
Analytical Investigations on the

Expansion of the trinomial Power

(1 + x + xx)n *

Leonhard Euler

§1 After in Tomus XI of the Novi Commentarii under the title Observationes
Analyticae I had once investigated the trinomial power with much eagerness, I
stumbled upon so extraordinary properties which seem worth of mathemati-
cians’ greater attention. Therefore, I have recently started to treat this same
subject again and, using several analytical artifices, a lot more outstanding
phenomena revealed themselves to me, the exposition of which I believe will
not inappropriate to mathematicians.

§2 I start from the expansion of this formula

(1 + x + xx)n,

which for the respective values of the exponent n yields the following expres-
sions represented in the added table:

*Original title: "Disquitiones analyticae super evolutione potestatis trinomialis (1 + x + xx)n",
first published in: Nova Acta Academiae Scientarum Imperialis Petropolitinae 14, 1805, pp.
75-110, reprint in: Opera Omnia: Series 1, Volume 16, pp. 56 - 103, translated by: Alexander
Aycock for the project „Euler-Kreis Mainz“.

1



n (1 + x + xx)n

0

1

2

3

4

5

1

1 + x + xx

1 + 2x + 3xx + 2x3 + x4

1 + 3x + 6xx + 7x3 + 6x4 + 3x5 + x6

1 + 4x + 10xx + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8

1 + 5x + 15xx + 30x3 + 45x5 + 51x5 + 45x6 + 30x7 + 15x8 + 5x9 + x10

etc.

Of course, from each arbitrary power the following one is most easily deduced
here; if for an arbitrary value of the exponent n a coefficient is collected
into one sum with the two preceding ones, one will obtain the coefficient
corresponding to the following power of the exponent n + 1 in the same
column.

§3 To anyone looking at this table it will be plain immediately that in
each expansion the coefficients of the terms increase until the middle one
corresponding to the power xn, but from there on they decrease again in
inverse order until the last term which is x2n. Further, it is easily seen that for
the power (1 + x + xx)n in general the initial terms will be expressed in this
way:

1 + nx +
n(n + 1)

1 · 2 x2 +
n(n− 1)(n + 4)

1 · 2 · 3 x3 +
n(n− 1)(nn + 7n− 6)

1 · 2 · 3 · 4 x4

+
n(n− 1)(n + 1)(n− 2)(n + 12)

1 · 2 · 3 · 4 · 5 x5 + etc.

But to study these terms any further is not helpful, since no structure is found
in their coefficients.

§4 But here I pay special attention to the largest coefficient or the middle one,
which for the power (1 + x + xx)n in general I will always set = pxn; but then
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I will represent the terms following this one in this way: qxn+1, rxn+2, sxn+3,
txn+4 etc.; hence the terms preceding the middle term, in inverse order, will be
qxn−1, rxn−2, sxn−3, txn−4 etc. Further, for the following power (1+ x + xx)n+1

I will add a prime to the same letters, i.e. p′, q′, r′, s′ etc., to which for the
following power (1 + x + xx)n+2 I will add two primes; for the ones following
those I will likewise add three primes, four primes and so forth.

§5 Having mentioned these things in advance, in this dissertation I will
mainly consider the middle terms of the above series from the table, i.e. those
with the largest coefficients, which are 1, x, 3x2, 7x3, 19x4, 51x5 etc., which
taken together constitute a series, the sum of which I will indicate by the letter
P such that

P = 1 + x + 3x2 + 7x3 + 19x4 + 51x5 + · · ·+ pxn + p′xn+1 + p′′xn+2 + etc.

§6 Furthermore, in the same way as those terms were taken from the above
table according to the diagonal, in like manner let us form such series accor-
ding to the higher diagonals parallel to the initial one, the sum of which I
want to denote by peculiar letters in the following way:

Q = x2 + 2x3 + 6x4 + 16x5 + 45x6 + · · · + qxn+1 + q′xn+2 + q′′xn+3 + etc.

R = x4 + 3x5 + 10x6 + 30x7 + · · · · · · · · · + rxn+2 + r′xn+3 + r′′xn+4 + etc.

S = x6 + 4x7 + 15x8 + · · · · · · · · · · · · · · · + sxn+3 + s′xn+4 + s′′xn+5 + etc.

T = x8 + 5x9 + · · · · · · · · · · · · · · · · · · · · · + txn+4 + t′xn+5 + t′′xn+6 + etc.

etc.

Having constituted these things, it is propounded to me first to investigate
the values of the small letters p, q, r, s etc. and their derivatives p′, q′, r′, s′

etc., p′′, q′′, r′′, s′′ etc.; having done this I will also explore the values of the
capital letters P, Q, R, S etc.

INVESTIGATION OF THE LETTERS p, q, r, s ETC.

§7 Since p is the coefficient of the power xn which must arise from the
expansion of the power (1 + x + xx)n, let us represent that formula in this
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way:

(x(1 + x) + 1)n;

for its expansion we want to use the notation which I introduced on another
occasion and by which which I usually denote the coefficients of the same
binomial power by these characters

( n
1

)
,
( n

2

)
,
( n

3

)
,
( n

4

)
,
( n

5

)
etc. such that

(n
1

)
= n,(n

2

)
=

n(n− 1)
1 · 2 ,(n

3

)
=

n(n− 1)(n− 2)
1 · 2 · 3 ,(n

4

)
=

n(n− 1)(n− 2)(n− 3)
1 · 2 · 3 · 4(n

5

)
=

n(n− 1)(n− 2)(n− 3)(n− 4)
1 · 2 · 3 · 4 · 5

...(n
λ

)
=

n(n− 1)(n− 2)(n− 3) · · · (n− λ− 1)
1 · 2 · 3 · · · λ .

