
On the true Value of the integral

formula

∫
∂x
(
log 1

x

)n
extended from

the limit x = 0 to x = 1 *

Leonhard Euler

§1 Since this formula expresses the area of a transcendental curve, to whose
abscissa x the ordinate =

(
log 1

x

)n
corresponds, the question reduces to this

that the same area, provided it corresponds to the abscissa x = 1, is exhibited
either by absolute numbers or at least by means of quadratures of algebraic
curves. And at first its is certainly manifest, as often as n was an integer,
that this integral formula yields the general term of the hypergeometric
progression, since it is

*Original title: “ De vero valore formulae integralis
∫

∂x
(

log 1
x

)n
a termino x = 0 usque ad

terminum x = 1 extensae“, first published in „Nova Acta Academiae Scientarum Imperialis
Petropolitinae 8 (1790), 1794, p. 15-31 “, reprinted in „Opera Omnia: Series 1, Volume 19, pp.
63 - 83 “, Eneström-Number E662, translated by: Alexander Aycock for „Euler-Kreis Mainz“
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∫
∂x
(

log
1
x

)0

= 1,

∫
∂x
(

log
1
x

)1

= 1,

∫
∂x
(

log
1
x

)2

= 1 · 2,

∫
∂x
(

log
1
x

)3

= 1 · 2 · 3,

∫
∂x
(

log
1
x

)4

= 1 · 2 · 3 · 4

and hence in general ∫
∂x
(

log
1
x

)n

= 1 · 2 · 3 · 4 · · · n,

which value is indeed only seen, if n was a positive integer number; furthermo-
re, if n was a negative integer number, from the nature of the hypergeometric
series it is on the other hand easily understood that all values of our formula
become infinitely large. Therefore, the question here mainly contains the cases,
in which the number n is a fractional number, in which the value of our
formula can certainly not be assigned by absolute numbers by any means,
but rather requires quadratures of algebraic curves of the higher orders the
greater the denominator of the fraction n was assumed, as I demonstrated
once already. But recently I discovered a new method to investigate the same
transcendental values, which method I therefore decided to explain here, since
hence increments not to be contemned seem to follow for the field of Analysis.

§2 Therefore, first of all let us put for the sake of brevity

log
1
x
= u,

that it is ∂u = − ∂x
x and hence ∂x = −x∂u. Hence one can immediately derive

extraordinary reductions by means of the common lemma, by which it is
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∫
P∂Q = PQ−

∫
Q∂P.

For, having taken

P = un and ∂Q = ∂x

because of

∂P = nun−1∂u = −nun−1∂x
x

and Q = x

this lemma gives us ∫
un∂x = xun + n

∫
un−1∂x.

Further, because it is un∂x = −xun∂u, if one here puts

P = −x and ∂Q = un∂u,

because of

∂P = −∂x and Q =
1

n + 1
un+1

we will have ∫
un∂x = − 1

n + 1
xun+1 +

1
n + 1

∫
un+1∂x.

Hence, since these integrals must be taken in such a way that they vanish
having put x = 0, but then one has to put x = 1, it is known that the absolute
terms in this reduction go over into nothing such that for this case which is
considered here only it is ∫

un∂x = n
∫

un−1∂x,

but then also ∫
un∂x =

1
n + 1

∫
un+1∂x,

which last reduction follows directly from the first, of course.
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§3 But that the formula xun always vanishes in the case x = 0, is usually not
demonstrated directly and could even be doubted, since having put x = 0 it
is un = 0; but on the other hand this truth can be shown rigorously in the
following way. For, for the case x = 0 let us set

xun = v,

such that we have to explore the value of this letter v, which we therefore
want to represent this way by means of a fraction

v =
x

u−n ,

whose numerator and denominator vanish in the case x = 0, whence by the
general rule so instead of the numerator as instead of the denominator write
their differentials, and since the same value of v has to arise, it will also be

v =
∂x

−nu−n−1∂u
=

+x
nu−n−1

(
because of ∂ = −∂x

x

)
.

