
On the integration of differential

equations of higher orders*

Leonhard Euler

§1 Although many methods have been invented to solve differential equa-
tions of first order and the highest Geometers have invested a lot of work
and eagerness in this task, nevertheless they have offered hardly anything
substantial to treat differential equations of higher orders, either to construct
them or to integrate them. Differential equations of second order are usually
resolved in such a way that by a suitable substitution they are reduced to
equations of first order, having done which their resolution is reduced to
a more familiar and known way: And during this task, I invented several
auxiliary tools many years ago, by means of which innumerable differential
equations of second order can be lowered to first order, and can even be
constructed or integrated. But concerning differential equations of third or
higher order similar artifices, by which they can be reduced to a lower order,
are hardly or even not available, since this way one gets to so complicated
differential equations of second or higher order that they can not be treated
any further at all. Therefore, the method I am going to explain here and by
means of which many differential equations of higher orders can be integrated
immediately without any previous reduction and the integral equation can be
exhibited in finite terms will be quite useful for this task.

*Original title: „De integratione aequationum differentialium altiorum graduum“, first publis-
hed in Miscellanea Berolinensia 7, 1743, pp. 193-242, reprint Opera Omnia: Series 1, Volume
22, pp. 108 - 149, Eneström-Nummer E62, translated by: Alexander Aycock, LateX layout
by: Artur Diener, for the project „Euler-Kreis Mainz“
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§2 Let y and x be variables in which the differential equation of arbitrary
order is contained, in which equation the element dx is assumed to be constant,
and let the other variable y and its differentials dy, ddy, d3y etc. have one
dimension in each term such that the equation, of whatever order it is, has
the following form:

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 +

Ed4y
dx4 +

Fd5y
dx5 + etc,

in which the letters A, B, C, D etc. denote either constant quantities or such
involving the other variable x in any way. But it is obvious that this equation
extends quite far; for, not only because of the general coefficients A, B, C, D
etc., which we at the same time assume as arbitrary functions of x, is it very
general, but it also contains differential equation of any order as a special case.

§3 First it is certainly perspicuous that, aside from the constant quantities
found in the differential equation, the complete integral equation must also
contain so many constant quantities as of which order the propounded diffe-
rential equation was. For, if we put that the order of the differential equation
is n, such that the last term of it is

Ndny
dxn ,

by one integration it will be reduced to order n− 1, by two integrations done
successively to order n− 2, by three to order n− 3 and so forth. From this it
is understood that just after n integrations one gets to an integral equation
expressed in finite terms. But since by each integration one arbitrary constant
enters the integral, it is obvious that the complete integral must contain n
arbitrary constants.

§4 Therefore, the complete integral equation contains as many arbitrary
constants as the exponent n contains units; and this integral equation is to be
considered to extend as far as the differential equation of order n, such that
no finite value assumed for y can satisfy the differential equation which is
not also contained in the complete integral equation. But if in this complete
integral equation one or more of those arbitrary constants are determined
arbitrarily, then one will certainly have an equation answering the question,
but it will no longer be complete, but only a particular integral equation,
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which does not contain all possible values of y satisfying the differential
equation. Therefore, the complete integral equation must be distinguished
carefully from the particular one; and if we want to satisfy the differential
equation perfectly, we have to find the complete integral equation.

§5 But a criterion see, whether the exhibited integral equation is complete or
not, is easily derived from the things mentioned. For, first the propounded
differential equation must be satisfied, which happens, if after the substitution
the identical equation results; for, otherwise that equation would not be the
integral equation. Furthermore, it is necessary that the integral equation
contains as many arbitrary constants as of which grade the propounded
differential equation was. For, if there are less constants in it, then the integral
equation will not be complete, but just particular. But in the enumeration of
the arbitrary constants one has to be careful not to be fooled by the number of
different letters and not to count those as arbitrary constants which depend
on each other.

§6 To understand the difference between complete and incomplete differen-
tial equations more clearly, it will be helpful to have illustrated this in an
example. Therefore, let this differential equation be propounded

aady + yydx = (aa + xx)dx,

which is clear to be satisfied by the value y = x, which substituted in the
equation produces the identical equation. Therefore, y = x is an integral
equation, but by no means complete, since it neither contains the constant a,
which is found in the differential equation, nor another arbitrary constant, as
an differential equation of first order requires it. Therefore, somebody would
be vehemently wrong, who would want to sell this equation y = x as complete
integral of this one

aady + yydx = (aa + xx)dx;

for, the complete integral is

y = x +
aabe−

xx
aa

aa + b
∫

e−
xx
aa dx

,

which setting the arbitrary constant b = 0 gives the particular integral y = x,
of course.
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§7 In like manner, we see that this differential equation of second order

y =
xdy
dx

+
axddy

ax2

is satisfied by this finite equation y = x; but a lot is missing that it is the
complete integral and exhausts the complete meaning of the differential
equation of second order, since the complete integral equation, aside from the
constant a, must contain two arbitrary constants. Indeed, we see that also this
equation y = nx satisfies, which, since in contains one single constant n, is
still just particular. But the complete integral is

y = nx + b
∫ e−

x
a dx

xx
,

which aside from the constant a contains the two arbitrary constants b and n;
as the matter if things require.

§8 But since all particular integral equations are contained in the complete
one, it is plain that the complete integral consists of many particular integrals;
and hence the complete integral is conflated from particular integrals. Many
times it is certainly as difficult to derive the complete integral or at least a
further extending integral from several known integral as to derive the same
from the differential equation by integration. But the equation we want to
treat,

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 +

Ed4y
dx4 + etc,

is of such a nature that knowing two or more particular values of y from these,
one can easily form a further extending value of y containing all those values.
And this way one will be able to construct the complete value or the complete
integral equation from a sufficient number of particular values.

§9 But first it is understood, if p was a convenient value of y such that y = p,
that then also will be y = αp; and if the value p substituted for y renders

Ay +
Bdy
dx

+
Cddy
dx2 + etc = 0

then the value αp substituted for y will cause the same vanishing expression:
and this way one arbitrary constant α can be introduced into the particular
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integral equation y = p. But if furthermore y = q satisfies the propounded
equation, then in like manner also y = βq will satisfy; but from these two
particular values y = αp and y = βq one will conclude this further extending
one

y = αp + βq.

For, if the expression

Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + etc

is rendered equal to zero having written so αp as for βy for y, it is obvious
that at the same expression must become equal to zero, if one writes αp + βy
instead of y.

§10 In like manner, if p, q, r, s etc. were functions of x of such a kind that
each substituted separately for y causes the expression

Ay +
Bdy
dx

+
Cddy
dx2 + etc

to vanish, then also this value

αp + βq + γr + δs + etc

if substituted for y will produce an expression equal to zero. Hence if p, q, r, s
etc. were particular values of y, which came from the propounded equation,
then from them this a lot further extending value is concluded

y = αp + βq + γr + δs + etc

also satisfying the propounded equation. And this value will hence be com-
plete, if so many constants α, β, γ, δ etc. are found as of which order the
propounded differential equation was. Therefore, we obtained a simple me-
thod to assign the complete value containing all satisfying values of y from
many particular values of y: and so one will have the complete integral
equation in finite terms.

