, b, c, d etc. constitute an interrupted arithmetic progression, that it
is

a = mϕ, b = nϕ, c = (1 + m]ϕ, d = (1 + n)ϕ,

e = (2 + m)ϕ, f = (2 + n)ϕ, etc.,

to define the longitude of the arc ϕ from their sines.

The general solution given above (§ 7) yields this equation

ϕ =
sin mϕ

m
· nn
(n−m)(n + m)

· (1 + m)2

1(1 + 2m)
· (1 + n)2

(1 + n−m)(1 + n + m)

· (2 + m)2

2(2 + 2m)
· (2 + n)2

(2 + n−m)(2 + n + m)
· etc.

− sin nϕ

n
· mm
(n−m)(n + m)

· (1 + m)2

(1 + m− n)(1 + m + n)
· (1 + n)2

1(1 + 2n)

· (2 + m)2

(2 + m− n)(2 + m + n)
· (2 + n)2

2(2 + 2n)
· etc.

+
sin(1 + m)ϕ

1 + m
· mm

1(1 + 2m)
· nn
(1 + m− n)(1 + m + n)

· (1 + n)2

(n−m)(2 + m + n)

· (2 + m)2

1(3 + 2m)
· (2 + n)2

(1 + n−m)(3 + n + m)
· etc.

− sin(1 + n)ϕ

1 + n
· mm
(1 + n−m)(1 + n + m)

· nn
1(1 + 2n)

· (1 + m)2

(n−m)(2 + n + m)

· (2 + m)2

(1 + m− n)(3 + m + n)
· (2 + n)2

1(3 + 2n)
· etc.

+
sin(2 + m)ϕ

2 + m
· mm

2(2 + 2m)
· nn
(2 + m− n)(2 + m + n)

· (1 + m)2

1(3 + 2m)

· (1 + n)2

(1 + m− n)(3 + m + n)
· (2 + n)2

(n−m)(4 + m + n)
· etc.

−etc.

But hence it is not possible to conclude anything worth one’s attention in
general; hence I will expand the especially remarkable case, in which it is
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n = 1−m;

for this for the sake of brevity I set

ϕ =
A sin mϕ

m
− B sin(1−m)ϕ

1−m
+

C sin(1 + m)ϕ

1 + m
− D sin(2−m)ϕ

2−m
+ etc.,

such that it is

A =
(1−m)2

1(1− 2m)
· (1 + m)2

1(1 + 2m)
· (2−m)2

2(2−m)
· (2 + m)2

2(2 + m)
· (3−m)2

3(2 + m)
· etc.,

B

A
=

mm
(1−m)2 ·

1(1 + 2m)

2 · 2m
· 2(2− 2m)

1(3− 2m)
· 2(2 + 2m)

3(1 + 2m)
· 3(3− 2m)

2(3− 2m)
· etc.,

C

B
=

1(1− 2m)

1(1 + 2m)
· (1−m)2

(1 + m)2 ·
1(3− 2m)

3(1− 2m)
· 3(1 + 2m)

1(3 + 2m)
· 2(4− 2m)

4(2− 2m)
· etc.,

D

C
=

1(1 + 2m)

2(2− 2m)
· 2 · 2m

1(3− 2m)
· (1 + m)2

(2−m)2 ·
1(3 + 2m)

4 · 2m
· 4(2− 2m)

1(5− 2m)
· etc.,

E

D
=

2(2− 2m)

2(2 + 2m)
· 1(3− 2m)

3(1 + 2m)
· 3(1− 2m)

1(3 + 2m)
· (2−m)2

(2 + m)2 ·
1(5− 2m)

5(1− 2m)
· etc.

etc.

But from the superior reduction one finds

A =

∫
xm−1dx(1− x)−2m

m
∫

xmdx(1− x)m−1 ·
∫

xm−1dx(1− x)−m ;

but then for the remaining ones from the form of the products itself one
concludes

B

A
=

m
1−m

,
C

B
=

1−m
1 + m

,
D

C
=

1 + m
2−m

,
E

D
=

2−m
2 + m

etc.,

such that it is

B =
m

1−m
A, C =

m
1 + m

A, D =
m

2−m
A, E =

m
2 + m

A, etc.

Therefore, for the sake of brevity let us put∫
xmdx(1− x)m−1 ·

∫
xm−1dx(1− x)−m∫
xm−1dx(1− x)−2m = M
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and it will be as follows

Mϕ =
sin mϕ

m2 − sin(1−m)ϕ

(1−m)2 +
sin(1 + m)ϕ

(1 + m)2 − sin(2−m)ϕ

(2−m)2 +
sin(2 + m)ϕ

(2 + m)2 − etc.,

whence by differentiating we conclude that it will be

M =
cos mϕ

m
− cos(1−m)ϕ

1−m
+

cos(1 + m)ϕ

1 + m
− cos(2−m)ϕ

2−m
+

cos(2 + m)ϕ

2 + m
− etc.,

which series because of the extraordinary simplicity is especially remarkable,
since by putting ϕ = 0 we hence deduce

M =
1
m
− 1

1−m
+

1
1 + m

− 1
2−m

+
1

2 + m
− 1

3−m
+

1
3 + m

− etc.,

the sum of which series I already once showed to be

M =
π cos mπ

sin mπ
,

whence we calculate this elegant comparison

∫
xmdx(1− x)m−1 =

π cos mπ

sin mπ
·
∫

xm−1dx(1− x)−2m∫
xm−1dx(1− x)−m ,

which is further reduced to this one∫
xmdx(1− x)m−1 =

(1−m)π cos mπ

sin mπ
·
∫

xmdx(1− x)−2m∫
xmdx(1− x)−m

or to this even more convenient one∫
xm−1dx(1− x)m−1 =

2π cos mπ

sin mπ
·
∫

xm−1dx(1− x)−2m∫
xm−1dx(1− x)−m .

COROLLARY 1

§26 Therefore, lo and behold some extraordinary theorems, which the ex-
pansions of this example gives us, the first of which is:

If ϕ denotes an arbitrary angle, it will be

π cos mπ

sin mπ
=

cos mϕ

m
− cos(1−m)ϕ

1−m
+

cos(1 + m)ϕ

1 + m
− cos(2−m)ϕ

2−m
+ etc.,
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which equality can also be exhibited this way, that it is

π cos mπ

sin mπ
= cos mϕ

(
1
m
− 2m cos ϕ

1−mm
− 2m cos 2ϕ

4−mm
− 2m cos 3ϕ

9−mm
− etc.

)
−2 sin ϕ

(
sin ϕ

1−mm
+

2 sin 2ϕ

4−mm
+

3 sin 3ϕ

9−mm
+

4 sin 4ϕ

16−mm
+ etc.

)
,

whence, if it is

mϕ = 90° =
π

2
and hence ϕ =

π

2m
,

it will be

−π cos mπ

sin mπ
=

sin π
2m

1−mm
+

2 sin 2π
2m

4−mm
+

3 sin 3π
2m

9−mm
+

4 sin 4π
2m

16−mm
+ etc.

COROLLARY 2

§27 The second theorem is enunciated this way:

If ϕ denotes an arbitrary angle, it will be

πϕ cos mπ

sin mπ
=

sin mϕ

mm
− sin(1−m)ϕ

(1−m)2 +
sin(1 + m)ϕ

(1 + m)2 − sin(2−m)ϕ

(2−m)2 + etc.

Hence having taken ϕ = π it will be

ππ cos mπ

sin mπ
=

sin mπ

mm
− sin mπ

(1−m)2 −
sin mπ

(1 + m)2 +
sin mπ

(2−m)2 +
sin mπ

(2 + m)2 − etc.

or
ππ

sin mπ tan mπ
=

1
m2 −

1
(1−m)2 −

1
(1 + m)2 +

1
(2−m)2 +

1
(2 + m)2 − etc.