It will be helpful to have noted about these characters here that in general:(n
λ

)
=

(
n

n− λ

)
,

since these coefficients keep their order while going backwards; and since the
most outer coefficients are 1, it will be(n

0

)
=
(n

n

)
= 1.

Further, since from the law of the progression both all terms preceding the
first and the terms following the last vanish, it will be as follows:
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(
n
−1

)
=

(
n

n + 1

)
= 0,(

n
−2

)
=

(
n

n + 2

)
= 0,(

n
−3

)
=

(
n

n + 3

)
= 0,

etc.

§8 Having mentioned these things in advance, our formula (x(1 + x) + 1)n,
expanded as a binomial in usual manner, will give this series:

xn(1+ x)n +
(n

1

)
xn−1(1+ x)n−1 +

(n
2

)
xn−2(1+ x)n−2 +

(n
3

)
xn−3(1+ x)n−3 + etc.,

where it should be noted that in general

(1 + x)λ = 1 +
(

λ

1

)
x +

(
λ

2

)
x2 +

(
λ

3

)
x3 + etc.

Therefore, from each term of that formula that we just explained one has to
take the terms containing the power xn, which taken together compose the
middle term pxn, of course.

§9 But the first member, xn(1 + x)n, just gives the term xn of this form. But
from the second member the second term we will have this form

( n
1

) ( n−1
1

)
xn.

From the third member the power xn results from the third term, which is( n
2

) ( n
n−2

)
xn. In like manner, from the fourth member one deduces

( n
3

) ( n
n−3

)
xn.

From the fifth
( n

4

) ( n
n−4

)
xn results and so forth. Therefore, the true value of

the letter p is calculated in this way:

p = 1+
(n

1

)(n− 1
1

)
+
(n

2

)(n− 2
2

)
+
(n

3

)(n− 3
3

)
+
(n

4

)(n− 4
4

)
+ etc.

§10 In like manner, from the same expansion one is able to calculate the
coefficients of the power xn+1, which taken together will give the value of the
letter q. But such a power resulting from the first member will be

( n
1

)
xn+1.
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From the second member
( n

1

) ( n
n−2

)
xn+1 results, from the third member( n

2

) ( n
n−3

)
xn+1, from the fourth

( n
3

) ( n
n−4

)
xn+1 and so forth, for which reason

the true value of the letter q will be expressed in this way:

q =
(n

1

)
+
(n

1

)(n− 1
2

)
+
(n

2

)(n− 2
3

)
+
(n

3

)(n− 3
4

)
+ etc.,

where, by analogy, the first term,
( n

1

)
, should be read as

( n
0

) ( n
1

)
. Since each

term consists of two factors, the first factors constitute this series:
( n

0

)
,
( n

1

)
,( n

2

)
,
( n

3

)
,
( n

4

)
etc., the second on the other hand this series:

( n
1

)
,
( n−1

2

)
,
( n−2

3

)
,( n−3

4

)
etc.

§11 In like manner, from the powers xn+2, which are deduced from each
member, the term rxn+2 will be formed; but on the other hand the first member
for this power yields 1 ·

( n
2

)
xn+2 or for the sake of analogy

( n
0

) ( n
2

)
xn+2. From

the second the same power results as
( n

1

) ( n−1
3

)
xn+2, from the third member

as
( n

2

) ( n−2
4

)
xn+2, from the fourth as

( n
3

) ( n−3
5

)
xn+2 and so forth; therefore,

from these, collected into one sum, we obtain the value of the letter r expressed
in this way:

r =
(n

0

) (n
2

)
+
(n

1

)(n− 1
3

)
+
(n

2

)(n− 2
4

)
+
(n

3

)(n− 3
5

)
+ etc.

§12 It would be superfluous to make the same deduction for the following
letters, since it is already abundantly clear that it will be:

s =
(n

0

) (n
3

)
+
(n

1

)(n− 1
4

)
+
(n

2

)(n− 2
5

)
+
(n

3

)(n− 3
6

)
+ etc.,

t =
(n

0

) (n
4

)
+
(n

1

)(n− 1
5

)
+
(n

2

)(n− 2
6

)
+
(n

3

)(n− 3
7

)
+ etc.,

u =
(n

0

) (n
5

)
+
(n

1

)(n− 1
6

)
+
(n

2

)(n− 2
7

)
+
(n

3

)(n− 3
8

)
+ etc.

etc.

and in general, if we attribute the letter z to the power xn+λ, it will be
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z =
(n

0

) (n
λ

)
+
(n

1

)(n− 1
λ + 1

)
+
(n

2

)(n− 2
λ + 2

)
+
(n

3

)(n− 3
λ + 3

)
+ etc.

