
Speculations on the integral

formula

∫
xndx√

aa−2bx−cxx
where at the

same time extraordinary

observations on continued

fractions occur *

Leonhard Euler

§1 Let us start from the simplest case in which n = 0 and find the integral
of the formula

dx√
aa− 2bx + cxx

,

which, having put x = b+z
c , goes over into this one

dz√
aacc− bbc + czz

,

where two cases must be distinguished, depending on whether c was a positive
or negative quantity.
Therefore, first let c = + f f and our formula will become

dz
f
√

aa f f − bb + zz
,

*Original title: „Speculationes super formula integrali
∫ xndx√

aa−2bx−cxx
, ubi simul egregiae

observationes circa fractiones continuas occurrunt“, first published in Acta Academiae
Scientarum Imperialis Petropolitinae 1782, 1786, pp. 62-84, reprint in: Opera Omina, Series
1, Volume 18, pp. 244 - 264, Eneström-Number E606, translated by: Alexander Aycock for
the project „Euler-Kreis Mainz“.
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whose integral is

1
f

log
z +

√
aa f f − bb + zz

C
,

and hence our integral will be

1√
c

log
cx− b +

√
aac− 2bcx + ccxx

C
,

which, taken in such a way that it vanishes for x = 0, will therefore be

1√
c

log
cx− b +

√
c(aa− 2bx + cxx)
−b + a

√
c

.

But if c was a negative quantity, say c = −gg, the differential formula expres-
sed in terms of z will be

dz
g
√

aagg + bb− zz
,

whose integral is

1
g

arcsin
z√

aagg + bb
+ C,

whence the integral, taken in such a way that it vanishes for x = 0, will
become

=
1
g

arcsin
cx− b√

aagg + bb
+

1
g

arcsin
b√

aagg + bb
.

§2 Now let Π denote the value of the integral formula
∫ dx√

aa−2bx+cxx
taken

in such a way that it vanishes for x = 0, no matter whether c was a positive or
negative quantity; and if c = + f f , it will be, as we saw,

Π =
1
f

log
f f x− b + f

√
aa− 2bx + f f xx

a f − b
;

in the other case in which c = −gg, it will be

Π = −1
g

arcsin
ggx + b√
aagg + bb

+
1
g

arcsin
b√

aagg + bb
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or, having contracted both arcs, we will have

Π =
1
g

arcsin
bg
√
(aa− 2bx− ggxx)− abg− ag3x

aagg + bb
.

Therefore, since we will soon show that the integration of the general integral
formula

∫ xndx√
aa−2bx+cxx

can always be reduced to the case n = 0, if just n was a
positive integer number, all these integral can be expressed in terms of that
value Π.

§3 Now let us attribute a constant value of such a kind to the variable
quantity x after the integration that the irrational formula

√
aa− 2bx + cxx

becomes zero, which happens, if one takes

x =
b±
√

bb− aac
c

,

and hence in two cases. For each of both cases let us put that the function Π
goes over into ∆ such that in the case c = f f is

∆ =
1
f

log

√
bb− aa f f
a f − b

=
1
f

log

√
b + a f
b− a f

,

but for the other case, in which c = −gg,

∆ =
1
g

arcsin
±ag

√
bb + aagg

aagg + bb
=

1
g

arcsin
ag√

bb + aagg
.

Indeed, in the following we will mainly contemplate these values ∆, i.e. the
cases in which the formula

√
aa− 2bx + cxx vanishes.

§4 Now, proceeding to the following case, let us consider the formula

s =
√

aa− 2bx + cxx− a,

that it vanishes for x = 0, and since

ds =
−bdx + cxdx√
aa− 2bx + cxx

,

vice versa by integrating it will be
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c
∫ xdx√

aa− 2bx + cxx
= b

∫ dx√
aa− 2bx + cxx

+ s,

whence we conclude

∫ xdx√
aa− 2bx + cxx

=
b
c

Π +

√
aa− 2bx + cxx− a

c
;

hence if after the integration we set x = b±
√

bb−aac
c , in which case

√
aa− 2bx + xcc =

0 and Π = ∆, it will be∫ xdx√
aa− 2bx + cxx

=
b
c

∆− a
c

.