Therefore, because from the first value it is v = xun, but from the second
v = 1

n xun+1, it will hence be

vn+1 = xn+1un(n+1),

and from the other

vn =
( x

n

)
un(n+1),

of which values the last divided by the first will give v = nnx, and this
expression must equally exhibit the true value of v for the case x = 0, but
having put x = 0 it manifestly becomes v = 0.

§4 Since our investigation here is mainly restricted to the cases, in which
the exponent n is a fraction, by means of the reduction

∫
un∂x = n

∫
un−1∂x

all fractions assumed for n, no matter how large they were, can continuously
diminished by unity and hence finally can be made smaller than unity such
that n is contained within the limits 0 and 1. Further, by means of the other
reduction

∫
un∂x = 1

n+1

∫
un+1∂x, if the exponent n was a negative fraction,

its value can finally equally be reduced to a fraction between the limits 0 and
1; hence at this place it will be sufficient for us to have expanded only the
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cases, in which the fractions assumed for n lie within the limits 0 and 1; and
these fractions are conveniently subdivided into various classes, depending
on whether the denominators of these fractions were either 2 or 3 or 4 or 5 etc.

§5 After I had recently contemplated series which are formed from binomial
coefficients, I showed, if one puts

(1 + z)m = 1 + Az + Bz2 + Cz3 + etc.,

but then also

(1 + z)n = 1 + αz + βz2 + γz3 + etc.,

that then the sum of this series

1 + Aα + Bβ + Cγ + etc. = s

can be expressed in such a way that it is

s =
∫

um+n∂x∫
um∂x ·

∫
un∂x

,

which sum is therefore defined by means of the propounded integral formula;
further, I also showed that the same sum can also be expressed this way

s =
m + n

mn
∫

xm−1∂x(1− x)n−1 ,

whence it therefore follows that it will always be

m + n
mn

∫
um∂x ·

∫
un∂x =

∫
um+n∂x ·

∫
xm−1∂x(1− x)n−1,

if these single integrals are extended from the boundary x = 0 to the boundary
x = 1, of course.

§6 But since the present undertaking is about fractions and they are smaller
than unity, let us put in general m = µ

λ and n = ν
λ , such that it is

γ(µ + ν)

µν

∫
u

µ
λ ∂ ·

∫
u

ν
λ ∂x =

∫
u

µ+ν
λ ∂x ·

∫
x

µ−λ
λ ∂x(1− x)

ν−λ
λ .

But now in order to free the last integral formula form the fractional exponents,
let us set x = zλ and because of ∂x = λzλ−1∂z it will be
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∫
x

µ−λ
λ ∂x(1− x)

ν−λ
λ = λ

∫
zµ−1∂z(1− zλ)

ν−λ
λ ,

which formula because of ν− λ < 0 can be represented this way

λ
∫ zµ−1∂z

λ
√
(1− zλ)λ−ν

,

which integral equally is to be extended from z = 0 to z = 1. Therefore, having
done this substitution our principal equation will behave this way

µ + ν

µν

∫
∂x λ
√

uµ · ∂x λ
√

uν =
∫

∂x λ
√

uµ+ν ·
∫ zµ−1∂z

λ
√
(1− zλ)λ−ν

,

where the two numbers µ and ν for us will always be positive and smaller
than λ. But here it especially the fact deserves it to be mentioned that in the
case, in which it is µ + ν = λ, the last integral can always be reduced to the
quadrature of the circle in such a way that it is

∫ zµ−1∂z
λ
√
(1− zλ)λ−ν

=
π

λ sin µπ
λ

.

