
Investigation of the Value of the

Integral

∫
xm−1dx

1−2xk cos θ+x2k extended from

x = 0 to x = ∞ *

Leonhard Euler

1. First let us find the indefinite integral of the propounded formula and
hence repeat all operations from first principles of analysis. And first, since
the denominator can not be resolved into simple real factors, in general let
one of its duplicated factors be 1− 2x cos ω + xx; for, it is evident that the
denominator will be a product of k of these duplicated factors. Therefore,
since, having put this factor = 0, we have x = cos ω ±

√
−1 · sin ω, also the

denominator has to vanish for these two values, i.e. if one sets

x = cos ω±
√
−1 · sin ω or x = cos ω−

√
−1 · sin ω.

But it is known that all powers of these formulas can conveniently be expressed
in such a kind that

(cos ω±
√
−1 · sin ω)λ = cos λω±

√
−1 · sin λω;

therefore, hence it will be

xk = cos kω±
√
−1 · sin kω and x2k = cos 2kω±

√
−1 · sin 2kω.

Therefore, let us substitute these values and our denominator will become
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„Opera Omnia: Series 1, Volume 18, pp. 190 - 208 “, Eneström-Number E589, translated by:
Alexander Aycock for the project „Euler-Kreis Mainz“
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1− 2 cos θ cos kω + cos 2kω∓ 2
√
−1 · cos θ sin kω±

√
−1 · sin 2kω.

2. Therefore, it is perspicuous that so the real terms as the imaginary terms
of this equation must cancel each other, whence these two equations result

I. 1 − 2 cos θ cos kω + cos 2kω = 0,

II. − 2 cos θ sin kω + sin 2kω = 0,

Therefore, since

sin 2kω = 2 sin kω cos kω,

the second equation will have this form

−2 cos θ sin kω + 2 sin kω cos kω = 0,

which divided by 2 sin kω gives

cos kω = cos θ

and hence

cos 2kω = cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1,

which value substituted in the first equation yields the identical equation so
that both equations are satisfied by cos kω = cos θ.

3. Therefore, for ω one has to take an angle of such a kind that cos kω = cos θ,
whence one immediately deduces kω = θ and hence ω = θ

k . But since there
are infinitely many angles with the same cosine, which, besides the angle θ,
are 2π ± θ, 4π ± θ, 6π ± θ etc. and hence in general 2πi± θ while i denotes
all integer numbers, our problem will be solved by taking kω = 2iπ ± θ,
whence the angle ω is concluded to be ω = 2iπ±θ

k , and so we would obtain
innumerable suitable angles for ω; but it will be sufficient to have taken only
so many of them as k contains unities; therefore, let us successively attribute
the following values to the angle ω

θ

k
,

2π + θ

k
,

4π + θ

k
,

6π + θ

k
,

8π + θ

k
, · · · 2(k− 1)π + θ

k
.
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Therefore, if we successively attribute these values, whose number is = k, to
the angle ω, the formula 1− 2x cos ω + xx will yield all duplicated factors of
our denominator 1− 2xk cos θ + x2k and their number will also be = k.

4. But now having found all duplicated factors of our denominator the
fraction xm−1

1−2xk cos θ+x2k must be resolved into as many partial fractions, whose
denominators are the duplicated factors, whose total number is k, so that in
general such a partial fraction will have such a form

A + Bx
1− 2x cos ω + xx

,

which we additionally want to resolve into two simple factors, even though
they are imaginary, and since

xx− 2x cos ω + 1 = (x− cos ω +
√
−1 · sin ω)(x− cos ω−

√
−1 · sin ω),

assume these two partial fractions

f
x− cos ω−

√
−1 · sin ω

+
g

x− cos ω +
√
−1 · sin ω

,

so that the whole task of the reduction reduces to this that both numerators f
and g are determined; for, having found them one will have the sum of both
fractions

=
f x + gx− ( f + g) cos ω +

√
−1 · ( f − g) sin ω

xx− 2x cos ω + 1
,

where it will therefore be

B = f + g and A = ( f − g)
√
−1 · sin ω− ( f + g) cos ω.