§5 Further, let us take

s = x
√

aa− 2bx + cxx;

it will be

ds =
aadx− 3bxdx + 2cxxdx√

aa− 2bx + cxx
,

whence vice versa by integration one concludes

2c
∫ xxdx√

aa− 2bx + cxx
= 3b

∫ xdx√
aa− 2bx + cxx

− aa
∫ dx√

aa− 2bx + cxx
+ s,

whence for the case
√

aa− 2bx + cxx = 0 we immediately deduce∫ xxdx√
aa− 2bx + cxx

=
3bb− aac

2cc
∆− 3ab

2cc
.

§6 Now, going to ascend to higher powers, let us set

s = xx
√

aa− 2bx + cxx,

and since hence

ds =
2aaxdx− 5bxxdx + 3cx3dx√

aa− 2bx + cxx
,
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it will be

3c
∫ x3dx√

aa− 2bx + cxx
= 5b

∫ xxdx√
aa− 2bx + cxx

− 2aa
∫ xdx√

aa− 2bx + cxx
+ s

and hence further for the case, in which one sets x = b±
√

bb−aac
c after the

integration, one will have

∫ x3dx√
aa− 2bx + cxx

=
5b3 − 3aabc

2c3 ∆ − 15abb
6c3 +

2a3

3cc

=

(
5b3

2c3 −
3aab
2cc

)
∆ − 5abb

2c3 +
2a3

3cc
.

In like manner, let

s = x3
√

aa− 2bx + cxx,

and since hence

ds =
3aaxxdx− 7bx3dx + 4cx4dx√

aa− 2bx + cxx
,

vice versa by integration it will be

4c
∫ x4dx√

aa− 2bx + cxx
= 7b

∫ x3dx√
aa− 2bx + cxx

− 3aa
∫ xxdx√

aa− 2bx + cxx
+ s;

therefore, then for the case in which
√

aa− 2bx + cxx = 0 we will have

∫ x4dx√
aa− 2bx + cxx

=

(
35b4

8c4 −
15aabb

4c3 +
3a4

8cc

)
∆− 35ab3

8c4 +
55a3b
24c3 .

§8 But that the structure in these formulas can be explored more conveniently,
let us exhibit each one in terms of products, as they result in order, without
any abbreviation and represent the found integral formulas this way:
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∫ dx√
aa− 2bx + cxx

= ∆,

∫ xdx√
aa− 2bx + cxx

=
b
c

∆− a
c

,

∫ xxdx√
aa− 2bx + cxx

=

(
1 · 3bb
1 · 2cc

− aa
1 · 2c

)
∆− 1 · 3ab

1 · 2cc
,

∫ x3dx√
aa− 2bx + cxx

=

(
1 · 3 · 5b3

1 · 2 · 3c3 −
1 · 3 · 3aab
1 · 2 · 3cc

)
∆− 1 · 3 · 5abb

1 · 2 · 3c3 +
1 · 2 · 2a3

1 · 2 · 3cc
,

∫ x4dx√
aa− 2bx + cxx

=

(
1 · 3 · 5 · 7b4

1 · 2 · 3 · 4c4 −
1 · 3 · 5 · 6aabb

1 · 2 · 3 · 4c3 +
1 · 3 · 3a4

1 · 2 · 3 · 4cc

)
∆

− 1 · 3 · 5 · 7ab3

1 · 2 · 3 · 4c4 +
1 · 5 · 11a3b
1 · 2 · 3 · 4c3 .

§9 Now let us do this expansion in general by taking

s = xn
√

aa− 2bx + cxx,

and since hence

ds =
naaxn−1dx− (2n + 1)bxndx + (n + 1)cxn+1dx√

aa− 2bx + cxx
,

from this vice versa by integration one calculates

(n + 1)c
∫ xn+1dx√

aa− 2bx + cxx
= (2n + 1)b

∫ xndx√
aa− 2bx + cxx

−naa
∫ xn−1dx√

aa− 2bx + cxx
+ xn
√

aa− 2bx + cxx.

Therefore, if we had already found before∫ xn−1dx√
aa− 2bx + cxx

= M∆−M and
∫ xndx√

aa− 2bx + cxx
= N∆−N,

such that these two integral formulas are known, the following will be deter-
mined from them in such a way that
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∫ xn+1dx√
aa− 2bx + cxx

=

(
(2n + 1)bN
(n + 1)c

− naaM
(n + 1)c

)
∆− (2n + 1)bN

(n + 1)c
+

nnaM
(n + 1)c

.