§7 Now from this principal equation without any difficulty one will find the
values of the propounded integral formula for the single denominators λ, if
only to the letters µ and ν in each case successively all numbers smaller than
the denominator λ are attributed; for, then many equations will be formed,
from which one will be able to define the values of the formulas

∫
∂x λ
√

uµ

and
∫

∂x λ
√

uµ. But concerning the formula
∫

∂x λ
√

uµ+ν, which arose from∫
um+n∂x, whenever it was m + n > 1 or µ + ν > λ, since we saw that it is∫
um+n∂x = (m + n)

∫
um+n−1∂x, it will be∫
∂x λ
√

uµ+ν =
µ + ν

λ

∫
∂x

λ
√

uµ+ν−λ,

which formula will therefore hold, whenever it is µ + ν > λ. Finally, all values,
which arise from the last integral formula

∫ zn−1∂z
λ
√
(1− zλ)λ−ν

,

can be considered as known, whence we will indicate them by the letters
A, B, C, D etc.. Therefore, having introduced these in advance let us for the
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denominator λ in order take the numbers 2, 3, 4, 5 etc. and hence expand the
following cases, for which it will be helpful to have observed that in general
the numbers µ and ν can be interchanged such that it is

∫ zµ−1∂z
λ
√
(1− zλ)λ−ν

=
∫ zν−1∂z

λ
√
(1− zλ)λ−µ

.

I. EXPANSION OF THE CASE IN WHICH IT IS λ = 2

§8 For this case our principal equation will therefore be

µ + ν

µν

∫
∂x
√

uµ ·
∫

∂x
√

uν =
∫

∂x
√

uµ+ν ·
∫ zµ−1∂z

(
√

1− zz)2−ν
,

since where instead of µ and ν one can assume only the unity, having put
µ = 1 and ν = 1 for the last formulas only one species arises∫

∂z√
1− zz

,

whose value, as it is known, is = π
2 , which because of the analogy to the

following cases we will denote by the letter A. Therefore, hence, because it is
µ + ν = 2, it will be ∫

∂
√

uu =
∫

u∂x = 1,

but the principal equation will obtain this form

2
∫

∂x
√

u ·
∫

∂x
√

u =
π

2
= A,

whence it is

∫
∂x
√

u =

√
A
2

=
1
2
√

π.

§9 Therefore, since we saw that it is
∫

u
1
2 ∂x = 1

2
√

π, if we continuously
augment the exponent of u by unity, by means of the reduction shown above∫

un∂x = n
∫

un−1∂x

we will obtain the following values
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∫
u

3
2 ∂x =

1 · 3
2 · 2
√

π,∫
u

5
2 ∂x =

1 · 3 · 5
2 · 2 · 2

√
π,∫

u
7
2 ∂x =

1 · 3 · 5 · 7
2 · 2 · 2 · 2

√
π

ans so forth. Further, by going backwards by means of the other reduction∫
un∂x =

1
n + 1

∫
un+1∂x

we will find ∫
u−

1
2 ∂x =

√
π

and hence further

∫
u−

3
2 ∂x = −2

√
π,∫

u−
5
2 ∂x = +

2 · 2
3
√

π,∫
u−

7
2 ∂x = −2 · 2 · 2

3 · 5
√

π,∫
u−

9
2 ∂x = −2 · 2 · 2 · 2

3 · 5 · 7
√

π,

and so we find the values of our formula for all fractions, whose denominator
is = 2.

EXPANSION OF THE CASE IN WHICH IT IS λ = 3

§10 Since here the letters µ and ν can obtain two values, of course 1 and 2,
the last integral formula gives us four values, which we want to indicate in
the following way

∫
∂z

3
√

1− z3
= A,

∫ z∂z
3
√

1− z3
= B,∫

∂z
3
√
(1− z3)2

= A′,
∫ z∂z

3
√
(1− z3)2

= B′.
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In the first and fourth of these formulas it is µ + ν = λ = 3, whence by the
quadrature of the circle we will have

A =
π

3 sin 1
3 π

=
2π

3
√

3
and B′ =

π

3 sin 2
3 π

=
2π

3
√

3
,

whence it is plain that it is B′ = A, which even follows from the fact that
the letters µ and ν are interchangeable. Furthermore, note that in the case
ν + ν = 3 it will be ∫

∂x 3
√

uµ+ν =
∫

u∂x = 1,

but in the case µ + ν = 4 on the other hand it will be∫
∂x 3
√

u4 =
∫

u
4
3 ∂x =

4
3

∫
∂x 3
√

u.

