
On differential formulas of second

degree that admit an integration*

Leonhard Euler

§1 Among such differential formulas of second degree that admit an inte-
gration this formula is especially remarkable:

(x∂x + y∂y)(∂y∂∂x − ∂x∂∂y)

(∂x2 + ∂y2)
3
2

,

which, if x and y denote orthogonal coordinates of a curve, arises, if the
element x∂x + y∂y is divided by the radius of curvature of this curve; since it
is known that the integral of this form is

y∂x − x∂y√
∂x2 + ∂y2

,

as will become clear to anyone doing the calculation, if the differential of this
formula is calculated. Therefore, since the integration is not obvious by any
means, and indeed requires many detours, I decided to discuss this topic
more accurately here, whence one will be able to understand, how many other
formulas of this kind be found which likewise admit an integration.

§2 That this can be done more easily, let us eliminate the differentials of
second degree from the calculation, which is most conveniently achieved
by putting ∂y = p∂x such that instead of the second differentials this new
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quantity p = ∂y
∂x is introduced into the calculation, which contains the ratio of

the first differentials, of course. Therefore, then it will be

x∂x + y∂y = ∂x(x + py)

and

∂x2 + ∂y2 = ∂x2(1 + pp),

and hence the denominator of the given formula becomes

(∂x2 + ∂y2)
3
2 = ∂x3(1 + pp)

3
2 ;

finally, for the other factor of the numerator one has

∂y∂∂x = p∂x∂∂x,

and because of

∂∂y = p∂∂x + ∂p∂x

it will be

∂x∂∂y = p∂x∂∂x + ∂p∂x2,

and so that other factor will be

∂y∂∂x − ∂x∂∂y = −∂p∂x2,

having substituted which the given formula will take this form:

−∂p(x + py)

(1 + pp)
3
2

,

whose integral will therefore be

y∂x − x∂y√
∂x2 + ∂y2

=
y − px√
1 + pp

,

whose differential yields the above formula, of course.
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§3 Therefore, since after this substitution only the one differential ∂p enters
into the difference-differential formula, I willconsider this formula: V∂p in
general and will investigate values of what kind have to be attributed to
this letter V that the integral of the formula V∂p can be exhibited; here it
is certainly evident that this quantity V has to be a certain function of the
three variables x, y and p, of which nature which hence have to be for the
integration to succeed I therefore decided to investigate here more accurately.

§4 And first from that what I once taught about the integrability of differen-
tial formulas of higher orders one can without any difficulty exhibit criteria
from which one can decide whether such a formula V∂p admits an integration
or not. But at that time I considered such a form

∫
Z∂x, where having put

∂y = p∂x, ∂p = q∂x, ∂q = r∂x, ∂r = s∂x etc.

the letter Z denotes a function constructed arbitrarily from the letters x, y, p,
q, r, s etc., and I showed that, as often of this formula

∫
Z∂x was integrable,

then it will always be

0 =

(
∂Z
∂y

)
− 1

∂x
∂ ·

(
∂Z
∂p

)
+

1
∂x2 ∂∂ ·

(
∂Z
∂q

)
− 1

∂x3 ∂3 ·
(

∂Z
∂r

)
+

1
∂x4 ∂4 ·

(
∂Z
∂s

)
− etc.,

But if that quantity does not become equal to zero directly, then that equation
expresses the relation between x and y, for which the integral formula

∫
Z∂x

has a maximum or minimum value.

§5 Therefore, to reduce the formula
∫

V∂p that we consider here to this
form:

∫
Z∂x, let us set ∂p = q∂x such that our formula becomes Vq∂x and

hence Z = Vq; let us remark here that the quantity V contains only the three
letters x, y and p; having observed this it will be(

∂Z
∂y

)
=

(
q∂V
∂y

)
;

furthermore, (
∂Z
∂p

)
=

(
q∂V
∂p

)
and

(
∂Z
∂q

)
= V,

and so the criterion indicating integrability will be
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0 =

(
q∂V
∂y

)
− 1

∂x
∂ ·

(
q∂V
∂p

)
+

1
∂x2 ∂∂ · V,

which equation can also be represented this way:

0 = q
(

∂V
∂y

)
− 1

∂x
∂ ·

[
q
(

∂V
∂p

)
− 1

∂x
∂V

]
,

but then, because of q∂x = ∂p, it can also be represented as follows:

0 = ∂p
(

∂V
∂y

)
− 1

∂x
∂ ·

[
∂p

(
∂V
∂p

)
− ∂V

]
.