But having put
mϕ = π

one will have

ππ cos mπ

m sin mπ
=

sin π
m

(1−m)2 −
sin π

m
(1 + m)2 −

sin 2π
m

(2−m)2 −
sin 2π

m
(2 + m)2 + etc.

or this way

ππ cos mπ

4mm sin mπ
=

1 sin π
m

(1−mm)2 +
2 sin 2π

m
(4−mm)2 +

3 sin 3π
m

(9−mm)2 + etc.
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COROLLARY 3

§28 The third theorem concerns the comparison of integral formulas and is
enunciated this way:

If the integration of the following formulas is extended from the boundary
x = 0 to the boundary x = 1, it will always be∫

xm−1dx(1− x)m−1 ·
∫

xm−1dx(1− x)−m =
2π cos mπ

sin mπ

∫
xm−1dx(1− x)−2m,

or if one puts m = λ
n and x = yn, it will be

∫ yλ−1dy
n
√
(1− yn)n−λ

·
∫ yλ−1dy

n
√
(1− yn)λ

=
2π cos λπ

n

n sin λπ
n

·
∫ yλ−1dy

n
√
(1− yn)2λ

SCHOLIUM

§29 The demonstration of this last theorem seems to be very difficult; nevert-
heless, by means of the things I once published on integral formulas of this
kind, its truth can be shown the following way. For, let us indicate, as I did
there, this integral formula ∫ yp−1

n
√
(1− yn)n−q

by this character
(

p
q

)
and it is to be demonstrated that it is

(
λ

λ

)(
λ

n− λ

)
=

2π cos λπ
n

n sin λπ
n

(
λ

n− 2λ

)
.

Now, first I demonstrated, if it was

q + r = n,

that then it will be (
q
r

)
=

π

n sin qπ
n

,
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whence it immediately follows(
λ

n− λ

)
=
∫ yλ−1dy

n
√
(1− yn)λ

=
π

n sin λπ
n

,

such that it remains to prove that it is(
λ

λ

)
= 2 cos

λπ

n

(
λ

n− 2λ

)
.

But on the same occasions I showed, if it was

p + q + r = n,

that it will be

1
sin rπ

n

(
p
q

)
=

1
sin qπ

n

(
p
r

)
=

1
sin pπ

n

(
q
r

)
.

Therefore, let us take
p = λ, q = λ

and it will be
r = n− 2λ,

from which because of

sin
(n− 2λ)π

n
= sin

2λπ

n

we conclude
1

sin 2λπ
n

(
λ

λ

)
=

1
sin λπ

n

(
λ

n− 2λ

)
,

such that because of
sin

2λπ

n
= 2 sin

λπ

n
cos

λπ

n
it indeed is (

λ

λ

)
= 2 cos

λπ

n

(
λ

n− 2λ

)
.

But a lot more strange theorem was found above (§ 28), which for the same
integration boundaries is

π

sin nπ

∫
xndx(1− x)n−1 =

∫ dx
x

∫ xn−1dx
(1− x)2n
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or
π

2 sin nπ

∫
xn−1dx(1− x)n−1 =

∫ dx
x

∫ xn−1dx
(1− x)2n ;

to reduce this equation to that form, instead of n let us write λ
n and let x = yn,

whence it is

π

2n sin λπ
n

∫ yλ−1dy
n
√
(1− yn)n−λ

=
∫ dy

y

∫ yλ−1dy
n
√
(1− yn)2λ

.

But we just saw that it is∫ yλ−1dy
n
√
(1− yn)n−λ

= 2 cos
λπ

n

∫ yλ−1dy
n
√
(1− yn)2λ

and so via the theorem we conclude that it is

π

n tan λπ
n

∫ yλ−1dy
n
√
(1− yn)2λ

=
∫ dy

y

∫ yλ−1dy
n
√
(1− yn)2λ

,

and hence further this not less remarkable theorem

π

n tan λπ
n

∫ yλ−1dy
n
√
(1− yn)2λ

= −
∫ yλ−1dy · log y

n
√
(1− yn)2λ

,

whence having taken λ = 1 we find the following proportion

π

n
: tan

π

n
=
∫ dy log 1

y
n
√
(1− yn)2

:
∫ dy

n
√
(1− yn)2

.

PROBLEM 3

§30 To find an equation of such a kind for the curved line between two variables, the
abscissa x and the ordinate y, that to the abscissas taken in an arithmetic progression
given ordinates correspond, namely:

If it is

x = nθ, (n + 1)θ, (n + 2)θ, (n + 3)θ, (n + 4)θ, etc.

that it is

y = p, q, r, s, t etc.
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SOLUTION

Let us put in general
x = θω

and from the general solution given in § 10 we obtain this equation

y
ω

=
p
n
· (n + 1−ω)(n + 1 + ω)

1(2n + 1)
· (n + 2−ω)(n + 2 + ω)

2(2n + 2)
· (n + 3−ω)(n + 3 + ω)

3(2n + 3)
· etc.

− p
n + 1

· (n−ω)(n + ω)

1(2n + 1)
· (n + 2−ω)(n + 2 + ω)

1(2n + 3)
· (n + 3−ω)(n + 3 + ω)

2(2n + 4)
· etc.

+
r

n + 2
· (n−ω)(n + ω)

2(2n + 2)
· (n + 1−ω)(n + 1 + ω)

1(2n + 3)
· (n + 3−ω)(n + 3 + ω)

1(2n + 5)
· etc.

−etc.,

which equation for the sake of brevity we want to represent this way

y
ω

= A · p
n
−B · q

n + 1
+ C · r

n + 2
−D · s

n + 3
+ etc.;

and for finding the value of A from the general form mentioned in § 17 we
will have for this case

a = n + 1−ω, b = 1, c = n−ω and d = 1,

whence by means of integral formulas to be extended from the boundary
z = 0 to z = 1 we conclude

A =

∫
dz(1− z)n−ω−1∫

zn−ωdz(1− z)n−ω−1 =
1

(n−ω)
∫

zn−ωdz(1− z)n−ω−1

or
A =

2
(n−ω)

∫
zn−ω−1dz(1− z)n−ω−1 ,

having conceding this integration the remaining ones are easily handled. From
it will be as above in § 17
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B

A
=

(n−ω)(n + ω)

(n + 1−ω)(n + 1 + ω)
· (2 + 2n) =

2(n + 1)(n−ω)(n + ω)

n + 1−ω)(n + 1 + ω)
,

C

B
=

(n + 1−ω)(n + 1 + ω)

(n + 2−ω)(n + 2 + ω)
· (1 + 2n)(2 + n)

2(n + 1)
,

D

C
=

(n + 2−ω)(n + 3 + ω)

(n + 3−ω)(n + 3 + ω)
· (2 + 2n)(3 + n)

3(n + 2)
,

E

D
=

(n + 3−ω)(n + 3 + ω)

(n + 4−ω)(n + 4 + ω)
· (3 + 2n)(4 + n)

4(n + 3)

etc.

Therefore, let us set the integral formula∫
zn−ω−1dz(1− z)n−ω−1 = 4,

that it is
A =

2
(n−ω)4 ,

and the remaining coefficients will be defined by means of A this way:

B =
2(n + 1)

1
· nn−ωω

(n + 1)2 −ωω
A,

C =
2(n + 2)(2n + 1)

1 · 2 · nn−ωω

(n + 2)2 −ωω
A,

D =
2(n + 3)(2n + 1)(2n + 2)

1 · 2 · 3 · nn−ωω

(n + 3)2 −ωω
A,

E =
2(n + 4)(2n + 1)(2n + 2)(2n + 3)

1 · 2 · 3 · 4 · nn−ωω

(n + 4)2 −ωω
A

etc.

Therefore, the equation is question between y and x = θω will be of this
nature:

n4 y
2(n + ω)ω

=
p

nn−ωω
− 2n

1
· q
(n + 1)2 −ωω

+
2n(2n + 1)

1 · 2 · r
(n + 2)2 −ωω

− 2n(2n + 1)(2n + 2)
1 · 2 · 3 · s

(n + 3)2 −ωω
+ etc.,
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whence for each value of x = ϑω a corresponding value of y is defined and
this by means of the ordinates p, q, r etc., which are assumed to correspond to
the abscissas nθ, (n + 1)θ, (n + 2)θ etc. Here it must certainly be noted, if ω is
taken equal to a certain term of the progression n, n + 1, n + 2 etc., that then
the denominator of the given corresponding ordinate vanishes, such that with
respect to the term, certainly infinite, the remaining ones vanish. But then at
the same time also the value 4 arises as infinite and precisely of such a kind,
that it then either is y = p and y = q or y = r etc., as the nature of the subject
demands it.