§11 Having mentioned these things in advance let us expand all cases of our
principal equation in the following way:

I. If µ = 1 and ν = 2, it will be
3
2

∫
∂x 3
√

u ·
∫

∂x 3
√

u2 = A.

II. If µ = 2 and ν = 2, it will be
4
4

∫
∂x 3
√

u2 ·
∫

∂x 3
√

u2 =
4
3

B
∫

∂x 3
√

u.

III. If µ = 1 and ν = 1, it will be 2
∫

∂x 3
√

u ·
∫

∂x 3
√

u = A′
∫

∂x 3
√

u2.

IV. If µ = 2 and ν = 1, it will be
3
2

∫
∂x 3
√

u2 ·
∫

∂x 3
√

u = B′.

And so we obtained four equations for the determination of the two unknown
values, namely

∫
∂ 3
√

u and ∂x 3
√

u2, which can therefore be defined in multiple
way, since for this only two equations suffice.

§12 But to render this calculation more clear, for the sake of brevity let us set∫
∂x 3
√

u = p and
∫

∂x 3
√

u2 = q

and at first let us combine the equations I and II, which will be
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3
2

pq = A and qq =
4
3

Bp,

the second of which gives p = 3qq
4B ; this value substituted in the first gives

9q3

8B = A, whence one finds

q = 2 3

√
AB
9

,

from which it is further concluded

p =
3
B

3

√
A2B2

81
or also

p =
3

√
AA
3B

,

and so having resubstituted the values for p and q we now obtained these
determinations

∫
∂ 3
√

u =
3

√
AA
3B

and 2pp = A′q.

From the second it is q = 2pp
A′ , which value substituted in the first gives

3p3

A′ = A, whence one finds

p =
3

√
AA′

3
and hence

q =
2
A′

3

√
A2A′A′

9
= 2 3

√
A2

9A′
,

and so this combination leads us to these values

∫
∂x 3
√

u =
3

√
AA′

3
and

∫
∂

3
√

u2 = 2 3

√
A2

9A′
.
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§14 Now let us also combine the first equation with the fourth and we will
have 3

2 pq = A and 3
2 pq = B′, whence only B′ = A follows, as we found before.

Therefore, let us combine the second with the third and we will have

qq =
4
3

Bp and 2pp = A′q,

from the second of which it is q = 2pp
A′ , which value substituted in the first

gives 4p3

A′A′ =
4
3 B, whence it is found

p =
3

√
A′A′B

3
,

from which it is

q = 2 3

√
A′BB

9
,

and so this combination gives us these values

∫
∂x 3
√

u =
3

√
A′A′B

3
and

∫
∂x 3
√

u2 = 2 3

√
A′BB

9
.

§15 Since the fourth equation agrees with the first completely, it would be
superfluous to combine the second or the third with the fourth, since we
already combined them with the first. And so we in total obtained three
values for the for the letters p and q, which be want to list up here all together

∫
∂x 3
√

u =
3

√
AA
3B

=
3

√
A′A′

3
=

3

√
A′A′B

3
and

∫
∂x 3
√

u2 = 2 3

√
AB
9

= 2 3

√
A2

9A′
= 2 3

√
A′BB

9
.

Therefore, we hence having taken the cubes obtain the equations

AA
B

= AA′ = A′A′B and AB =
AA
A′

= A′BB.
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§16 But having related all these different values all these equalities are
reduced to this single one by which it is

A = A′B′

Therefore, having substituted the integral formulas themselves we obtain this
most remarkable truth∫

∂z
3
√

1− z3
=
∫

∂z
3
√
(1− z3)2

·
∫ z∂z

3
√

1− z3
,

and since A is defined by the quadrature of the circle, the value if this product
will arise as ∫

∂z
3
√
(1− z3)2

·
∫ z∂z

3
√

1− z3
=

2π

3
√

3
,

whence, if the one of these two formulas would be known, at the same time
the value of the other would be known; for, this way from two values A and
B the two remaining ones A′ and B′ are determined in such a way that it is

A′ =
A
B

and B′ = A.