§13 But it is obvious here that all terms of these series are contained in
the general form

( n
α

) ( n−α
β

)
, which I observe to be always equal to this one(

n
β

) (
n−β

α

)
such that the letters α and β are permuted. For, since after the

expansion (n
α

)
=

n(n− 1)(n− 2)(n− 3) · · · (n− α + 1)
1 · 2 · 3 · · · α

and (
n− α

β

)
=

(n− α)(n− α− 1)(n− α− 2) · · · (n− α− β + 1)
1 · 2 · 3 · 4 · · · β ,

after multiplication it will be(n
α

)(n− α

β

)
=

n(n− 1)(n− 2)(n− 3) · · · (n− α− β + 1)
1 · 2 · 3 · · · α · 1 · 2 · 3 · · · β ,

where the permutability of the letters α and β meets the eye.

§14 If the series found before are changed in this way, the first series, i.e
the one we found for p, is certainly not changed, but the remaining ones are
represented in this way:

q =
(n

1

)(n− 1
0

)
+

(n
2

)(n− 2
1

)
+

(n
3

)(n− 3
2

)
+

(n
4

)(n− 4
3

)
+ etc.,

r =
(n

2

)(n− 2
0

)
+

(n
3

)(n− 3
1

)
+

(n
4

)(n− 4
2

)
+

(n
5

)(n− 5
3

)
+ etc.,

s =
(n

3

)(n− 3
0

)
+

(n
4

)(n− 4
1

)
+

(n
5

)(n− 5
2

)
+

(n
6

)(n− 6
3

)
+ etc.,

...
...

...
...

...
...

...
...

...
...

...

z =
( n

λ

)(n− λ

0

)
+

(
n

λ + 1

)(
n− λ− 1

1

)
+

(
n

λ + 2

)(
n− λ− 2

2

)
+

(
n

λ + 3

)(
n− λ− 3

3

)
+ etc.
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§15 Furthermore, this conversion is most memorable by which(n
α

)(n− α

β

)
=

(
α + β

α

)(
n

α + β

)
.

Since (
α + β

α

)
=

(α + β)(α + β− 1)(α + β− 2) · · · (β + 1)
1 · 2 · 3 · · · α

and (
n

α + β

)
=

n(n− 1)(n− 2) · · · (n− α− β + 1)
1 · 2 · 3 · · · α× (α + 1)(α + 2) · · · (α + β)

or (
n

α + β

)
=

n(n− 1)(n− 2) · · · (n− α− β + 1)
1 · 2 · 3 · · · β× (β + 1)(β + 2) · · · (β + α))

the product will be(
α + β

α

)(
n

α + β

)
=

n(n− 1)(n− 2) · · · (n− α− β + 1)
1 · 2 · 3 · · · β× 1 · 2 · 3 · · · α ;

the formula
(n

α

)(n− α

β

)
is resolved into the same form.

§16 Therefore, using this transformation the above series can be expressed
in the following way:

p = 1 +

(
2
1

)(n
2

)
+

(
4
2

)(n
4

)
+

(
6
3

)(n
6

)
+ etc.,

q =

(
1
0

)(n
1

)
+

(
3
1

)(n
3

)
+

(
5
2

)(n
5

)
+

(
7
3

)(n
7

)
+ etc.,

r =

(
2
0

)(n
2

)
+

(
4
1

)(n
4

)
+

(
6
2

)(n
6

)
+

(
8
3

)(n
8

)
+ etc.,

...
...

...
...

...
...

...
...

...
...

...

z =

(
λ

0

)(n
λ

)
+

(
λ + 2

1

)(
n

λ + 2

)
+

(
λ + 4

2

)(
n

λ + 4

)
+

(
λ + 6

3

)(
n

λ + 6

)
+ etc.
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§17 Still another transformation deserves to be mentioned, which is especi-
ally accommodated to numerical calculation. Since from the first form

z =
(n

λ

)
+
(n

1

)(n− 1
λ + 1

)
+
(n

2

)(n− 2
λ + 2

)
+ etc.,

each term of this series is
(n

α

)(n− α

λ + α

)
, which shall be called Π, and after

the expansion it will be

Π =
n(n− 1)(n− 2) · · · (n− α + 1) · · · (n− 2α− λ + 1)

1 · 2 · 3 · · · α× 1 · 2 · 3 · · · (λ + α)
.

Therefore, if we now write α + 1 instead of α such that the following term
results, which will therefore be

=
n(n− 1)(n− 2) · · · (n− 2α− λ− 1)

1 · 2 · 3 · · · (α + 1)× 1 · 2 · 3 · · · (λ + α + 1)
,

the second divided by first one gives the quotient

(n− 2α− λ)(n− 2α− λ− 1)
(α + 1)(λ + α + 1)

.

Therefore, the subsequent term will be

Π · (n− 2α− λ)(n− 2α− λ− 1)
(α + 1)(λ + α + 1)

.

§18 Therefore, if in this series, as Newton did it, the letter Π denotes the
corresponding preceding term, the subsequent term will be

Π · (n− 2α− λ)(n− 2α− λ− 1)
(α + 1)(λ + α + 1)

;

since the first term is
( n

λ

)
, where α = 0, if this one is denoted by Π, the second

one will be

= Π
(n− λ)(n− λ− 1)

(λ + 1)
;

if this one is called Π again, the third term will be

= Π
(n− λ− 2)(n− λ− 3)

2(λ + 2)
;
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if this one is called Π again, the fourth term will be

= Π
(n− λ− 4)(n− λ− 5)

3(λ + 3)

and so forth. In this way our series for z will take on this form:

z =
(n

λ

)
+ Π

(n− λ)(n− λ− 1)
1(λ + 1)

+ Π
(n− λ− 2)(n− λ− 3)

2(λ + 2)

+Π
(n− λ− 4)(n− λ− 5)

3(λ + 3)
+ etc.,

where Π always denotes the preceding term, of course.

