ON THE EXTRAORDINARY USE OF THE
METHOD OF INTERPOLATION IN THE
DOCTRINE OF SERIES®

Leonhard Euler

In the method of interpolation a relation of such a kind between the two
variables x and y is in question that, if to the one successively the given values

a,b,c,d etc.
are attributed, the other y hence also obtains the given values
p,q,7,s etc,

or what reduces to the same, an equation for a curved line of such a kind is
in question, which goes trough arbitrarily many given points. Therefore, the
greater the number of these points was, the more the curved line is limited;
nevertheless, I already observed on another occasion, even if the number of
points is augmented to infinity, that always still infinitely many curved lines
can be exhibited, which equally will go through all the same points. Since the
method of interpolation for each case yields a determined curved line, this
solution is always to be considered as highly particular; but this circumstance
itself implies a certain singular nature of the found solution, which deserves a
more accurate consideration. But this nature of the solution especially depends
on the method, by which this interpolation is done, or on the form, which
is attributed to the general form, in which the equation in question must be
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contained. Since this form can be constituted in infinitely many ways, I will
restrict my investigation to this form

y = ax + px° +yx° + 6x” +ex” +etc,,

which certainly only contains odd powers of x, such that, which values of y
correspond to any arbitrary positive values of x, the same taken negatively
also correspond to the same negative values of x; by this innumerable other
curved lines are excluded, which would go through the same points.

PROBLEM 1
1 To find an equation between the two variables x and y of this form
q Y
y = ax + px° +yx° + 6x” + ex’ +etc,,

that, if to x the given values
a,b,c,d etc.

are attributed, the other variable y likewise obtains the values

p,q,1,s etc.

SOLUTION

That the general assumed equation can be accommodated to this case more
easily, exhibit it in this form

y = Ax + Bx(xx — aa) + Cx(xx — aa)(xx — bb)
+ Dx(xx —aa)(xx — bb)(xx — cc)
+ Ex(xx — aa)(xx — bb) (xx — cc)(xx — dd)
+ etc.,

which, even though it might proceed to infinity, if the number of conditions is
infinite, of course, nevertheless for the single propounded conditions yields



the following finite equations:

I. p=Aa,
II. g = Ab + Bb(bb — aa),
II. » = Ac + Be(cc —aa) + Cc(cc —aa)(cc — bb),
IV. s = Ad + Bd(dd — aa) + Cd(dd — aa)(dd — bb),
+ Dd(dd — aa)(dd — bb)(dd — cc),

etc,,

which shall be represented this way

. P—g,
a
II. % = A + B(bb —aa),
1. g = A + B(cc —aa) + C(cc — aa)(cc — bb),
Iv. 2 — A + B(dd — aa) + C(dd — aa)(dd — bb)

+ D(dd — aa)(dd — bb)(dd — cc)

etc.

Now subtract the first from the single following ones and divide the differences
by the coefficients of B, that these equations arise:

aq — bp

_— = /:
ab(bb — aa) 7=5
ar—cp B
ol —aa) " =B + C(cc — bb),
as—dp  , B B B
(i gy = ¢ =B C(dd — bb) + D(dd — bb) (dd — cc)

etc.



Now, in similar manner subtracting the first from the following ones and
dividing the them by the coefficients of C we will get to these equations:

r/_q/ /A
cc—bb | =G
S,—C]’

g __ o
dd—bb_d = C+ D(dd — cc)

etc.
and further to this one
g/ —
=D
dd — cc

Therefore, from the given quantities a, b, ¢, d etc. and p, g, r, s etc. the

coefficients A, B, C, D etc. will be determined most conveniently this way:
First, from the given quantities derive these

_Pr _1 _r _5
P_a' Q e R o S 7 etc.

and hence form these:

Q :bglgi:fal' R :cléifa/’ 5 :dfil:lajal' / :ee:aa te.,
R" — S — T —

RY = cc—l%' ’ :dd—fb' b= 66—57/ etc,
" _ g

7" = R etc.,

Having found these values we will have

A=P, B=Q, C=R', D=S5", E=T" etc.

COROLLARY 1

§2 Sinceitis P = Z, the first coefficient will be

A:B;
a



for the following on the other hand because of

,  aq—"bp , ar—cp ,  as—dp , at—ep
Q= ab(bb — aa)’ k= ac(cc —aa)” ~  ad(dd —aa)’ = ae(ee — aa) ete.

the second coefficient will be

g_ _2—bp
~ ab(bb — aa)
or

_ p q
b= a(bb — aa) + b(bb — aa)’

COROLLARY 2

§3 Further, because it is

R = ar —cp _ aq—bp
ac(cc —aa)(cc —bb)  ab(bb — aa)(cc — bb)’

it will be

_ P q 4
€= a(aa — bb)(aa — cc) + b(bb — aa)(bb — cc) + c(cc —aa)(cc — bb)

COROLLARY 3
§4 In similar manner by prosecuting the calculation further it will be found

_ p q
b= a(aa — bb)(aa — cc)(aa — dd) + b(bb — aa)(bb — cc)(bb — dd)

* c(cc —aa)(cc — bb)(cc — dd) + d(dd — aa)(dd — bb)(dd — cc)’

whence it is possible to conjecture the form of the following quantities E, F, G
etc. already quite safely.
SCHOLIUM 1

§5 But in most cases the values of the single coefficients A, B, C, D, E etc.
are defined from the preceding ones. For, from the fundamental equations the



following formulas are deduced:

A=t
a
qg—bA
B = 5eb—aa)’
C— r—cA B
" c(c—aa)(cc—bb)  cc—bb’
D— s—dA _ B _ C
d(dd — aa)(dd — bb)(dd —cc)  (dd —bb)(dd —cc) dd—cc’
E_ t—eA B B
e(ee —aa)(ee — bb)(ee — cc)(ee —dd)  (ee — bb)(ee — cc)(ee — dd)
C D
~ (ee —cc)(ee —dd)  ee—dd
etc,,

where in most cases soon a structure of such a kind is observed, whence
the following ones cane easily be derived, as it will become plain from the
following problems, in which I will accommodate this method to certain
particular cases.

SCHOLIUM 2

§6 But before I expand cases of this kind, it will be helpful to have observed
in general that, if for a certain case a satisfying equation between the two
variables x and y was found, which I will denote this way
y=X
such that it is
X =uax+ ,Bx3 + 7x5 + 6x7 + etc.,
that then hence easily an equation extending much further any equally satis-
tying can be formed
xx —aa xx—bb xx—cc xx—dd
aa bb cc ad

which quantity vanishes for all propounded values of x

Q=x

etc.,

x=0, x=24a, x=+b, x=+c etc,



and all functions of Q vanishing together with Q itself will do the same; from
this it is manifest, if one sets
y=X+0Q

or
y=X+f:Q

that all conditions are equally satisfied. Therefore, since this function f : Q is

completely arbitrary, as along as vanishes for Q = 0, this equation

y=X+f:Q

is to be considered to exhibit the most general solution.

PROBLEM 2

§7 Leta, b, c, d etc. be any circular arcs while the radius is = 1, but let the values
p, q, 1, s etc. be the sines of the same arcs, since in this case this property holds that to
negative arcs the same sines taken negatively correspond, hence to define the ratio of
the diameter to the circumference approximately.

SOLUTION
Since here it is

p =sina, ¢q=sinb, r=sinc etc,

the equation between x and y will be of such a nature, that having taken x for
the circular arc the quantity yy will approximately be expressed by its sine
and it is

Yy = sinx.

Therefore, having defined the coefficients
A, B, C, D etc
by means of the preceding problem one will have this equation
sinx = Ax + Bx(xx — aa) + Cx(xx — aa)(xx — bb) + etc.,
which therefore agrees with the truth, as often as it was

either x=0 or x=24a or x=4b or x=4c etc



Now let us set the arc x infinitely small, and since then its sine, sin x, becomes
equal to the arc x, this equation will arise

1 = A — Baa + Caabb — Daabbcc + Eaabbcedd — etc.

Let us substitute the values found above for the letters A, B, F, D etc. here
and we will get to this equation

1_P (1 __m aabb B aabbcc n etc)

a aa —bb ~ (aa —bb)(aa —cc) (aa—bb)(aa — cc)(aa —dd) '

q < aan aabb n aabbcc ~ete )
b\bb—aa (bb—aa)(bb—cc) (bb— aa)(bb— cc)(bb— dd) '
r aabb aabbcc
c < (cc —aa)(cc —bb)  (cc — aa)(cc — bb)(cc — dd) + etc.>
s aabbcc

_Z — etc.
d ((dd —aa)(dd — bb)(dd — dd) >

+ etc.,

which is reduced to this one, in which all series are similar to each other

1_P <1 __m aabb B aabbcc + ete >
a aa —bb  (aa —bb)(aa —cc) (aa — bb)(aa — cc)(aa — dd) ’
_ aaq ( . bb n bbcc N bbcedd +ete )
b(bb — aa) cc—bb  (cc—bb)(dd—bb) (cc— bb)(dd — bb)(ee — bb) '
n aabbr <1 L cedd ete )
c(cc — bb)(cc — bb) dd —cc  (dd — cc)(ee — cc) '
B aabbccs <1 . dad +ete >
d(dd — aa)(dd — bb)(dd — cc) ee — dd ’

+ etc.

But every single one of these series is immediately summable; for; the terms
of the first series combined give

b
bb —aa’

but if to it the third is added, it arises

bbcc
(bb — aa)(cc — aa)




and hence further the fourth term added yields

bbcedd
(bb — aa)(cc — aa)(dd — aa)

and so forth, such that the first series of our equation becomes

P bb e dd e ot
a bb—aa cc—aa dd—aa ee—aa '
But in similar manner it is found for the second
q aa cc dd ee
_1. . . . - etc.
b bb—aa cc—bb dd—bb ee—bb
and so our equation is finally reduced to this form
_r bb o cc . dd e
1= q bb—aa cc—aa dd—aa ee—aa ete.
L qg a  cc dd e ot
b bb—aa cc—bb dd—bb ee—bb '
n roaa bb ‘ dd e ot
¢ aa—cc bb—cc dd—cc ee—cc ’
L s aa bb o e ¢
d aa—dd bb—dd cc—dd ee—dd O
n E o aa bb o cc . dd ot
e aa—ee bb—ee cc—ee dd—ee '

+etc.,

whence, if the given arcs a4, b, ¢, d etc. have a known ratio to half of the

circumference 7, the value of this quantity 7 will be defined

COROLLARY 1

§8 If the number of these arcs 4, b, ¢, d etc. was finite, then the circumference
of the circle will be defined the more accurately, the greater that number is and
at the same time the smaller arcs occur among them. But having augmented
the amount of propounded arcs to infinity the true ratio of the circumference

to the diameter will be derived from this.