Therefore, this way these integrations can be continued arbitrarily far, while
from two the following one is formed by means of this rule, such that all these
integrals depend either on logarithms or circular arcs, depending on whether
the coefficient c was positive or negative. But it is manifest that those values
can only be assigned, if the exponent n was a positive integer number.

§10 From the integral form just found, if after the integration one sets
x = b±

√
bb−aac
c , whence s = 0, it will be

naa
∫ xn−1dx√

aa− 2bx + cxx

= (2n + 1)b
∫ xndx√

aa− 2bx + cxx
− (n + 1)c

∫ xn+1dx√
aa− 2bx + cxx

;

hence, if for the sake of brevity we put

∫ xn−1dx√
aa− 2bx + cxx

= P,
∫ xndx√

aa− 2bx + cxx
= Q,

∫ xn+1dx√
aa− 2bx + cxx

= R,
∫ xn+2dx√

aa− 2bx + cxx
= S etc.,

these quantities P, Q, R, S depend on each other in such a way that

naaP = (2n + 1)bQ − (n + 1)cR,

(n + 1)aaQ = (2n + 3)bR − (n + 2)cS,

(n + 2)aaR = (2n + 5)bS − (n + 3)cT,

(n + 3)aaS = (2n + 7)bT − (n + 4)cU,

(n + 4)aaT − (2n + 9)bU − (n + 5)cW

etc.

From these relations the following determinations are deduced
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P
Q

=
(2n + 1)b

naa
− (n + 1)c

nnaQ : R
,

Q
R

=
(2n + 3)b
(n + 1)aa

− (n + 2)c
(n + 1)aaR : S

,

R
S

=
(2n + 5)b
(n + 2)aa

− (n + 3)c
(n + 2)aaS : T

,

S
T

=
(2n + 7)b
(n + 3)aa

− (n + 4)c
(n + 3)aaT : U

etc.;

therefore, hence it is plain that these fractions P
Q , Q

R , R
S etc. are determined in

terms of the others sufficiently conveniently.

§11 If now in one of these expressions the values just exhibited are successi-
vely substituted, we will obtain a continued fraction for the fraction P

Q , which
will be

naa
P
Q

= (2n + 1)b−
(n + 1)2aac

(2n + 3)b−
(n + 2)2aac

(2n + 5)b−
(n + 3)2aac

(2n + 7)b−
(n + 4)2aac

(2n + 9)b− etc.

and so we got to a rather nice and structured continued fraction, whose value
can therefore always be expressed in terms of logarithms (if c > 0) or in terms
of circular arc (if c < 0).

§12 Now let us take n = 1 and it will be

P =
∫ dx√

aa− 2bx + cxx
= ∆

and
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Q =
∫ xdx√

aa− 2bx + cxx
=

b
c

∆− a
c

,

which case gives us the following continued fraction

aac∆
b∆− a

= 3b− 4aac

5b−
9aac

7b−
16aac

9b−
25aac

11b− etc.
which, for its elegance, it worth one’s complete attention. But here it will be
helpful to have noted, if c was a negative number, that then all numerators in
this fraction become positive.

§12a But this continued fraction seems to be truncated by its head; hence,
if at the top the term b− aac is added, it becomes even nicer and its value is
simplified. For, if for the sake of brevity that fraction is denoted by the letter S
such that S = aac∆

b∆−a , having added that term, its value will be b− aac
S = a

∆ and
so we will have

a
∆

= b− aac

3b− 4aac

5b−
9aac

7b−
16aac

9b−
25aac

11b− etc.
which expression is even more memorable since there is no other way yet to
find the value of such a continued fraction a priori.

§13 Now let us expand the two cases mentioned above separately, and it
will be convenient to distinguish them carefully. Therefore, first let c = f f and
above we found that it will be

∆ =
1
f

log

√
bb− aa f f
a f − b

,

where the square root sign is to be understood ambiguously. Therefore, most
importantly it is necessary that bb > aa f f , since otherwise this expression
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would become imaginary; therefore, two cases occur, depending on whether b
was a positive or negative quantity.
In the first case in which b > 0 and hence b > a f , it is evident that the square
root sign must have the sign −, that

∆ =
1
f

log

√
bb− aa f f
b− a f

=
1

2 f
log

b + a f
b− a f

,

and we will have this summation

2a f

log b+a f
b−a f

= b−
aa f f

3b−
4aa f f

5b−
9aa f f

7b−
16aa f f

9b− etc.

whence, since b+a f
b−a f > 1, it is plain that the value of this expression will be

positive.