§19 Therefore, if we write 0, 1, 2, 3 etc. instead of λ successively etc., we will
obtain the following series for our letters p, q, r, s etc.:

p = 1 + Π
n(n− 1)

1 · 1 + Π
(n− 2)(n− 3)

2 · 2 + Π
(n− 4)(n− 5)

3 · 3 + etc.,

q =
(n

1

)
+ Π

(n− 1)(n− 2)
1 · 2 + Π

(n− 3)(n− 4)
2 · 3 + Π

(n− 5)(n− 6)
3 · 4 + etc.,

r =
(n

2

)
+ Π

(n− 2)(n− 3)
1 · 3 + Π

(n− 4)(n− 5)
2 · 4 + Π

(n− 6)(n− 7)
3 · 5 + etc.,

s =
(n

3

)
+ Π

(n− 3)(n− 4)
1 · 4 + Π

(n− 5)(n− 6)
2 · 5 + Π

(n− 7)(n− 8)
3 · 6 + etc.

etc.

§20 Those forms are especially accommodated to numerical calculation; it
will suffice to have show this only for the letter p. For the sake of an example,
let us find the value of p for the case n = 6, and each of its single parts will
be found as follows:
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I. = 1 = 1

II. = 1 ·6 · 5
1 · 1 = 30

III. = 30 ·4 · 3
2 · 2 = 90

IV. = 90 ·2 · 1
3 · 3 = 20

thus, the sum = p = 141.

§21 In like manner, let us find the value of p for the case n = 12, each single
part of which will be calculated as follows:

I. = 1 = 1

II. = 1 ·12 · 11
1 · 1 = 132

III. = 132 ·10 · 9
2 · 2 = 2970

IV. = 2970 ·8 · 7
3 · 3 = 18480

V. = 18480 ·6 · 5
4 · 4 = 34650

VI. = 34650 ·4 · 3
5 · 5 = 16631

VII. = 16632 ·2 · 1
6 · 6 = 924

thus, the sum = p = 73789.
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§22 But soon we will give a much more convenient way to find each term
of those series from the two preceding ones, whence in an easy calculation
all values for the letters p, q, r etc. can be exhibited for each exponent n and
so it will be possible to continue all those values arbitrarily far. But we will
establish this relation first just for the numbers connected to the letter p.

INVESTIGATION OF THE RELATION AMONG THREE CONSECUTIVE
VALUES p, p′ , p′′

§23 Since

p = 1 +
(n

1

)(n− 1
1

)
+
(n

2

)(n− 2
2

)
+
(n

3

)(n− 3
3

)
+ etc.,

let us consider an arbitrary term
( n

α

) ( n−α
α

)
of this series, which we want to

call Π such that after the expansion

Π =
n(n− 1)(n− 2) · · · (n− 2α + 1)

1 · 2 · 3 · · · α× 1 · 2 · 3 · · · α ;

but let us denote the term following this one by Φ such that

Φ =

(
n

α + 1

)(
n− α− 1

α + 1

)
and after the expansion

Φ =
n(n− 1)(n− 2) · · · (n− 2α− 1)

1 · 2 · 3 · · · (α + 1)× 1 · 2 · 3 · · · (α + 1)
;

and therefore one will have

Φ
Π

=
(n− 2α)(n− 2α− 1)

(α + 1)(α + 1)
and hence Π =

(α + 1)(α + 1)Φ
(n− 2α)(n− 2α− 1)

.

§24 For the following values p′ and p′′, let us denote the corresponding
values of Φ by Φ′ and Φ′′; since these originate from the value Φ, if one writes
n + 1 and n + 2 instead of n, respectively, after an expansion it will be

Φ′ =
(n + 1)n(n− 1) · · · (n− 2α)

1 · 2 · 3 · · · (α + 1)× 1 · 2 · 3 · · · (α + 1)
,

whence it is plain that it will be
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Φ′ : Φ =
n + 1

n− 2α− 1
and hence

Φ′ =
n + 1

n− 2α− 1
Φ.

In like manner, if we write n + 1 instead of n here, too, we will have

Φ′′ =
n + 2

n− 2α
Φ′ or Φ′′ =

(n + 1)(n + 2)Φ
(n− 2α− 1)(n− 2α)

.

§25 But hence let us now form this expression:

AΦ +
B

n + 1
Φ′ +

C
(n + 2)(n + 1)

Φ′′,

the value of which will therefore expressed in terms of the letter Φ in this
way:

Φ
(

A +
B

n− 2α− 1
+

C
(n− 2α− 1)(n− 2α)

)
,

where we want to try to define the letters A, B, C in such a way that this form
becomes equal to the preceding term Π. But it is evident that those letters, for
them to extend to all terms equally, must not involve the letter α. Therefore,
having substituted the value given by Π before for Π, we will obtain the
following equation divided by Π:

A +
B

n− 2α− 1
+

C
(n− 2α− 1)(n− 2α)

=
(α + 1)(α + 1)

(n− 2α− 1)(n− 2α)
,

which, cleared from fractions, becomes

A(n− 2α− 1)(n− 2α) + B(n− 2α) + C = (α + 1)(α + 1).