§9 In similar manner the sine of the indefinite arc x can be defined in general.
For, having substituted the found values instead of the coefficients A, B, C, D
etc. the equation will be reduced to this form

siLx:B'bb—xx'cc—xx'dd—xx‘etC
x a bb—aa cc—aa dd—aa '
+g.aa—xx.cc—xx.dd—xx'etc.

b aa—bb cc—bb dd—bb

r aa—xx bb—xx dd—xx
+E'aa—cc'bb—cc'dd—cc'etc'

s aa—xx bb—xx cc—xx
Y3 aa—dd wo—dd cc—dd =

+etc.,

which equation having taken a vanishing arc x goes over into that one.

COROLLARY 3

§10 But this reduction extends a lot further, not having taken into account
the arcs. For, if an equation of such a kind between the two variables x and y
is in question, that having taken

x=0, a, b, ¢, d, e etc
it is

x=0, p, q 1 s t etc,
this equation can be represented in general this way

bb—xx cc—xx dd—xx ee—xx

y

ng bb—aa cc—aa dd—aa'ee—aa.etc'
+g.aa—xx_cc—xx_dd—xx.ee—xx.etc'
b aa—bb cc—bb dd—bb ee—bb
r aa—xx bb—xx dd—xx ee— xx
+E.aa—cc.bb—cc.dd—cc'ee—cc.etc'
s aa—xx bb—xx cc—xx ee—xx
Y3 wa—dd th—dd cc—dd ee—dd

+etc,,

from which form it is manifest at the same time, how the single conditions
are satisfied.

10



SCHOLIUM

§11 I do not spend more time on the cases, in which the number of of
prescribed conditions a, b, ¢, d etc. is assumed as finite, since hence only
approximations for the measure of the circle are obtained. Nevertheless, it will
not be off topic to have observed, if only four arcs are taken, which shall be

a=¢, b=2p, c=3¢, d=4g,

that from the solution of the problem it will be

_sing 2-2 3-3 4-4
~ 1 1.3 2-4 3.5
sin2¢ 1-1 3.3 4-4
2 1.3 1-5 2-6
sin3gp 1-1 2-2 4-4
T3 211517
sindp 1-1 2.2 3.3
4 3526 1.7

—§sin —gsinZ +isin3 —isinél
TSNP T g SMAP T g SNIP T 1y SMEP

which expression comes the closer to the truth the smaller the angle ¢ is taken;
nevertheless, even though it is augmented up to the quadrant, that it is

_r
go—z’

the error does not become enormous; for, it arises

T 8 8 32

2 5 105 21

and so

1
7'(—3i.
But if we take R
(p—BO—g,
it is
T 81 2 3 8 1 V3
6 52 5 2 105 140 2
or

184 171V3

=735 140 ’

11



which value differs from the true one by the hundred-thousandth parts of the
unit. But having put aside this consideration I want to go through some cases,
where the number of propounded arcs 4, b, ¢, d etc. proceeding in a certain
law is infinite.

EXAMPLE |

§12 Let the arcs a, b, c, d etc. proceed according to the series of natural numbers
and let
a=¢, b=2¢p, c=3¢, a=4¢p, etc. toinfinity;

from their sines p, q, v etc. the truth longitude of the arc ¢ is to be determined.

Therefore, the solution of the problem for this case yields this equation

N
N
W
3
i~
(6) ]
G

sin @

. 4

=1 ‘132435 1.6 °
_sin2¢ 1-1 3-3 4-4 5.5 ot
2 1.3'1.5 2.6 3.7 ¢

L sindp 11 2.2 4.4 5.5
3 2.4 1.5 1.7 2.8 ¢
_sin4dp 1-1 2-2 3.3 5.5 ot
4 3526 1.7 19 ¢

L sindp 11 2.2 3.3 4.4
5 4.6 3.7 2.8 1.9 °¢

+etc.;

but all these products are found to have the same value = 2, such that it is
1 ) 1 . 1 . 1. 1 .
Sp=sing—3 sin2¢ + 3 sin3¢ — 1 sind¢ + 5 sin5¢ — etc,,

the truth of which series in the case, in which the angle ¢ is infinitely small, is
manifest per se. Therefore, let us expand the following cases:

1.Let -
—90 = =
¢ 2
and the Leibniz series arises
E—1—1 1—l—kl—etc
4 3 5 7 9

12



2. Let T
=45 = —
¢ 4

and this series will arise

T 1 1 1 1 1 1 1 1 1

e  — ——f—— —
8 V2 2 32 5Y2 6 72 9y2 10 11,2

which is resolved into these two

r_ttor 1t o1 1 1
8 2\ '3 5 779711 13 15
T
2\" 7375 79 11 ’
such that it is
et 1 1. 1.1 1 1 _ 7
5 7 11 13 15 " 22
3. Let
o 7T
—60" =2
¢ 3

and it will be

7T V3 1 V3 1 V3 1 V3
_—= — — - — % +—- — — — . — + etc.
6 2 2 2 4 2 5 2
or
T _1_1_{_1 1_}_1 1+i——+etc
33 2 4 5 7 8 10 11
4. Let
o T
=30 = —
¢ 6
and it will be
7T 1 1 3 1 1 3 11 1 1 1 3
7:,_,.£+,_,.£+7-7*—7-7+*'£
12 2 2 2 3 4 2 5 2 72 8 2

13

—etc.,



or

12 2 5 7 11 13 '17 19
V3 1 1 1 1 1 1
_4<1+2_4_5+7+8_10_11+etc>
LY S D D I
3 375 779 11" %)
the last of which sums becomes = 12 hence it is concluded
1 1 1 V3 1 1 1 1 1
——=— — 4+ = - —(1+z—-=—-= -+ - —etc ).
1+5 7 —|—13—|— etc. 2<1+2 1 5+7+8 ec)

But both series become equal to the arc %, which is certainly already manifest
in the first from the Leibniz series.
COROLLARY 1

§13 From the equation found here
1 1 1
2q)—s1nq) sm2go+fsm3go—fsm4q)+etc

many other not less remarkable ones can be derived. As having done a
differentiation it arises

1
5 =cosg— cos2¢ + cos 3¢ — cos ¢ + etc,,

the reason for which is manifest from that that by multiplying both sides by
2 cos %q) the identical equation cos %(p = cos %go arises.

COROLLARY 2

§14 But if we integrate that equation multiplied by —dg, it arises
1 1 1
C— f(pqo = Cos ¢ — cosZ(p—l— —Cos3go cos4q)—|—etc

where from the case ¢ = 0 the constant entering by integration is determined,

namely

1 1 1 TTTT
14‘ — +etc. =

C=1-1%v5"1 VK

14



such that it is

1 1 1
E—ﬂ:cosqo 4cos2(p—|—fcos3qo cos4(p+etc,

12 4 9
Which series therefore having taken ¢ = % becomes = 0. But it approximately
is
=103°55'23" and cos = = —0,2406185.

V3

COROLLARY 3

S

§15 If integrate this equation multiplied by d¢ again, it will arise

1 1 1 1
e - go =sing — 5 sm 2¢ —|— sm 3¢ — sm4go + etc.,

whence having taken the arc

o T
=90 = >
it is obtained
i713:1—1+L—L+etc
32 125 343 7
as is is already known from elsewhere.
SCHOLIUM

§16 About the found series
1 1 1 1
Zq)—sm(p s1n2gp+fsm3q)—fsm4(p+etc

there could be some doubt that having taken the arc ¢ = 180° = 7 the single
terms of the series vanish and hence the sum can not become equal to 37t. But
to resolve this doubt first set ¢ = 7 — w and this equation will result

T incu—i—1 'r12cu—|—1 'r13cu—|—1 in4w + et
> =s 251 351 451 etc.

but now assume the arc w to be infinitely small, whence this is obtained
mT—w
2

which does not any longer contain anything absurd. The same is to be said if
we want to take ¢ = 271 or ¢ = 371 etc.

=w+w+w+w+ w +etc,

15



EXAMPLE 11

§17 If the arcs a, b, c, d constitute an arbitrary arithmetic progression that it is
a=np, b=n+1)p, c=n+2)p, d=(n+3)¢ etc

from their sines to define the longitude of the arc ¢.

The general solution exhibited before for this case gives

sinng (n+1)> m+2)? (©+3)%* n+4)?* (n+5)?

n ‘1(1+2n) 2(2+2n) 3(3+2n) 4(4+2n) 5(5+2n)
_sin(n+l)g  n*  (n+2)* (n+3)> (n+4)? (n+5)?
n+1  1(1+2n) 1(3+2n) 2(4+2n) 3(5+2n) 4(6+2n)
sin(n+2)¢ n? ‘ (n+1)? ‘ (n+3)? ‘ (n+4)? . (n+5)2
n+2  202+2n) 1(3+2n) 1(+2n) 2(6+2n) 3(7+2n)
sin(n +3)¢ n? n+1)? (n+2)? @nm+4)? (n+5)?
 n+43  3(3+42n) 2(4+2n) 1(5+2n) 1(7+2n) 2(8+2n)
sin(n +4)¢p n? n+1)2 (m+2)? n+3)?2 (n+5)?
n+4  4(4+2n) 3565+2n) 2(6+2n) 1(7+2n) 1(9+2n)

+etc.

etc.

etc.

etc.

- etc.

- etc.