§14 But if b was a negative number or if one writes −b instead of b, it still
must be b > a f ; but then it will be

∆ =
1

2 f
log

b− a f
b + a f

,

which logarithm will therefore be negative, or

∆ = − 1
2 f

log
b + a f
b− a f

,

whence one will obtain the following equation

−2a f

log b+a f
b−a f

= −b−
aa f f

−3b−
4aa f f

−5b−
9aa f f

−7b−
16aa f f
−9b− etc.

or, having changed the signs,
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2a f

log b+a f
b−a f

= b +
aa f f

−3b +
4aa f f

5b +
9aa f f

−7b +
16aa f f

9b + etc.
the sum of which continued fraction is therefore equal to that one we found
in the preceding paragraph. But that equality of these two expressions will
become clear soon to anyone doing the calculation.

§15 In like manner, let us expand the case in which c = −gg, for which we
found above

∆ =
1
g

arcsin
ag√

bb + aagg
,

which value expressed in terms of a cosine will give

∆ =
1
g

arccos
b√

bb + aagg
,

whence it is plain that via the tangent that value will become even simpler; of
course,

∆ =
1
g

arctan
ag
b

,

for which reason for this case this summation results

ag
arctan ag

b
= b +

aagg

3b +
4aagg

5b +
9aagg

7b +
16aagg

9b + etc.
where no restriction is necessary anymore.
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ON CONTINUED FRACTIONS DEPENDING ON LOGARITHMS

§16 Now let us also consider some special cases contained in each of both
forms, and since we already observed that the two form in § 13 and 14 are
identical, let us use the first, which was

2a f

log b+a f
b−a f

= b−
aa f f

3b−
4aa f f

5b−
9aa f f

7b− etc.
and first let us consider the case b = a f , in which the sum of the continued
fraction becomes

2a f

log b+a f
b−a f

= 0 = b−
bb

3b−
4bb

5b−
9bb

7b− etc.
which by reduction is easily changed into this one

0 = 1−
1

3−
4

5−
9

7−
16

9− etc.

§17 Therefore, for that form to be equal to zero it is necessary that the
denominator of the first fraction is = 1 and hence

1 = 3−
4

5−
9

7− etc.

or 0 = 2−
4

5−
9

7− etc.
Therefore, here for the same reason it is necessary that the first denominator
becomes = 2, such that

2 = 5−
9

7−
16

9− etc.

or 0 = 3−
9

7−
16

9− etc.
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Again here the first denominator must be = 3 and hence

3 = 7−
16

9−
25

11− etc.

or 0 = 4−
16

9−
25

11− etc.
Therefore, again the first denominator must be = 4 such that

4 = 9−
25

11− etc.
and this way it plain that that relation in like manner holds for infinity, which
itself is the criterion for the validity of this equation.

§18 Since in this form the number b must be greater than a f , let us now set
b = 2a f and we will obtain the following summation

2a f
log 3

= 2a f −
aa f f

6a f −
4aa f f

10a f −
9aa f f

14a f − etc.

which is reduced to this mere numerical form

2
log 3

= 2−
1

6−
4

10−
9

14−
16

18− etc.

§19 In like manner all letters can be thrown out of the calculation, if one
takes a multiple of a f for b. For, in general let b = na f and it results

2a f
log n+1

n−1

= na f −
aa f f

3na f −
4aa f f

5na f −
9aa f f

7na f − etc.

which fraction is reduced to the following form
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2
log n+1

n−1

= n−
1

3n−
4

5n−
9

7n− etc.
whence it is understood, how all logarithms can be expressed in terms of
continued fractions.

§20 Here one could assume fractional numbers for n, but then the first terms
in each member would be fractions, which could be reduced to integers; but
cases of this kind can most easily be derived from the general form by writing
b = n and a f = m immediately; for, then we will have

2m
log n+m

n−m
= n−

mm

3n−
4mm

5n−
9mm

7n− etc.

whence, if one writes
√

k instead of m, it will be

2
√

k

log n+
√

k
n−
√

k

= n−
k

3n−
4k

5n−
9k

7n− etc.