§26 Since in this equation the letter α rises up to the second dimension, the
three letters A, B, C will be exactly enough such that they can be determined
from this equation. Therefore, first let us equate the terms involving the square
αα on both sides, whence this equation will result:
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4Aαα = αα and A =
1
4

.

In the same way let us equate the terms involving the letter α, whence we are
led to this equation:

2α(1− 2n)A− 2αB = 2α,

whence

B = −2n− 1
4
− 1 =

−2n− 3
4

.

Finally, the terms immune from α give this equation:

(nn− n)A + nB + C = 1,

whence one finds

C =
(n + 2)2

4
.

§27 Therefore, having found these values for each term it will be:

AΦ +
B

n + 1
Φ′ +

C
(n + 2)(n + 1)

Φ′′ = Π.

Therefore, if from this we compute this formula:

Ap +
B

n + 1
p′ +

C
(n + 2)(n + 1)

p′′,

from the first terms assumed for Φ the preceding of the series p will result,
which is = 0; but from the second terms assumed for Φ the first term will
result, which is 1; but from the third terms the second term is constructed,
which is

( n
1

) ( n−1
1

)
; from the fourth terms assumed for Φ the third is construc-

ted, which is
( n

2

) ( n−2
2

)
and so forth; and so all three series collected this way

will produce this series:

0 + 1 +
(n

1

)(n− 1
1

)
+
(n

2

)(n− 2
2

)
+ etc.,

which is the series given for p. Hence we will have this equation between the
three letters p, p′, p′′:
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Ap +
B

n + 1
p′ +

C
(n + 2)(n + 1)

p′′ = p.

§28 Now let us substitute the values just found for the letters A, B, C and
our equation between these three letters will become

1
4

p− 2n + 3
4(n + 1)

p′ +
n + 2

4(n + 1)
p′′ = p,

which is reduced to this one:

n + 2
n + 1

p′′ − 2n + 3
n + 1

p′ = 3p,

whence

p′′ = p′ +
n + 1
n + 2

(p′ + 3p).

§29 Therefore, for each single value of the exponent n all numbers denoted
by the letter p can easily be defined, while any one is composed from the two
preceding ones, of course. So, for n = 0 it will be p = 1 and p′ = 1 and hence
the third

p′′ = 1 +
1
2
(1 + 3 · 1) = 3.

Having taken n = 1 it will be p = 1, p′ = 3 and hence the fourth term

p′′ = 3 +
2
3
(3 + 3 · 1) = 7.

Having taken n = 2, because of p = 3 and p′ = 7, the fifth term will be

p′′ = 7 +
3
4
(7 + 3 · 3) = 19.

If one takes n = 3, because of p = 7 and p′ = 19, the sixth term will be

p′′ = 19 +
4
5
(19 + 3 · 7) = 51.

15



§30 If we proceed this way, we will be able to continue this progression
arbitrarily far by means of the form

51 +
5
6
( 51 + 3· 19) = 141,

141 +
6
7
( 141 + 3· 51) = 393,

393 +
7
8
( 393 + 3· 141) = 1107,

1107 +
8
9
( 1107 + 3· 393) = 3193,

3139 +
9
10

( 3193 + 3· 1107) = 8953,

8953 +
10
11

( 8953 + 3· 3139) = 25653,

25653 +
11
12

(25653 + 3· 8953) = 73789,

etc.

§31 By a similar method even the relation between three consecutive terms
for the following letters q, r, s etc., can be investigated; to expedite this work
more generally, let us find the relation between the three terms z, z′ and z′′, to
which we assumed the letter λ to correspond.

INVESTIGATION OF THE RELATION BETWEEN THE THREE CONSECUTIVE
TERMS z, z′ AND z′′

§32 Since

z =
(n

λ

)
+
(n

1

)(n− 1
λ + 1

)
+
(n

2

)(n− 2
λ + 2

)
+
(n

3

)(n− 3
λ + 3

)
+ etc.,

let us consider the general term of this series, i.e.

Π =
(n

α

)(n− α

λ + α

)
,

the value of which in expanded form is

16



Π =
n(n− 1)(n− 2) · · · (n− 2α− λ + 1)

1 · 2 · 3 · · · α× 1 · 2 · 3 · · · (λ + α)
.

Let us now expand the term following this one, i.e.(
n

α + 1

)(
n− α− 1

α + 1

)
= Φ,

whence

Φ =
n(n− 1)(n− 2) · · · (n− 2α− λ− 1)

1 · 2 · 3 · · · (α + 1)× 1 · 2 · 3 · · · (λ + α + 1)
.

Therefore, from this we conclude

Φ
Π

=
(n− 2α− λ)(n− 2α− λ− 1)

(α + 1)(λ + α + 1)

and hence

Π =
(α + 1)(λ + α + 1)Φ

(n− 2α− λ)(n− 2α− λ− 1)
.