Finally, it will also be worth one’s while to have noted this relation∫
∂x 3
√

u ·
∫

∂x 3
√

u2 =
2
3

A =
4π

9
√

3
.

EXPANSION OF THE CASE IN WHICH IT IS λ = 4

§17 Here, for the sake of brevity let us first put∫
∂x 4
√

u = p,
∫

∂x 4
√

u2 = q and
∫

∂x 4
√

u3 = r;

furthermore, let us denote the integral formula

∫ zµ−1∂z
4
√
(1− z4)4−ν

by the character (µ, ν), since we already saw that the letters µ and ν can be
interchanged. Additionally, represent the principal equation this way
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∫
∂x 4
√

uµ ·
∫

∂x 4
√

uν =
µν

µ + ν

∫
∂x 4
√

uµ+ν · (µ, ν),

where it should be noted, if µ + ν = λ = 4, that it will be∫
∂x 4
√

u4 = 1;

but if µ + ν = λ + α = 4 + α, it will be∫
∂x 4
√

u4+α =
(

1 +
α

4

) ∫
u

α
4 ∂x =

µ + ν

4

∫
∂x 4
√

uα.

§18 Now let us to the letters µ and ν successively attribute all values smaller
than 4 and the principal equation will give us the following equations:

1◦. If
(

µ = 1
ν = 1

)
, it will be pp =

1
2

q(1, 1), whence it is
pp
q

=
1
2
(1, 1) = A.

2◦. If
(

µ = 1
ν = 2

)
, it will be pq =

2
3

r(1, 2), whence it is
pq
r

=
2
3
(1, 2) = B.

3◦. If
(

µ = 1
ν = 3

)
, it will be pr =

3
4
(1, 3) = C.

4◦. If
(

µ = 1
ν = 4

)
, it will be qq = (2, 2) = D.

5◦. If
(

µ = 2
ν = 3

)
, it will be qr =

6
5
· 5

4
p(2, 3), whence it is

qr
p

=
3
2
(2, 3) = E.

6◦. If
(

µ = 3
ν = 3

)
, it will be rr =

9
6
· 6

4
q(3, 3), whence it is

rr
q

=
9
4
(3, 3) = F.

§19 Therefore, we hence obtain six equations, from our three unknowns p, q
and r must be defined, which can therefore done in several ways, since three
equations suffice. Therefore, let us chose those, which solve the task most
easily, and first the fourth immediately gives us

q =
√

D,

whence from the first we find pp = A
√

D and hence

p =
√

A
√

D =
4
√

AAD,
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finally we conclude rr = F
√

D from the sixth equation and hence

r = 4
√

FFD

and so we determined all three transcendental formulas in such a way that it
is

1◦. p =
∫

∂x 4
√

u =
4
√

AAD =
4

√
1
4
(1, 1)2(2, 2)

2◦. q =
∫

∂x 4
√

u2 =
∫

∂x
√

u =
√

D =
√
(2, 2),

3◦. r =
∫

∂x 4
√

u3 =
4
√

DFF =
3
2

4
√
(2, 2)(3, 3)2.

§20 Here it will now be helpful to have noted that the value of the formula
(µ, ν) in the case, in which it is µ + ν = λ, can in general be expressed by the
quadrature of the circle, since in this case it is

(µ, ν) =
π

λ
µπ
λ

.

Therefore, in our case, in which it is λ = 4, it will be

(2, 2) =
π

4 sin π
2
=

π

4

further, it will also be

(1, 3) =
π

4 sin 1
4 π

=
π

2
√

2
.