5. Therefore, by the method to resolve arbitrary fractions into simple fractions
let us set

xm−1

1− 2xk cos θ + x2k =
f

x− cos ω−
√
−1 · sin ω

+ R,

where R contains all remaining partial fractions. Hence by multiplying by
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x− cos ω−
√
−1 · sin ω

one will have

xm − xm−1(cos ω +
√
−1 · sin ω)

1− 2xk cos θ + x2k = f + R(x− cos ω−
√
−1 · sin ω);

since this equation has to be true, whatever value is attributed to x, let us
set x = cos ω +

√
−1 · sin ω, so that the last term goes out of the calculation

completely; but then on the other hand on the left-hand side, since the formula
x− cos ω−

√
−1 · sin ω at the same time is a factor of the denominator, after

this substitution so the numerator as the denominator will vanish, so that it
seems that nothing can be concluded from this.

6. Therefore, let us use the very well-known rule and write the differentials
instead of the numerator and the denominator, whence our equation will have
the following form

mxm−1 − (m− 1)xm−2(cos ω +
√
−1 · sin ω)

−2kxk−1 cos θ + 2kx2k−1

=
mxm − (m− 1)xm−1(cos ω +

√
−1 · sin ω)

−2kxk cos θ + 2kx2k = f ,

having put x = cos ω +
√
−1 · sin ω. But then it will be

xm = cos mω +
√
−1 · sin mω

and

xm−1(cos ω +
√
−1 · sin ω) = xm = cos mω +

√
−1 · sin mω

and for the denominator

xk = cos kω +
√
−1 · sin kω and x2k = cos 2kω +

√
−1 · sin 2kω;

hence the numerator becomes

xm = cos mω +
√
−1 · sin mω
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and the denominator

−2k cos θ cos kω + 2k cos 2kω− 2k
√
−1 · cos θ sin kω + 2k

√
−1 · sin 2kω.

7. For the reduction of the denominator remember that it was found above
that cos kω = cos θ, whence sin kω = sin θ, but then

cos 2kω = cos 2θ = 2 cos2 θ − 1 and sin 2kω = 2 sin θ cos θ,

having used which values our denominator will be

2k cos2 θ − 2k + 2k
√
−1 · sin θ cos θ = −2k sin2 θ + 2k

√
−1 · sin θ cos θ

= −2k sin θ(sin θ −
√
−1 · cos θ),

whence, after applying this value, we will have

f =
cos nω +

√
−1 · sin mω

2k sin θ(
√
−1 · cos θ − sin θ)

.

But hence at the same time we will deduce the value g, which differs from f
only in regard of the sign of

√
−1, and so it will be

g =
cos mω−

√
−1 · sin mω

−2k sin θ(sin θ +
√
−1 · cos θ)

.

8. But having found these letters f and g, first we will conclude for the
letters A and B

f + g =
cos θ sin mω− sin θ cos mω

k sin θ
=

sin(mω− θ)

k sin θ
,

but then it will be

f − g = −
√
−1 · cos(mω− θ)

k sin θ

From these we will therefore find

B =
sin(nω− θ)

k sin θ
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and

A =
sin ω cos(mω− θ)− cos ω sin(nωθ)

k sin θ
= −sin((mω− θ)−ω)

k sin θ
,

where the imaginary quantities cancelled each other.

9. Having found these values A and B one has to investigate the integral of
one partial fraction, i.e. ∫

(A + Bx)dx
1− 2x cos ω + xx

,

where, since the differential of the denominator is

2xdx− 2dx cos ω = 2dx(x− cos ω),

we want to set

A + Bx = B(x− cos ω) + C

and it will be C = A + B cos ω; therefore, it will be

C =
cos ω sin(nω− θ)− sin((mω− θ)−ω)

k sin θ
.

But since − sin((nω− θ)−ω) = − sin(nω− θ) cos ω + cos(mω− θ) sin ω, it
will be

C =
sin ω cos(mω− θ)

k sin θ
.

Therefore, having applied this form, split the formula which is to be integrated,
i. e. (A+Bx)dx

1−2x cos ω+xx , into these two parts

B(x− cos ω)dx
1− 2x cos ω + xx

+
Cdx

1− 2x cos ω + xx
.