§6 Therefore, since in general by means of the now sufficiently established
symbols

∂V = ∂x
(

∂V
∂x

)
+ ∂y

(
∂V
∂y

)
+ ∂p

(
∂V
∂p

)
,

having substituted this value the desired criterion will be expressed this way:

0 = ∂p
(

∂V
∂y

)
+

1
∂x

∂ ·
[

∂x
(

∂V
∂x

)
+ ∂y

(
∂V
∂y

)]
,

which equation therefore contains the desired criterion such that, as often as
that formula actually becomes equal to zero, we can always be certain that the
given formula V∂p is integrable.

§7 Since V, by assumption, is a function involving these three variables x, y
and p, differentiating in usual manner we have

∂V = M∂x + N∂y + P∂p

and the criterion will be contained in this equation:

0 = N∂p + ∂ · (M + Np),

which is further expanded into this one:

0 = 2N∂p + ∂M + p∂N.

To see the power of this more clearly, let us apply that criterion to the formula
given initially
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∂p(x + py)

(1 + pp)
3
2

,

where, since

V =
x + py

(1 + pp)
3
2

,

having taken just x as variable, one finds

M =
1

(1 + pp)
3
2

,

but having taken just y as variable, it will be

N =
p

(1 + pp)
3
2

;

therefore, hence it will be

∂M = − 3p∂p

(1 + pp)
5
2

and ∂N =
(1 − 2pp)∂p

(1 + pp)
3
2

,

having substituted which values, since

1. 2N∂p =
2p∂p

(1 + pp)
3
2
=

2p∂p(1 + pp)

(1 + pp)
3
2

,

2. ∂M = − 3p∂p

(1 + pp)
5
2

,

3. p∂N =
p∂p(1 − 2pp)

(1 + pp)
5
2

,

the sum of these formulas is obviously zero. From this it is understood that
this formula is indeed integrable, even though its integral is not known.

§8 But since our goal here rather is to find appropriate values to be taken for
V, for which the differential formula V∂p admits an integration, the found
criterion has no use; for this reason, let us begin our investigation from the
simplest cases, in which the given formula admits an integration, among
which without a doubt the simplest one is that one, in which V denotes a
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constant quantity. Therefore, let V = 1, and it will be
∫

∂p = p. But hence
it further follows, if the differential ∂p is multiplied by an arbitrary function
of this integral p, which we will call ∆ : p, then this formula ∂p∆ : p will be
integrable, which is certainly clear per se. For, here the under term integrability
we do not just understand what can be exhibited algebraically, but in general
what can be assigned in terms of arbitrary transcendental quantities.

§9 But second most simple case, in which the formula V∂p becomes inte-
grable, is the case V = x such that the differential formula is = x∂p. For,
since by the all-known reduction

∫
x∂p = px −

∫
p∂x, because of p∂x = ∂y

this integral will be
∫

x∂p = px − y. Therefore, if hence ∆ : (x − y) denotes
an arbitrary function of the formula px − y, also this differential formula:
x∂p∆ : (px − y) extending a lot further will admit an integration, which
having put px − y = V because of ∂V = x∂p takes this form: ∂V∆ : V.

§10 Furthermore, even a third very simple case is given in which our formula
V∂p becomes integrable, which arises by putting V = y

pp . For, by the same

reduction, by which
∫

t∂u = tu −
∫

u∂t, taking t = y and ∂u = ∂p
pp , whence

∂t = ∂y = p∂x and u = −1
p , it will be∫ y∂p

pp
=

−y
p

+
∫

∂x = x − y
p

.

Therefore, if further ∆ :
(

x − y
p

)
denotes an arbitrary function of the formula

y − y
p , even this a lot more general differential formula will be integrable:

y∂p
pp

∆ :
(

x − y
p

)
.

For, if one sets x − y
p = V, because of ∂V = y∂p

pp , this form becomes = ∂V∆ : V,
which is obviously always integrable.

§11 Having constituted these principal cases, let us also investigate more
complicated cases, in which the general formula V∂p will likewise become
integrable; for this purpose, let us go through the following problems.
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PROBLEM 1

Let two functions of p be in questions, which we will call P and Q, of such a nature
that this differential formula: ∂p(Px + Qy) becomes integrable.