§11 Therefore, the whole task of finding the complete integral of the pro-
pounded differential equation

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn
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reduces to this that we investigate particular values which substituted for y
lead to the identical equation. But so many particular values will be necessary
until by collecting them in the prescribed way so many arbitrary constants
are there as the highest exponent n contains units. Hence if each particular
equation comes with one arbitrary constant, n equations of such a kind are
required to constitute the complete integral equation. But if one of these many
particular equations contains more than one arbitrary constant, then one will
need less particular equations to derive the complete equation from them.

§12 Now let all letters A, B, C, D etc. denote constant quantities such that
this differential equation of order n must be integrated

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn .

Since y with it differentials has the same dimension everywhere, according to
my method given in Tomus III. Commentariorum Academiae Pertrpolitanae
this differential equation is lowered by one order, if we put

y = e
∫

pdx,

whence the differentials of y will be

dy
dx

= e
∫

pdx p

ddy
dx2 = e

∫
pdx
(

pp +
dp
dx

)
d3y
dx3 = e

∫
pdx
(

p3 +
3pdp

dx
+

ddp
dx2

)
d4y
dx4 = e

∫
pdx
(

p4 +
6ppdp

dx
+

4pddp
dx2 +

3dp2

dx2 +
d3 p
dx3

)
etc,

if which values are substituted in the propounded equation, it can be divided
by e

∫
pdx, and a differential equation of order n− 1 will remain.

§13 But here first it is plain, if one takes a constant p, such that its differentials
dp, ddp, d3p etc. vanish, that then, because of the constant A, B, C, D etc., the
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variable x will go out of the equation completely; and by this hypothesis, the
following algebraic equation will result

0 = A + Bp + Cp2 + Dp3 + Ep4 + · · ·+ Npn,

if from which any value of p is found, one will at the same time have a
particular integral y = epx satisfying the propounded differential equation;
therefore, as we saw, also this equation y = αepx will satisfy, as often as p was
a constant quantity and a root of this algebraic equation

0 = A + Bp + Cp2 + Dp3 + · · ·+ Npn.

§14 Therefore, we reduced the invention of particular values for the variable
y to the resolution of an algebraic equation of order n, for which we want to
take this one

0 = A + Bz + Cz2 + Dz3 + · · ·+ Nzn,

and each root or divisor of this equation will give as many particular values
of y. For, if py− q was a divisor of that equation, from which z = p

q results, it
will be

y = αe
qx
p ;

this particular value contains one arbitrary constant α. But since that algebraic
equation of order n contains n roots or divisors, hence also n particular values
will result for y; these taken together will give the universal value for y; and
this will at the same time be the complete value, since it contains n arbitrary
constants.

§15 Therefore, if all roots of this algebraic equation of order n were real,
then the complete value for y will result expressed in real terms, and it will
be the aggregate of n exponential formulas of this kind αeqx:p, and in this case
the integrals can even be expressed only by logarithms or the quadrature of
the hyperbola. But if some of the roots of that equation were imaginary, then
imaginary exponential formulas will enter into the complete integral; I will
teach how to construct these by means of the quadrature of the circle below.
The main difficulty occurs, whenever two or more roots of the equation are
equal; for, then, because of the equal exponential formulas, the number of
arbitrary constants is lowered and for that reason the found integral will not
be the complete one anymore.
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§16 We will deal with each of both inconveniences, if we contemplate the
connection between the propounded differential equation

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn

and the formed algebraic equation

0 = A + Bz + Cz2 + Dz3 + · · ·+ Nzn

more attentively. For, as the second originates from the first, if one writes

z0 instead of y, z instead of dy
dx , and in general zk instead of dky

dxk , so in like
manner from each factor of the algebraic equation a differential equation will
be formed, which will necessarily be contained in the propounded differential
equation and from which hence particular values for y will be found. So, if
pz− q or q− pz was a divisor of the algebraic equation, from this by the law
of the connection this differential equation originates

qy− pdy
dx

= 0,

which integrated gives
y = αe

qx
p ,

which is the one which we found from the factor pz− q.

§17 Hence it is understood, if one has an arbitrary divisor of that algebraic
equation, say p + qz + rzz, that then the equation which must arise from this
divisor

py +
qdy
dx

+
rddy
dx2 = 0

gives a value for y which also satisfies the propounded differential equation.
From this we will therefore be able to get rid off that difficulty which occurred,
if the algebraic equation has two or more equal factors. Therefore, let (p− qz)2

be a divisor of the algebraic equation, and from this in expanded form this
differential equation of second order will result

ppy− 2pqdy
dx

+
qqddy

dx2 = 0.

Let us put
y = e

px
q u,
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and after the substitution we will have ddu = 0, and hence u = α + βx. Hence
form the quadratic factor (p− qz)2 the following value results

y = e
px
q (α + βx),

which contains two arbitrary constants.

§18 If the algebraic equation has the cubic divisor (p− qz)3, then this equa-
tion will be contained in the propounded differential equation

p3y− 3ppqdy
dx

+
3pqqddy

dx2 − q3d3y
dx3 = 0,

which for
y = e

px
q u

is transformed into this one: d3u = 0; hence u = α + βx + γxx originates,
from which the propounded equation is satisfied by this value

y = e
px
q (α + βx + γxx).

And if in like manner the algebraic equation

0 = A + Bz + Cz2 + Dz3 + · · ·+ Nzn

has fourth power divisor (p − qz)4, then from it this satisfying particular
equation will arise

y = e
px
q (α + βx + γxx + δx3).

And if in general (p− qz)k is a divisor, the value arising from this will be

y = e
px
q (α + βx + γxx + δx3 · · ·+κxk−1),

such that it involves k imaginary constants.

§19 Who still has any doubt whether this way from the composite divisors,
in which z has more than one dimension, of the equation

0 = A + Bz + Cz2 + Dz3 + · · ·+ Nzn

the values for y are deduced correctly, which satisfy the propounded equation

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn ,
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this doubt will be removed easily by the matter of things. Let a somehow
composite divisor be

p + qz + rzz + sz3 + etc

and from it form the equation

0 = py +
qdy
dx

+
rddy
dy2 +

sd3y
dx3 + etc;

and it will become clear that complete value of y for this equation results, of
all values of y which the simple divisors of this equation give

0 = p + qz + rzz + sz3 + etc,

are collected into one sum; but the simple divisors of this equation are at the
same time the simple divisors of this one

0 = A + Bz + Cz2 + Dz3 + · · ·+ Nzn;

and for this reason the value of y arising from that composite factor it at the
same time a satisfying value of the propounded differential equation

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn .

§20 But having found the values of y resulting from several equal simple
divisors of the equation

0 = A + Bz + Czz + Dz3 + · · ·+ Nzn,

the other difficulty we have to solve remains, i.e. if this equation has imaginary
roots. But it is known, if a certain equation has imaginary roots, that their
number will always be even; and I showed on another occasion that by
conjugating these imaginary roots they can be split into pairs of such a kind
the sum and product of which become real. Hence instead of imaginary
divisors real composite divisors of degree two of this form will result

p− qz + rzz,

which have imaginary simple divisors. Therefore, in such a composite divisor
qq < 4pr; hence

q
2
√

pr
< 1.
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Therefore, having put the complete sine = 1 q
2
√

pq , will be the cosine of a real
angle, which shall be = ϕ and it will be1

q = 2
√

pr cos Aϕ,

from which the general form of the composite divisors the imaginary factors
contain will be of this kind

p− 2z
√

pr cos Aϕ + rzz.

§21 Therefore, let
p− 2z

√
pr cos Aϕ + rzz

be a divisor of such a kind of the equation

0 = A + Bz + Cz2 + etc,

from which the corresponding value of y must be found. But from this divisor
this differential equation of second order results

0 = py−
2dy
√

pr
dx

cos Aϕ +
rddy
dx2 ,

to integrate which put
y = e f x cos Aϕu

and, for the sake of brevity having set f =
√

p
r , it will be

f f udx2 sin2 Aϕ + ddu = 0.

Multiply by 2du and integrate, it will be

f f uudx2 sin2 Aϕ + du2 = α2 f f dx2 sin2 Aϕ,

whence
f dx sin Aϕ =

du√
α2 − u2

;

this gives integrated

f x sin Aϕ + β = A sin
u
α

.

1Note: In the following A is not to be understood as a constant, instead Euler writes cos Aϕ

and sin Aϕ instead of the modern cos ϕ and sin ϕ in this paper. A stands for the Latin word
Arcus i.e. arc in English.
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From this equation
u = α sin A( f x sin Aϕ + β).

As a logical consequence one has

y = αe f x cos Aϕ sin A( f x sin Aϕ + β),

which will be the corresponding value of y for the propounded equation.

§22 The same or an equivalent expression for y is derived from the simple
even though imaginary factors of the equation

0 = p− 2z
√

pr cos Aϕ + rzz,

which for f =
√

p
r goes over into this one

0 = f f − 2 f z cos Aϕ + zz,

the roots of which are

z = f cos Aϕ± f
√
−1 sin Aϕ.

Hence for y these values result

e f x cos Aϕ+ f x
√
−1 sin Aϕ and e f x cos Aϕ− f x

√
−1 sin Aϕ,

having combined which

y = e f x cos Aϕ
(

ηe+ f x
√
−1 sin Aϕ + θe− f x

√
−1 sin Aϕ

)
.

But having converted these exponentials into series it will result

y = e f x cos Aϕ

(η + θ)
(

1− f f xx sin2 Aϕ
1·2 + f 4x4 sin4 Aϕ

1·2·3·4 + etc
)

(η − θ)
√
−1
(

f x sin Aϕ− f 3x3 sin3 Aϕ
1·2·3 + etc

)
.

Therefore, having put

η = θ + α and (η − θ)
√
−1 = β

and having summed these infinite series it will result

y = e f x cos Aϕ(α cos Aϕ f x sin Aϕ + β sin A f x sin Aϕ);

this expression is easily reduced to the first.
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§23 Hence we obtain a method to find the value of y, if two or more of these
composite divisors were equal. For, let

( f f − 2 f z cos Aϕ + zz)2

be a divisor of the algebraic equation; since it is reduced to

(z− f cos Aϕ− f
√
−1 sin Aϕ)2(z− f cos Aϕ + f

√
−1 sin Aϕ)2,

by the preceding results the value which must originate from this for y will be

y = e f x cos Aϕ+ f x
√
−1 sin Aϕ)(η + θx) + e f x cos Aϕ− f x

√
−1 sin Aϕ(ι +κx).

But since

e+ f x
√
−1 sin Aϕη + e− f x

√
−1 sin Aϕι

=α cos A f x sin Aϕ + β sin A f x sin Aϕ,

one hence concludes that it will be

y = e f x cos Aϕ [(α + βx) cos A f x sin Aϕ + (γ + δx) sin A f x sin Aϕ] .

§24 But if a cube or another power of

f f − 2 f z cos Aϕ + zz

was a divisor of the algebraic equation

0 = A + Bz + Czz + Dz3 + · · ·+ Nzn,

then from the same powers of simple imaginary factors find the values of
y according to § 18 and combine them into one sum. Having done this the
imaginary exponential quantities can be converted into sines and cosines of
circular arcs by means of this lemma

e+ f x
√
−1 sin Aϕηxk + e− f x

√
−1 sin Aϕθxk

=αxk cos A f x sin Aϕ + βxk sin A f x sin Aϕ.

So if
( f f − 2 f z cos Aϕ + zz)4

was a divisor of the algebraic equation, then from it the following integral
equation will originate

y = e f x cos Aϕ
[
(α + βx + γx2 + δx3) cos A f x sin Aϕ

+ (ε + ζx + ηx2 + θx3) sin A f x sin Aϕ
]

.
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§25 Those expressions can be transformed in many ways, depending on
whether the constants are expressed in the one or the other way. But that
transformation seems to be most convenient in which the values of y are
reduced to the for found in § 21. So this form

µxk cos A f x sin Aϕ + νxk sin A f x sin Aϕ,

if one puts
µ = λ sin Ap and ν = λ cos Ap,

will be transformed into this one

λxk sin A( f x sin Aϕ + p).

For that reason from the indefinite factor of the exponent

( f f − 2 f z cos Aϕ + zz)k

the following value of y will be formed:

y = e f x cos Aϕ(α sin A( f x sin Aϕ +A) + βx sin A( f x sin Aϕ +B)

+γx2 sin A( f x sin Aϕ + C) + · · ·+κxk−1 sin A( f x sin Aϕ + K)),

and this way from all divisors, however they were composited, real values for
the variable y are found.

§26 Concerning the arbitrary constants entering into the values of y to be
found this way, it is plain that first from the simple factors of the form f − z
values of y containing one arbitrary constant result; further, the value of y
originating from the factor ( f − z)k contains k arbitrary constants. Furthermore,
from the composite factor

f f − 2 f z cos Aϕ + zz

a value of y containing two arbitrary constants results; and from a power of
factors of this kind

( f f − 2 f z cos Aϕ + zz)k

a value of y is formed, in which 2k arbitrary constants are found; such that
the number of arbitrary constants is equal to the number of dimensions of z
this variable obtains in the divisor, from which the values of y is found.