Therefore, here the integral of the first part manifestly is

B log
√

1− 2x cos ω + xx,

but the other part of the integral is immediately clear to result expressed in
terms of the circular arc, whose tangent is x sin ω

1−x cos ω . To find this integral let us
put
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∫ Cdx
1− 2x cos ω + xx

= D arctan
x sin ω

1− x cos ω

and having taken the differentials, since d. arctan t is equal to dt
1+tt , we will

have

Cdx
1− 2x cos ω + xx

= D
dx sin ω

1− 2x cos ω + xx
,

whence manifestly

D =
C

sin ω
=

cos(nω− θ)

k sin θ
.

10. Therefore, let us substitute the values just found for B and D and from
the single factors of the denominator 1− 2xk cos θ + x2k, whose form is 1−
2x cos ω + xx, a part of the integral consisting of a logarithmic term and a
circular arc results, which will be

sin(mω− θ)

k sin θ
log
√

1− 2x cos ω + xx +
cos(mω− θ)

k sin θ
arctan

x sin ω

1− x cos ω
,

which vanishes for x = 0. Therefore, in this form it is only necessary to write
the values indicated above for ω, i.e.

ω =
θ

k
,

2π + θ

k
,

4π + θ

k
,

6π + θ

k
etc.,

until one gets to 2(k−1)π+θ
k ; for, then the sum of all these formulas will yield

the complete indefinite integral of the propounded formula.

11. Therefore, having found the indefinite integral, it only remains to put
x = ∞ in it, having done which because of

√
1− 2x cos ω + xx = x− cos ω

the logarithmic part will be B log(x− cos ω). But on the other hand

log(x− cos ω) = log x− cos ω

x
= log x
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because of cos ω
x = 0; therefore, for x = ∞ each logarithmic part will have the

form sin(mω−θ)
k sin θ log x. Further, having put x = ∞ for the parts depending on

the quadrature of the circle

x sin ω

1− x cos ω
= − tan ω = tan(π −ω)

and so the arc, whose tangent tangent this is, will be = π−ω and hence each
circular part will become cos(nω−θ)

k sin θ (π −ω).

12. Since each value of the angle ω in general has the form 2iπ
k , the angle

will be

mω− θ =
2imπ − θ(k−m)

k
and π −ω =

π(k− 2i)− θ

k
.

For the sake of brevity let us set

θ(k−m)

k
= ζ and

mπ

k
= α,

that

mω− θ = 2iα− ζ,

where instead of i one has to write the numbers 0, 1, 2, 3 etc. successively up
to k− 1. Therefore, hence, if we gather all logarithmic parts into one sum, it
can be represented this way

log x
k sin θ

 − sin ζ + sin(2α− ζ) + sin(4α− ζ) + sin(6α− ζ)

+ sin(8α− ζ) + · · ·+ sin(2(k− 1)α− ζ)

 ,

where from the results treated up to this point it is certainly natural to expect
that this whole progression becomes zero. But it is necessary to demonstrate
this by giving a solid proof.

13. To show this let us put

S = − sin ζ + sin(2α− ζ) + sin(4α− ζ) + · · ·+ sin(2(k− 1)α− ζ);

let us multiply both sides by 2 sin α, and since

8



2 sin α sin ϕ = cos(α− ϕ)− cos(α + ϕ),

by means of this reduction we will obtain the following expression

2S sin α = cos(α + ζ)

− cos(α− ζ)− cos(3α− ζ)− cos(5α− ζ)− · · ·

+ cos(α− ζ) + cos(3α− ζ) + cos(5α− ζ) + · · ·

− cos((2k− 1)α− ζ),

whence having cancelled the terms adding to zero one will have

2S sin α = cos(α + ζ)− cos((2k− 1)α− ζ).

14. Let us put the two remaining angles

α + ζ = p and (2k− 1)α− ζ = q

and their sum will be p + q = 2αk. Since further α = mπ
k , it will be p + q =

2mπ, i.e. equal to a multiple of the circumference of the whole circle because
of the integer number m. Hence, since q = 2mπ − p, it will be cos q = cos p;
hence it is plain that the found sum is equal to zero and so it is manifest that
all logarithmic parts, which enter the integral of our formula, cancel in the
case x = ∞.

15. Therefore, let us proceed to circular arcs, whose general form, as we have
seen, is cos(mω−θ)

k sin θ (π −ω), which having put α = mπ
k and ζ = θ(k−m)

k becomes

cos(2iα− ζ)

k sin θ

(
π − 2iπ + θ

k

)
=

cos(2iα− ζ)

k sin θ

(
π − 2iπ

k
− θ

k

)
.