SOLUTION

§12 Since this formula involves two parts, let us expand them separately by
the mentioned reduction, and first it will certainly be∫

Px∂p = x
∫

P∂p −
∫

∂x
∫

P∂p,

where the integral
∫

P∂p can be considered as a known quantity, since P
denotes a function of p. In like manner, for the other part it will be∫

Qy∂p = y
∫

Q∂p −
∫

∂y
∫

Q∂p,

where the last terms contain formulas that are not integrable per se on both
sides, whence it is necessary that after having collected these two formulas
into one sum these two last terms cancel each other. Therefore, let∫

∂x
∫

P∂p +
∫

∂y
∫

Q∂p = 0,

and hence by integrating, because if ∂y = p∂x, it will be∫
P∂p + p

∫
Q∂p = 0.

Now let us differentiate again and we will obtain

P +
∫

Q∂p + Qp = 0,

which differentiated again yields

∂P + p∂Q + 2Q∂p = 0,

which equation contains the relation between the two functions P and Q in
question.
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§13 Therefore, if this last equation is multiplied by p,

p∂P + ∂ · Qpp = 0

will result; hence it is clear, if the one of these two functions P and Q were
known, from this the other can be determined. For, if for the sake of il-
lustration, the function P was given, because of

∫
p∂P + Qpp = C it will

be

Q =
C −

∫
p∂P

pp
.

But if the other function Q was given, from the first formula it will be

∂P = −p∂Q − 2Q∂p,

and hence by integrating

P = C −
∫
(p∂Q + 2Q∂p)

or even

P = C − Qp −
∫

Q∂p.

§14 But whenever those two function P and Q had been determined correctly
that way, then the integral of the given differential formula ∂p(Px + Qy) will
be expressed in this way that = x

∫
P∂p + y

∫
Q∂p. And we already noted

that the one of the functions P and Q can be assumed arbitrarily. Yes, one
can even be constitute a certain relation between P and Q. If, for the sake of
an example, we want that P = nQp, having substituted these values in this
differential equation, it will be

(n + 2)Q∂p + (n + 1)p∂Q = 0,

whence one further deduces

(n + 2)∂p
p

+
(n + 1)∂Q

Q
= 0,

whose integral is

(n + 2) log p + (n + 1) log Q = log C,
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and hence further pn+2Qn+1 = C, from which one deduces

Q =
C

p
n+2
n+1

, consequently P =
nC

p
1

n+1
.

§15 Since the integral was found to be x
∫

P∂p + y
∫

Q∂p, these two integral
formulas are to be considered to obtain two constants such that the true
integral results expressed this way: x

∫
P∂p + y

∫
Q∂p + αx + βy, where the

constants α and β have to be determined for each case in such a way that,
after having taken the differentials, the element ∂x exits the calculation, what
happens, if it was

∂x
∫

P∂p + p∂x
∫

Q∂p + α∂x + βp∂x = 0,

whence, as we already found

P∂p + ∂p
∫

Q∂p + Qp∂p + β∂p = 0,

which divided by ∂p and differentiated again yields

∂P + 2Q∂p + p∂Q = 0,

which equation expressed the required relation between P and Q.

ANOTHER SOLUTION OF THE SAME PROBLEM

§16 Since x∂p is the differential of the formula px − y, by reduction it will be∫
Pxd∂ = P(px − y)−

∫
(px − y)∂P;

further, since y∂p
pp is the differential of the formula px − y, by reduction it will

be:

∫
Qy∂y =

∫
Qpp · y∂p

pp
= Qpp

(
x − y

p

)
−

∫ (
x − y

p

)
∂ · Qpp.

Therefore, combining them the integral of the given formula will be

P(px − y) + Qpp
(

x − y
p

)
−

∫
(px − y)∂P −

∫ (
x − y

p

)
∂ · Qpp,
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where it is evident that the last integral parts must be equal to zero. Hence,
having taken the differentials, one has to set

(px − y)∂P +

(
x − y

p

)
∂ · Qpp = 0,

which equation divided by px − y gives

∂P +
1
p

∂ · Qpp = 0

or

∂P + p∂Q + 2Q∂p = 0,

which is the same equation between P and Q that the first solution produced.

§17 Since we saw above that this formula

(x + py)∂p

(1 + pp)
3
2

admits an integration, after an application here it will be

P =
1

(1 + pp)
3
2

and Q =
p

(1 + pp)
3
2

.