COROLLARY 1

§31 If the propounded abscissas denote circular arcs, the ordinates on the
other hand their sines, that it is

p = sin nθ, q = sin(n + 1)θ, q = sin(n + 1)θ, r = sin(n + 2)θ, etc.,

it will be
y = sin ωθ,

whence this general equation results

n4 sin ωθ

2(n + ω)ω
=

sin nθ

nn−ωω
− 2n

1
· sin(n + 1)θ
(n + 1)2 −ω2 +

2n(2n + 1)
1 · 2 · sin(n + 2)θ

(n + 2)2 −ω2

−2n(2n + 1)(2n + 2)
1 · 2 · 3 · sin(n + 3)θ

(n + 3)2 −ω2 + etc.,

where it is especially remarkable that the three letters, n, θ and ω can be
assumed arbitrarily.

COROLLARY 2

§32 Therefore, if we take
θ = π,

that all sines of the series are reduced to the same sin nθ, it will be

n4 sin ωθ

2(n + ω)ω sin nπ
=

1
nn−ωω

+
2n
1
· 1
(n + 1)2 −ω2 +

2n(2n + 1)
1 · 2 · 1

(n + 2)2 −ω2
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+
2n(2n + 1)(2n + 2)

1 · 2 · 3 · 1
(n + 3)2 −ω2 + etc.

Hence, if it is

n =
1
2

und 4 =
∫

z−ω− 1
2 dz(1− z)−ω− 1

2

or

4 = 2
∫ z

1
2−ωdz

(1− z)
1
2+ω

,

one will have

4 sin ωπ

8(1 + 2ω)ω
=

1
1− 4ω2 +

1
9− 4ω2 +

1
25− 4ω2 +

1
49− 4ω2 + etc.,

the sum of which series I showed to be

=
π

8ω
tan ωπ,

such that it is
4 sin ωπ

8(1 + 2ω)ω
=

π

8ω
tan ωπ

and hence

4 =
(1 + 2ω)π

cos ωπ
.

SCHOLIUM 1

§33 But it is not possible to trust these conclusions too much for the reason
mentioned above already. For, having put the ordinates

p = sin nθ, q = sin(n + 1)θ, r = sin(n + 2)θ etc.,

while the arcs nθ, (n + 1)θ, (n + 2)θ etc. are considered as abscissas, the
found equation yields a curved line of such a kind, which goes through all
these points. And it does hence not follow that this curve is the line of sines,
since infinitely many other curved lines passing through that same infinitely
many points are given. Hence having kept the letter y for indicating the
corresponding ordinate of the abscissa x = θω our solution give this equation
for the curve in question

n4 y
2(n + ω)

=
sin nθ

n2 −ω2 −
2n
1
· sin(n + 1)θ
(n + 1)2 −ω2 +

2n(2n + 1)
1 · 2 · sin(n + 2)θ

(n + 2)2 −ω2
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−2n(2n + 1)(2n + 2)
1 · 2 · 3 · sin(n + 3)θ

(n + 3)2 −ω2 + etc.,

such that to the abscissa
x = (n± i)θ

this ordinate corresponds
y = sin(n± i)θ,

if only i is an arbitrary integer. On the other hand it could also happen, that
for other abscissas, where i is not an integer number and hence generally, if
x = ωθ, the ordinate is not y = sin ω. That this is seen more clearly, let us
investigate the general equation for completely all lines passing through given
points, and let the value found up to now be

y = Θ

and find a function vanishing for all given abscissas, of which kind this is

ω(nn−ωω)
((n + 1)2 −ω2)

1(2n + 1)
((n + 2)2 −ω2)

2(2n + 2)
((n + 3)2 −ω2)

3(2n + 3)
etc.,

which by means of the thing mentioned above is

= ω(nn−ωω)A =
2ω(n + ω)

4 .

Call this quantity = Ω and let f : Ω be a function of Ω of such kind, which
vanishes, if Ω = 0, and the general equation for all satisfying curved lines will
be

y = Θ + f : Ω = Ω + f :
2ω(n + ω)

4 .

And now without any doubt it is certain that in this equation the equation
y = sin ωθ is contained having put x = ωθ, since this equation satisfies all
prescribed conditions. From this it could completely happen that the equation
y = Θ was different from this one y = sin ωθ; this can especially depend on
the values attributed to the letters θ and n, such the in the one case the found
equation y = Θ agrees with this one y = sin ωθ, but in others differs from the
same.
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SCHOLIUM 2

§34 We want to apply these to the case, in which it is

θ = π and n =
1
2

and

4 = 2
∫ z

1
2−ωdz

(1− z)
1
2+ω

;

and since the sum of the found series is

=
π

8ω
tan ωπ

one will have this general equation

4y
8(1 + 2ω)ω

=
π

8ω
tan ωπ +

4
8(1 + 2ω)

f :
ω(1 + 2ω)

24

or

y =
π(1 + 2ω)

4 tan ωπ + f :
ω(1 + 2ω)

24 ,

where the added function in general is of such a nature that it vanishes in the
cases

ω = 0, ω = ±1
2

, ω = ±3
2

, ω = ±5
2

etc.

of which kind these formulas are

sin 2ωπ, ω cos ωπ, likewise sin 2iωπ and ω cos(2i− 1)ωπ,

while i denotes an arbitrary integer number; hence it is possible to combine
any arbitrary number of these formulas. Therefore, a certain function of this
kind will be given, which shall be ϕ, that it is

y = sin ωπ

and hence

sin ωπ =
π(1 + 2ω)

4 tan ωπ + ϕ

or

4 =
π(1 + 2ω) tan ωπ

sin ωπ − ϕ
= 2

∫ z
1
2−ωdz

(1− z)
1
2+ω

.
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Therefore, since in the case ω = 0 the function ϕ certainly vanishes, it will
be π = 4, of course, which is an indication that the function ϕ contains ωλ,
whose exponent λ is greater than unity, since otherwise having taken ω = 0
the quantity ϕ would not vanish with respect to sin ωπ. And for this reason
the conclusions of the preceding problem are to be considered as true.

PROBLEM 4

§35 To find an equation of such a kind for a curve line between the abscissa x and the
ordinate y, that to the abscissas proceeding in an interrupted arithmetic progression
given ordinates correspond, namely

x = nθ, (1− n)θ, (1 + n)θ, (2− n)θ, (2 + n)θ, (3− n)θ etc.,

and

y = p, q, r, s, t, u etc.

SOLUTION

Let us in general put the abscissa

x = θω

and for the equation between x and y let us set this equation

y
ω

= A · p
n
−B · q

1− n
+ C · r

1 + n
−D · s

2− n
+ E · t

2 + n
− F · u

3− n
+ etc.

and from paragraph 25 extended to this general case one will have

A = (1−n−ω)(1−n+ω)
1(1−2n) · (1+n−ω)(1+n+ω)

1(1+2n) · (2−n−ω)(2−n+ω)
2(2−2n) · (2+n−ω)(2+n+ω)

2(2+2n) · etc.

B

A
=

(n−ω)(n + ω)

(1− n−ω)(1− n + ω)
· 1− n

n
,

C

B
=

(1− n−ω)(1− n + ω)

(1 + n−ω)(1 + n + ω)
· 1 + n

1− n
,

D

C
=

(1 + n−ω)(1 + n + ω)

(2− n−ω)(2− n + ω)
· 2− n

1 + n
,

E

D
=

(2− n−ω)(2− n + ω)

(2 + n−ω)(2 + n + ω)
· 2 + n

2− n
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etc.

Let us expand the value of A into two products

P=
(1− n−ω)(1− n + ω)

1(1− 2n)
· (2− n−ω)(2− n + ω)

2(2− 2n)
· (3− n−ω)(3− n + ω)

3(3− 2n)
·etc.,

Q=
(1 + n−ω)(1 + n + ω)

1(1 + 2n)
· (2 + n−ω)(2 + n + ω)

2(2 + 2n)
· (3 + n−ω)(3 + n + ω)

3(3 + 2n)
·etc.,

that it is
A = PQ,

and let us define the value of both by means of integral formulas according to
the prescriptions in § 17. And at first for the infinite product P let us set

a = 1− n−ω, b = 1, c = −n + ω and d = 1

and it will be

P =

∫
dx(1− x)−1−n+ω∫

x−n−ωdx(1− x)−1−n+ω
=

1
ω− n

· 1∫
x−n−ωdx(1− x)−1−n+ω

,

if it certainly is
ω− n > 0.