Here further put π
k = β and π − θ

k = γ that the general formula is

cos(2iα− ζ)

k sin θ
(γ− 2iβ).

Hence, if we instead of i successively write the values 0, 1, 2, 3, 4 etc. up to
k− 1, all circular parts will constitute this progression
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1
k sin θ

(γ cos ζ + (γ− 2β) cos(2α− ζ) + (γ− 4β) cos(4α− ζ) + · · · )

+(γ− 2(k− 1)β) cos(2(k− 1)α− ζ)),

Therefore, let us set

S = γ cos ζ + (γ− 2β) cos(2α− ζ) + (γ− 4β) cos(4α− ζ) + · · · )

+(γ− 2(k− 1)β) cos(2(k− 1)α− ζ),

that the sum of all circular parts is S
k sin θ , which will therefore be the value in

question of the propounded integral formula in the case, in which one sets
x = ∞, so that the whole task is to find the value of S.

16. For this purpose, let us multiply both sides by 2 sin α, and since in general

2 sin α cos ϕ = sin(α + ϕ)− sin(ϕ− α),

having done this reduction in the single terms we will get to this equation

2S sin α = γ sin(α + ζ)

+γ sin(α− ζ) + (γ− 2β) sin(3α− ζ) + (γ− 4β) sin(5α− ζ) + · · ·

−(γ− 2β) sin(α− ζ)− (γ− 4β) sin(3α− ζ)− (γ− 6β) sin(5α− ζ)− · · ·

+(γ− 2(k− 1)β) sin((2k− 1)α− ζ),

where except for the first and last term all the remaining terms can be con-
tracted so that it results

2S sin α = γ sin(α + ζ) + 2β sin(α− ζ) + 2β sin(3α− ζ) + 2β sin(5α− ζ)

+ · · ·+ 2β sin((2k− 3)α− ζ) + (γ− 2(k− 1)β) sin((2k− 1)α− ζ).
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17. Now to sum this series let us further put

T = 2 sin(α− ζ) + 2 sin(3α− ζ) + 2 sin(5α− ζ) + · · ·+ 2 sin((2k− 3)α− ζ),

that we have

2S sin α = γ sin(α + ζ) + (γ− 2(k− 1)β) sin((2k− 1)α− ζ) + βT.

Now, as before, let us multiply by sin α, and since

2 sin α sin ϕ = cos(ϕ− α)− cos(ϕ + α),

after this reduction we obtain

T sin α = + cos ζ

+ cos(2α− ζ) + cos(4α− ζ) + · · ·+ cos(2(k− 2)α− ζ)

− cos(2α− ζ)− cos(4α− ζ)− · · · − cos(2(k− 2)α− ζ)

− cos(2(k− 1)α− ζ),

whence after cancelling the terms, which add to zero, only this expression
will remain

T sin α = cos ζ − cos(2(k− 1)α− ζ).

Therefore, since α = mπ
k , it will be 2(k− 1)α = 2mπ − 2mπ

k , instead of which
one can write − 2mπ

k , whence because of ζ = θ(k−m)
k it will be

T sin α = cos
θ(k−m)

k
− cos

2mπ + θ(k−m)

k
.

18. But now note that in general

cos p− cos q = 2 sin
q + p

2
sin

q− p
2

;

hence, since

p =
θ(k−m)

k
and q =

2mπ + θ(k−m)

k
,
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it will be

q + p
2

=
mπ + θ(k−m)

k
and

q− p
2

=
mπ

k
,

whence it follows that it will be

T sin α = 2 sin
mπ + θ(k−m)

k
sin

mπ

k
and hence

T = 2 sin
mπ + θ(k−m)

k
because of α = mπ

k .

19. Therefore, having found this value of T we will further find

2S sin α = γ sin(α + ζ) + (γ− 2(k− 1)β) sin((2k− 1)α− ζ)

+2β sin
mπ + θ(k−m)

k
,

which because of mπ+θ(k−m)
k = α + ζ is reduced to this form

2S sin α = (γ + 2β) sin(α + ζ) + (γ− 2(k− 1)β) sin((2k− 1)α− ζ),

which can be represented this way

2S sin α = (γ+ 2β) (sin(α + ζ) + sin((2k− 1)α− ζ))− 2kβ sin((2k− 1)α− ζ),

where for the first part because of

sin p + sin q = 2 sin
p + q

2
sin

p− q
2

it will be

p + q
2

= αk and
p− q

2
= (k− 1)α− ζ,

whence the first part becomes
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2(γ + 2β) sin α cos((k− 1)α− ζ);

here, since αk = mπ, it will be sin αk = 0 so that it only remains

2S sin α = −2βk sin((2k− 1)α− ζ)

and hence

S = −βk sin((2k− 1)α− ζ

sin α
.