But to investigate the values of these infinite products for the sake of brevity

let us put

sinng SBsin(n +1)¢ Csin(n +2)¢ Qsin(n +3)¢

tc.
n n+1 n+2 n+3 +ete

p="2
and compare these coefficients to each other the following way

A nn 2(2+42n) 3(3+2n) 4(4+2n) ot
B (n+1)2 13+2n) 2(4+2n) 3(5+2n)

which value is reduced to
nn (i—1)(2+2n)
(n+1)2 1(i+2n) '
while i denotes an infinite number and so it will be

A 2nn
B n+1

16



In similar manner it is concluded

¢ _1(1+2n) (n+1)* (i=3)(4+2n)  (n+1)(2n+1)

B 2(2+2n) (n+2)? 1(i+2n)  2(n+2)

but then further

D_(n+2)(2n+2) (n+3)(2n+3)

¢
¢ 3n+3) D 4n+4)

and so forth; hence it follows that it will be

2nn

BRI TSI
2nn(2n +1)
¢ =0T g
1-2(n+1)
D 2nn(2n+1)(2n +2)
1:2-3(n+3) ’
& — 2nn(2n+1)(2n+2)(2n+3)m

1~2-3-4(n—|—4)
etc.

and so the whole task goes back to the invention of the first letter

_ (n+1? (n+2)? (n+3)?  (n+4)?
C1(2n+1) 2(2n+2) 3(2n+3) 4(2n+4)

- etc.

But I already proved a long time ago that the value of this general product

alb+c) (a+d)(b+c+d) (a+2d)(b+c+2d)

b(a+c) (b+d)(a+c+d) (b+2d)(a+c+2d)

is expressed in such a way that it is

[ dx(1 - )
a [ x=1dx(1 — x%)

c—d
d
c—d ’
d
having extended the integration from the boundary x = 0 to x = 1, of course.
Since from this for our case one has to take

a=n-+1, b+c=n+1, b=1, c=n and d=1,

17



we will have

_ [dx(1—x)"1 1

2 [ xndx(1—x)n-1 - n [ x"dx(1—x)"-1

and hence the following expression for the arc ¢

1 2n
n o n—1 — G G
qo/x dx(1—x) —osinng T +1)2 sin(n+1)¢
2n(2n +1) _ 2n(2n+1)(2n +2)
1-2(n+2)2 1-2-3(n+3)2
2n(2n+1)(2n +2)(2n + 3)
1-2-3-4(n+4)>2
This series deserves even more attention, since it involve the integral formula
[ x"dx(1—x)" L,

sin(n+2)¢

sin(n+3)¢

sin(n +4)¢ + etc.

COROLLARY 1

§18 It will be helpful to have noted at first about this integral formula

/x”dx(l —x)"7L,

if in the case n = A it was A, that it then in the case

n=A+1
will be
A
220 +1)

So, since in the case n = 1 it is

1
/xdx =5

it will be

1 1 1
2 — —_ —  —_— 3 — 2 —_ - .
/x dx(1—x) 5 5.3 /x dx(1—x) 5 5.3 5.5 °©©

18



COROLLARY 2

§19 Therefore, if in general it is put

/x”dx(l —x)" = fun,
since its value can be considered as a function of n, it will be

1 1 1 1 1 2
fil=5 f2=5% f3=57¢710 [i4=

and in general

I\J\H
cxh—\
=l
o

n
: 1)= ——~f:
filn+1) 2ent1)! "
Hence, as often as 7 is an integer number, the value of this formula f : n is
easily assigned.
COROLLARY 3

§20 Now letn = % and it will be
dxy/x yydy

i—x

having put x = yy; but

yydy / b
/1/1— 2 \/1— 4’
whence it is
plom
22
and hence further
3 1 n 5 1 3 =« 7 1 3 5 =«
fia=s 2 278162 FraTs 6 o
But if in general it is n = £, it is found

fills [xfax—xnft=p [y iaya -yt

having put x = y" and hence having done the reduction

1% _ E_
fif= §/y“ ldy(1-y")"

which form involves transcendental quantities of each class.

19



COROLLARY 4

§21 The value of the integral formula

/x"dx(l —x)1

in the case x = 1 is vice versa sufficiently elegantly determined from the
found series; for, having done a differentiation by considering only the arc ¢
as a variable it arises

2n(2n +1)

COS(?’Z—F 1)(P+ m

/x”dx(l—x)”’1 = %cosn(p— cos(n+2)¢p

2n
1(n+1)
_2n(2n+1)(2n +2)
1-2-3(n+2)
which series is therefore equal to this one arsing from the usual expansion
itself

cos(n+3)¢p + etc.,

. a1 1 n—1 m—1)(n—-2) (m—1)(n—2)(n—-23)
/de(l_x) 1_n—l—1_1(n+2)+ 12(n+3)  1.2.3nt+4) @
SCHOLIUM 1

§22 Since we expanded the case n = 1 in the preceding example, let us here
mainly consider the case

in which we saw that it is
/x”dx(l —x)" = g,

and it will therefore be
H—ésin1 —%sin§ —|—isin§ —isinZ + etc
2 T 1P T gSMpP T og SN T yg SNy T e

Let us put ¢ = 2w and this more convenient series will arise

o 1sinw — 1sir13cu + isir15cu — lsin7w+etc
4 1 9 25 49 v

20



which first, if a vanishing arc w is assumed, gives

T, 111
4 " T3tsgTEe
But let
w=2=1
2

and this also known series arises

LLCLON S S VI SR
8 1925 29 g &

But having taken the arc

o T
w:45:Z
it arises
Ezl—l—i—ki—ki—i———i—et(x
82 9 25 49 81 121 169
Let R
w:30:g,
it will be

Ay ST S SN S
- 72713 T Tom T

Y T S SN T
32 T2 "5z "oz TEC

T I B
2\5%2 112 172 232 )

where the middle one is = I and the reason for the remaining ones is
perspicuous. Further, the differentiation of our series yields this remarkable

form
———71 ow—f1 3w+71 05cu—f1 7w + et
1 1cs 3cos 5cs 7cos etc.,

since completely all arcs assumed for w yield the same sum. But then an
iterated differentiation yields

0 =sinw — sin3w + sin5w — sin 7w + etc.
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But by means of integration we find

2
Tw 1 1 1 1
C-— 5 = Tcosw — ?cos&u—l— §c035w — %cos7w+etc.,

where, since having taken w = 0 it is

R U U R
P 5B BTy
it will be s
s
C—3—2,
such that it is
z E—ww —lcosw—lcos3w+lc035w—lcos7w+etc
8\ 4 1 33 53 73 '
SCHOLIUM 2

§23 Now let us in general put

and since it is
sin(n+1)m = —sinnn, sin(n+2)m = +sinnm  etc.

our equation divided by sinn7t will obtain this form

s " a1 1 2n 2n(2n+1)
1— ==
sin 7 /x dx(1-x) 2T 12 T 12427
2n(2n+1)(2n +2)
tc.;
123132 €
but having taken
Q=27

in similar manner it will be

27 " 41 2n 2n(2n+1)
dx(1—x) 1= —
sin 217t /x x(1-%) 2 I+ 12 12 +2)
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2n(2n+1)(2n +2)
©1-2-3(n+3)2

that one of these series therefore divided by this one yields the quotient
= cos n7, which seems to be wrong, since the quotient is smaller than unity.
But we already resolved a similar difficulty above, which arose from the
position ¢ = 27; for, if we would have put ¢ = 37, the first series itself would
emerge having the sum

-+ etc.,

— .37T /x”dx(l—x)”_l,

sin 37t

which is only equal to that one, if 7 is a vanishing ratio. Hence only the first
series is to be considered to hold; to investigate its sum from its nature itself,
let us set

1 2n 2n(2n +1)
— 7tn+1 7t7l+2 tc.
=2t Yt T2(ny22 Tt
and it will hence be
dtds . 2n, 2n2n+1) .4
T A O B

the sum of which series manifestly is
— tnfl(l o t)fzn/

such that it is td
> / P1dE(1 — 1)~

and
_opdtopolde
=[5 a-n
and so having put x = 1 after the integration one will have

0 dt " ldt
_ / x"dx(1—x) / /
sinnr . 1—t)2n
The comparison of these two integral formulas is even more memorable, since
among many others, which have been discovered, no one of this class is found,
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SCHOLIUM 3
§24 Let us put in general
T
?=7
and it will be

) .onm . nrm
sinng = sin o sin(n+1)¢ = cos EX

sin(n+2)p = —sin %, sin(n 4+ 3)¢ = — cos % etc.,

whence this equation results

E/xndx e _smnn<1 2n(2n+1)  2n(2n+1)(2n+2)(2n + 4)

2 \nn 1-2(n+2)?2 1-2-3-4(n+4)2
nr 2n 2n(2n+1)(2n +2)
_C052(1(n+1)2_ 123132 <)

But from the superior reduction it is manifest that it will be

1 2n(2n+1) 24 2n(2n+1)(2n +2)(2n + 3) o
1-2 1-2-3-4
A/ )T (1 -1)7
= 5 ,
2n, 2n(2n+1)(2n+2) 4
(/1) - (- t/-1) 2
B 2y/—1
and hence it is concluded
E/x”dx(l —x)" 1
2
7Sin /dt/ = 1dt L /dt/ t=1dt
(1+ty/— (1—ty/— 2”
B /dt e 1dt o0s 1T /dt/ I 1dt
1 1 +tv — 1 — v —

24
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where after the integration is must be put t = 1. But to free this expression
from imaginary quantities, let us put

sin w
t=tanw = ;
Ccos w
it will be
dw dt dw dwsin® 1w
dt=——, —=—"7" plgp=""""_ =
cos2 w t sin w cos w cos"t1 w
but then

(1+tv/—1)"2" = cos® w(cosw + v/ —1-sinw) 2"
= cos? w(cos2nw — /—1 - sin2nw),
(1—tv/—1)"2" = cos® w(cosw — v/ —1-sinw) "
= cos?" w(cos2nw + v/—1 - sin 2nw).

Having substituted which values the imaginary quantities will cancel each
other and this equation will arise

T . nm dw
—/x”dx(l —x)" = sin —- 7/dwsm 1w ecos" ! wcos 2nw
2 sin w cos w

+ Cos — / / dwsin™ ! wcos™ !
sin w cos w

w sin2nw,

which is contracted to this simpler one

d
E/x”dx(l —x)" = /760 /dw sin"_lwcos"_lwsin(E + 2nw)
2 sin w cos w 2

or because of sin w cosw = % sin 2w into this one

b n -1 1/ 2dw / . n—1 -
2/x dx(1—x) =5 | snow. 2dw sin" ™" 2w sin ( 5 + 2nw).