Now let us consider the quantity P as known and let us see, whether we find
the same value for Q. Therefore, since

∂P =
−3p∂p

(1 + pp)
5
2

,

the found equation will become

−3p∂p

(1 + pp)
5
2
+ p∂Q + 2Q∂p = 0,

which multiplied by p yields

∂ · Qpp =
3pp∂p

(1 + pp)
5
2

and hence Qpp =
∫ 3pp∂p

(1 + pp)
5
2

.

But paying little attention, it will be clear that

10



∫ 3pp∂p

(1 + pp)
5
2
=

p3

(1 + pp)
3
2

,

and so it will be

Qpp =
p3

(1 + pp)
3
2

and hence

Q =
p

(1 + pp)
3
2
+

C
pp

.

§18 Therefore, hence we see that for the value

P =
1

(1 + pp)
3
2

not only

Q =
p

(1 + pp)
3
2

,

but, in more generality, one can take

Q =
p

(1 + pp)
3
2
+

C
pp

such that this formula admits an integration. Therefore, since the integral was
found in general to be

P(px − y) + Qpp
(

x − y
p

)
,

having substituted these values the integral will be

px − y

(1 + pp)
3
2
+

pp(px − y)

(1 + pp)
3
2

+
C(px − y)

p
,

which is reduced to this form:

px − y√
1 + pp

+
C(px − y)

p
.
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PROBLEM 2

If M and N were any arbitrary given functions of p, to find a function Π of the same
letter such that this differential formula: (Mx + Ny)Π∂p admits an integration.

SOLUTION

§19 If we compare this problem with the preceding one, it is immediately
clear that the functions denoted by the letters P and Q are MΠ and NΠ
such that P = MΠ and Q = NΠ. Therefore, since integrability requires this
equation:

∂P + 2Q∂p + p∂Q = 0,

after this substitution we will obtain the following equation:

M∂Π + Π∂M + 2NΠ∂p + Np∂Π + Πp∂N = 0,

from which, since M and N are known functions of p, we find

∂Π
Π

=
−∂M − 2N∂p − p∂N

M + Np
,

whence by integrating we calculate

log Π = − log(M + Np)−
∫ N∂p

M + Np
.

Therefore, for the sake of brevity, let us put∫ N∂p
M + Np

= log K,

since even this formula K can be considered as given, and so it will be
log Π = − log(M + Np)− log K + log A. Therefore, for the solution of our
problem we will have:

Π =
A

K(M + Np)
, while log K =

∫ N∂p
M + Np

.
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§20 But having found this value of the function in question

Π =
A

K(M + Np)
,

since above the integral in general resulted as

P(px − y) + Qpp
(

x − y
p

)
= (px − y)(P + Qp),

having substituted the respective values for P and Q, the integral of the given
differential formula (Mx + Ny)Π∂p will be

(px − y)(MΠ + NΠp) =
A(px − y)(M + Np)

K(M + Np)
,

which is conveniently further reduced to this very simple form:

A(px − y)
K

,

and so it will be ∫
(Mx + Ny)∂p
K(M + Np)

=
px − y

K
,

while

log K =
∫ N∂p

M + Np
or K = e

∫ N∂p
M+Np ,

which will be worth the effort to illustrate it with examples.

EXAMPLE 1

§21 Let M = 1 and N = 1 such that this differential formula is propounded:
(x + y)Π∂p. Therefore, it will be

log K =
∫

∂p
1 + p

= log(1 + p)

here and hence K = 1+ p such that now the function in question is Π = A
(1+p)2 ,

and hence the differential formula admitting an integration will be (x+y)∂p
(1+p)2 ,

whose integral obviously is px−y
1+p . For, if this formula is differentiated,
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x∂p
1 + p

− (px − y)∂p
(1 + p)2 ,

which is reduced to this form:

(x + y)∂p
(1 + p)2 .

EXAMPLE 2

§22 Let both functions M and N be constants, namely M = m and N = n,
such that this differential formula is given: (mx + ny)Π∂p. Therefore, here it
will be

log K =
∫ n∂p

m + np
= log(m + np)

first such that K = m + np. Hence the function Π in question will be

A
(m + np)2

such that this formula is already integrable:

(mx + ny)∂p
(m + np)2 ,

whose integral will be

px − y
m + np

,

of course.