For the other infinite product only by taking n negatively it will be

Q ==
1

ω + n
· 1∫

xn−ωdx(1− x)n+ω−1 .

But that the condition ω− n > 0 is not necessary, let us use another distributi-
on and let

P =
(1 + n + ω)(1− n−ω)

1 · 1 · (2 + n + ω)(2− n−ω)

2 · 2 · (3 + n + ω)(3− n−ω)

3 · 3 · etc.,

Q =
(1 + n−ω)(1− n + ω)

(1− 2n)(1 + 2n)
· (2 + n−ω)(2− n + ω)

(2− 2n)(2 + 2n)
· (3 + n−ω)(3− n + ω)

(3− 2n)(3 + 2n)
· etc.,

and let is set for P
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a = 1− n−ω, b = 1, c = n + ω, d = 1,

for Q on the other hand

a = 1 + n−ω, b = 1− 2n, c = n + ω, und d = 1

and it will be

P =

∫
dx(1− x)−1+n+ω∫

x−n−ωdx(1− x)−1+n+ω
=

1
n + ω

· 1∫
x−n−ωdx(1− x)−1+n+ω

,

Q =

∫
x−2ndx(1− x)−1+n+ω∫
xn−ωdx(1− x)−1+n+ω

.

But it will be ∫
xmdx(1− x)k−1 =

m + k + 1
k

∫
xmdx(1− x)k,

therefore ∫
x−n−ωdx(1− x)−1+n+ω =

1
n + ω

∫
x−n−ωdx(1− x)n+ω

=
1

n + ω

∫
yn+ωdy(1− y)−n−ω,∫

x−2ndx(1− x)−1+n+ω =
1− n + ω

n + ω

∫
x−2ndx(1− x)n+ω

1− n + ω

n + ω

∫
yn+ωdy(1− y)−2n,∫

xn−ωdx(1− x)−1+n+ω =
1 + 2n
n + ω

∫
xn−ωdx(1− x)n+ω

=
1 + 2n
n + ω

∫
yn+ωdy(1− y)n−ω,

whence it is concluded

A = PQ =
(1− n−ω)

∫
yn+ωdy(1− y)−2n∫

yn+ωdy(1− y)−n+ω ·
∫

yn+ωdy(1− y)n−ω

or

A =

∫
yn+ω−1dy(1− y)−2n∫

yn+ωdy(1− y)−n−ω ·
∫

yn+ω−1dy(1− y)n−ω
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or

A =

∫
yn+ω−1dy(1− y)−2n

(n + ω)
∫

yn+ω−1dy(1− y)−n−ω ·
∫

yn+ω−1dy(1− y)n−ω
.

Therefore, since it is

B =
1− n

n
· nn−ωω

(1− n)2 −ωω
A, C =

1 + n
n
· nn−ωω

(1 + n)2 −ωω
A,

D =
2− n

n
· nn−ωω

(2− n)2 −ωω
A, E =

2 + n
n
· nn−ωω

(2 + n)2 −ωω
A

etc.,

by means of a sufficiently convenient series it will be

y
Aω

=
p
n
− (nn−ωω)q

n((1− n)2 −ω2)
+

(nn−ωω)r
n((1 + n)2 −ω2)

− (nn−ωω)s
n((2− n)2 −ω2)

+ etc.

or
ny

Aω(nn−ωω
=

p
n2 −ω2 −

q
(1− n)2 −ω2 +

r
(1 + n)2 −ω2 − etc.

But be resubstituting the integral formula for A, where for the sake of
distinction I will denote the new variable by the letter z, this same series is
equal to this expression

ny
(n−ω)ω

·
∫

zn+ω−1dz(1− z)−n−ω ·
∫

zn+ω−1dz(1− z)n−ω∫
zn+ω−1dz(1− z)−2n ,

the integration of which formulas is to be understood to be extended from
the boundary z = 0 to z = 1.

COROLLARY 1

§36 Therefore, if for the sake of brevity we put this general integral formula∫
zn+ω−1dz(1− z)−n−ω ·

∫
zn+ω−1dz(1− z)n−ω∫

zn+ω−1dz(1− z)−2n = 4

and resolve the single terms of the series into two terms, we will have

2n4 y
n−ω

=+
p

n−ω
− q

1− n−ω
+

r
1 + n−ω

− s
2− n−ω

+
t

2 + n−ω
− etc.

− p
n + ω

+
q

1− n + ω
− r

1 + n + ω
+

s
2− n + ω

− t
2 + n + ω

+ etc.
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COROLLARY 2

§37 Therefore, this equation defines a curves lines, in which to the abscissas

x = 0, nθ, (1− n)θ, (1 + n)θ, (2− n)θ, (2 + n)θ etc.

these ordinates correspond

y = 0, p, q, r, s, t etc.,

but to the same abscissas taken negatively the same ordinates taken negatively
correspond. But in general here the abscissa was put x = θω.

COROLLARY 3

§38 Since here the letter θ goes out of the letter, it would be possible to write
the unity for it, that the letter ω denotes the abscissa itself. But if we want to
make the application to arc and their sine, it is convenient to retain the letter
θ in the calculation.

SCHOLIUM

§39 The use of this problem is especially seen, if as above the abscissas are
considered as circular arcs and the given abscissas are taken in such a way
that the ordinates p, q, r, s, t etc. become equal to each other, whether positive
or negative. Therefore, that it becomes clear in these cases, whether the found
series can be summed from elsewhere, recall, what I once published on similar
series, whence the sums of the following two series are calculated

1
α
− 1

β− α
+

1
β + α

− 1
2β− α

+
1

2β + α
− etc. =

π

β tan απ
β

,

1
α
+

1
β− α

− 1
β + α

− 1
2β− α

+
1

2β + α
+ etc. =

π

β sin απ
β

.
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Therefore, hence for our problem we deduce the following for summations

I.
1

n−ω
− 1

1− n + ω
+

1
1 + n−ω

− 1
2− n + ω

+
1

2 + n−ω
− etc. =

π

tan(n−ω)π
,

II.
1

n−ω
+

1
1− n + ω

− 1
1 + n−ω

− 1
2− n + ω

+
1

2 + n−ω
+ etc. =

π

sin(n−ω)π
,

III.
1

n + ω
− 1

1− n−ω
+

1
1 + n + ω

− 1
2− n−ω

+
1

2 + n + ω
− etc. =

π

tan(n + ω)π
,

IV.
1

n + ω
+

1
1− n−ω

− 1
1 + n + ω

− 1
2− n−ω

+
1

2 + n + ω
+ etc. =

π

sin(n + ω)π
.

Having observed these let us expand the cases, which by means of these
summations can be reduced to finite expressions.

EXAMPLE I

§40 Let the ordinate which correspond to the abscissas

x = 0, nθ, (1− n)θ, (1 + n)θ, (2− n)θ, (2 + n)θ etc.

be
p = f , q = f , r = − f , s = − f , t = + f , u = + f etc.

and by means of a finite equation investigate the relation between the ordinate y and
the abscissa x = θω.

SOLUTION

The first corollary for this case yields this equation

2n4 y
f (n−ω)

= +
1

n−ω
− 1

1− n−ω
− 1

1 + n−ω
+

1
2− n−ω

+
1

2 + n−ω
− etc.,

− 1
n + ω

+
1

1− n + ω
+

1
1 + n + ω

− 1
2− n + ω

− 1
2 + n + ω

+ etc.,

which two series are reduced by means of the four mentioned above, whose
summation is known, to II minus IV, and hence the equation in question in
finite form will behave this way
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2n4 y
f (n−ω)

=
π

sin(n−ω)π
− π

sin(n + ω)π
,

which expression is reduced to this one

2π cos nπ sin ωπ

sin(n−ω)π · sin(n + ω)π
=

4π cos nπ · sin ωπ

cos 2ωπ − cos 2nπ
,

such that for our curve one has this equation

n4 y
f (n−ω)

=
π cos nπ sin ωπ

sin(n−ω)π · sin(n + ω)π
.