Now let the angle be 2w = 0, that it more conveniently is

[ (1 — n—l_l/ZdG/ i1 0 sinn( "
2/x dx(1—x) =5 | sing df sin 051nn(2+6),

where after the integration one must set § = 90" = Z, that then it is w = 45’
and t = tanw = 1.
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EXAMPLE III
§25 Ifthearcsa, b, c, d etc. constitute an interrupted arithmetic progression, that it
is
a=mp, b=np, c=1+mlp, d=(1+n)g,
e=2+m)p, f=2+n)ep, et.,
to define the longitude of the arc ¢ from their sines.

The general solution given above (§ 7) yields this equation

__sinmg nn C(1+m)* (1+mn)?
N m (n—m)(n+m) 1(1+2m) (1+n—m)(1+n+m)
eEm? e
2242m) 2+n—m)(2+n+m) ’
__sinng mm ' (14 m)? .(1+n)2
n m—m)(n+m) A+m—n)(14+m+n) 1(1+2n)
' (24 m)? (2+n)? et
2+m—n)2+m+n) 2(2+2n) '
sin(1+m)e mm nn (1+n)?
1+m  11+42m) A+m—n)A+m+n) (n—m)2+m+n)
C(2+m)?* (2+mn)? et
13+2m) (14+n—m)(3+n+m) '
_sin(l+n)e mm .o (1+m)?
1+n I+n—m(1+n+m) 1(1+2n) (n—m)(2+n+m)
. (24 m)? L @+n?
(1+m—n)3+m+n) 1(3+2n) '
sin(2+m)g mm nn (1+m)?
2+4m  202+2m) 2+m—n)2+m+n) 1(3+2m)
(1+n) . (2+n)

- etc.

(A+m—n)B+m+n) (n—m)A&+m+n)
—etc.

But hence it is not possible to conclude anything worth one’s attention in
general; hence I will expand the especially remarkable case, in which it is
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n=1—m;
for this for the sake of brevity I set

_ ™Asinmp  Bsin(l-m)p  Csin(l+m)p Dsin(2—m)e

m 1-m 1+m 2—m +ete,
such that it is

(1-m)> (1+m)? (2-m)? (2+m)®> (3-—m)?
Ql_lu—ziy;@+2;yéa—$)'&2+m) 32+m)
B mm 1(142m) 2(2—2m) 2(2+2m) 3(3—2m)
AT A—m? 22m 1B—2m) 3(1+2m) 2(3—2m)
< 1(1-2m) (1—m)? ‘1(3—2711)‘3(1+2m).2(4—2171).etC
B 1(1+2m) (1+m)2 3(1—-2m) 1(3+2m) 4(2-2m) "~
D _1(1+2m) 2-2m _(1+m)2.1(3+2m).4(2—2m)'etC
¢ 22-2m) 1B3—2m) 2-m)? 4-2m 1(5-2m) =~
€ _22-2m) 13-2m) 3(1—2m) (2-m? 1(5-2m)
©  2(2+2m) 3(1+2m) 13+2m) (2+m)®2 5(1—-2m)

But from the superior reduction one finds

[ xmtdx(1 — x) 2"

A= m [ xmdx(1 —x)m=1. [ xm=1dx(1 — x)—m;

but then for the remaining ones from the form of the products itself one
concludes

§_ m E_l_mf 9—71—{_7” E_L—m etc
A 1—-m" B 14+4m ¢ 2—m' D 2+4m v
such that it is
By e=—" o D=9 e=_"9 et
1—m 1+m 2—m 2+4+m

Therefore, for the sake of brevity let us put

. mo1 JA"Mx(1—x)T™
/x dx(1—x)" 1. TRl )T
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and it will be as follows

_ sinmg  sin(1—m)p  sin(l+m)p sin(2—m)p sin(2+m)g

My == " Ta—me T atm?  e-mZ | imp o
whence by differentiating we conclude that it will be
M oS cos(1—m)g n cos(1+m)p cos(2—m)g n cos(2+m)g _ete,

m 1—m 1+m 2—m 24+m

which series because of the extraordinary simplicity is especially remarkable,
since by putting ¢ = 0 we hence deduce
1 1 1 1 1 1

M:%_l—m 1—|—m_2—m+

1
2—|—m_3—m+3—|—m_etc"

the sum of which series I already once showed to be

7T COS MTT
sinmm ’

whence we calculate this elegant comparison

meosmm [ x™ ldx(1—x)72"

sinmm [ xm1dx(1—x)m’

/xmdx(l —x)" 1 =

which is further reduced to this one

(1—m)wcosmm [ xa"dx(1— x)~2m
sinmrt [ xmdx(1—x)=m

/xmdx(l —x)" =

or to this even more convenient one

/‘ (1 — x)ml = 2rcosmm [ x"1dx(1 — x)*zm.
sinmm [ xm=1dx(1—x) ™

COROLLARY 1

§26 Therefore, lo and behold some extraordinary theorems, which the ex-
pansions of this example gives us, the first of which is:

If ¢ denotes an arbitrary angle, it will be

mcosmm _ cosme cos(l—m)p ~cos(1+m)p cos(2—m)p
sinmm  m 1—-m 1+m 2—m

+ etc,,
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which equality can also be exhibited this way, that it is

1—mm 4 —mm 9 —mm

7T COS MTT < 1 2mcosg 2mcos2¢ 2mcos3¢ >
————— =cosm@p|( — — — — — etc.
sinm7t

. sin ¢ 2sin2¢  3sin3¢ = 4sindg
-2 .
Sln¢<1—mm d—mm  O—mm  16—mm )
whence, if it is
o T T
me =90 = 5 and hence ¢ = St

it will be

: T s 21 s 3 s 4
_7rcosmm _ Sing, 25111% 3s1nﬂ 4s1nﬂ 4 ete

sinmme 1—mm  4—mm  9—mm 16 — mm

COROLLARY 2

§27 The second theorem is enunciated this way:
If ¢ denotes an arbitrary angle, it will be

npcosmr _ sinmg sin(l—m)p sin(l+m)p sin(2—m)g

sinmm  mm (1—m)? * (14 m)? (2—m)? ete.
Hence having taken ¢ = 7 it will be
7rcosmr  sinmm sinmit sinm7t sin mrmt sinm7t
sinmm  mm (1-m)?2  (14m)2 + (2—m)? + 2+m)2 ete.
or
s 1 1 1 1 1

sinmrtanmr 2 (A—mpZ  (A4mP  2-mZ  2+m)p
But having put
me =1
one will have
7rrcosmm  sin g sin 77 sin%T sin 2%

m
= - - - 5 +ete.

msinmm  (1-m)2  (1+m)2 (2—-m)> (2+m)

or this way

TUTT COS M TT 1sin Z 2sin 2& 3sin 37
' = "5+ o+ L + etc.
dmmsinmm  (1—mm)2  (4—mm)2 (9 —mm)?2
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COROLLARY 3

§28 The third theorem concerns the comparison of integral formulas and is
enunciated this way:

If the integration of the following formulas is extended from the boundary
x = 0 to the boundary x = 1, it will always be

/xm’ldx(l —x)" L. /xm’ldx(l —x) "= M / X" tdx(1—x) 72",
sinmrt

or if one puts m = % and x = y", it will be

/ y*ldy / yldy _27‘(COS/\nﬂ/ yM1dy
Vg yayy ek oy

n

SCHOLIUM

§29 The demonstration of this last theorem seems to be very difficult; nevert-
heless, by means of the things I once published on integral formulas of this
kind, its truth can be shown the following way. For, let us indicate, as I did
there, this integral formula

[t
V(1 —y")ra
by this character (%) and it is to be demonstrated that it is

A A\ 2mcosiZ /)
A n—AJ) nsin A% n—2A)"

n

Now, first I demonstrated, if it was

q+r=mn,

R e
r nsm p

that then it will be
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whence it immediately follows

()
1-— nsin)%’

such that it remains to prove that it is

MY _geoe (A
A_Cosn n—2A)"

But on the same occasions I showed, if it was

p+q+r=mn,

that it will be

Therefore, let us take

and it will be

from which because of

we conclude

1 (A 1 A
sinz)‘77T A _sin%” n—21)"

2ATT ATT ATT
sin —— = 2sin — cos —
n n n

M et (A
A_Cosn n—2A/"

But a lot more strange theorem was found above (§ 28), which for the same
integration boundaries is

nl
.71 / dx(1— x)" /dx dx
sinnrm 1—x2”

such that because of

it indeed is
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or

=1
T /”1dx1—x /dx x|

2sinnm (1—x)2’

to reduce this equation to that form, instead of n let us write E and let x = y",
whence it is

/ )\ 1dy /dy/ /\ ldy
2nsm)‘” V(1 —yr)n—2 Y(1—y

But we just saw that it is

/\ 1 A—1
/ dy = 2cos A—n y dy

and so via the theorem we Conclude that it is

/ A 1dy / dy / /\ 1 dy
ntan 22 | /(1 g2 Sy
and hence further this not less remarkable theorem
/ y'- 1dy /yA 'dy - logy
ntan 2% J /( )24

whence having taken A = 1 we find the following proportion

dylog ,
tan = /

dy
v v

PROBLEM 3

§30 To find an equation of such a kind for the curved line between two variables, the
abscissa x and the ordinate y, that to the abscissas taken in an arithmetic progression
given ordinates correspond, namely:

If it is
x=mn0, (n+1)0, (n+2)0, (n+3)0, (n+4)0, etc

that it is

y=rp q, r S, t etc.
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SOLUTION

Let us put in general
x = fw

and from the general solution given in § 10 we obtain this equation

y _p m+l-wn+l4+w) +2—-w)(n+24+w) (n+3—-w)(n+3+w) ;

w  n 12n+1) ‘ 2(2n +2) ' 3(2n +3) e

P (n—w)n+w) ‘(n+2—w)(n+2+w)'(n+3—w)(n+3—|—w).etc

n+1 12n+1) 1(2n +3) 2(2n+4) ’

LA (n—w)n+w) (n+l1-w)n+l4+w) M+3-w)(n+3+w) ;

n+t2 2(2n +2) 1(2n +3) 1(2n +5) e
—etc,,

which equation for the sake of brevity we want to represent this way

Y | LA L :
w A n B n—|—1+¢ n+2 o n+3+etc.,

and for finding the value of  from the general form mentioned in § 17 we
will have for this case

a=n+1l—-w, b=1, c=n—w and d=1,

whence by means of integral formulas to be extended from the boundary
z = 0to z =1 we conclude
o [dz(1—z)r—w-! _ 1
[zrmedz(1—z)r—«"1  (n—w) [z'dz(1 —z)"—w-1

or
2

(n —w) [zt=@-1dz(1 — z)n-w-1’

having conceding this integration the remaining ones are easily handled. From
it will be as above in § 17

A =
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B (n—w)(n+w) 2(n+1)(n —w)(n+ w)
AT (nr1- )(n+1+w)'(2+2n)_ ntl-w)n+ltw)’
¢ (m+l-w(n+l+w) (1+2n)(2+n)

B m+2—w)(n+2+w) 2(n+1) 7

D (m+2-w)(n+3+w) (2+2n)(3+n)

¢ (+3-w)(n+3+w) 3(n+2)

¢ (m+3-w)(n+3+w) (3+2n)(4+n)

D (n+d4-w)(n+4+w) 4(n+3)

etc.