14



§27 Therefore, if the algebraic equation we formed from the propounded
differential equation

0 = A + Bz + Cz2 + Dz3 + Ez4 + · · ·+ Nzn,

is resolved into its either simple or composite real factors or such which are
powers of the simple or composite ones, and in the described way from each
one of them the corresponding values of y are formed, then all these values of
y considered together will contain so many arbitrary constants as units are
found in the exponent n. Therefore, all these values collected into one sum
will not only yield a value for y satisfying the propounded equation

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn ,

but this will be the complete value of y containing all possible values satisfying
this equation. Therefore, this way that differential equation is integrated
perfectly in finite terms, and the integral never requires any other quadratures
than those of the hyperbola and the circle.

PROBLEM I

If a differential equation of order n of this kind was propounded

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 + · · ·+ Ndny

dxn ,

in which the element dx is put constant, and the letters A, B, C, D, · · · , N
denote arbitrary constant coefficients, to find the integral of this equation in
finite real terms.

SOLUTION

Write 1 instead of y, z instead of dy
dx , z2 instead of ddy

dx2 and in general zk instead

of dky
dxk ; and hence form the following algebraic equation of n dimensions

0 = A + Bz + Cz2 + Dz3 + · · ·+ Nzn.

Further, find all real simple divisors of this equation; and, if it has imaginary
divisors, instead of them take composite real divisors, in which z has two
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dimensions, since a two imaginary factors always constitute one composite
real factor. Furthermore, from each divisor form particular values of y in the
following way. Of course, from each simple factor, if there are no others equal
to it, of this form f − z this value originates

y = αe f x.

But from two or more equal factors taken together the values of y must be
determined. For, from the factor ( f − z)2 this value originates

y = (α + βx)e f x,

from the factor ( f − z)3 this value originates

y = (α + βx + γxx)e f x;

and in general from the factor ( f − z)k one deduces

y = e f x(α + βx + γxx + · · ·+κxk−1).

Concerning composite factors, if that algebraic equation has the factor

f f − 2 f z cos Aϕ + zz,

which is not a multiple factor, the value which must arise from it will be

y = e f x cos Aϕα sin A( f x sin Aϕ +A).

If the algebraic equation has two equal factors of this kind such that it is
divisible by

( f f − 2 f z cos Aϕ + zz)2.

then from this quadratic divisor the following value results

y = αe f x cos Aϕ sin A( f x sin Aϕ +A) + βxe f x cos Aϕ sin A( f x sin Aϕ +B).

But if any arbitrary power of this factor, say

( f f − 2 f z cos Aϕ + zz)k,

was a divisor of the algebraic equation, then from it the following value results

y = αe f x cos Aϕ sin A( f x sin Aϕ +A) + βxe f x cos Aϕ sin A( f x sin Aϕ +B)

+ γx2e f x cos Aϕ sin A( f x sin Aϕ + C) + δx3e f x cos Aϕ sin A( f x sin Aϕ +D)

+ · · ·+κxk−1e f x cos Aϕ sin A( f x sin Aϕ + K).
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But having found the respective values of y from each divisor of the algebraic
equation this way, it just remains that all these values are collected into one
sum, and this way the complete value of y will result; and this is the one
which would have resulted, if the propounded differential equation of order
n would be integrated n times. Q.E.I.

EXAMPLE 1

§29 To find the integral of this differential equation of second order

0 = ay +
bdy
dx

+
cddy
dx2 .

Having written 1 instead of y, z instead of dy
dx and zz instead of ddy

dx2 , as it
was prescribed, this equation results

0 = a + bz + czz;

it will either have two real roots or two imaginary ones; the first happens, if
bb > 4ac, the second, if bb < 4ac. Therefore, let bb > 4ac first, and the two
roots will be

z =
−b±

√
bb− 4ac

2c
and in this case the integral in question will be

y = αe
−bx+x

√
bb−4ac

2c + βe
−bx−x

√
bb−4ac

2c .

Here the case bb = 4ac is to be considered separately, for, then

a + 2z
√

ac + czz

will be a square, namely
(
√

a + z
√

c)2,

which compared to the form ( f − z)2 gives

f = −
√

a
c

,

whence the integral will be

y = (α + βx)e−x
√

a
c ,
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which is the integral of the equation

0 = ay +
2dy
√

ac
dx

+
cddy
dx2 .

Now let bb < 4ac, and the equation

0 = a + bz + czz

will have no real roots, therefore, compared to the formula

f f − 2 f z cos Aϕ + zz

it gives
b
c
= −2 f cos Aϕ and

a
c
= f f ;

hence it will be

f =

√
a
c

and cos Aϕ =
−b

2
√

ac

and thus

sin Aϕ =

√
4ac− bb
2
√

ac
,

whence the following integral results

y = αe
−bx
2c sin A

(
x
√

4ac− bb
2c

+A

)
.

EXAMPLE 2

§30 To find the integral of this differential equation of third order

0 = y− 3a2ddy
dx2 +

2a3d3y
dx3 .

Therefore, from that equation this algebraic one results

0 = 1− 3a2zz + 2a3z3,

which is resolved into these factors

(1 + 2az), (1− az)2.
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The first factor 1 + 2az compared to f − z gives

f =
−1
2a

,

whence it results
y = αe−

x
2α ;

the second factor (1− az)2 must be compared to ( f − z)2, from which

f =
1
a

and hence it results
y = (β + γx)e

x
a .

Therefore, the complete integral of the propounded equation will be

y = αe−
x
2a + (β + γx)e

x
a .

EXAMPLE 3

§31 To find the integral of this differential equation of third order

0 = y− a3d3y
dx3 .

The algebraic equation resulting from this equation will be

0 = 1− a3z3,

which is resolved into these factors:

(1− az), (1 + az + a2zz),

such that its divisors are

1
a
− z and

1
aa

+
z
a
+ zz,

the second of which can not be resolved into real simple ones. Therefore, that
divisor 1

a − z gives for the integral

y = αe
x
a ,
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the other divisor
1
aa

+
z
a
+ zz

compared to the form
f f − 2 f z cos Aϕ + zz

gives

f =
1
a

and
−2 cos Aϕ

a
=

1
a

,

such that

cos Aϕ = −1
2

and sin Aϕ =

√
3

2
;

hence from this divisor it results

y = βe−
x
2a sin A

(
x
√

3
2a

+A

)
.

Therefore, the complete integral of the propounded equation will be

y = αe
x
a + βe−

x
2a sin A

(
x
√

3
2a

+A

)
.

EXAMPLE 4

§32 To find the integral of this differential equation of fourth order

0 = y− a4d4y
dx4 .

From this equation this algebraic equation will be formed

0 = 1− a4z4,

which has to simple real divisors

1
a
− z and

1
a
+ z;

the remaining two imaginary ones are contained in this composite one

1
aa

+ zz.
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The two simple divisors give for the integral

y = αx
x
a + βe−

x
a .

But the divisor
1
aa

+ zz

compared to the form
f f − 2 f z cos Aϕ + zz

gives

f =
1
a

and cos Aϕ = 0

and hence
sin Aϕ = 1.

Therefore, the exponential term

e f x cos Aϕ,

because of the exponent = 0, becomes 1, and it will be

y = γ sin A
( x

a
+A

)
.