But on the other hand

(2k− 1)α− ζ = 2mπ − mπ

k
− θ(k−m)

k
;

having omitted the term 2mπ it will therefore be

S = +
π sin mπ+θ(k−m)

k
sin mπ

k

and hence the value in question will be

S
k sin θ

= +
π sin mπ+θ(k−m)

k
k sin θ sin mπ

k
,

which form is reduced to

π sin m(π−θ)+kθ
k

k sin θ sin mπ
k

.

20. Let us contemplate especially the case θ = π
2 , and the propounded

integral formula goes over into this one

∫ xm−1dx
1 + x2k ,

whose value, if one puts x = ∞ after the integration, will therefore become

=
π sin

(
π
2 + mπ

2k

)
k sin mπ

k
=

π cos mπ
2k

k sin mπ
k

.

Therefore, since sin mπ
k = 2 sin mπ

2k cos mπ
2k , this value will result
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=
π

2k sin mπ
2k

,

which value agrees extraordinarily with the one we assigned not so long ago
for the formula

∫ xm−1dx
1+xk , if one writes 2k instead of k, of course.

21. Let us also expand the case θ = π and our integral formula goes over
into this one

∫ xm−1dx
(1 + xk)2 ,

whose value, having put x = ∞, will therefore be

π
(

m(π−θ)
k + θ

)
k sin θ sin mπ

k
=

π

k sin mπ
k
·

sin
(

m(π−θ)
k + θ

)
sin θ

.

But so the numerator as the denominator of the last fraction vanish in the case
θ = π; hence to find its true value, let us write their differentials instead of
them, having done which that fraction will go over into

dθ
(
1− m

k

)
cos

(
m(π−θ)

k + θ
)

dθ cos θ
,

whose value for θ = π now manifestly is 1 − m
k ; and so the value of the

integral in question will be
(
1− m

k

)
π

k sin mπ
k

, precisely as we found in the above
dissertation.

22. But to simplify the general value we found, let us put π − θ = η and it
will be sin θ = sin η and cos θ = − cos η; but then the angle will be

m(π − θ)

k
+ θ =

mη

k
+ π − η,

whose some is sin
(
1− m

k

)
η, whence the value in question of our formula will

be

π sin
(
1− m

k

)
η

k sin η sin mπ
k

,

and hence we have finally obtained the following
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THEOREM

23. If this integral formula

∫ xm−1dx
1 + 2xk cos η + x2k

is extended from x = 0 to x = ∞, its value will be

=
π sin

(
1− m

k

)
η

k sin η sin mπ
k

,

or since

sin
(

1− m
k

)
η = sin η cos

mη

k
− cos η sin

mη

k
,

that value can also be expressed this way

π cos mη
k

k sin mπ
k
−

π sin mη
k

k tan η sin mπ
k

.

24. Now let us consider that integral formula in another way

∫ xm−1dx
1 + 2xk cos η + x2k ,

whose value from x = 0 to x = 1 we want to put = P, but the value of the
same extended from x = 1 and x = ∞ we want to call Q, so that P + Q must
exhibit the value found before. But now to find the value Q let us put x = 1

y
and our formula if represented this way

xm

1 + 2xk cos η + x2k ·
dx
x

because of dx
x = − dy

y will go over into this form

−
∫ y−m

1 + 2y−k cos η + y−2k ·
dy
y

= −
∫ y2k−m−1dy

y2k + 2yk cos η + 1
,

whose value must be extended from y = 1 to y = 0. Therefore, having
commuted these limits we will have

Q = +
∫ y2k−m−1dy

y2k + 2yk cos η + 1
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from y = 0 to y = 1.