Therefore, let us set the integral formula
/z”"‘”ldz(l —z)"eTl = A,

that it is
2

(n—w)A’

and the remaining coefficients will be defined by means of 2 this way:

A =

2(n+1) nn — ww

b= 1 '(n+1)2—ww9['
C:2(71%—2)(211—1—1)‘ nm—ww o
1-2 (n+2)?—ww
@_2(n+3)(2n+1)(2n+2). nn — ww
1-2-3 (n+3)2—ww "’
@_2(n+4)(2n+1)(2n+2)(2n+3)‘ nn — ww
1-2-3-4 (n+4)? — ww
etc.

Therefore, the equation is question between y and x = 6w will be of this
nature:

nby . p _2n q
2m+ww mm-—ww 1 (n+1)2—ww
2n(2n+1) r _2n(2n+1)(2n+2) s ete
1.2 (n+2)?—ww 1.2-3 (n+3)2 - v
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whence for each value of x = dw a corresponding value of y is defined and
this by means of the ordinates p, g, r etc., which are assumed to correspond to
the abscissas 16, (n 4+ 1)6, (n + 2)6 etc. Here it must certainly be noted, if w is
taken equal to a certain term of the progression n, n + 1, n + 2 etc., that then
the denominator of the given corresponding ordinate vanishes, such that with
respect to the term, certainly infinite, the remaining ones vanish. But then at
the same time also the value A arises as infinite and precisely of such a kind,
that it then either is y = p and y = g or y = r etc., as the nature of the subject
demands it.

COROLLARY 1

§31 If the propounded abscissas denote circular arcs, the ordinates on the
other hand their sines, that it is

p=sinnfd, g=sin(n+1)8, g=sin(n+1)8, r=sin(n+2)0, etc,
it will be
y = sinwb,

whence this general equation results

nAsinwd  sinnd 2n sin(n+1)0  2n(2n+1) sin(n+2)6

2n+w)w mm-ww 1 .(n—l—l)z—wz—i_ 1.2 (n+22—u?

_2n(2n+1)(2n+2) sin(n+3)6 +ete
1-2-3 (n+3)2 — w? s
where it is especially remarkable that the three letters, n, 6 and w can be
assumed arbitrarily.

COROLLARY 2

§32 Therefore, if we take
0=,

that all sines of the series are reduced to the same sin 16, it will be

n A sin w6 1 2n 1 2n(2n+1) 1

2(n+w)wsinnr  mn—ww 1 (n+1)2 - w? 1-2 (n+2)2 — w?
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2n(2n+1)(2n +2) 1
1-2-3 (n+3)2—

+ etc.
W2

Hence, if it is

n= L und A = /Z_“’_%dz(l —z)_‘"—%

2
_2/ 73-9dz
(1—z)z+e’
one will have

Asinwm 1 1 1 1

or

81 +20)w  1—4w? 9 4w? T 25 de? 29— 4q2 T
the sum of which series I showed to be
= s tan w7t
8w ’
such that it is
A sin wrr _ itanwn
8(1+2w)w 8w
and hence
A (1+ Zw)n'
COS WTT
SCHOLIUM 1

§33 But it is not possible to trust these conclusions too much for the reason
mentioned above already. For, having put the ordinates

p=sinnd, g=sin(n+1)0, r=sin(n+2)0 etc,

while the arcs n6, (n +1)6, (n + 2)6 etc. are considered as abscissas, the
found equation yields a curved line of such a kind, which goes through all
these points. And it does hence not follow that this curve is the line of sines,
since infinitely many other curved lines passing through that same infinitely
many points are given. Hence having kept the letter y for indicating the
corresponding ordinate of the abscissa x = 6w our solution give this equation
for the curve in question
nAy sinnf  2n  sin(n+1)0  2n(2n+1) sin(n+2)6

2(n+cu)_nz—wz_T'(n+1)2—w2+ 1.2 (n+22—w?
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_2m(2n+1)(2n+2) sin(n+3)6 ete
1.2-3 (n+3)2—w? s

such that to the abscissa

x=(n+1i)d

this ordinate corresponds
y =sin(n £1)0,

if only i is an arbitrary integer. On the other hand it could also happen, that
for other abscissas, where i is not an integer number and hence generally, if
x = wb, the ordinate is not y = sinw. That this is seen more clearly, let us
investigate the general equation for completely all lines passing through given
points, and let the value found up to now be

y=90
and find a function vanishing for all given abscissas, of which kind this is

(n+1)?2—w?) ((n+2)? - w?) ((n+3)? — w?)

w(nn — ww) 12n+ 1) 2(2n+2) 3(2n+3)

etc,,

which by means of the thing mentioned above is

2w(n+ w)
— A

=w(nn —ww) =

Call this quantity = Q) and let f : () be a function of () of such kind, which
vanishes, if () = 0, and the general equation for all satisfying curved lines will
be 2w(n+ w)

— A

And now without any doubt it is certain that in this equation the equation
y = sinw# is contained having put x = w#, since this equation satisfies all
prescribed conditions. From this it could completely happen that the equation
y = © was different from this one y = sin w8; this can especially depend on
the values attributed to the letters 6 and 7, such the in the one case the found
equation y = © agrees with this one y = sinw#, but in others differs from the
same.

y=0+f:Q=Q+f:
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SCHOLIUM 2
§34 We want to apply these to the case, in which it is

1
0= d n=-
7T an n >

and

A—Z/ z279dz )
(1—2)%“0/

and since the sum of the found series is

7T
= —tanwm
8w

one will have this general equation

Ay o A Cw(142w)
80 1 20)w 8w Tt a0 T A
. (14 20) (1420)
(1l + 2w w(l+ 2w

where the added function in general is of such a nature that it vanishes in the

cases

1 3 5
w =20, w_ii' w—:l:E, w_ii etc.

of which kind these formulas are
sin2wrm, wcoswr, likewise sin2iwnm and wcos(2i —1)wrr,

while i denotes an arbitrary integer number; hence it is possible to combine
any arbitrary number of these formulas. Therefore, a certain function of this
kind will be given, which shall be ¢, that it is

Yy = sinwm
and hence
) (1 +2w)
SINWt = ———tanwm+ ¢
A
or
n="

14 2w)tanwm 2/ 2279dz
sinwmr—¢ (1—z)ste
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Therefore, since in the case w = 0 the function ¢ certainly vanishes, it will
be © = A, of course, which is an indication that the function ¢ contains w?,
whose exponent A is greater than unity, since otherwise having taken w = 0
the quantity ¢ would not vanish with respect to sin wrt. And for this reason

the conclusions of the preceding problem are to be considered as true.

PROBLEM 4

8§35 To find an equation of such a kind for a curve line between the abscissa x and the
ordinate y, that to the abscissas proceeding in an interrupted arithmetic progression
given ordinates correspond, namely

x = no, (1—n)6, (14 n)6, (2—n)b, (24 n)6, (3—n)fb

and

y=pr q, r, S, t, u
SOLUTION

Let us in general put the abscissa
x = bw

and for the equation between x and vy let us set this equation

y p q r S t
L —9.E_%. ¢ 9. ¢ .
w n 1—71+ 1+n 2—n+ 2+n

—3-3fn+etc.

and from paragraph 25 extended to this general case one will have

A — (1-n—w)(1l-n+w) (A+n—w)(l+n+w) (2-n—w)2—n+w) 2+n—w)2+n+w)

Ti-2n) i(+2n) 20-20) 2@+ otC
B (n—w)(n+w) 1-n ¢ (I-n-w)(l-n+tw) 1+n
2 (1-n—-w(l-n+w) n B (Q+n-w)(l+n+w) 1—n’
D (I4n-w)(l+ntw) 2-n € (2-n—-w)2-n+tw) 2+4n
¢ (2-n—-w-n+w) 1+n ® Q2+n—-w)2+n+w) 2-n
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etc.

Let us expand the value of 2l into two products

l-n-—w)(l-n+w) 2—-n—w)2-n+w) B—n—-—w)(3—n+w)

P= 1(1 - 2n) ' 2(2 —2n) ' 3(3—2n) ete
- (1—|—n—w)(1+n+a)).(2+n—w)(2+n+w)‘(3—|—n—w)(3—i—n—i—w)'etc
B 1(1+2n) 2(2+2n) 3(3 +2n) v
that it is
A =PA,

and let us define the value of both by means of integral formulas according to
the prescriptions in § 17. And at first for the infinite product F let us set

a=1-n—w, b=1, c=-n+w and d=1

and it will be

¢ = [dx(1—x)" 1w _ 1 1

[xn=wdx(1—x)"1=mt@ — w—n [xr-wdx(l—x)-1-n+e’

if it certainly is
w—mn>0.