§33 For the following values z′ and z′′ let us denote the values corresponding
to Φ by Φ′ and Φ′′; since these originate from the value Φ, if one writes (n+ 1)
and (n + 2) instead of n, respectively, after the expansion it will be

Φ′ =
(n + 1)n(n− 1) · · · (n− 2α− λ)

1 · 2 · 3 · · · (α + 1)× 1 · 2 · 3 · · · (α + λ + 1)
,

whence it is plain that it will be

Φ′

Φ
=

n + 1
n− 2α− λ− 1

and hence

Φ′ =
(n + 1)Φ

n− 2α− λ− 1
.

And in like manner, it will be

Φ′′ =
n + 2

n− 2α− λ
Φ′ =

(n + 2)(n + 1)Φ
(n− 2α− λ)(n− 2α− λ− 1)

.

17



§34 Hence in precisely the same way as above let us form this expression:

AΦ +
B

n + 1
Φ′ +

C
(n + 2)(n + 1)

Φ′′,

the value of which is expressed by Φ in this way:

Φ
(

A +
B

n− 2α− λ− 1
+

C
(n− 2α− λ)(n− 2α− λ− 1)

)
,

where the letters A, B, C must again be defined in such way that the formula
becomes equal to the preceding term Π. Therefore, having substituted the
value expressed in terms of Φ before for Π we will obtain the following
equation already cleared from fractions:

A(n− 2α− λ− 1)(n− 2α− λ) + B(n− 2α− λ) + C = (α + 1)(α + λ + 1).

§35 Therefore, after the expansion and having equated the terms involving
αα on both sides, this equation for the determination of the letter A results:

4αα = αα and hence A =
1
4

.

If in the same way the terms involving the simple letter α are equated, we are
led to the following equation:

(4αλ− 4nα + 2α)A− 2αB = (λ + 2)α,

whence one concludes

B =
−2n− 3

4
.

Finally, having equated the terms free from α this equation results

nn− 2nλ− n + λλ + λ

4
− (n− λ)(2n + 3)

4
+ C = λ + 1,

whence

C =
(n + 2)2

4
− λλ

4
.
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§36 Therefore, having found these values for the single terms, it will always
be

AΦ +
B

n + 1
Φ′ +

C
(n + 2)(n + 1)

Φ′′ = Π.

Therefore, if we hence compute this formula:

Az +
B

n + 1
z′ +

C
(n + 2)(n + 1)

z′′,

from the first terms that were assumed for Φ the preceding one of the series z
will result, which is 0; but from the second terms assumed for Φ the first term( n

λ

)
will result; from the third the second term

( n
1

) ( n−1
λ+1

)
is constructed; from

the fourth terms assumed for Φ the third is constructed which is
( n

2

) ( n−2
λ+2

)
and so forth; having collected them the series given for z results, i.e.

z =
(n

λ

)
+
(n

1

)(n− 1
λ + 1

)
+
(n

2

)(n− 2
λ + 2

)
+
(n

3

)(n− 3
λ + 3

)
+ etc.

Therefore, the relation among z, z′, z′′ will be

Az +
B

n + 1
z′ +

C
(n + 2)(n + 1)

z′′ = z.

§37 Now let us substitute the values just found for A, B, C and the equation
between these three letters will be

1
4

z− 2n + 3
4(n + 1)

z′ +
(n + 2)2 − λλ

4(n + 2)(n + 1)
z′′ = z,

which is reduced to this form:

(n + 2)2 − λλ

(n + 2)(n + 1)
z′′ =

2n + 3
n + 1

z′ + 3z,

whence one concludes

z′′ =
n + 2

(n + 2)2 − λλ
((2n + 3)z′ + 3(n + 1)z).
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§38 Now let us successively attribute the values 0, 1, 2, 3, 4 etc. to the letter
λ and we will find the following relations for each letter:

(n + 2)2 − 02

(n + 2)(n + 1)
p′′ =

2n + 3
n + 1

p′ + 3p,

(n + 2)2 − 12

(n + 2)(n + 1)
q′′ =

2n + 3
n + 1

q′ + 3q,

(n + 2)2 − 22

(n + 2)(n + 1)
q′′ =

2n + 3
n + 1

r′ + 3r,

(n + 2)2 − 32

(n + 2)(n + 1)
s′′ =

2n + 3
n + 1

s′ + 3s,

etc.

§39 Therefore, since for the letter q we have this equation:

q′′ =
n + 2

(n + 1)(n + 3)
((2n + 3)q′ + 3(n + 1)q),

in the case n = 0 it will be q = 0 and q′ = 1, whence

q′′ =
2
3
(3 · 1 + 3 · 0) = 2.

Now for n = 1, because of q = 1 and q′ = 2, it will be

q′′ =
3

2 · 4 (5 · 2 + 6 · 1) = 6.

But then for the case n = 2, because of q = 2 and q′ = 6, it will be

q′′ =
4

3 · 5 (7 · 6 + 9 · 2) = 16.

Now having taken n = 3, because of q = 6 and q′ = 16, it will be

q′′ =
5

4 · 6 (9 · 16 + 12 · 6) = 45.