Therefore, it is hence plain that it will be

D =
π

4
and C =

3
4
· π

2
√

2
=

3π

8
√

2
,

such that these two letters C and D depend on the quadrature of the circle
only.
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§21 Since we found these three determinations, namely

p =
4
√

AAD, q =
√

D and r = 4
√

DFF,

from the equations 1,4 and 6, if we substitute the same values in the remaining
equations, we will find extraordinary relations between our small letters. For,
so the second equation pq = Br will give AAD3 = B4DFF, which is reduced
to this one

AD = BBF;

the third equation pr = C on the other hand will give

ADF = CC;

finally, the fifth equation qr = Ep will yield D3FF = A2DE4, whence it is

DF = AEE.

Therefore, this way we are led to the three following relations

1◦. AD = BBF, 2◦. ADF = CC and 3◦. DF = AEE,

the first of which multiplied by the second will give AD = BC, but the second
on the other hand multiplied by the third produces DF = CE. Therefore,
because it is AD = BC, from the the first it is concluded that it will also be
C = BF, such that the found determinations are reduced to these three

1◦. C = AE, 2◦. C = BF, 3◦. AD = BC,

which are reduced to these three most simple ones

1◦. C = AE, 2◦. C = BF, 3◦. D = BE.

§22 Therefore, if in these last equations instead of the letters we introduce
the integral formulas denoted by our characters, the following relations will
arise:

1◦. (1, 3) = (1, 1)(2, 3),

2◦. (1, 3) = 2(1, 2)(3, 3),
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and

3◦. (2, 2) = (1, 2)(2, 3).

Therefore, hence by means of the integral formulas we will have these three
most memorable relations:

1◦.
π

2
√

2
=
∫

∂z
4
√
(1− z4)3

·
∫ z∂z

4
√

1− z4
=
∫

∂z
4
√
(1− z4)3

·
∫ zz∂z√

1− z4
,

2◦.
π

4
√

2
=
∫

∂z√
1− z4

·
∫ zz∂z

4
√

1− z4

and

3◦.
π

4
=
∫

∂z√
1− z4

·
∫ zz∂z√

1− z4
,

the last of which I published already a long time ago.

§23 Therefore, because from the six integral formulas, which occur here, two,
namely C and D, depend on the quadrature of the circle, if only one of the
remaining ones becomes known, the values of all the others can be assigned
from this. For, if except for the characters (1, 3) and (2, 2) we additionally
consider this one (1, 2) as known, the remaining three will be determined by
these three in the following way:

(3, 3) =
(1, 3)

2(1, 2)
, (2, 3) =

(2, 2)
(1, 2)

, (1, 1) =
(1, 2)(1, 3)

(2, 2)
.

EXPANSION OF THE CASE IN WHICH IT IS λ = 5

§24 Here, let us call the transcendental formulas in question∫
u

1
5 = p,

∫
u

2
5 = 5,

∫
u

3
5 = r,

∫
u

4
5 = s.

Now, let the character (µ, ν) denote this integral formula

∫ zµ−1∂z
5
√
(1− z5)5−ν

;
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having put theses from the principle equation we will obtain the following
equations:

1◦. If
(

µ = 1
ν = 1

)
, it will be pp =

1
2

q(1, 1), whence it is
pp
q

=
1
2
(1, 1) = A.

2◦. If
(

µ = 1
ν = 2

)
, it will be pq =

2
3

r(1, 2), therefore
pq
r

=
2
3
(1, 2) = B.

3◦. If
(

µ = 1
ν = 3

)
, it will be pr =

3
4

s(1, 3) therefore
pr
s

=
3
4
(1, 3) = C

4◦. If
(

µ = 1
ν = 4

)
, it will be ps =

4
5
(1, 4) = D.

5◦. If
(

µ = 2
ν = 2

)
, it will be qq = s(2, 2) therefore

qq
s

= (2, 2) = E.

6◦. If
(

µ = 2
ν = 3

)
, it will be qr =

6
5
(2, 3) = F.

7◦. If
(

µ = 2
ν = 4

)
, it will be qs =

8
6
· 6

5
p(2, 4) therefore

qs
p

=
8
5
(2, 4) = G.