Therefore, the complete integral will be

y = αe
x
a + βe−

x
a + γ sin A

( x
a
+A

)
.

EXAMPLE 5

§33 To find the integral of this differential equation of fourth order

0 = y +
a4d4y
dx4 .

Therefore, one will have to resolve this algebraic equation

0 = 1 + a4z4;

since it has no simple real divisor, it is resolved into these two composite real
factors

1 + az
√

2 + aazz and 1− az
√

2 + aazz,
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which divided by aa, that they can be compared to the form

f f − 2 f z cos Aϕ + zz,

will give
1
aa

+
z
√

2
a

+ zz and
1
aa
− z
√

2
a

+ zz;

for each of them f = 1
a ; but for the first

f cos Aϕ =
−1

a
√

2
,

for the second
f cos Aϕ =

1
a
√

2
;

and hence for each of them

f sin Aϕ =
1

a
√

2
.

From these the complete integral of the propounded equation results

y = αe−
x

a
√

2 sin A
(

x
a
√

2
+A

)
+ βe

x
a
√

2 sin A
(

x
a
√

2
+B

)
.

EXAMPLE 6

§34 To find the complete integral of this differential equation of seventh
order

0 = y +
ddy
dx2 +

d3y
dx3 +

d4y
dx4 +

d5y
dx5 +

d7y
dx7

Hence this algebraic equation of seventh order results

0 = 1 + zz + z3 + z4 + z5 + z7,

which is resolved into the following real simple and composite factors

(1 + z), (1 + z + zz), (1− z + zz)2.

The first of them compared to the form f − z gives f = −1, and hence it
results

y = αe−x.
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But the factor 1 + z + zz compared to

f f − 2 f z cos Aϕ + zz

gives

f = 1 and cos Aϕ = −1
2

,

whence

sin Aϕ =

√
3

2
and the integral arising from this

y = βe−
x
2 sin A

(
x
√

3
2

+A

)
.

The third factor (1− z + zz)2 must be compared to

( f f − 2 f z cos Aϕ + zz)2,

whence

f = 1, cos Aϕ =
1
2

and sin Aϕ =

√
3

2
.

Therefore, hence this integral results

y = γe
x
2 sin A

(
x
√

3
2

+B

)
+ δxe

x
2 sin A

(
x
√

3
2

+ C

)
.

For that reason the complete integral of the propounded differential equation
will be

y =αe−x + βe−
x
2 sin A

(
x
√

3
2

+A

)

+γe
x
2 sin A

(
x
√

3
2

+B

)
+ δxe

x
2

(
x
√

3
2

+ C

)
,

in which seven arbitrary constants are contained, of course.
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EXAMPLE 7

§35 To find the complete integral of this differential equation of eighth order

0 =
d3y
dx3 −

3d4y
dx4 +

4d5y
dx5 −

4d6y
dx6 +

3d7y
dx7 −

d8y
dx8 .

The algebraic equation of eighth order that must be resolved will be

0 = z3 − 3z4 + 4z5 − 4z6 + 3z7 − z8;

this is at first clear to be divisible by z3, which divisor compared to the form
( f − z)3 gives f = 0, and hence one finds for the integral

y = α + βx + γxx.

Having taken this divisor into account it remains to resolve this equation

0 = 1− 3z + 4zz− 4z3 + 3z4 − z5,

which is detected to be divisible by 1 + zz, having compared which to the
form

f f − 2 f z cos Aϕ + zz

we find
f = 1 and cos Aϕ = 0,

whence sin Aϕ = 1; and hence it results

y = δ sin A(x +A).

Further, having done the division by 1 + zz, this equation remains

1− 3z + 3zz− z3 = 0 = (1− z)3;

therefore, in the form ( f − z)3 we have f = 1, and the integral which must
result from this is

y = (ε + ζx + ηxx)ex.

As a logical consequence the complete integral of the propounded equation is

y = α + βx + γxx + δ sin A(x +A) + (ε + ζx + ηxx)ex.
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EXAMPLE 8

§36 To find the integral of this differential equation of indefinite order

0 =
dny
dxn .

Hence this algebraic equation results

zn = 0;

since all its roots are equal, it must be compared to the factor ( f − z)k, and
it will be k = n and f = 0, from which immediately the integral in question
results as

y = α + βx + γx2 + δx3 + · · ·+ νxn−1.

But this same integral is easily found by n successive integrations. For, in the
first integration it results

α =
dn−1y
dxn−1 ;

multiply by dx and integrate a second time, it will be

αx + β =
dn−2y
dxn−2 .

This one multiplied by dx and integrated a third time will give

αxx
2

+ βx + γ =
dn−3y
dxn−3

and so forth, if the integration is repeated n times, having changed the
expressions of the constants the integral will result which we found by our
rule.

§37 By means of this method one can also integrate many other differential
equations of indefinite degree, which lead to algebraic equations, the real
either simple or composite factors of which can actually be exhibited. But
since this is not the place to give a method to investigate divisors of equations
of an indefinite number of dimensions of this kind, here we will additionally
treat differential equations of such a kind which lead to algebraic equations
the factors of which are already known from elsewhere. But equations of this
kind are

f n ± zn = 0 and f 2n ± 2p f nzn ± z2n = 0;
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for, all real so simple as composite or trinomial factors of these expressions
were exhibited by the supreme mathematicians Cotes and de Moivre, which
we will therefore assume as known in the solutions of the following problems.

PROBLEM II

§38 If this differential equation of order n was propounded

0 = y− dny
dxn ,

in which the element dx is put constant, to find its complete integral.

SOLUTION

Haven written 1 instead of y and zn instead of dny
dxn , as we prescribed, one will

have this algebraic equation
0 = 1− zn,

of which 1 + z is always a simple divisor and, if n was an even number, also
1 + z is a simple divisor. But all remaining simple divisors are imaginary, and
they are contained in this general form

1− 2z cos A
2kπ

n
+ zz

(where π denotes half of the circumference of the circle whose radius is = 1);
this compared to the general trinomial factor

f f − 2 f z cos Aϕ + zz

gives

f = 1 and ϕ =
2kπ

n
,

such that this divisor gives the integral value

y = αex cos A 2kπ
n sin A

(
x sin A

2kπ

n
+A

)
.