EXAMPLE 3

§23 Now let us take M = 1 and N = p that this formula is to be rendered
integrable (x + py)Π∂p. Therefore, here it will be

log K =
∫ p∂p

1 + pp
= log

√
1 + pp

first and hence K =
√

1 + pp, whence the function in question becomes
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Π =
A

(1 + pp)
3
2

,

and thus the differential formula admitting an integration will be

(x + py)∂p

(1 + pp)
3
2

, (1)

which is the one we considered initially, whose integral therefore is

px − y√
1 + p2

.

EXAMPLE 4

§24 Now let M = n and N = np such that the formula that is to rendered
integrable is (mx + npy)Π∂y. Therefore, here it will be

log K =
∫ np∂p

m + npp
= log

√
m + npp

and hence K =
√

m + npp, whence the function in question will be

Π =
A

(m + npp)
3
2

such that this formula

(mx + npy)∂p

(m + npp)
3
2

is already integrable, whose integral will therefore be

px − y√
m + npp

.

EXAMPLE 5

§25 Now let M = m and N = npλ−1 such that formula that is to be rendered
integrable is (mx + npλ−1y)Π∂p. Therefore, here it will be

log K =
∫ npλ−1∂p

m + npλ
=

1
λ

log(m + npλ)
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and hence K = (m + npλ)
1
λ , whence the function Π in question will be

A

(m + npλ)
λ+1

λ

such that this formula is already integrable:

(mx + npλ−1y)∂p

(m + npλ)
λ+1

λ

,

whose integral will therefore be

px − y

(m + npλ)
1
λ

.

EXAMPLE 6

§26 Now let M = mp and N = n such that the formula that is to rendered
integrable is (mpx + ny)Π∂p. Therefore, here it will be

log K =
∫ n∂p

mp + np
=

n
m + n

log p

and hence K = p
n

m+n ; therefore,

Π =
A

(m + n)p
m+2n
m+n

,

and so this formula is integrable now

(mpx + ny)∂p

(m + n)p
m+2n
m+n

,

whose integral will therefore be

px − y
p

n
m+n

.

§27 Here the especially remarkable case occurs, in which m = −n or m+ n =
0; for, then because of the infinite exponent of p a highly incongruent formula
results. But this case is obvious per se. For, if one finds Π that this formula
(px − y)Π∂p become integrable, since ∂ · (px − y) = x∂p, it is evident that
there is no function of just p, which can satisfy this condition. But as soon as
it was not m + n = 0, the solution is always possible.
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EXAMPLE 7

§28 Now take M = mpp and N = n such that this formula has to be
rendered integrable: (mppx + ny)Π∂p. Therefore, here it will be

log K =
∫ n∂p

np + mpp
= log p − log(mp + n),

consequently

K =
p

mp + n
, and hence Π =

A
pp

,

and so the integrable formula will be

(mppx + ny)∂p
pp

;

for, its integral will be

(px − y)(mp + n)
p

.

EXAMPLE 8

§29 Now let M = pλ+1 and N = 1 such that the formula (pλ+1x + y)Π∂p is
to be rendered integrable. Therefore, here it will be

log K =
∫

∂p
pλ+1 + p

= log p − 1
λ

log(pλ + 1),

thus,

K =
p

(pλ+1 + 1)
1
λ

,

and hence

Π =
A(pλ + 1)

1−λ
λ

pp
,

whence the integrable formula will be

(pλ + 1)
1−λ

λ (pλ+1x + y)∂p
pp

,
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whose integral obviously is

(px − y)(pλ + 1)
1
λ

p
.

EXAMPLE 9

§30 Finally, let M = mpλ+1 and N = n such that the formula to be rendered
integrable is (mpλ+1x + ny)Π∂p. Therefore, here it will be

log K =
∫ n∂p

mpλ+1 + np
= log p − 1

λ
log(mpλ + n),

and hence

K =
p

(mpλ + n)
1
λ

,

and thus

Π =
A(mpλ + n)

1−λ
λ

pp
,

whence the integrable formula will be

(mpλ+1x + ny)(mpλ + n)
1−λ

λ ∂p
pp

,

whose integral will be

(px − y)(mpλ + n)
1
λ

p
,

of course.