For the other infinite product only by taking n negatively it will be

1 1

But that the condition w —n > 0 is not necessary, let us use another distributi-
on and let

I4+n+w(l-n—-w) +n+w)2-n—-w) B+n+w)B3—n—w)

B = 1-1 : 5.9 : 3.3 - etc.,
_(+n-w)(l-n+w) R+n-w)2-n+w) B+n-w)B-—n+w) ;
T (A—2m)(1+2n) (2—2n)(2+2n) B-2n)(3+2n) o7

and let is set for B
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a=1-n—-w, b=1, c=n+w, d=1,

for 9 on the other hand

a=14+n—-w, b=1-2n, c=n+w, und d=1
and it will be

¢ = [dx(1 — x)1Hnte _ 1 1

- fxfnf‘*’dx(l _ x)71+n+w n+w ) fx*”*‘*’dx(l _ x)71+n+w’

B f x—2ndx(1 _ x)—l+n+w
- fxn—wdx(l _ x)—l—HH—w'

Q

But it will be

/xmdx(l —x)F1 = m—'—:—i_l/xmdx(l —x)k,
therefore

1
n+w

/x‘”_“’dx(l —x) "t — /x‘”_‘"dx(l —x)"te

1 e
=n+w/?”%w0—y)”%
/x72ndx<1 o x)*l“rl’l“rw — w x*Z”dx(l o x)n+w

n+w
1-n+w _
n_i_iw yn+wdy(1 _ y) 211,
/x”""dx(l —x) it — 1+2n x"¢dx(1 — x)"
n—+w
1+2n _
= rw J Yy

whence it is concluded

(11— w) [y dy(1—y) 2

A=PO =
Jyrtedy(1 —y)—rte. [yntedy(l —y)r—v

or

o fyn-i-w—ldy(l _y)—Zn
fynerdy(l _ y)fnfw . fynJranldy(l _ y)nfw
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or

_ fyn+w—1dy(1 _ y)—2n
n-+w n+w— 1— —n—w . n—+w— 1— n—w’
yrterldy(l—y yrte-ldy(l—y
Therefore, since it is

1-— — 1 —
B — n. nn — ww A €= +n. nn— ww 2,
n  (1-n?-ww n  (1+n)?—-ww
z):2—11‘ nn — ww 2 €:2+n. nn — ww
n (2-n)?-ww no (24+n)?—ww
etc.,

by means of a sufficiently convenient series it will be

vy _p (nn — ww)q (nn — ww)r (nn — ww)s
Ao 1 a((l—nP—w?) (02 —?) n(2-nE-cw?)

il = P - 9 + ! —etc
Aw(nn —ww  n2—w? (1-n)2—w?  (1+n)?—w? :

But be resubstituting the integral formula for 2, where for the sake of
distinction I will denote the new variable by the letter z, this same series is
equal to this expression

ny f Zn+w71dz(1 _ Z)fnfw A f Zn+w71dz<1 _ Z)nfw
(n—w)w [ znte=1dz(1 —z)~ 2" ’

the integration of which formulas is to be understood to be extended from
the boundary z =0to z = 1.

COROLLARY 1

§36 Therefore, if for the sake of brevity we put this general integral formula

f Zn+w—1dz(1 _ Z)—n—w . f Zn+w—1dz(1 _ Z)n—w

=A
fznwtwfldz(l _ Z)on

and resolve the single terms of the series into two terms, we will have

MAy_, b 4 st
n-w n—-w 1-n—-w 14+4n—w 2—-n—-w 24+n—w ’
p q r S t

_ + + etc.

n+w 1—n+w_1—|—n—l—w+2—n+w_2+n+w
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COROLLARY 2

§37 Therefore, this equation defines a curves lines, in which to the abscissas
x=0, nb, (1—-mn)o, (1+mn)6, (2—-mn)o0, (2+mn)0
these ordinates correspond

y = O’ p/ [’]I rr S; t

but to the same abscissas taken negatively the same ordinates taken negatively
correspond. But in general here the abscissa was put x = fw.

COROLLARY 3

§38 Since here the letter 6 goes out of the letter, it would be possible to write
the unity for it, that the letter w denotes the abscissa itself. But if we want to
make the application to arc and their sine, it is convenient to retain the letter
6 in the calculation.

SCHOLIUM

§39 The use of this problem is especially seen, if as above the abscissas are
considered as circular arcs and the given abscissas are taken in such a way
that the ordinates p, g, 7, s, t etc. become equal to each other, whether positive
or negative. Therefore, that it becomes clear in these cases, whether the found
series can be summed from elsewhere, recall, what I once published on similar
series, whence the sums of the following two series are calculated

1 1 1 1

g - —etc. = ———,
o ,B—zx+,3—|—oc 2ﬁ—a+2,3+a et [Btan%
L1111 om

« B—a PBH+a 2—a 2B+ '_ﬁsin%'
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Therefore, hence for our problem we deduce the following for summations

I LI ! + ! - ! + ! —etC:L
" on—w l-n4+w 14+n—-w 2-n+w 24n-—-w " tan(n —w)m’
1 1 1 1 1 T
I n—w 1-n4+w l1+n—w 2—-n4w 2—|—n—w+etc':sin(n—w)n'
1 1 1 1 1 T
= n+w_1—n—w+1+n—|—w_2—n—a)+2—|—n—|—w_etc':tan(n+w)7r’
1 1 1 1 1 T
V. n+w+1—n—w_1+n+w_2—n—w+2+n+w+etc':sin(n+w)7'c'

Having observed these let us expand the cases, which by means of these
summations can be reduced to finite expressions.

EXAMPLE |

§40 Let the ordinate which correspond to the abscissas

x=0, nf, (1-n)f, (1+n)d, (2—n)d, (2+n)d etc
be
p:f, q:f, r:—f, S:—f, t:—i—f/ u:+f etc.

and by means of a finite equation investigate the relation between the ordinate y and
the abscissa x = Qw.

SOLUTION
The first corollary for this case yields this equation

2n Ay _ 1 1 _ 1 L+ 1 n " ete
fn-w) n-w l1l-n-w l+n—-w 2-n-w 2+n-w v
1 1 1 1

_n+w+1—n+w+l+n+w_2—n—|—w_2+n—|—w

+ etc.,

which two series are reduced by means of the four mentioned above, whose
summation is known, to II minus IV, and hence the equation in question in
finite form will behave this way
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2n Ay T T

f(n—w)  sin(n—w)mr  sin(n+w)r’

which expression is reduced to this one

27T COS 7T Sin w7t 47T COS NIT - SiIn W 7T
sin(n — w)m-sin(n + w)m  cos2wm — cos2nmt’

such that for our curve one has this equation

nAy 7T COS NTT Sin w7t

f(n—w) sin(n—w)m-sin(n+w)n’

We gave the value of /A expressed by means of integral formulas before; but
since from the superior things it is

1
CAn+ w)’

by means of an infinite product we will have

1 1(1 —2n) 1(1+2n) 2(2—2n) 2(2+2n)
Tntw 1-n2—w? 1+n)?—w? 2—-n2—w? 2+n2—w?

etc.,

where it is more clear than from the integral formulas that the value A
becomes infinite, as often as it was

w=*x(i+n),

while i denotes an arbitrary integer number, but the same value A vanishes

in the cases, in which it is
n= j:1
= +5.
But then it will also be helpful to have noted, if, while w goes over into 1 + w,

the value of A goes over into A’

1-—n—-—w)A
n—uw '

A= —

And if in similar manner A" corresponds to the value 2 + w assumed instead
of w, it will be

—2-n+w)A" —(2—n+w)A.

"o
A= -(1-n+w) n—w
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COROLLARY 1

§41 If the quantity /A depends on w, consider a function of it and denote it
this way

A=f:w;
therefore, then it will be
: = :
and 5
n—2—w
f.(2+(«(.7)—ﬁf.w
etc.

Hence, if w denotes an arbitrary integer number, one will have this theorem

f:(i—i—w):f:w'

n—i—w n—w

COROLLARY 2

§42 Further, since having taken a negative w it is

n+w
frw) =20,
it will be
fi—w  frw

n—+w n—w

hence also in general

f:(i—w)_f:w.

n—i+w n—w




SCHOLIUM

§43 This case corresponds to that one, which we expanded above in § 25,
where the given ordinates also were the sines of the abscissas; and for the
present case one must put

0=rm,

that it is
f =sinnm

and all given points lie on a line of sines. But hence it does not follow that
the curve itself, which the found equation exhibits, is a line of sines, since
innumerable other curves can go through the same given points. Hence it is
still by no means certain that the value of y corresponding to the abscissa
y = sin 7tw and defined by this equation

nAy 7T COS NTT - Sin w7t

(n—w)sinnw  sin(n — w)m-sin(n + w)m

become equal to the sine of the arc 7tw, that it is y = sin 7tw, even though this
is true in the cases w = £ (i £ n) and w = 0. But above we certainly saw that
even in the case, in which w is a very small quantity, the equation agrees with
the truth by taking y = sin tw, such that it is

7T COS NTT
sinnm ’

while it is
[z dz(1—z)™" [z 1dz(1 —z)"
[z 1dz(1 —z)~2n ’
as I also showed there. That this subject can be explored more easily in general,
for expressing the value A more conveniently I observe that it is

N =

[zZterdz(1 —z) @ _ Jz¢7"dz(1 —z)""@
[ zrte=1dz(1 — z) 2" [dz(1—z)=2

while it is

N —

whence it will be

A = (1-2n) /z“’_"dz(l —z) . /z"*“’_ldz(l —z)",
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But if it was in general
Yy = sinwrr,
it would also be
(n — w)msinnmcos ni
"~ nsin(n —w)m-sin(n+ w)

Therefore, the question reduces to this, whether this equation

(1—2n) /Z“’_”dz(l ) /Zn+w—1dz(1 _

_ (n—w)msinnmcosnm
~ msin(n — w)m-sin(n + w) 7

is also true in other cases than the ones mentioned above or not. For this aim,
let us consider the case, in which it is

1 1
7’121 and CUZE,

where certainly the second part becomes

i
SR

the left hand side on the other hand will be

/ zidz / z-idz
T2 (1—2z)i 1—2){

which having put

goes over into this form

Uvdv

iy | i =4 v | v

whose value by means of the things, which I demonstrated in formulas of this
kind, indeed becomes = 7r, which therefore is a testimony for the truth of our
equation, which can be demonstrated perfectly in the following way.