§21 Therefore, hence we will be able to express the hyperbolic logarithms of
all integer numbers as continued fractions. Therefore, in general let i be an
integer number and set n+m

n−m = i; it will be m
n = i+1

i−1 . Therefore, take n = i + 1
and m = i− 1 and we will have

2(i− 1)
log i

= i + 1−
(i− 1)2

3(i + 1)−
4(i− 1)2

5(i + 1)−
9(i− 1)2

7(i + 1)−
16(i− 1)2

9(i + 1)− etc.

whence we conclude

14



log i =
2(i− 1)

i + 1−
(i− 1)2

3(i + 1)−
4(i− 1)2

5(i + 1)−
9(i− 1)2

7(i + 1)− etc.

§22 If we desire the fractions for logarithms of fractional numbers, let us set
n+m
n−m = p

q , whence n = p + q and m = p− q, for which reason we will have

log
p
q
=

2(p− q)

1(p + q)−
1(p− q)2

3(p + q)−
4(p− q)2

5(p + q)−
9(p− q)2

7(p + q)− etc.

which form is even more remarkable since it can be conveniently applied to
find logarithms approximately. But these fractions will converge the more, the
smaller the fraction p−q

p+q was.

§23 To illustrate this in an example, let us take p = 2 and q = 1, whence
certainly only slow convergence is to expected, and it will be

log 2 =
2

3−
1

9−
4

15−
9

21− etc.

whence by taking only the first term 2
3 in decimals 0, 666666 results, while

from tables one has log 2 = 0, 693147, where the error is already sufficiently
small. Now let us take the first two terms

2

3−
1
9

=
9
13

= 0, 6923

But taking three terms we will have
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2

3−
1

9−
4
15

=
2

3−
15
131

=
262
378

= 0, 693121,

which value deviates from the truth by the quantity 0, 000026.
But a much faster convergence will be detected, if we take p = 3 and q = 2,
that we have

log
3
2
=

2

5−
1

15−
4

25−
9

35− etc.

whose first term gives 2
5 = 0, 400000; but it actually is log 3

2 = 0, 405465108.
But having taken two terms

2

5−
1
15

one concludes log 3
2 = 0, 40540, where the error occurs only in the fifth digit.

Take three terms

2

5−
1

15−
4

25

=
2

5−
25
371

= 0, 4054645,

where the error occurs just in the seventh digit.

§24 Because of this immense use, which was not expected, it will be worth
one’s while to make such an investigation in general; and to this end, let us
use the formula among the letters m and n given above in § 20, where
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log
n + m
n−m

=
2m

n−
mm

3n−
4mm

5n−
9mm

7n−
16mm

9n− etc.
whence, if we take only the first term, it will approximately be

log
n + m
n−m

=
2m
n

;

but having taken the first two terms

2m

n−
mm
3n

it will more accurately be

log
n + m
n−m

=
6mn

3nn−mm
,

but having taken three terms it will be

log
m + n
n−m

=
2m

n−
mm

3n−
4mm

5n

=
30mnn− 8m3

15n3 − 9mmn
.

§25 Indeed, it is not a lot of work to continue these fractions; for, let us
put the fraction 0

1 in front of the ones already found, that we obtain this
progression of fractions

I II III IV

0
1

,
2n
m

,
6mn

3nn−mm
,

30mnn− 8m3

15n3 − 9mmn
,

so the numerators as denominators of which can be formed analogously to
the case of recurring series. Of course, the third is formed from the first and
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the second by means of the scale of relation 3n, −mm; the fourth on the other
hand is formed from the preceding two by means of the scale of relation 5n,
−4mm. For the fifth one has to use the scale of relation 7n, −9mm, for the
sixth 9n, −16mm, and so forth. Therefore, this way one easily finds the fifth
fraction

V

=
210mn3 − 110m3n

105n4 − 90mmnn + 9m4 ,

in like manner,

VI

=
1890mn4 − 1470m3nn + 128m5

945n5 − 1050mmn3 + 225m4n
etc.