If now all even numbers not exceeding the exponent n are successively sub-
stituted for 2k, all possible values will result, which substituted for y satisfy
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the equation. Indeed, even the value of y arsing from the simple factor 1− z,
which is y = αex, is contained in this general form; for, having put k = 0

cos A
2kπ

n
= 1 and sin A

2kπ

n
= 0

and hence y = αex, because of the constant sin AA absorbed into the constant.
In like manner, if n is an even number, the value of y which must arise from
the factor 1 + z, which is y = αe−x, results from the general factor for 2k = n;
for, then

cos A
2kπ

n
= −1 and sin A

2kπ

n
= 0,

such that the value which must result from the general factor is y = αe−x.
Therefore, the complete integral will be obtained, if in this general form

y = αex cos A 2kπ
n sin A

(
x sin A

2kπ

n
+A

)
all even numbers from 0 to n are successively substituted and these values are
collected into one sum. Therefore, the complete integral in question will result

y = αex + βex cos A 2π
n sin A

(
x sin A

2π

n
+B

)
+ γex cos A 4π

n sin A
(

x sin A
4π

n
+ C

)
+ δex cos A 6π

n sin A
(

x sin A
6π

n
+D

)
+ εex cos A 8π

n sin A
(

x sin A
8π

n
+ E

)
+ etc,

which terms must be continued until one has n arbitrary constants, or, what
is the same, until the coefficient of π is larger than 1. But, if n was an odd
number, the last term will be

= νex cos A (n−1)
n π sin A

(
x sin

(n− 1)π
n

+N

)
;

but if n is an even number, the last term will be = νe−x and the penultimate
term will be

= µex cos A (n−2)
n π sin A

(
x sin A

(n− 2)π
n

+M

)
.
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Therefore, for each value of n the complete integral will be assigned in
convenient manner. Q.E.I.

§39 To present these integrals more clearly, let us exhibit the integral of the
equation

0 = y− dny
dxn

for each value of n starting from 1:

1. The integral of this equation 0 = y− dy
dx

y = αex.

2. The integral of this equation 0 = y− ddy
dx2 is:

y = αex + βe−x.

3. The integral of this integral 0 = y− d3y
dx3 is:

y = αex + βex cos A 2
3 π sin A

(
x sin A

2
3

π +B

)
.

4. The integral of this equation is 0 = y− d4y
dx4 is:

y = αex + β sin A (x +B) + γe−x.

5. The integral of this equation 0 = y− d5y
dx5 is:

y = αex + βex cos A 2
5 π sin A

(
x sin A

2
5

π +B

)
+ γex cos A 4

5 π sin A
(

x sin A
4
5

π + C

)
.

6. The integral of this equation 0 = y− d6y
dx6 is:

y = αex + βex cos A 1
3 π sin A

(
x sin A

1
3

π +B

)
+ γex cos A 2

3 π sin A
(

x sin A
2
3

π + C

)
+ δe−x.
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7. The integral of this equation 0 = y− d7y
dx7 is:

y = αex + βex cos A 2
7 π sin A

(
x sin A

2
7

π +B

)
+ γex cos A 4

7 π sin A
(

x sin A
4
7

π + C

)
+ δex cos A 6

7 π sin A
(

x sin A
6
7

π +D

)
.

8. The integral of this equation 0 = y− d8y
dx8 is:

y = αex + βex cos A 1
4 π sin A

(
x sin A

1
4

π +B

)
+ γ sin A(x + C)

+ δex cos A 3
4 π sin A

(
x sin A

3
4

π +D

)
+ εe−x.

etc.

PROBLEM III

§40 If this differential equation of indefinite degree n was propounded

0 = y +
dny
dxn ,

having put the element dx constant, to find its integral.

SOLUTION

Having written 1 instead of y and zn instead of dny
dxn , this algebraic equation

will result 0 = 1 + zn, if which number n was odd, it will have the simple real
divisor 1 + z, from which y = αe−x results. All remaining simple divisors are
imaginary; but each two of them are contained in this real trinomial factor:

1− 2z cos A
2k− 1

n
π + zz,

and this expression suggests all divisors of the form 1+ zn, if all odd numbers
not larger than n are successively substituted for 2k− 1. But having compared
this formula

1− 2z cos A
2k− 1

n
π + zz
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to the general factor
f f − 2 f z cos Aϕ + zz,

we have
f = 1 and ϕ =

2k− 1
n

π;

therefore, hence the following value for y arises

y = αex cos A 2k−1
n π sin A

(
x sin A

2k− 1
n

π +A

)
.

And in this general value even the value of y which must originate from the
simple factor 1 + z, if n was an odd number, is contained; for, in this case
y = αe−x, if 2k− 1 = n; for, then

cos A
2k− 1

n
π = cos Aπ = −1

and its sine = 0. Therefore, the complete integral of the propounded equation
will be found, if in this form

y = αex cos A 2k−1
n π sin A

(
x sin A

2k− 1
n

π +A

)
all odd numbers 1, 3, 5, 7 etc., which are not greater than the exponent n, are
successively substituted for 2k− 1 and all those values are collected into one
sum. Therefore, this way the complete integral in question will result

y = αex cos A 1
n π sin A

(
x sin A

1
n

π +A

)
+ βex cos A 3

n π sin A
(

x sin A
3
n

π +B

)
+ γex cos A 5

n π sin A
(

x sin A
5
n

π + C

)
+ δex cos A 7

n π sin A
(

x sin A
7
n

π +D

)
+ etc,

which terms must be continued until n arbitrary constants will have entered;
this will happen, if from the series

1
n

,
3
n

,
5
n

,
7
n

, etc
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everything not greater than 1 is taken. But the last term, if n is an even number,
will be

νex cos A n−1
n π sin A

(
x sin A

n− 1
n

π +N

)
.

But if n is an odd number, the last term will be:

νe−x,

the penultimate on the other hand

µex cos A n−2
n π sin A

(
x sin A

n− 2
n

π +M

)
,

whence the complete integral is easily assigned in each case. Q.E.I.

§41 To explain this integral more diligently let us expand several simpler
cases putting, as we did in the preceding problem, the integer numbers 1, 2, 3,
· · · , 8 for n; so that the ability of this integration is seen more clearly.

1. The integral of this equation 0 = y + dy
dx is

y = αe−x.

2. The integral of this equation 0 = y + ddy
dx2 is

y = α sin A(x +A).

3. The integral of this equation 0 = y + d3y
dx3 is

y = αex cos A 1
3 π sin A

(
x sin A

1
3

π +A

)
+ βe−x.

4. The integral of this equation 0 = y + d4y
dx4 is

y = αex cos A 1
4 π sin A

(
x sin A

1
4

π +A

)
βex cos A 3

4 π sin A
(

x sin A
3
4

π +B

)
.
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5. The integral of this equation 0 = y + d5y
dx5 is

y = αex cos A 1
5 π sin A

(
x sin

1
5

π +A

)
+ βex cos A 3

5 π sin A
(

x sin A
3
5

π +B

)
+ γe−x.

6. The integral of this equation 0 = y + d6y
dx6 is

y = αex cos A 1
6 π sin A

(
x sin A

1
6

π +B

)
+ β sin A(x +B)

+ γex cos A 5
6 π sin A

(
x sin A

5
6

π + C

)
.

7. The integral of this equation 0 = y + d7y
dx7 is

y = αex cos A 1
7 π sin A

(
x sin A

1
7

π +A

)
+ βex cos A 3

7 π sin A
(

x sin A
3
7

π +B

)
+ γex cos A 5

7 π sin A
(

x sin A
5
7

π + C

)
+ δe−x.