8◦. If
(

µ = 3
ν = 3

)
, it will be rr =

9
6
· 6

5
p(3, 3) therefore

rr
p

=
9
5
(3, 3) = H.

9◦. If
(

µ = 3
ν = 4

)
, it will be rs =

12
7
· 7

5
q(3, 4) therefore

rs
p

=
12
5
(3, 4) = I.

10◦. If
(

µ = 4
ν = 4

)
, it will be ss =

16
8
· 8

5
r(4, 4) therefore

ss
r

=
16
5
(4, 4) = K.

§25 Therefore, since we obtained ten equations, from which four unknown
quantities must be determined, let us choose those, by which the task will be
completed most easily. But the fourth equation immediately gives

s =
D
p

;

but from the sixth it is

r =
F
q

,

such that it remains to find the two letters p and q. Further, from the first on
the other hand we deduce

17



q =
pp
A

,

such that it is

r =
AF
pp

.

Therefore, now from the second equation it will become

p5

AAF
= B,

whence it is

p =
5
√

AABF,

having found which value it is concluded that it will be

q =
5

√
BBFF

A
, r = 5

√
AF3

BB
;

finally, it will be

s =
D

5
√

AABF
.

And so all four unknown quantities can be expressed by means of ordinary
quadratures. If we now substitute these values in the remaining equations, the
following equations will arise:

1◦. CD = AF,

2◦. BF = ED,

3◦. D = AG,

4◦. F = BH,

5◦. D = BI,

6◦. DD = AFK,

18



whence because of D = AG one finds

DG = FK.

§26 Therefore, lo and behold , six new determinations arose, by which our
ten letters depend on each other, such that from four assumed to be known the
remaining six can be defined; but it will be especially convenient to assume
the two D and F as known, which are known by the quadrature of the circle,
of course, since it is

D =
4
5
(1, 4) =

4
5
· π

5 sin 1
5 π

and F =
6
5
(2, 3) =

6
5
· π

5 sin 2
5 π

.

Therefore, as long as two of the remaining ones are also considered as known,
it will be possible to define all others by means of them. But on the other hand
those six relations compared to each other correctly yield each three formulas
equal so to D as to F, which are

D = AG = BI = CK and F = BH = CG = EI.

Therefore, hence, if except for D and F also the letters A and B are assumed
to be known, the remaining letters are determined from them as follows:

C =
AF
D

, E =
BF
D

, G =
D
A

, H =
F
B

, I =
D
B

and K =
DD
AF

.

§27 Now, let us substitute the characters of the integral formulas for these
letters and the following six relations will be obtained:

1◦ (1, 4) = (1, 1)(2, 4),

2◦ (1, 4) = 2(1, 2)(3, 4),

3◦ (1, 4) = 3(1, 3)(4, 4),

4◦ (2, 3) = (1, 2)(3, 3),

5◦ (2, 3) = (1, 3)(2, 4),

6◦ (2, 3) = 2(2, 2)(3, 4);

hence many extraordinary theorems could be formulated.
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§28 Since both letters D and F or rather the characters (1, 4) and (2, 3) involve
the circumference of the circle, their ratio (1,4)

(2,3) can be exhibited algebraically,
whose value is

=
sin 2

5 π

sin 1
5 π

= 2 cos
1
5

π.

Hence also the following ratios of two integral formulas are derived

2 cos
1
5

π =
(1, 1)
(1, 3)

= 2
(3, 4)
(3, 3)

=
(1, 2)
(2, 2)

= 3
(4, 4)
(2, 4)

,

whence again extraordinary theorems could be formulated, if the present
undertaking would postulate it. But I will delay the more complete explanation
of this subject to another occasion.

§29 In similar manner, as we expanded the case λ = 5 here, it would be
possible to treat the following cases, in which to the letter λ larger values
are attributed. But since the number of equations always increases according
to the triagonal numbers, it would be superfluous to invest the work here,
since all analytic operations, on which these solutions are based, are already
explained sufficiently diligently.
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