THEOREM

§44 However the two numbers n and w are assumed, this equation agrees with the
truth

w—n nt+w—1 _ . )
(1—2n)/(z - /Z 4 (n —w)msinnm - cosnm

1—z)ntw . (1—z)w—rn - nsin(n — w)m-sin(n + w)m’

if certainly the integration of those formulas is extended from the boundary z = 0 to

the boundary z = 1.

PROOF

To reduce these formulas to a form, which I treated, let us out

n+w:% and w—n:%,
that it is v
o =
TR

and this equation must be proved

/\—;4-1—1// z1dz / Z%dz v msin
A (1 =z YA =z p—v sini-sinkl

Now put z = v* and one will have

oMvldy / v#~1do v nsin B
(1 —oM)r YA =ovty  p—v sini-sinkE

and in the way to express these integral formulas there the left hand side will
be represented this way

s o(122) ().

which by means of the first reduction

()55 ()
q p+g—A\ q

Am—y+m/
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goes over into

(7)) = (57) (57)

But this reduction on the other hand
<A—q)()\+p—q>: T
4 q Apsin LT

p=u—v and g=u

(=) (55 = e

having taken

gives

But it also is

whose product is

(A—v)(A—v)(A—y)_ U
u v H—v _/\)\(y—v)sin%-sin%'

Further, since it is in general
P\(pta\ _(p\(rtr
q r r q )
p=A—-u, q=u—v, and r=v
A—pu\(A—=v\ (A—p\[(A—p+v
p—v v )\ v n—v
(A—p)_ T
p _/\sin%

p=n—v

by taking

it will be

and because of

having taken
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it will be

(/\—]1)(/\—1/) <A—y>. T
u—v v % Asin%n
and hence

(A—v)()\—y). T B T _
U v )\sjnﬁn_/\)\(y—v)sin¥-sin%'

from which the left hand side reduces to this form

A </\—y> </\—1/> v msin B
v = : ,
v U u—v sin%-sin%

which is the equation to be demonstrated above.

COROLLARY 1

§45 Therefore, in the doctrine of integral formulas of this kind

/ vP~1do

to which (S) is equivalent, this reduction is of high importance, in which I
demonstrated that it is

Y A=u\[(A—v v msin B
v = . ,
v U U—v sin%-sin%

such that the product of such integral formulas (/\%V) (%) can be exhibited
by means of angles alone.

COROLLARY 2
§46 If in the value found first for A\ one equally puts
H

v
n+w=~ and w—-—n=—,
v A
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but then

it will be

A—)\/ vt1do / vt 1do / vtldo
V(1 —ot)H V(1 =0ty /(1 —or)rv

and hence in this way of notation

M%%Mﬁ»
(3=

A (5
Ay-&-)

A —

or

N\ =

—

Therefore, the same value also is

U—v
A — vt Sl].’l)\T[

— v BT v
p—v sin5--sin g

COROLLARY 3

§47 Therefore, since for this last formula it immediately is

<A—y> T
U Asm”f'

it will be
(%) v sinfEa
(#)_y—v sin 4§t/

whose truth is shown from the following general theorem

(5 (),
G (=

for, it will be

() _ G v (%)

(=) ) v G
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because of

Adv _v( v and Adpu—v\ wu—v( pu—v \.
A—v) A\A—v A—u+v) A \A—pu+v)’

it then is
v o H—v B T
</\—1/> ~ Asinf and ()\—;H—v) N Asin%n'

EXAMPLE 11

§48 Let the ordinates, which correspond to the abscissas

ng, (1-n)o, (1+n)o, 2-—n)d, (2+n)d etc
be
p:f, q:—f, T:+f, S:—f, t:—f—f/ u:—f etc.,

and by means of a finite equation investigate the relation between the abscissa x = 6w
and the ordinate = y in general.

The general equation of paragraph 36 accommodated to this case yields

moy _ o, v 1 1 1 L
fn-w) n-w l-n—-w l+n-w 2-n-w 2+n—w '
1 1 1 1 1

n—+w _1—n+w_1—|—n—|—w_2—n—|—a)_2—|—n—|—w_etc"

where we now certainly know that it is
B (n — w)msin2nm
- 2nsin(n — w)m-sin(n + w)T’

But that series from § 39 becomes

. T T Tsin2wrt
I minus I = - == :
tan(n —w)m  tan(n+w)mr  sin(n —w)m-sin(n 4+ w)m

having substituted which sum

Y Tsin2n7t _ Tsin2wrt
f sin(n—w)m-sin(n+w)mr  sin(n—w)m-sin(n+w)r
or
_ fsin2wm _ fsin 2%
sin2n7t sin2n7m

Therefore, this curve again is a line of sines, and if one takes § = 27, that it is
f = sin2n7, the ordinate will be y = sin x.
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COROLLARY 1
§49 If one takes
f=mn and f=tannf =tann,

the given points will be on a line of tangents; and nevertheless the found
curve itself will not be a line of tangents; but its nature will be expressed by
this equation

tannst - sin2x sin 2x sin 2x
sin2n7 2cos’nm 1+ cos2nr

and here it will be y = tan x, as often as it was x = (i & n)r.

COROLLARY 2

§50 If in the solution of the first example, in which it was

p=f aq=f r=—f s=—f t=f u=f etc,

instead of A we would have immediately put the found value, this equation

would have arisen )
fsinwm

sinnm
Hence it would have been perspicuous that having taken § = 7w and f = sinnm
the curve itself will be a line of sines.

SCHOLIUM

§51 It especially deserves to be mentioned that in problem 4, where the
given abscissas constitute an interrupted arithmetic progression, the value
of the quantity A can be exhibited absolutely by means of angles, although
nevertheless in problem 3, where the given abscissas constituted a true arith-
metic progression, the integral formula A in general cannot be expressed by
angles by any means. For, since there it was

A= /z”"‘”ldz(l —z)"w

this formulas having put n — w = ¥ and z = v" goes over into
v—1
A:A/W or A:)\(U)/
A/(1 _ UA))\—V v
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which formula can imply highly transcendental formulas. As if in that problem
the given ordinates are sets

p=f q=—f r=f s=—f, t=f u=—f et

and it was n = 1, the equation for the curve passing through these points will

be
Ay 4 4

20 1 20)w0f  1—dow 9 —dww 14w

+ etc.
w

or
2fw(l+2w) 2w ’
such that it is
f(1+2w)tanwm
= = ,

whence, even though one takes
. .1
f=mn and f=sinnd = 51n§7r =1,

it manifestly does not follow that it will be y = sin fw = sin w. Since in the
first example it is already certain that it is

fsinwrm
sinnm

let us expand the same case from the first problem in such a way that we
investigate the values of the single coefficients A, B, C, D etc.

PROBLEM 5

§52 The general equation constituted above in Problem 1 in such a way that to these
abscissas

x =nb, (1—n)b, (1+n)6, (2—n)b, (2+n)6 etc.

these ordinates correspond

y=+f, +f, —f, —f, +f, etc.,
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SOLUTION
As before set x = 6w and consider the equation in question in this form
y = Aw + Bw(ww — nn) + Cw(ww — nn)(ww — (1 —n)?)
+Dw(ww — nn)(ww — (1 —n)?)(ww — (14 n)?)
+Ew(ww — nn)(ww — (1 —n)?)(ww — (1 +n)?)(ww — (2 —n)?)
+etc,

whence these equations are deduced

f — A

n

fo_a +B-1(1—2n)

1—n ’

—f _ _

1+n_A +B-1(1—-2n) +C-(1+2n)-2-2n,
2__fn:A +B-1(1—2n) +C-2(2—2n)-1(3 —2n)

+D-2(2—2n)-1(3 —2n) -3(1 — 2n)

etc.

and hence the following values of the coefficients

_f s f _ f _ —f
A_n’ B n(l—n)’ ¢ 2n(l —n)(1+n)’ D 6n(l—n)(1+n)(2—n)’
f

D = etc.;
24n(1—n)(14+n)(2—n)(2+n)
since this progression is sufficiently simple, our series for the value of y, which
we already to be
_ fsinwm
- sinnm
deserves even greater attention
sinwn  w W ww—nn  w ww—nn ww—(1-n)?

sinnt  n on 1(1—n)+n 11—n)  2(1+n)
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w ww—nn ww—(1-n)?* ww-—(1+n)?
-=. : : +etc,
n 1(1—n) 2(1+n) 3(2—n)

or if IT always denotes the preceding term, the whole while be

sinwn_g_n ww —nn ww—(l—n)z_ ww — (14 n)?
sinnt  n 1(1—n) 2(1+n) 3(2—n)
ww — (2 —n)? ww — (2+n)?
| e ALV s (b ol L MRS
* 42+n) 5G3—n) o

If all terms affected with the same sign are desired, it will be

sinwn W | w - ww | w nn - ww (1-n)?—ww
n 1(1-n) n 1(1—n) 2(1+n)
m—ww (1-n)?—-ww (1+n)?-ww

0= 20 +n) 3(2—n)
+g.nn—ww'(1—n)2—ww‘(1+n)2—ww‘(2—n)2—ww
n 1(1—n) 2(1+n) 3(2—n) 4(2+n)

etc.

Therefore, this series seem even more remarkable, since it recedes from the
usual form of a series and in it even the two arbitrary numbers n and w occur.