25. Since in each of both formulas for P and Q the limits of integration are
the same, from 0 to 1, there is no obstruction, that we write x instead of y in
the second one, whence for P + Q we will have this integral form

∫ xm−1 + x2k−m−1

1 + 2xk cos η + x2k dx,

whose value extended from x = 0 to x = 1 becomes equal to the expression
π sin(1−m

k )η

k sin η sin mπ
k

. Therefore, having compared these two integral formulas we will
obtain the following most remarkable theorem.

THEOREM

26. This integral formula

∫ xm−1 + x2k−m−1

1 + 2xk cos η + x2k dx

extended from x = 0 to x = 1 is equal to this integral formula

∫ xm−1dx
1 + 2xk cos η + x2k

extended from x = 0 to x = ∞; the value of both of them will be

π sin
(
1− m

k

)
η

k sin η sin mπ
k

.

27. If we expand this fraction sin η

1+2xk cos η+x2k into an infinite series, which we
assume to have the form

sin η + Axk + Bx2k + Cx3k + Dx4k + Ex5k + etc.,

by multiplying by the denominator we will get to this infinite expression

sin η = sin η + Axk + Bx2k + Cx3k + Dx4k + Ex5k + etc.

+ 2 sin η cos η + 2A cos η + 2B cos η + 2C cos η + 2D cos η + etc.

+ sin η + A + B + C + etc.
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whence having put these single terms equal to zero we will find

1. A + 2 sin η cos η = 0 and hence A = − sin 2η,

2. B + 2A cos η + sin η = 0, whence B = sin 3η,

3. C + 2B cos η + A = 0, whence C = − sin 4η,

4. D + 2C cos η + B = 0, whence D = sin 5η,

etc. etc.,

so that our fraction sin η

1+2xk cos η+x2k is resolved into this series

sin η − xk sin 2η + x2k sin 3η − x3k sin 4η + x4k sin 5η − etc.

28. Now let us multiply this series by

xm−1dx + x2k−m−1dx

and set x = 1 after the integration, so that we obtain the value of this formula

sin η
∫ xm−1 + x2k−m−1

1 + 2xk cos η + x2k dx

for the case x = 1, and this way we arrive at the following two series

sin η

m
− sin 2η

m + k
+

sin 3η

m + 2k
− sin 4η

m + 3k
+

sin 5η

m + 4k
− etc.,

sin η

2k−m
− sin 2η

3k−m
+

sin 3η

4k−m
− sin 4η

5k−m
+

sin 5η

6k−m
− etc.,

Therefore, the aggregate of these two infinite series taken together will become
equal to this value

π sin
(
1− m

k

)
η

k sin mπ
k

,

whence we obtain this theorem.
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THEOREM

29. If η denotes an arbitrary angle, but the letters m and k are taken arbitrarily and
from these the following two series are formed

P =
sin η

m
− sin 2η

m + k
+

sin 3η

m + 2k
− sin 4η

m + 3k
+

sin 5η

m + 4k
− etc.,

Q =
sin η

2k−m
− sin 2η

3k−m
+

sin 3η

4k−m
− sin 4η

5k−m
+

sin 5η

6k−m
− etc.,

the sum of none of them can be exhibited, but the sum of both taken together will be

P + Q =
π sin

(
1− m

k

)
η

k sin mπ
k

.

COROLLARY

30. Therefore, if we take the angle η to be infinitely small that

sin η = η, sin 2η = 2η, sin 3η = 3η etc.,

since in formula for the sum it will be

sin
(

1− m
k

)
η =

(
1− m

k

)
η,

if we divide by η on both sides, we will obtain the following series

1
m
− 2

m + k
+

3
m + 2k

− 4
m + 3k

+
5

m + 4k
− etc.

+
1

2k−m
− 2

3k−m
+

3
4k−m

− 4
5k−m

+
5

6k−m
− etc.,

whose sum will therefore be
(
1− m

k

)
π

k sin mπ
k

; here one has to note that both
series can conveniently be contacted into this simple one

2k
n(2k−m)

− 8k
(m + k)(3k−m)

+
18k

(m + 2k)(4k−m)
− 32k

(m + 3k)(5k−m)
+ etc.,

where the numerators are the doubled square numbers.
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31. But the formulas, whose values we found up to this point, can be expres-
sed a lot more conveniently and elegantly, if instead of the exponent m we wri-
te k− n; for, then in the value found for the integral it will be