We gave the value of 4 expressed by means of integral formulas before; but
since from the superior things it is

4 =
1

A(n + ω)
,

by means of an infinite product we will have

4 =
1

n + ω
· 1(1− 2n)
(1− n)2 −ω2 ·

1(1 + 2n)
(1 + n)2 −ω2 ·

2(2− 2n)
(2− n)2 −ω2 ·

2(2 + 2n)
(2 + n)2 −ω2 · etc.,

where it is more clear than from the integral formulas that the value 4
becomes infinite, as often as it was

ω = ±(i± n),

while i denotes an arbitrary integer number, but the same value 4 vanishes
in the cases, in which it is

n = ±1
2

.

But then it will also be helpful to have noted, if, while ω goes over into 1 + ω,
the value of 4 goes over into 4′

4′ = − (1− n−ω)4
n−ω

.

And if in similar manner 4′′ corresponds to the value 2 + ω assumed instead
of ω, it will be

4′′ = −(2− n + ω)4′
−(1− n + ω)

=
−(2− n + ω)4

n−ω
.
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COROLLARY 1

§41 If the quantity 4 depends on ω, consider a function of it and denote it
this way

4 = f : ω;

therefore, then it will be

f : (1 + ω) =
n− 1−ω

n−ω
f : ω

and
f : (2 + ω) =

n− 2−ω

n−ω
f : ω

etc.

Hence, if ω denotes an arbitrary integer number, one will have this theorem

f : (i + ω)

n− i−ω
=

f : ω

n−ω
.

COROLLARY 2

§42 Further, since having taken a negative ω it is

f : (ω) =
n + ω

n−ω
f : ω,

it will be
f : −ω

n + ω
=

f : ω

n−ω

hence also in general
f : (i−ω)

n− i + ω
=

f : ω

n−ω
.
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SCHOLIUM

§43 This case corresponds to that one, which we expanded above in § 25,
where the given ordinates also were the sines of the abscissas; and for the
present case one must put

θ = π,

that it is
f = sin nπ

and all given points lie on a line of sines. But hence it does not follow that
the curve itself, which the found equation exhibits, is a line of sines, since
innumerable other curves can go through the same given points. Hence it is
still by no means certain that the value of y corresponding to the abscissa
y = sin πω and defined by this equation

n4 y
(n−ω) sin nπ

=
π cos nπ · sin ωπ

sin(n−ω)π · sin(n + ω)π

become equal to the sine of the arc πω, that it is y = sin πω, even though this
is true in the cases ω = ±(i± n) and ω = 0. But above we certainly saw that
even in the case, in which ω is a very small quantity, the equation agrees with
the truth by taking y = sin πω, such that it is

4 =
π cos nπ

sin nπ
,

while it is

4 =

∫
zn−1dz(1− z)−n ·

∫
zn−1dz(1− z)n∫

zn−1dz(1− z)−2n ,

as I also showed there. That this subject can be explored more easily in general,
for expressing the value 4 more conveniently I observe that it is∫

zn+ω−1dz(1− z)−n−ω∫
zn+ω−1dz(1− z)−2n =

∫
zω−ndz(1− z)−n−ω∫

dz(1− z)−2n = (1− 2n)
∫

zω−ndz(1− z)−n−ω,

while it is
n <

1
2

,

whence it will be

4 = (1− 2n)
∫

zω−ndz(1− z)−n−ω ·
∫

zn+ω−1dz(1− z)n−ω.
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But if it was in general
y = sin ωπ,

it would also be

4 =
(n−ω)π sin nπ cos nπ

n sin(n−ω)π · sin(n + ω)π
.

Therefore, the question reduces to this, whether this equation

(1− 2n)
∫

zω−ndz(1− z)−n−ω ·
∫

zn+ω−1dz(1− z)n−ω

=
(n−ω)π sin nπ cos nπ

n sin(n−ω)π · sin(n + ω)π

is also true in other cases than the ones mentioned above or not. For this aim,
let us consider the case, in which it is

n =
1
4

and ω =
1
2

,

where certainly the second part becomes

=
− 1

4 · π
√

1
2 ·
√

1
2

− 1
4 ·
√

1
2 ·
√

1
2

= π;

the left hand side on the other hand will be

=
1
2

∫ z
1
4 dz

(1− z)
3
4
·
∫ z−

1
4 dz

(1− z)
1
4

,

which having put
z = v4

goes over into this form

8
∫ v4dv

4
√
(1− v4)3

·
∫ v2dv

4
√
(1− v4)

= 4
∫ dv

4
√
(1− v4)3

·
∫ vvdv

4
√
(1− v4)

,

whose value by means of the things, which I demonstrated in formulas of this
kind, indeed becomes = π, which therefore is a testimony for the truth of our
equation, which can be demonstrated perfectly in the following way.
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THEOREM

§44 However the two numbers n and ω are assumed, this equation agrees with the
truth

(1− 2n)
∫ zω−ndz

(1− z)n+ω
·
∫ zn+ω−1dz

(1− z)ω−n =
(n−ω)π sin nπ · cos nπ

n sin(n−ω)π · sin(n + ω)π
,

if certainly the integration of those formulas is extended from the boundary z = 0 to
the boundary z = 1.

PROOF

To reduce these formulas to a form, which I treated, let us out

n + ω =
µ

λ
and ω− n =

ν

λ
,

that it is
2n =

µ− ν

λ

and this equation must be proved

λ− µ + ν

λ

∫ z
ν
λ dz

λ
√
(1− z)µ

·
∫ z

µ−λ
λ dz

λ
√
(1− z)ν

=
ν

µ− ν
·

π sin µ−ν
λ π

sin νπ
λ · sin µπ

λ

.

Now put z = vλ and one will have

λ(λ− µ + ν)
∫ vλ+ν−1dv

λ
√
(1− vλ)µ

·
∫ vµ−1dv

λ
√
(1− vλ)ν

=
ν

µ− ν
·

π sin µ−ν
λ π

sin νπ
λ · sin µπ

λ

;

and in the way to express these integral formulas there the left hand side will
be represented this way

λ(λ− µ− ν)

(
λ + ν

λ− µ

)(
µ

λ− ν

)
,

which by means of the first reduction(
p
q

)
=

p− λ

p + q− λ

(
p− λ

q

)
,
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goes over into

λν

(
ν

λ− µ

)(
µ

λ− ν

)
= λν

(
λ− µ

ν

)(
λ− ν

µ

)
.

But this reduction on the other hand(
λ− q

p

)(
λ + p− q

q

)
=

π

λp sin qπ
λ

having taken
p = µ− ν and q = µ

gives (
λ− µ

µ− ν

)(
λ− ν

µ

)
=

π

λ(µ− ν) sin µπ
λ

.

But it also is (
λ− ν

ν

)
=

π

λ sin νπ
λ

,

whose product is(
λ− ν

µ

)(
λ− ν

ν

)(
λ− µ

µ− ν

)
=

ππ

λλ(µ− ν) sin µπ
λ · sin νπ

λ

.

Further, since it is in general(
p
q

)(
p + q

r

)
=

(
p
r

)(
p + r

q

)
,

by taking
p = λ− µ, q = µ− ν, and r = ν

it will be (
λ− µ

µ− ν

)(
λ− ν

ν

)
=

(
λ− µ

ν

)(
λ− µ + ν

µ− ν

)
and because of (

λ− p
p

)
=

π

λ sin pπ
λ

having taken
p = µ− ν
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it will be (
λ− µ

µ− ν

)(
λ− ν

ν

)
=

(
λ− µ

ν

)
· π

λ sin µ−ν
λ π

and hence(
λ− ν

µ

)(
λ− µ

ν

)
· π

λ sin µ−ν
λ π

=
ππ

λλ(µ− ν) sin µπ
λ · sin νπ

λ

;

from which the left hand side reduces to this form

λν

(
λ− µ

ν

)(
λ− ν

µ

)
=

ν

µ− ν
·

π sin µ−ν
λ π

sin µπ
λ · sin νπ

λ

,

which is the equation to be demonstrated above.