But in the case n = 4, because of q = 16 and q′ = 45, it will be

q′′ =
6

5 · 7 (11 · 45 + 15 · 16) = 126.
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§40 But here the calculation is a lot more laborious and tedious than the
preceding explained for the values of the letter p. But another much simpler
method can be derived from this, by which it will be possible to determine
the letters q, r, s etc. by p and its derivatives p′, p′′ alone; after the series of the
numbers p had already been computed sufficiently far, also the values of the
letters q, r, s etc. can be calculated by a lot easier work, which we will show in
the following problem.

THE DETERMINATION OF THE LETTERS q, r, s, t ETC. BY THE FIRST p
AND ITS DERIVATIVES ONLY

§41 For the sake of brevity having set our trinomial

1 + x + xx = X,

let us arrange its two powers Xn and Xn+1 in expanded form in such a way
that the same powers of x appear written over each other in this way:

Xn = 1 + nx + · · · + qxn−1 + pxn + qxn+1 + rxn+2 + sxn+3 + etc.,

Xn=1 = 1 + (1 + n)x + · · · + r′xn−1 + p′xn + p′xn+1 + q′xn+2 + r′xn+3 + etc.;

having done this we noted above already that each coefficient of the lower
series becomes equal to the upper one together with the two preceding ones.

§42 Therefore, using this law we will obtain the following equalities:

p′ = q + p + q = 2q + p,

q′ = r + q + p,

r′ = s + r + q

etc.,

whence we conclude the following determinations:
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q =
p′ − p

2
, r = q′ − q− p, s = r′ − r− q, t = s′ − s− r etc.

§43 But it is manifest that here the formula p− p′ expresses the increment
of the quantity p while the exponent is increased by 1; since this is usually
expressed by ∆p, the equalities we found can be exhibited more succinctly in
the following way:

q =
1
2

∆p or 2q = ∆p, 2r = 2∆q− 2p, 2s = 2∆r− 2q etc.

§44 Therefore, having used this character ∆, since

2q = ∆p, it will be 2∆q = ∆∆p

and hence

2r = ∆∆p− 2p and hence 2∆r = ∆3 p− 2∆p,

from which further

2s = ∆3 p− 3∆p and hence 2∆s = ∆4 p− 3∆∆p,

therefore,

2t = ∆4 p− 4∆∆p + 2p and hence 2∆t = ∆5t = ∆5 p− 4∆3 p + 2∆p.

Hence further

2u = ∆5 p− 5∆3 p + 5∆p and hence 2∆u = ∆6 p− 5∆4 p + 5∆∆p,

whence one deduces

2v = ∆6 p− 6∆4 p + 9∆∆p− 2p

and so forth.

22



§45 If we consider these coefficients more attentively, the law of progression
is found to agree with a series well-known to mathematicians, from which for
the value z, which corresponds to the index λ, we will obtain the following
form:

2z = ∆λ p− λ∆λ−2 p +
λ(λ− 3)

1 · 2 ∆λ−4 p− λ(λ− 4)(λ− 5)
1 · 2 · 3 ∆λ−6 p

+
λ(λ− 5)(λ− 6)(λ− 7)

1 · 2 · 3 · 4 ∆λ−8 p− λ(λ− 6)(λ− 7)(λ− 8)(λ− 9)
1 · 2 · 3 · 4 · 5 ∆λ−10 + etc.,

which must only be continued up to the point until the indices of ∆ become
negative. So, if we take λ = 6, in which case z = v, from this general law
obviously

2v = ∆6 p− 6∆4 p + 9∆2 p− 2p.

§46 That the nature of this series is seen more clearly, one has to remember
that this form:

(x +
√

xx− 4)n

2n +
(x−

√
xx− 4)n

2n

is resolved into this series:

xn − nxn−2 +
n(n− 3)

1 · 2 xn−4 − n(n− 4)(n− 5)
1 · 2 · 3 xn−6 + etc.

Therefore, we already achieved our goal, since we found all letters q, r, s, t etc.
expressed by the first p and its derivatives p′, p′′, p′′′ etc. only.

DETERMINATION OF THE QUANTITY p BY A FINITE INTEGRAL FORMULA

§47 Since by the third formula explained above [§16]

p = 1 +
(

2
1

)(n
2

)
+

(
4
2

)(n
4

)
+

(
6
3

)(n
6

)
+ etc.,

each term will in general have the form
(

2α

α

)( n
2α

)
, which term is followed

by this one:
(

2α + 2
α + 1

)(
n

2α + 2

)
. Therefore, since after an expansion
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(
2α

α

)
=

2α(2α− 1)(2α− 2) · · · (α + 1)
1 · 2 · 3 · · · α

and in like manner(
2α + 2
α + 1

)
=

(2α + 2)(2α + 1)2α · · · (α + 2)
1 · 2 · 3 · · · (α + 1)

,

this last form divided by the first gives the quotient

(2α + 2)(2α + 1)
(α + 1)2 =

2(2α + 1)
α + 1

,

and so it will be (
2α + 2
α + 1

)
=

4α + 2
α + 1

(
2α

α

)
.