(
1− m

k

)
η = nη

k ,
but on the other hand for the denominator it will be mπ

k = π− nπ
k , whose sine

will be sin nπ
k ; and so our found integral formula will go over into the form

π sin nη
k

k sin η sin nπ
k

, which will therefore express the value of this integral formula

∫ xk−n−1dx
1 + 2xk cos η + x2k

from x = 0 to x = ∞ and of this formula

∫ xk−n−1 + xk+n−1

1 + 2xk cos η + x2k dx

from x = 0 to x = 1; and since the value of each of them is π sin nη
k

k sin η sin nπ
k

, it is
perspicuous that they remain the same, even though one writes n instead of
−n, from which the first formula can be represented this way

∫ xk±n−1dx
1 + 2xk cos η + x2k ;

but the second formula is not affected at all by this ambiguity.

32. Putting m = k− n also our double series will become more beautiful; for,
one will have

sin η

k− n
− sin 2η

2k− n
+

sin 3η

3k− n
−− sin 4η

4k− n
+ etc.

+
sin η

k + n
− sin 2η

2k + n
+

sin 3η

3k + n
−− sin 4η

4k− n
+ etc.,

whose sum will therefore be π sin nη
k

k sin nπ
k

. But then, if these two series are contracted
into a single one and one divides by 2k on both sides, one will obtain the
following remarkable summation

π sin nη
k

2kk sin nπ
k

=
sin η

kk− nn
− 2 sin 2η

4kk− nn
+

3 sin 3η

9kk− nn
− 4 sin 4η

16kk− nn
+ etc.
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33. If this last series is differentiated with respect to the angle η, because of
d sin nη

k = ndη
k cos nη

k we will have

πn cos nη
k

2k3 sin nπ
k

=
cos η

kk− nn
− 4 cos 2η

4kk− nn
+

9 cos 3η

9kk− nn
− 16 cos 4η

16kk− nn
+ etc.

Hence, if one takes η = 0, this summation will result

πn
2k3 sin nπ

k
=

1
kk− nn

− 4
4kk− nn

+
9

9kk− nn
− 16

16kk− nn
+ etc.;

but if one takes η = 90◦ = π
2 , it will be

cos η = 0, cos 2η = −1, cos 3η = 0, cos 4η = +1 etc.;

hence the following series arises

nπ cos nπ
2k

2k3 sin nπ
k

=
4

4kk− nn
− 16

16kk− nn
+

36
36kk− nn

− 64
64kk− nn

+ etc.

But since sin nπ
k = 2 sin nπ

2k cos nπ
2k , the sum of the same series will be nπ

4k3 sin nπ
2k

.

34. But if that series exhibited in par. 32 is multiplied by dη and integrated,
because of

∫
dη sin nη

k = − k
n cos nη

k it will be

C−
π cos nη

k
2nk sin nπ

k
= − cos η

kk− nn
+

cos 2η

4kk− nn
− cos 3η

9kk− nn
+

cos 4η

16kk− nn
− etc.

But to define the constant to be added here, let us take η = 0 and it will be

C− π

2nk sin nπ
k

= − 1
kk− nn

+
1

4kk− nn
− 1

9kk− nn
+ etc.;

hence, if this sum is found from another source, the constant C can be deter-
mined. But this series can be resolved into the following two series

2nC− π

k sin nπ
k

=
1

k + n
− 1

2k + n
+

1
3k + n

− 1
4k + n

+ etc.

− 1
k− n

+
1

2k− n
− 1

3k− n
+

1
4k− n

− etc.
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35. Therefore, since in the Introductione in Analysin Infinitorum p. 142 I got to
this series

1
kk− nn

− 1
4kk− nn

+
1

9kk− nn
− 1

16kk− nn
+ etc. =

π

2kn sin nπ
k
− 1

2nn

(here I wrote n and k instead of the letters m and n used there, of course),
using this value our equation will be

C− π

2nk sin nπ
k

=
1

2nn
− π

2nk sin nπ
k

,

whence C = 1
2nn . Therefore, we will have this summation

π cos nη
k

2nk sin nπ
k
− 1

2nn
=

cos η

kk− nn
− cos 2η

4kk− nn
+

cos 3η

9kk− nn
− cos 4η

16kk− nn
+ etc.,

which series certainly is quite remarkable.
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