COROLLARY 1

§45 Therefore, in the doctrine of integral formulas of this kind∫ vp−1dv
λ
√
(1− vλ)λ−q

,

which is denote by this character (
p
q

)
,

to which
(

p
q

)
is equivalent, this reduction is of high importance, in which I

demonstrated that it is

λν

(
λ− µ

ν

)(
λ− ν

µ

)
=

ν

µ− ν
·

π sin µ−ν
λ π

sin µπ
λ · sin νπ

λ

,

such that the product of such integral formulas
(λ−µ

ν

)(
λ−ν

µ

)
can be exhibited

by means of angles alone.

COROLLARY 2

§46 If in the value found first for 4 one equally puts

n + ω =
µ

ν
and ω− n =

ν

λ
,
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but then
z = vλ,

it will be

4 = λ
∫ vµ−1dv

λ
√
(1− vλ)µ

·
∫ vµ−1dv

λ
√
(1− vλ)ν

:
∫ vµ−1dv

λ
√
(1− vλ)µ−ν

and hence in this way of notation

4 =
λ
( µ

λ−µ

)( µ
λ−ν

)( µ
λ−µ+ν

)
or

4 =
λ
(λ−µ

µ

)(
λ−ν

µ

)(λ−µ+ν
µ

) .

Therefore, the same value also is

4 =
νπ

µ− ν
·

sin µ−ν
λ π

sin µπ
λ · sin νπ

λ

.

COROLLARY 3

§47 Therefore, since for this last formula it immediately is(
λ− µ

µ

)
=

π

λ sin µπ
λ

,

it will be (
λ−ν

µ

)(λ−µ+ν
µ

) =
ν

µ− ν
·

sin µ−ν
λ π

sin νπ
λ

,

whose truth is shown from the following general theorem( p
q

)( r
p

) =

( p+r
q

)( p+q
r

) ;

for, it will be (
λ−ν

µ

)(λ−µ+ν
µ

) =

(
λ+ν
λ−ν

)(λ+µ−ν
λ−µ+ν

) =
ν

µ− ν
·
(

ν
λ−ν

)( µ−ν
λ−µ+ν

)
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because of(
λ + ν

λ− ν

)
=

ν

λ

(
ν

λ− ν

)
and

(
λ + µ− ν

λ− µ + ν

)
=

µ− ν

λ

(
µ− ν

λ− µ + ν

)
;

it then is (
ν

λ− ν

)
=

π

λ sin νπ
λ

and
(

µ− ν

λ− µ + ν

)
=

π

λ sin µ−ν
λ π

.

EXAMPLE II

§48 Let the ordinates, which correspond to the abscissas

nθ, (1− n)θ, (1 + n)θ, (2− n)θ, (2 + n)θ etc.

be
p = f , q = − f , r = + f , s = − f , t = + f , u = − f etc.,

and by means of a finite equation investigate the relation between the abscissa x = θω

and the ordinate = y in general.

The general equation of paragraph 36 accommodated to this case yields

2n4 y
f (n−ω)

=
1

n−ω
+

1
1− n−ω

+
1

1 + n−ω
+

1
2− n−ω

+
1

2 + n−ω
+ etc.

− 1
n + ω

− 1
1− n + ω

− 1
1 + n + ω

− 1
2− n + ω

− 1
2 + n + ω

− etc.,

where we now certainly know that it is

4 =
(n−ω)π sin 2nπ

2n sin(n−ω)π · sin(n + ω)π
.

But that series from § 39 becomes

I minus III =
π

tan(n−ω)π
− π

tan(n + ω)π
=

π sin 2ωπ

sin(n−ω)π · sin(n + ω)π

having substituted which sum

y
f
· π sin 2nπ

sin(n−ω)π · sin(n + ω)π
=

π sin 2ωπ

sin(n−ω)π · sin(n + ω)π

or

y =
f sin 2ωπ

sin 2nπ
=

f sin 2xπ
θ

sin 2nπ
.

Therefore, this curve again is a line of sines, and if one takes θ = 2π, that it is
f = sin 2nπ, the ordinate will be y = sin x.
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COROLLARY 1

§49 If one takes

θ = π and f = tan nθ = tan nπ,

the given points will be on a line of tangents; and nevertheless the found
curve itself will not be a line of tangents; but its nature will be expressed by
this equation

y =
tan nπ · sin 2x

sin 2nπ
=

sin 2x
2 cos2 nπ

=
sin 2x

1 + cos 2nπ

and here it will be y = tan x, as often as it was x = ±(i± n)π.

COROLLARY 2

§50 If in the solution of the first example, in which it was

p = f , q = f , r = − f , s = − f , t = f , u = f etc.,

instead of 4 we would have immediately put the found value, this equation
would have arisen

y =
f sin ωπ

sin nπ
.

Hence it would have been perspicuous that having taken θ = π and f = sin nπ

the curve itself will be a line of sines.

SCHOLIUM

§51 It especially deserves to be mentioned that in problem 4, where the
given abscissas constitute an interrupted arithmetic progression, the value
of the quantity 4 can be exhibited absolutely by means of angles, although
nevertheless in problem 3, where the given abscissas constituted a true arith-
metic progression, the integral formula 4 in general cannot be expressed by
angles by any means. For, since there it was

4 =
∫

zn−ω−1dz(1− z)n−ω−1,

this formulas having put n−ω = ν
λ and z = vλ goes over into

4 = λ
∫ vν−1dv

λ
√
(1− vλ)λ−ν

or 4 = λ

(
ν

ν

)
,
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which formula can imply highly transcendental formulas. As if in that problem
the given ordinates are sets

p = f , q = − f , r = f , s = − f , t = f , u = − f etc.

and it was n = 1
2 , the equation for the curve passing through these points will

be
4y

2(1 + 2ω)ω f
=

4
1− 4ωω

+
4

9− 4ωω
+

4
1− 4ωω

+ etc.

or
4y

2 f ω(1 + 2ω)
=

π

2ω
tan ωπ,

such that it is

y =
π f (1 + 2ω) tan ωπ

4 ,

whence, even though one takes

θ = π and f = sin nθ = sin
1
2

π = 1,

it manifestly does not follow that it will be y = sin θω = sin ωπ. Since in the
first example it is already certain that it is

y =
f sin ωπ

sin nπ
,

let us expand the same case from the first problem in such a way that we
investigate the values of the single coefficients A, B, C, D etc.

PROBLEM 5

§52 The general equation constituted above in Problem 1 in such a way that to these
abscissas

x = nθ, (1− n)θ, (1 + n)θ, (2− n)θ, (2 + n)θ etc.

these ordinates correspond

y =+ f , + f , − f , − f , + f , etc.,
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SOLUTION

As before set x = θω and consider the equation in question in this form

y = Aω + Bω(ωω− nn) + Cω(ωω− nn)(ωω− (1− n)2)

+Dω(ωω− nn)(ωω− (1− n)2)(ωω− (1 + n)2)

+Eω(ωω− nn)(ωω− (1− n)2)(ωω− (1 + n)2)(ωω− (2− n)2)

+etc,

whence these equations are deduced

f
n

= A,

f
1− n

= A + B · 1(1− 2n),

− f
1 + n

= A + B · 1(1− 2n) + C · (1 + 2n) · 2 · 2n,

− f
2− n

= A + B · 1(1− 2n) + C · 2(2− 2n) · 1(3− 2n)

+ D · 2(2− 2n) · 1(3− 2n) · 3(1− 2n)

etc.

and hence the following values of the coefficients

A =
f
n

, B =
− f

n(1− n)
, C =

f
2n(1− n)(1 + n)

, D =
− f

6n(1− n)(1 + n)(2− n)
,

D =
f

24n(1− n)(1 + n)(2− n)(2 + n)
etc.;

since this progression is sufficiently simple, our series for the value of y, which
we already to be

=
f sin ωπ

sin nπ
,

deserves even greater attention

sin ωπ

sin nπ
=

ω

n
− ω

n
· ωω− nn

1(1− n)
+

ω

n
· ωω− nn

1(1− n)
· ωω− (1− n)2

2(1 + n)
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−ω

n
· ωω− nn

1(1− n)
· ωω− (1− n)2

2(1 + n)
· ωω− (1 + n)2

3(2− n)
+ etc.,

or if Π always denotes the preceding term, the whole while be

sin ωπ

sin nπ
=

ω

n
−Π · ωω− nn

1(1− n)
+ Π · ωω− (1− n)2

2(1 + n)
−Π · ωω− (1 + n)2

3(2− n)

+Π · ωω− (2− n)2

4(2 + n)
−Π · ωω− (2 + n)2

5(3− n)
+ etc.