PROBLEM

To find two functions of p, which we will call P and Q, such that this differential
formula: (px − y)n−1(Px + Qy)∂p becomes integrable.
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SOLUTION

§31 Since x∂p = ∂ · (px − y), it will be∫
Px∂p(px − y)n−1 =

1
n

P(px − y)n − 1
n

∫
(px − y)n∂P.

Further, since

y∂p
pp

= ∂ ·
(

x − y
p

)
,

let us write Qpp · y∂p
pp instead of Qy∂p, but then let us write p

(
x − y

p

)
instead

of px − y, and hence one will have to write pn−1
(

x − p
y

)n−1
instead of (px −

y)n−1. Therefore, hence for the one part we will have

Qy∂p(px− y)n−1 = Qpp · y∂p
pp

· pn−1
(

x − y
p

)n−1

= Qpn+1 · y∂p
pp

·
(

x − y
p

)n−1

,

and hence by reduction it will be

∫
Qy∂p(px − y)n−1 =

1
n

Qpn+1
(

x − y
p

)n

− 1
n

∫ (
x − y

p

)n

∂ · Qpn+1.

§32 Therefore, for the given formula to admit an integration it now is
necessary that the two last summatory terms become zero, whence this
equation arises:

(px − y)n∂P +

(
x − y

p

)n

∂ · Qpn+1 = 0,

and hence dividing by (px − y)n it will be

pn∂P + ∂ · Qpn+1 = 0,

whose expansion yields

∂P + p∂Q + (n + 1)Q∂p = 0,
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which equation contains the required relation between P and Q; therefore,
hence given the one the other can be determined at the same time; for; then
the integral of the propounded formula will be

1
n

P(px − y)n +
1
n

Qpn+1
(

x − y
p

)n

or

1
n
(px − y)n(P + Qp).

PROBLEM 4

If M and N denote arbitrary given functions of p, to find a function Π such that this
differential formula: (px − y)n−1(Mx + Ny)Π∂p becomes integrable.

SOLUTION

§33 The solution of the preceding problem is transferred to this one by
setting P = MΠ and Q = NΠ, whence the condition found before will lead
to this equation:

M∂Π + Π∂M + Np∂Π + Πp∂N + (n + 1)NΠ∂p = 0,

from which one finds

∂Π
Π

=
−∂M − p∂N − (n + 1)N∂p

M + Np
,

which integrated yields

log Π = − log(M + Np)− n
∫ N∂p

M + Np
.

§34 Now let us, as we did above, put∫ N∂p
M + Np

= log K,

and going back to numbers, it will be
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Π =
A

Kn(M + Np)
,

and so our integrable formula will be

(px − y)n−1(Mx + Ny)∂p
Kn(M + Np)

.

For, its integral will be

1
n
(px − y)n(M + Np)

Kn(M + Np)
=

(px − y)n

nKn ,

whence for n = 1 obviously the case of the third problem emerges.

§35 Here the especially remarkable case occurs, in which n = 0; for, then
because of Kn = 1 the integral formula that was rendered integrable will be

(Mx + Ny)∂p
(M + Np)(px − y)

.

But its integral hence seems to become infinite, values of which kind are
reduced to logarithms; for, the formula (px−y)0

0 is equivalent to log(px − y).
Nevertheless this integral is not satisfactory by any means, the reason for
which lies hidden in the vanishing of the number n; but one finds this
differential formual to be resolved into

x∂p
px − y

− N∂p
M + Np

;

hence if, as we did before, we put∫ N∂p
M + Np

= log K,

its integral will be log(px − y)− log K such that in this case the integral is
log px−y

K . But in the remaining cases the integrals will be algebraic, for which
reason we will consider the following examples.
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EXAMPLE 1

§36 Let M = 1 and N = 1, and as before it will be log K =
∫ ∂p

1+p =

log(1 + p), and hence K = 1 + p, and hence Π = A
(1+p)n+1 , whence our now

integrable formula will be

(px − y)n−1(x + y)∂p
(1 + p)n+1 ,

whose integral is

(px − y)n

n(1 + p)n .

EXAMPLE 2

§37 Now let us put M = α and N = β such that the formula to be rendered
integrable is (px − y)n−1(αx + βy)Π∂p. Therefore, here it will be

log K =
∫

β∂p
α + βp

= log(α + βp)

and hence K = α + βp; and thus Π = A
(α+βp)n+1 , whence our formula that is to

be rendered integrable will be

(px − y)n−1(αx + βy)∂p
(α + βp)n+1 ,

whose integral is

(px − y)n

n(α + βp)n .