8. The integral of this equation 0 = y + d8y
dx8 is

y = αex cos A 1
8 π sin A

(
x sin A

1
8

π +A

)
+ βex cos A 3

8 π sin A
(

x sin A
3
8

π +B

)
+ γex cos A 5

8 π sin A
(

x sin A
5
8

π + C

)
+ δex cos A 7

8 π sin A
(

x sin A
7
8

π +D

)
.

PROBLEM IV

§42 If this differential equation of order 2n was propounded:

0 = y +
2hdny

dxn +
d2ny
dx2n ,
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having put the element dx to be constant, to find its integral while hh > 1.

SOLUTION

If according to the rule we write 1 for y, zn for dny
dxn and z2n for d2ny

dx2n , this
algebraic equation results

0 = 1 + 2hzn + z2n,

which because of hh > 1 is resolved into these two factors:[
zn + h +

√
hh− 1

] [
zn + h−

√
hh− 1

]
.

But we want to consider h as a positive quantity here; and for this reason, so

h +
√

hh− 1 as h−
√

hh− 1

will be positive quantities. Therefore, let

h +
√

hh− 1 = an and h−
√

hh− 1 = bn,

such that ab = 1. Therefore, this equation will be resolved into two factors:

0 = (zn + an)(zn + bn)

and each real trinomial factor of the first will be contained in this form:

aa− 2az cos A
2n− 1

n
π + zz,

of the second on the other hand in this one:

bb− 2bz cos A
2k− 1

n
π + zz.
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And one will have all factors, if in each of both forms successively all odd
numbers 1, 3, 5, 7 etc. are written for 2k− 1

y = Aeax cos A 1
n π sin A

(
ax sin A

1
n

π +A

)
+ Beax cos A 3

n π sin A
(

ax sin A
3
n

π +B

)
+ Ceax cos A 5

n π sin A
(

ax sin A
5
n

π + C

)
+ Deax cos A 7

n π sin A
(

ax sin A
7
n

π +D

)
+ etc

+ αebx cos A 1
n π sin A

(
bx sin A

1
n

π + a

)
+ βebx cos A 3

n π sin A
(

bx sin A
3
n

π + b

)
+ γebx cos A 5

n π sin A
(

bx sin A
5
n

π + c

)
+ etc

Q.E.I.

PROBLEM V

§43 If this differential equation of indefinite order 2n was propounded:

0 = y− 2hdny
dxn +

d2ny
dx2n ,

having taken dx as a constant and while hh > 1, to find its integral.

SOLUTION

According to the rule given above here the following algebraic equation will
result

0 = 1− 2hzn + z2n;

this is first resolved into these two real factors:

0 =
[
zn − h +

√
hh− 1

] [
zn − h−

√
hh− 1

]
.
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But since h denotes a positive quantity, put

h +
√

hh− 1 = an and h−
√

hh− 1 = bn,

such that ab = 1; and hence this equation will result

0 = (zn − an)(zn − bn).

All real trinomial factors of the first factor zn − an are contained in this form

aa− 2az cos A
2k
n

π + zz,

of the second on the other hand zn − bn in this form

bb− 2bz cos A
2k
n

π + zz;

and one will have all factors, if in each of both forms for 2k all even numbers
0, 2, 4, 6 etc. not larger than n are successively substituted. Therefore, from
these known factors the integral in question will be concluded to be:

y =



Aeax +Beax cos A 2
n π sin A

(
ax sin A 2

n π +B
)

+Ceax cos A 4
n π sin A

(
ax sin A 4

n π + C
)

+Deax cos A 6
n π sin A

(
ax sin A 6

n π +D
)
+ etc

+αebx +βebx cos A 2
n π sin A

(
bx sin A 2

n π + b
)

+γebx cos A 4
n π sin A

(
bx sin A 4

n π + c
)

+δebx cos A 6
n π sin A

(
bx sin A 6

n π + d
)
+ etc

Q.E.I.

PROBLEM VI

§44 If this differential equation of indefinite order was propounded:

0 = y +
2hdny

dxn −
d2ny
dx2n ,

haven taken the element dx to be constant, to find its integral.
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SOLUTION

The algebraic equation resulting from this according to the prescriptions from
this:

0 = 1 + 2hzn − z2n,

is first resolved into these two real factors:

0 =
[

h +
√

hh + 1− zn
] [
−h +

√
hh + 1 + zn

]
.

Let, what because of the positive quantity h is always possible,
√

hh + 1 + h = an and
√

hh + 1− h = bn,

such that ab = 1; and hence this equation will originate:

0 = (an − zn)(bn + zn).

All real trinomial factors of the first factor an − zn are contained in this form

aa− 2az cos A
2k
n

π + zz,

of the second on the other hand in this:

bb− 2bz cos A
2k− 1

n
π + zz,

and one will have all factors, if in the first for 2k all even numbers 0, 2, 4, 6 etc.,
in the second on the other hand for 2k− 1 all odd numbers 1, 3, 5, 7 etc. not
exceeding n are substituted successively. Therefore, from the known factors
the integral in question is concluded:

y =



Aeax +Beax cos A 2
n π sin A

(
ax sin A 2

n π +B
)

+Ceax cos A 4
n π sin A

(
ax sin A 4

n π + C
)

+Deax cos A 6
n π sin A

(
ax sin A 6

n π +D
)
+ etc

+αebx cos A 1
n π sin A

(
bx sin A 1

n π + a
)

+βebx cos A 3
n π sin A

(
bx sin A 3

n π + b
)

+γebx cos A 5
n π sin A

(
bx sin A 5

n π + c
)
+ etc

Q.E.I.
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PROBLEM VII

§45 If this differential equation of indefinite order 2n was propounded

0 = y− 2ndny
dxn −

d2ny
dx2n ,

in which the element dx is put constant, to find its integral.

SOLUTION

By substitution do be done according to the rule given above hence this
algebraic equation of order 2n results:

0 = 1− 2hzn − z2n,

which at first is split into these two real factors

0 =
[
−h +

√
hh + 1− zn

] [
h +
√

hh + 1 + zn
]

.

Because of the positive quantity h put
√

hh + 1 + h = an and
√

hh + 1− h = bn,

such that ab = 1. And one will have the following equation which is to be
resolved

0 = (an + zn)(bn − zn),

all trinomial factors of the first factor of which, i.e. an + zn, are contained in
this form:

aa− 2az cos A
2k− 1

n
π + zz,

of the second on the other hand in this form

bb− 2bz cos A
2k
n

π + zz;

and one will have all factors, if in that form successively all odd numbers 1, 3,
5, 7 etc. are written instead of 2k− 1, in the first on the other hand all even
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numbers 0, 2, 4, 6 etc. not exceeding n instead of k. And therefore, from these
factors the complete integral in question will be calculated to be:

y =



Aeax cos A 1
n π sin A

(
ax sin A 1

n π +A
)

+Beax cos A 3
n π sin A

(
ax sin A 3

n π +B
)

+Ceax cos A 5
n π sin A

(
ax sin A 5

n π + C
)
+ etc

+αebx +βebx cos A 2
n π sin A

(
bx sin A 2

n π + b
)

+γebx cos A 4
n π sin A

(
bx sin A 4

n π + c
)

+δebx cos A 6
n π sin A

(
bx sin A 6

n π + d
)
+ etc.