If all terms affected with the same sign are desired, it will be

sin ωπ

sin nπ
=

ω

n
+

ω

n
· nn−ωω

1(1− n)
+

ω

n
· nn−ωω

1(1− n)
· (1− n)2 −ωω

2(1 + n)

+
ω

n
· nn−ωω

1(1− n)
· (1− n)2 −ωω

2(1 + n)
· (1 + n)2 −ωω

3(2− n)

+
ω

n
· nn−ωω

1(1− n)
· (1− n)2 −ωω

2(1 + n)
· (1 + n)2 −ωω

3(2− n)
· (2− n)2 −ωω

4(2 + n)

etc.

Therefore, this series seem even more remarkable, since it recedes from the
usual form of a series and in it even the two arbitrary numbers n and ω occur.

COROLLARY 1

§53 If the number ω vanishes, that it is sin ωπ = ωπ, having divided by ω

one will have the equation

π

sin nπ
=

1
n
+

n
1(1− n)

+
n(1− n)

1 · 2(1 + n)
+

n(1− n)(1 + n)
1 · 2 · 3(2− n)

+
n(1− n)(1 + n)(2− n)

1 · 2 · 3 · 4(2 + n)
+ etc.,

whence having taken n = 1
2 because of sin π

2 = 1 it will be

π = 2 + 1 +
1 · 1 · 2
2 · 4 · 3 +

1 · 1 · 3 · 2
2 · 4 · 6 · 3 +

1 · 1 · 3 · 3 · 2
2 · 4 · 6 · 8 · 5 +

1 · 1 · 3 · 3 · 5 · 2
2 · 4 · 6 · 8 · 10 · 5 + etc.

or

π = 2 +
1

2 · 21 · 3 +
1 · 3

2 · 4 · 23 · 5 +
1 · 3 · 5

2 · 4 · 6 · 25 · 7 +
1 · 3 · 5 · 7

2 · 4 · 6 · 8 · 827 · 9 + etc.
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+1 +
1

2 · 22 · 3 +
1 · 3

2 · 4 · 24 · 5 +
1 · 3 · 5

2 · 4 · 6 · 26 · 7 +
1 · 3 · 5 · 7

2 · 4 · 6 · 8 · 828 · 9 + etc.;

since the second of these series is the half of the first, the sum of the second
will be = π

3 , the reason for what is certainly also clear from that that it is

∫ dx√
1− xx

= arcsin x = x +
1
2
· x3

3
+

1 · 3
2 · 4 ·

x5

5
+

1 · 3 · 5
2 · 4 · 6 ·

x7

7
+ etc.,

whence that series becomes = arcsin x
x for x = 1

2 and hence = 2 π
6 = π

3 .

COROLLARY 2

§54 If the other number n vanishes that it is sin nπ = nπ and the equation
is multiplied by n, it will arise

sin ωπ

π
= ω− ω3

1
+

ω3(ω2 − 1)
1 · 2 · 12 − ω3(ω2 − 1)(ω2 − 1)

1 · 2 · 3 · 12 · 2 +
ω3(ω2 − 1)(ω2 − 1)(ω2 − 4)

1 · 2 · 3 · 4 · 12 · 22

−ω3(ω2 − 1)(ω2 − 1)(ω2 − 4)(ω2 − 4)
1 · 2 · 3 · 4 · 5 · 12 · 22 · 3 + etc.,

which series divided by ω is resolved into the following two

sin ωπ

ωπ
= 1+

ω2(ω2 − 1)
1 · 2 · 12 +

ω2(ω2 − 1)2(ω2 − 4)
1 · 2 · 3 · 4 · 12 · 22 +

ω2(ω2 − 1)2(ω2 − 4)2(ω2 − 9)
1 · 2 · 3 · 4 · 5 · 6 · 12 · 22 · 32 + etc.

−ω2

1
− ω2(ω2 − 1)2

1 · 2 · 3 · 12 · 2 −
ω2(ω2 − 1)2(ω2 − 4)2

1 · 2 · 3 · 4 · 5 · 12 · 22 · 3 −
ω2(ω2 − 1)2(ω2 − 4)2(ω2 − 9)2

1 · 2 · 3 · 4 · 5 · 6 · 7 · 12 · 22 · 32 · 4 − etc.

Let us set ω = 1
2 here; it will be

2
π

= 1− 1 · 1 · 3
1 · 1 · 1 · 25 −

1 · 1 · 3 · 1 · 3 · 5
1 · 1 · 1 · 2 · 2 · 2 · 210 −

1 · 1 · 3 · 1 · 3 · 5 · 3 · 5 · 7
1 · 1 · 1 · 2 · 2 · 2 · 3 · 3 · 3 · 215 − etc.

−1 · 1
22 −

1 · 1 · 1 · 3 · 1 · 3
1 · 1 · 1 · 2 · 2 · 3 · 26 −

1 · 1 · 1 · 3 · 1 · 3 · 3 · 5 · 3 · 5
1 · 1 · 1 · 2 · 2 · 2 · 3 · 3 · 4 · 5 · 210 − etc.,

which last series can be represented this way.

− 1
22 −

1 · 1 · 1 · 3
1 · 1 · 2 · 27 −

1 · 1 · 3 · 3 · 3 · 5
1 · 1 · 2 · 2 · 2 · 3 · 212 −

1 · 1 · 3 · 3 · 3 · 5 · 5 · 5 · 7
1 · 1 · 2 · 2 · 2 · 3 · 3 · 3 · 4 · 217 − etc.
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COROLLARY 3

§55 If it was n = 1
2 that it is sin nπ = 1, the factors, from which the single

terms of the series must be formed, will be

2ω

1
· 1− 4ωω

1 · 2 · 1− 4ωω

3 · 4 · 9− 4ωω

3 · 6 · 9− 4ωω

5 · 8 · 25− 4ωω

5 · 10
· 25− 4ωω

7 · 12
· etc.

and the sum of the series will be sin ωπ, namely

sin ωπ = 2ω+
2ω(1− 4ωω)

1 · 2 +
2ω(1− 4ωω)2

1 · 2 · 3 · 4 +
2ω(1− 4ωω)2(9− 4ωω)

1 · 2 · 3 · 4 · 5 · 6 + etc.,

whence having taken ω = 1 it must be

0 = 2− 3 +
3
22 +

5
23 · 3 +

5
26 · 3 +

7
27 · 3 +

7
29 · 5 +

9
210 · 7 +

5 · 9
214 · 7 + etc.,

whose truth will become plain to any one performing the calculation.

SCHOLIUM

§55 For this cases also the solution found above deserves it to be considered
with more attention, which from § 36 because of

4 =
(n−ω)π sin 2nπ

2n sin(n−ω)π · sin(n−ω)π
und y =

f sin ωπ

sin nπ
,

since it is

p = f , q = f , r = − f , s = − f , t = f , u = f etc.,

is contained in this equation

π cos nπ · sin ωπ

ω sin(n−ω)π · sin(n + ω)π

=
1

nn−ωω
− 1

(1− n)−ω2 −
1

(1 + n)−ω2 +
1

(2− n)−ω2 +
1

(2 + n)−ω2 + etc.,

which series deviates a lot from the one we just found. But I observe the
following things on this series:
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I. If ω vanishes, it will be

ππ cos nπ

(sin nπ)2 =
1

nn
− 1

(1− n)2 −
1

(1 + n)2 +
1

(2− n)2 +
1

(2 + n)2 −
1

(3− n)2 − etc.;

but if additionally n vanishes, because of sin nπ = nπ the following inconve-
nience arises

1
nn

=
1

nn
− 2

1
+

2
4
− 2

9
+

2
16
− etc.

But to get rid of this, let us not consider the number n only as vanishing, and
since it is

cos nπ = 1− 1
2

nnππ

and also

sin nπ = nπ − 1
6

n3π3 = nπ

(
1− 1

6
nnππ

)
,

it will be
cos nπ

(sin nπ)2 =
1− 1

2 nnππ

nnππ(1− 1
3 nnππ)

=
1− 1

6 nnππ

nnππ
;

hence this true equation is obtained

1
nn
− 1

6
ππ =

1
nn
− 2

1
+

2
4
− 2

9
+

2
16
− 2

25
+ etc.