EXAMPLE 3

§38 Now let M = 1 and N = p such that the formula to be rendered
integrable is (px − y)n−1(x + py)Π∂p. Therefore, here it will be

log K =
∫ p∂p

1 + pp
= log

√
1 + pp

and hence K =
√

1 + pp and thus
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Π =
A

(1 + pp)
n+2

2
,

and so our integrable formula will be

(px − y)n−1(x + py)∂p

(1 + pp)
n+2

2
;

for, its integral will be

(px − y)n

n(1 + pp)
n
2

.

EXAMPLE 4

§39 Now let M = α and N = βp such that the formula that is to be rendered
integrable is (px − y)n−1(αx + βpy)Π∂p. Therefore, here it will be

log K =
∫

βp∂p
α + βpp

=
1
2

log(α + βpp)

and hence K =
√

α + βpp, whence the function Π in question will be

A

(α + βpp)
n+2

2
.

Hence our integrable formula will be

(px − y)n−1(αx + βpy)∂p

(α + βpp)
n+2

2
,

whose integral obviously will be

(px − y)n

n(α + βpp)
n
2

.

EXAMPLE 5

§40 Let M = α and N = βpλ−1 such that formula that is to be rendered
integrable is (px − y)n−1(αx + βpλ−1y)Π∂p. Therefore, here it will be

log K =
∫

βpλ−1∂p
α + βpλ

=
1
λ

log(α + βpλ)
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and hence K = (α + βpλ)
1
λ , whence the function Π in question will be

A

(α + βpλ)
n+λ

λ

,

and so our integrable formula will be

(px − y)n−1(αx + βpλ−1y)∂p

(α + βpλ)
n+λ

λ

,

whose integral obviously is

(px − y)n

n(α + βpλ)
n
λ

.

EXAMPLE 6

§41 Now let M = αp and N = β such that the formula to be rendered
integrable is (px − y)n−1(αpx + βy)Π∂p. Therefore, here it will be

log K =
∫

β∂p
αp + βp

=
β

α + β
log p

and hence K = p
β

α+β . Therefore, hence the propounded function Π will be

Π =
A

(α + β)p
α+(n+1)β

α+β

,

and so our integrable formula will now be

(px − y)n−1(αpx + βy)∂p

(α + β)p
α+(n+1)β

α+β

,

whose integral therefore is

(px − y)n

np
βn

α+β

.
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EXAMPLE 7

§42 Now take M = αpp and N = β such that this formula: (px− y)n−1(αppx+
βy)Π∂p has to be rendered integrable. Therefore, here it will be

log K =
∫

β∂p
αpp + βp

= log p − log(αp + β),

as a logical consequence K = p
αp+β , and hence

Π =
A(αp + β)n−1

pn+1 ,

and so the integrable formula will now be

(px − y)n−1(αppx + βy)(αp + β)n−1∂p
pn+1 ,

whose integral obviously is

(px − y)n(αp + β)n

npn .

EXAMPLE 8

§43 Now let M = pλ+1 and N = 1 such that the formula that is to be
rendered integrable is (px − y)n−1(pλ+1x + y)Π∂p. Therefore, here it will be

log K =
∫

∂p
pλ+1 + p

= log p − 1
λ

log(pλ + 1),

consequently K = p

(pλ+1)
1
λ

, and hence

Π =
A(pλ + 1)

n−λ
λ

pn+1 ,

whence the integrable formula will be

(px − y)n−1(pλ+1x + y)(pλ + 1)
n−λ

λ ∂p
pn+1 ,

whose integral will hence be

(px − y)n(pλ + 1)
n
λ

npn .

25



EXAMPLE 9

§44 Finally, let M = αpλ+1 and N = β such that formula that is to be
rendered integrable is (px − y)n−1(αpλ+1x + βy)Π∂p. Therefore, here it will
be

log K =
∫

β∂p
αpλ+1 + βp

= log p − 1
λ

log(αpλ + β)

and hence K = p

(αpλ+β)
1
λ

and thus,

Π =
A(αpλ + β)

n−λ
λ

pn+1 ,

whence the integrable formula will be

(p − xy)n−1(αpλ+1x + βy)(αpλ + β)
n−λ

λ ∂p
pn+1 ,

whose integral will therefore be

(px − y)n(αpλ + β)
n
λ

npn .
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