COROLLARY 1

§53 If the number w vanishes, that it is sin w7t = wrr, having divided by w
one will have the equation

T 1 n n(l—n) n(1—n)(1+n)

snnt n T 11-n) (1T-20+n) | 1-2-32-n)

n(l—n)(14+n)(2—n)
1-2-3-4(2+n)

+ etc.,

whence having taken n = % because of sin 7 = 1 it will be

epaq 12 11.3.2 1.1.3.3.2 1:1.3.3:52
243 2463 24685 2-4-6-8-10-5
or
A WA SR G ANV, S AN . L A R
2213 "'2.4.28.5 " 2.4.6-25.7  2.4-6-8-827-9
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1 1-3 1-3-5 1-3-5-7
2-22-3+2-4-24-5+2-4'6~26~7+2'4~6-8-828-9
since the second of these series is the half of the first, the sum of the second
will be = 7, the reason for what is certainly also clear from that that it is

+1+

+ etc.;

/ dx S x—i—l x3+1-3 x5+1-3~5 X7—|—etc
_ = 1 — —_ — Fpp— [— .
V1 —xx 2 3 2-4 2:4.-6 7
whence that series becomes = @ for x = % and hence = 2% = %

COROLLARY 2

§54 If the other number n vanishes that it is sinnt = n and the equation
is multiplied by n, it will arise
sinwm W WP (wr-1) P -1)(w?—-1) @ (w?—1)(w?—1)(w?—4)

YT 1Tt 121 T 123122 1.2.3.4-12.22

W (w? —1)(w? —1)(w? — 4)(w? — 4)
_ tc.,
1.2.3-4.5.12.22.3 Hete

which series divided by w is resolved into the following two

sinwm 14+ w?(w?—1)  w?(w?—1)*(w?—4) N w?(w? —1)*(w? — 4)*(w?* - 9) ©ete
wm 1-2-12 1-2-3-4-12.22 1-2-3-4-5-6-12.22.32 )
w? W (w?—1)? B w?(w? — 1) (w? — 4)? B w?(w? —1)*(w? — 4)*(w? —9)? ote

1 1.2.3.12.2 1.2.3.4.5.12.22.3 1.2.3-4-5-6-7-12-22.32.4 :

Let us set w = % here; it will be

3_1_ i-1.3 1.1.3-1-3-5  1-1-3-1-3-5-3:5-7 _ et
T 1-1-1-2> 1-1-1-2.2-.2.210 1.1.1.2.2.2.3-3.3.21 '
11 1-1-1-3-.1-.3  1-1-1-3-1-3-3-5-3-5 ~ete
2 1.1-1-2-2-3-26 1-1-1-2-2-2-3-3-4.5.210 K

which last series can be represented this way.
1 1.1.2.3 1-1-3-3-3:5  1-1-3-3-3-5-5-5-7 et
2 1.1.2.27 1.1.2.2.2.3.22 1.1.2.2.2-3.3-3.4.217 '
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COROLLARY 3

§55 Ifitwasn = % that it is sinnt = 1, the factors, from which the single
terms of the series must be formed, will be

Ziw 1—4dww 1—4dww 9—4ww 9—4ww 25—4ww 25—4ww

1 1.2 3.4 3.6 5.8 5-10 712 ot

and the sum of the series will be sin w7, namely

20(1 —4ww) 2w(l —dww)? 2w(l —dww)?(9 — dww)

. _,
SINWI = 20w+ ——— >+t ~9 53.14 " 123456

+etc.,

whence having taken w = 1 it must be

3 5 5 7 7 9 5-9

=2 — —
0 3+22+23.3+26.3+27.3+29.5+210.7+214.7

+ etc.,

whose truth will become plain to any one performing the calculation.

SCHOLIUM

§55 For this cases also the solution found above deserves it to be considered
with more attention, which from § 36 because of

B (n — w)msin2nm
~ 2nsin(n — w)m-sin(n — w)w sinnm ’

A

since it is
p=f q=f r=—f s=—f t=f u=f etc,
is contained in this equation

7T COS NTT - SIN WTT
wsin(n — w) 7 -sin(n + w)

1 1 1 1 1
_ _ _ tc.,
nm—ww (1—n)—w? (1+n)—w2+(2—n)—w2+(2+n)—w2+ec

which series deviates a lot from the one we just found. But I observe the
following things on this series:
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I. If w vanishes, it will be

nmwecosnr 11 1 n 1 n 1 1 ete.

(sinnm)2  nn (1-n)2 (1+n)2 (2-n)2 (24n)2 (3—n)? 7
but if additionally n vanishes, because of sinnmt = nt the following inconve-
nience arises

1 1 2 2 2 2

nn nn 1 + 4 9 16
But to get rid of this, let us not consider the number 7 only as vanishing, and
since it is

1
cosnt=1— Ennmr

and also
. 135 3 1
sinnt =nm—-n"n’ =nmn|ll—-nnnmr|,
6 6
it will be
COSNTT 1— jnnnn 1— innmm
(sinnm)?  nnmm(l— innmm) nnrTT

hence this true equation is obtained

1 1 1 2 2 2 2 2
wn 6 T qm 173 9116 25 °tC
For, it is
1—1+1—l+l—etc.:imr.
4 9 16 25 12

II. Now let us put n = 0 and we will have

T 1 1 1 1 1 1 1
Twsnwn @ 1-w? 1-@? 4—w? d—w? 9_w? 99—z
or

7 1 2 2 2 2

“2 T + + — etc.

wsinwnmt w? 1—w? 4—w? 9-—w? 16— w? 25— w?
whence we obtain this memorable summation

1 1 1 1 7 1
1-w? 41— 92 16— T

2wsinwnt  2ww’
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whose truth I demonstrated elsewhere. But hence having taken w infinitely
small because of

1
sinwrm = wn(l — 6w27t2>

the sum of the series

1
— + etc.

1
1— Z_
+9 16

1
4
as before is calculated to be

1 1

2w0(1-1w?m?)  2ww 12

III. If one takes n = %, because of cosnr = 0 also the series itself vanishes,
while all terms indeed cancel each other. But that this happens, if n differs
infinitely less from %, differentiate with respect to the variable n, whence it is

_nsinnmsinwrn(l +cos(n —w)m-cos(n +w)m) 2n B 2(1—n)
w(sin(n — w) 7 - sin(n + w)7m)? - (mm—ww)? (1 —-n)?2—w?)?
2(1+n) 2(2—n) B 2(2+n) ~ete

(O e (P L (PR Ll R

Therefore, now take n = % and it will be

TrTsinwmr 16 16 3-16 316
= - - + + —etc.

 w(cos wr)? (1—4w?)?2  (1—4w?)? " (9—4w?)? " (9 —4w?)?
or
TTTT Sin w7t 1 3 5 7

= - — tc.,
Rw(coswn?  (1—4w??  (9—4w?? T (25— 4a?)? (49 —dwry2 ot

where having taken w = 0 it follows that it will be

o, 1,1 111
32 33 5 73793 113

which is certainly known from elsewhere.

+ etc,,

But the series found in the preceding problem seems to be a lot more difficult.
Yes, even the cases expanded in corollary 1, even though it is highly particular,
deserves a more diligent expansion, which I will try to give in the following
problem.
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PROBLEM 6

§57 If n is an arbitrary number, to find the sum of this series

1 n n(l—n) n(l—n)(1+n)+n(1—n)(1+n)(2—n)

Satiaon 120+ T 123020 1-2-3-42+ 1)

+etc.,

which we certainly found before [§ 53] to be

T
sinnm’

SOLUTION

Since in this series the law of progression is interrupted, it will be convenient
to split it into two parts. Therefore, let us set

1 n(l—n)
e N )
n(l—n)(1+n)2—n) n(1-n)(1+n)(2—n)(2+n)(3—n)
12.3.42+n) 1-2.3-4.5-6(3+ 1) +ete,
_on n(l—-n)(1+n) n(l—n)(1+n)(2—n)(2+n) .
C=1a—m " 12:32=n) 1.2.3-4-5(3—n) Tete

such that it is
s=P+Q.

Now, investigating the sum of these series I recall the following series derived
from the doctrine of angle

I-pwA+u)B—pw)(B+mn)

cospp _ 4, A=) +p) .o 4

<05 =1+ 1.2 sin® ¢ + 1.2.3.2 sin” ¢ + etc,,
sinv | v(2—v)(24+v) . 4 v2—v)2+v)(d—v)d+v) . 5

cosg =vsing + 1.2.3 sin” @ + 1.2.3.4.5 sin” ¢ + etc.

and first I will accommodate that to the first form P. Therefore, since these
fractions

I-wA+p) C—wB+p) G-—w6E+n
n(l—n) * (A+n)2-n)" (2+n)(3—n)
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must be equal, I conclude that one has to take y = 1 — 2n, whence it will be

cos(1—2n)p 1+n(l —n) n(l—n)(1+n)(2—n)
cosp 1-2 1-2-3-4

-22sin? ¢ + -24sin* ¢ + etc.

Let us multiply by dgsin®*~! ¢ cos ¢ and integrate, it will become

. o 1 . n(l—n) ,
d 2n—1 _ — . 2n X 2n+2
/ @sin” " ¢ cos(1 —2n)¢ 5y SN @t g 20 1) 2sin”"" ¢
B @=n) s

1-2-3-4(n+2)
Now after the integration set sin ¢ = 1 or ¢ = 30" and it will be
p =22+l /d(p sin® ! @ cos(1 — 2n)¢;

the series Q on the other hand will easily be deduced from the other known
one by taking v = 2n, whence it is

sin2n¢ . n(l—n)(1+n) 5 .3

EY oy .

cos n-2sin¢ + 12.3 2°sin” @
n(l—n)(1+n)2—n)24+n) 5 .5

+ 12.3.4.5 -27sin” ¢ + etc.

Multiply by dgsin=>" ¢ cos ¢ and integrate; it will be

. . 5 1—n)(1+n) 4
2n Mo — n Cain2—2n n( n2 i 4—2n .
/d(psm @ sin2ng 1 —n) sin @+ 1-2-32—n) 2% sin @ +etc

Equally having done the integration set sin ¢ = 3 or ¢ = 30" and this series
will arise

Q=222 / dgsin~" ¢ sin2ng.

Therefore, the sum of the propounded series will expressed in such a way
that it is

s = 221+l /d(p sin® 1 @ cos(1 —2n)¢ + 222" /dq) sin~?" @ sin2ng,
and since this sum is already known from elsewhere, one will have

T 4/dgo cos(1 —2n)¢ (2sin @)>" ! —i—4/dq0 sin2n¢ (2sin @) 2"

sin n7
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COROLLARY 1

§58 If one put 2n = %, it will be 1 —2n = %m having put what our
equation becomes more convenient, and it will be

s :4/d¢cosl’5)‘(p 4/d(psin1§A(P _ V2

s 1—A . 1-A AT s AT’
sin =7t (Zsmqo) 2 Cos 7 —sin -

)

(2sing
having put ¢ = 30° after the integration.

COROLLARY 2

§59 In a similar manner having taken A negatively it will be

ATT A’
COs 74~ + sin

T decos 52 ¢ desin £ ¢ 2
4/72 +4/ L=

sintin ) (2sing) s (2sing) s
where it will be helpful to have noted that in all cases, which can be expanded,
the same value of these integral formulas, which we exhibited here, is actually

found.