For, it is

1− 1
4
+

1
9
− 1

16
+

1
25
− etc. =

1
12

ππ.

II. Now let us put n = 0 and we will have

− π

ω sin ωπ
= − 1

ω2 −
1

1−ω2 −
1

1−ω2 +
1

4−ω2 +
1

4−ω2 −
1

9−ω2 −
1

9−ω2 + etc.

or

π

ω sin ωπ
=

1
ω2 +

2
1−ω2 −

2
4−ω2 +

2
9−ω2 −

2
16−ω2 +

2
25−ω2 − etc.

whence we obtain this memorable summation

1
1−ω2 −

1
4−ω2 +

1
9−ω2 −

1
16−ω2 + etc. =

π

2ω sin ωπ
− 1

2ωω
,
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whose truth I demonstrated elsewhere. But hence having taken ω infinitely
small because of

sin ωπ = ωπ

(
1− 1

6
ω2π2

)
the sum of the series

1− 1
4
+

1
9
− 1

16
+ etc.

as before is calculated to be

1
2ωω(1− 1

6 ω2π2)
− 1

2ωω
=

1
12

ππ.

III. If one takes n = 1
2 , because of cos nπ = 0 also the series itself vanishes,

while all terms indeed cancel each other. But that this happens, if n differs
infinitely less from 1

2 , differentiate with respect to the variable n, whence it is

−nπ sin nπ sin ωπ(1 + cos(n−ω)π · cos(n + ω)π)

ω(sin(n−ω)π · sin(n + ω)π)2 = − 2n
(nn−ωω)2 −

2(1− n)
((1− n)2 −ω2)2

2(1 + n)
((1 + n)2 −ω2)2 +

2(2− n)
((2− n)2 −ω2)2 −

2(2 + n)
((2 + n)2 −ω2)2 − etc.

Therefore, now take n = 1
2 and it will be

− ππ sin ωπ

ω(cos ωπ)2 = − 16
(1− 4ω2)2 −

16
(1− 4ω2)2 +

3 · 16
(9− 4ω2)2 +

3 · 16
(9− 4ω2)2 − etc.

or

ππ sin ωπ

32ω(cos ωπ)2 =
1

(1− 4ω2)2 −
3

(9− 4ω2)2 +
5

(25− 4ω2)2 −
7

(49− 4ω2)2 + etc.,

where having taken ω = 0 it follows that it will be

π3

32
= 1− 1

33 +
1
53 −

1
73 +

1
93 −

1
113 + etc.,

which is certainly known from elsewhere.

But the series found in the preceding problem seems to be a lot more difficult.
Yes, even the cases expanded in corollary 1, even though it is highly particular,
deserves a more diligent expansion, which I will try to give in the following
problem.
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PROBLEM 6

§57 If n is an arbitrary number, to find the sum of this series

s =
1
n
+

n
1(1− n)

+
n(1− n)

1 · 2(1 + n)
+

n(1− n)(1 + n)
1 · 2 · 3(2− n)

+
n(1− n)(1 + n)(2− n)

1 · 2 · 3 · 4(2 + n)
+ etc.,

which we certainly found before [§ 53] to be

s =
π

sin nπ
.

SOLUTION

Since in this series the law of progression is interrupted, it will be convenient
to split it into two parts. Therefore, let us set

P =
1
n
+

n(1− n)
1 · 2(1 + n)

+
n(1− n)(1 + n)(2− n)

1 · 2 · 3 · 4(2 + n)
+

n(1− n)(1 + n)(2− n)(2 + n)(3− n)
1 · 2 · 3 · 4 · 5 · 6(3 + n)

+ etc.,

Q =
n

1(1− n)
+

n(1− n)(1 + n)
1 · 2 · 3(2− n)

+
n(1− n)(1 + n)(2− n)(2 + n)

1 · 2 · 3 · 4 · 5(3− n)
+ etc.,

such that it is
s = P + Q.

Now, investigating the sum of these series I recall the following series derived
from the doctrine of angle

cos µϕ

cos ϕ
= 1+

(1− µ)(1 + µ)

1 · 2 sin2 ϕ+
(1− µ)(1 + µ)(3− µ)(3 + µ)

1 · 2 · 3 · 4 sin4 ϕ+ etc.,

sin ν

cos ϕ
= ν sin ϕ+

ν(2− ν)(2 + ν)

1 · 2 · 3 sin3 ϕ+
ν(2− ν)(2 + ν)(4− ν)(4 + ν)

1 · 2 · 3 · 4 · 5 sin5 ϕ+ etc.

and first I will accommodate that to the first form P. Therefore, since these
fractions

(1− µ)(1 + µ)

n(1− n)
,

(3− µ)(3 + µ)

(1 + n)(2− n)
,

(5− µ)(5 + µ)

(2 + n)(3− n)
etc.
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must be equal, I conclude that one has to take µ = 1− 2n, whence it will be

cos(1− 2n)ϕ

cos ϕ
= 1+

n(1− n)
1 · 2 · 22 sin2 ϕ+

n(1− n)(1 + n)(2− n)
1 · 2 · 3 · 4 · 24 sin4 ϕ+ etc.

Let us multiply by dϕ sin2n−1 ϕ cos ϕ and integrate, it will become∫
dϕ sin2n−1 ϕ cos(1− 2n)ϕ =

1
2n
· sin2n ϕ +

n(1− n)
1 · 2(n + 1)

· 2 sin2n+2 ϕ

+
n(1− n)(1 + n)(2− n)

1 · 2 · 3 · 4(n + 2)
· 23 sin2n+4 ϕ + etc.

Now after the integration set sin ϕ = 1
2 or ϕ = 30° and it will be

P = 22n+1
∫

dϕ sin2n−1 ϕ cos(1− 2n)ϕ;

the series Q on the other hand will easily be deduced from the other known
one by taking ν = 2n, whence it is

sin 2nϕ

cos ϕ
= n · 2 sin ϕ +

n(1− n)(1 + n)
1 · 2 · 3 · 23 sin3 ϕ

+
n(1− n)(1 + n)(2− n)(2 + n)

1 · 2 · 3 · 4 · 5 · 25 sin5 ϕ + etc.

Multiply by dϕ sin−2n ϕ cos ϕ and integrate; it will be∫
dϕ sin−2n ϕ sin 2nϕ =

n
1(1− n)

· sin2−2n ϕ+
n(1− n)(1 + n)
1 · 2 · 3(2− n)

· 22 sin4−2n ϕ+ etc.

Equally having done the integration set sin ϕ = 1
2 or ϕ = 30° and this series

will arise
Q = 22−2n

∫
dϕ sin−2n ϕ sin 2nϕ.

Therefore, the sum of the propounded series will expressed in such a way
that it is

s = 22n+1
∫

dϕ sin2n−1 ϕ cos(1− 2n)ϕ + 22−2n
∫

dϕ sin−2n ϕ sin 2nϕ,

and since this sum is already known from elsewhere, one will have

π

sin nπ
= 4

∫
dϕ cos(1− 2n)ϕ (2 sin ϕ)2n−1 + 4

∫
dϕ sin 2nϕ (2 sin ϕ)−2n.
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COROLLARY 1

§58 If one put 2n = 1−λ
2 , it will be 1− 2n = 1+λ

2 m having put what our
equation becomes more convenient, and it will be

π

sin 1−λ
4 π

= 4
∫ dϕ cos 1+λ

2 ϕ

(2 sin ϕ)
1+λ

2
+ 4

∫ dϕ sin 1−λ
2 ϕ

(2 sin ϕ)
1−λ

2
=

π
√

2
cos λπ

4 − sin λπ
4

,

having put ϕ = 30° after the integration.

COROLLARY 2

§59 In a similar manner having taken λ negatively it will be

π

sin 1+λ
4 π

= 4
∫ dϕ cos 1−λ

2 ϕ

(2 sin ϕ)
1−λ

2
+ 4

∫ dϕ sin 1+λ
2 ϕ

(2 sin ϕ)
1+λ

2
=

π
√

2
cos λπ

4 + sin λπ
4

,

where it will be helpful to have noted that in all cases, which can be expanded,
the same value of these integral formulas, which we exhibited here, is actually
found.
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