Q.E.I.

PROBLEM VIII

§46 If this equation of indefinite degree was propounded:

0 = y +
2hdny

dxn +
d2ny
dx2n ,

having put the element dx to be constant and while hh < 1, to find its complete
integral.

SOLUTION

The algebraic equation of order 2n resulting from this is

0 = 1 + 2hzn + z2n;

to find all its real trinomial factors in the circle whose radius is = 1 take the
arc ω the cosine of which is = h such that h = cos Aω. Having found this arc
each trinomial factor will be contained in this form:

1− 2z cos A
kπ −ω

n
+ zz,

by substituting all odd numbers 1, 3, 5, 7, · · · , 2n− 1 instead of k such that
the number of these factors will be n, as the number of dimensions requires it.
Therefore, from these known factors according to the given prescriptions the
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integral in question of the propounded equation will be found:

y =



αex cos A π−ω
n sin A

(
x sin A π−ω

n + a
)

+ βex cos A 3π−ω
n sin A

(
x sin A 3π−ω

n + b
)

+ γex cos A 5π−ω
n sin A

(
x sin A 5π−ω

n + c
)

+ etc

+ νex cos A (2n−1)π−ω
n sin A

(
x sin A (2n−1)π−ω

n + n
)

.

Of course, the number of terms constituting this integral is n, and hence the
number of entering arbitrary constants is 2n, as the order of differentials of
the propounded equation requires.

Q.E.I.

PROBLEM IX

§47 While again hh < 1, if this differential equation of indefinite degree 2n
was propounded:

0 = y− 2hdny
dxn +

d2ny
dx2n ,

having put the element dx to be constant, to find its complete integral.

SOLUTION

The algebraic equation which is deduced from this according to the given
prescriptions is

0 = 1− 2hzn + z2n;

each real trinomial factor of it, the total amount of which is n, is contained in
this general form:

1− 2z cos A
kπ −ω

n
+ zz,

if for 2k successively all even numbers 2, 4, 6, 8 etc. to 2n inclusively are
substituted. But here as before ω denotes the arc of the circle the cosine
of which is h, which because of h < 1 can always be assigned such that
h = cos Aω. But having known all factors of the equation

0 = 1− 2hzn + z2n,
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the complete integral of the propounded differential equation will be:

y =



αex cos A 2π−ω
n sin A

(
x sin A 2π−ω

n + a
)

+ βex cos A 4π−ω
n sin A

(
x sin A 4π−ω

n + b
)

+ γex cos A 6π−ω
n sin A

(
x sin A 6π−ω

n + c
)

+ δex cos A 8π−ω
n sin A

(
x sin A 8π−ω

n + d
)

+ etc

+ νex cos A 2nπ−ω
n sin A

(
x sin A 2nπ−ω

n + n
)

For, 2n arbitrary constants enter into this expression. Q.E.I.

PROBLEM X

§48 If this differential equation of indefinite order was propounded:

0 = y± 2dny
dxn +

d2ny
dx2n ,

in which the differential dx was put constant, to find its integral.

SOLUTION

The algebraic equation which is hence formed reads:

0 = 1± 2zn + z2n = (1± zn)2;

since it is a square all its factors will be squares; therefore, for the upper sign
this form

(1− 2z cos A
2k− 1

n
π + zz)2

contains all factors; for the lower this form

(1− 2z cos A
2k
n

π + zz)2.

From these known factors for the lower signs of the equation

0 = y− 2dny
dxn +

d2ny
dx2n
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one will find the complete integral:

y =



Aex +Bex cos A 2
n π sin A

(
x sin A 2

n π +B
)

+Cex cos A 4
n π sin A

(
x sin A 4

n π + C
)

+etc

+αxex +βxex cos A 2
n π sin A

(
x sin A 2

n π + b
)

+γxex cos A 4
n π sin A

(
x sin A 4

n π + c
)

+etc.

But the integral of the equation

0 = y +
2dny
dxn +

d2ny
dx2n

will be

y =



Aex cos A 1
n π sin A

(
x sin A 1

n π +A
)

+ Bex cos A 3
n π sin A

(
x sin A 3

n π +B
)

+ Cex cos A 5
n π sin A

(
x sin A 5

n π + C
)

+ etc

+ αxex cos A 1
n π sin A

(
x sin A 1

n π + a
)

+ βxex cos A 3
n π sin A

(
x sin A 3

n π + b
)

+ γxex cos A 5
n π sin A

(
x sin A 5

n π + c
)

+ etc

Q.E.I.

§49 From these mentioned examples it is now seen abundantly clearly how
all differential equations of each other contained in this form

0 = Ay +
Bdy
dx

+
Cddy
dx2 +

Dd3y
dx3 +

Ed4y
dx4 + etc,

while the letters A, B, C, D etc. denote arbitrary constants must be treated
and their complete integral must be found. For, the only difficulties resides
in the resolution of algebraic equations into real either simpler or trinomial
factors; but in this task we can justly assume this resolution, just depending
on algebra, to be given. But this same method can indeed also be used in
equations of this kind the terms of which continue to infinity, as long as all
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roots of the algebraic equations which are formed from this can be assigned.
Therefore, we will illustrate the use in one example, and I will explain the
integration of differential equations of infinite order in more detail on another
occasion.

PROBLEM XI

§50 If this differential equation running to infinity was propounded:

0 = y− ddy
2dx2 +

d4y
24dx4 −

d6y
720dx6 +

d8y
40320dx8 − etc,

in which the differential dx is put constant, to find its complete integral.

SOLUTION

Having written 1 for y and zk for the differential of the corresponding order
dky
dxk , this equation running to infinity will arise

0 = 1− z2

1 · 2 +
z4

1 · 2 · 3 · 4 −
z6

1 · 2 · 3 · 4 · 5 · 6 +
z8

1 · 2 · · · 8 − etc,

which agrees with this one
0 = cos Az.

Therefore, all roots of this equation are arcs of the circle with radius = 1
the cosine of which vanishes. Therefore, all possible value of z will be the
following:

±π

2
, ±3

2
π, ±5

2
π, ±7

2
π, ±9

2
π, etc.

Therefore, having known these roots and hence all simple divisors of that equa-
tion, which are all real, the complete integral of the propounded differential
equation will be

y = αe
πx
2 + ae−

πx
2 + βe

3πx
2 + be−

3πx
2 + γe

5πx
2 + ce−

5πx
2 + δe

7πx
2 + de−

7πx
2 + . . .

(to infinity)
And each term taken separately or several combined will give a particular
integral of the propounded differential equation.

Q.E.I.
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