§26 Here it will be especially helpful to have noted that these fractions
increase and get to the truth in continuously smaller increments. But these
increments proceed in an extraordinary pattern, as is can easily be seen here:

II − I =
2m
n

,

III − II =
2m3

n(3nn−mm)
,

IV − III =
2 · 4m5

(3nn−mm)(15n3 − 9mmn)
,

V − IV =
2 · 4 · 9m7

(15n3 − 9mmn)(105n4 − 90mmnn + 9m4)
,

VI − V =
2 · 4 · 9 · 16m9

(105n4 − 90mmnn + 9m4)(945n5 − 1050mmn3 + 225m4n)
,

whence it is plain that the larger the number n was compared to m the faster
these differences become so small that they can be neglected without error.
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ON THE CONTINUED FRACTIONS DEPENDING ON CIRCULAR ARCS

§27 From § 15 the circular arc whose tangent is ag
b is expressed by a continued

fraction in such a way that

arctan
ag
b

=
ag

b +
aagg

3b +
4aagg

5b +
9aagg

7b + etc.
Now, analogously to the above formulas, let us put ag = m and b = n and so
we will have

arctan
m
n

=
m

n +
mm

3n +
4mm

5n +
9mm

7n + etc.
which form converges the faster the greater the number n was compared to
m; hence it is plain that this expression can fruitfully be accommodated to
calculations.

§28 Let us start from the case in which m = 1 and n = 1 and in which

arctan
m
n

=
π

4
=

1

1 +
1

3 +
4

5 +
9

7 +
16

9 + etc.
which fraction certainly does not converge that fast; but nevertheless, let us
see how close it comes to the truth, since we know that π

4 = 0, 7853816339.
And the first term will give

π

4
=

1
1

(too large);
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two terms yield

π

4
=

1

1 +
1
3

=
3
4

(too small);

three terms give

π

4
=

1

1 +
1

3 +
4
5

=
19
24

= 0, 7916 (too large).

Take four terms that

π

4
=

1

1 +
1

3 +
4

5 +
9
7

=
40
51

= 0, 7853 (too small),

where the error is just detected in the third figure.
Furthermore, this continued fraction is similar to that one Brouncker once
gave, which reads as follows

1

2 +
9

2 +
25

2 +
49

2 + etc.
It is manifest that our fraction converges a lot faster; and it is not less beautiful.

§29 But to obtain a faster-converging continued fraction, let us set arctan m
n =

30◦, since the tangent of which is 1√
3
, for the number n not to become irrational,

let us take m =
√

3 and n = 3; therefore, hence it will be
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π

6
=

√
3

3 +
3

9 +
12

15 +
27

21 +
48

27 + etc.
which form is reduced to the following

π

6
√

3
=

1

3 +
1

3 +
4

15 +
9

7 +
16

27 +
25

11 + etc.
for the expansion of which we want to find the value π

6
√

3
approximately,

which is 0, 3022998. But now the first term yields

π

6
√

3
= 0, 3333;

but the first two yield

π

6
√

3
=

1

3 +
1
3

=
3
10

= 0, 3000;

three terms give

π

6
√

3
=

1

3 +
1

3 +
4

15

=
49

162
= 0, 30247,

where the error affects just the fourth digit.
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§30 But a faster convergence can be obtained by splitting the right angle into
two parts, as I once showed to be

arctan
1
2
+ arctan

1
3
= arctan 1 =

π

4
.

Therefore, so we will find two continued fractions, whose sum will give the
value of π

4 , which will be

arctan
1
2
=

1

2 +
1

6 +
4

10 +
9

14 + etc.

and arctan
1
3
=

1

3 +
1

9 +
4

15 +
9

21 + etc.

But it is manifest that both these fractions, and especially the second, converge
rapidly.

§31 But let us convert even our general continued fraction into common
ones; and from the first term only we find

arctan
m
n

=
m
n

;

from two terms it results

arctan
m
n

=
3mn

3nn + mm
;

three terms yield

arctan
m
n

=
15mnn + 4m3

15n3 + 9mmn
.

Take four terms, whence

arctan
m
n

=
105mn3 + 55m3n

105n4 + 90mmnn + 9m4 .

If now as above the fraction 0
1 is put in front of these fractions, this progression

will arise
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I II III IV V

0
1

,
m
n

,
3mn

3nn + mm
,

15mnn + 4m3

15n3 + 9mmn
,

105mn3 + 55m3n
105n4 + 90mmnn + 9m4 ,

each term of which can likewise be formed from the preceding two according
to a certain law, of course,

for III the scale of relation is 3n, +mm

for IV the scale of relation is 5n, +4mm

for V the scale of relation is 7n, +9mm

etc.
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