§48 Therefore, having applied this reduction and having taken

α = 1 it will be
(

4
2

)
=

6
2

(
2
1

)
;

having taken

α = 2 it will be
(

6
3

)
=

10
3

(
4
2

)
=

10
3
· 6

2
· 2

1
;

having taken

α = 3 it is
(

8
4

)
=

14
4

(
6
3

)
=

14
4
· 10

3
· 6

2
· 2

1
;

then, if

α = 4 it will be
(

10
5

)
=

18
5

(
8
4

)
=

18
5
· 14

4
· 10

3
· 6

2
· 2

1
;

and so forth. Therefore, having introduced these values as ordinary numerical
products it will be

p = 1 +
2
1

(n
2

)
+

2 · 6
1 · 2

(n
4

)
+

2 · 6 · 10
1 · 2 · 3

(n
6

)
+

2 · 6 · 10 · 14
1 · 2 · 3 · 4

(n
8

)
+

2 · 6 · 10 · 14 · 18
1 · 2 · 3 · 4 · 5

( n
10

)
+ etc.
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§49 Therefore, let us see now how a finite integral form must be investigated,
the integral of which within certain limits leads to this series. To this end, it
will be convenient to consider the formula (1 + x)n, the expansion of which
yields this series:

1 +
(n

1

)
x +

(n
2

)
xx +

(n
3

)
x3 + etc.,

each second term of which already contain our characters of the letter n.

§50 Therefore, let us split this series into two parts and put

M = 1 +
(n

2

)
xx +

(n
4

)
x4 +

(n
6

)
x6 + etc.,

N =
(n

1

)
x +

(n
3

)
x3 +

(n
5

)
x5 +

(n
7

)
x7 + etc.,

such that

(1 + x)n = M + N.

But now let us investigate how the first series, M, must be manipulated by
analytic operations that the propounded series or the value of p results from
it.

§51 To achieve this, let us multiply the quantity M by a certain differential
∂v of a function of x, and determine the following integrations in such a way
that they are contained within certain limits, as, e.g., from x = a to x = b,
which conditions must be of such a nature that the following conditions are
satisfied:

1.
∫

xx∂v =
2
1

v,

2.
∫

x4∂v =
2 · 6
1 · 2v,

3.
∫

x6∂v =
2 · 6 · 10
1 · 2 · 3 v,

4.
∫

x8∂v =
2 · 6 · 10 · 14
1 · 2 · 3 · 4 v

etc.
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for, then the integral
∫

M∂v will produce this series

v +
2
1

(n
2

)
v +

2 · 6
1 · 2

(n
4

)
v +

2 · 6 · 10
1 · 2 · 3

(n
6

)
v + etc.

such that in this way we obtain what we are looking for, i.e.

p =

∫
M∂v
v

.

§52 Therefore, each of the integral formulas which gave here depends on
the preceding in such a way that

∫
xx∂v =

2
1
∫

∂v,∫
x4∂v =

6
2
∫

∂xxv,∫
x6∂v =

10
3
∫

∂x4v,∫
x8∂v =

14
4
∫

∂x6v

etc.

and thus it is required in general that∫
x2m∂v =

4m− 2
m

∫
x2m−2∂v.

This reduction must hold, of course, after the integrals had been taken within
the prescribed limits, i.e. from x = a to x = b, which limits are not known yet,
but must be accommodated to the prescribed condition.

§53 Therefore, since for these limits of integration it must be

m
∫

x2m∂v = (4m− 2)
∫

x2m−2∂v,

let us put that in general

m
∫

x2m∂v = (4m− 2)
∫

x2m−2∂v + Πx2m−1,
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where Π is a function of such a kind that the added part Πx2m−1 goes over into
zero at both limits, i.e. for x = a and x = b. Now this equation, differentiated
and then divided by x2m−2, gives

mxx∂v = (4m− 2)∂v + (2m− 1)Π∂x + x∂Π,

which equation must hold for all numbers m.

§54 Therefore, this equation must be split into two others, the one of which
contains only the terms affected by the letter m, the other part on the other
hand the remaining ones; these two equations will therefore be

xx∂v = 4∂v + 2Π∂x

and

0 = −2∂v−Π∂x + x∂Π.

From the first

∂v =
2Π∂x
xx− 4

;

from the other on the other hand

∂v =
x∂Π−Π∂x

2
,

which two values set equal to each other yield this equation:

4Π∂x = (xx− 4)(x∂Π−Π∂x) = x3∂Π− xxΠ∂x− 4x∂Π + 4Π∂x

and hence one concludes:

∂Π
Π

=
x∂x

xx− 4
,

whence by integration

log Π = log
√

xx− 4

and hence
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Π = C
√

xx− 4

or even

Π = C
√

4− xx;

having found this value we obtain our assumed differential

∂v =
2C∂x√
4− xx

;

hence

v = 2C arcsin
x
2

.

§55 Now let us consider the added formula

Πx2m−1 = Cx2m−1
√

4− xx,

which we detect to be able to go over into zero in three ways: first, of course,
whenever x = 0, except in the case m = 0; second in the case x = 2; and third
in the case x = −2, from which therefore those two limits a and b must be
taken. But it will be convenient to choose these two limits in such a way that
also the other part of the integration,

∫
N∂v, is expressed conveniently. Since

we put

(1 + x)n = M + N,

also the integral
∫

N∂v is to be taken into account; if it would vanish complete-
ly, this would without a doubt be most convenient for the limits of integration;
for, then it would be ∫

(M + N)∂v

or ∫
∂v(1 + x)n =

∫
M∂v,

as a logical consequence, we would have p =
∫

M∂v
v .
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§56 But above we put

N =
(n

1

)
x +

(n
3

)
x3 +

(n
5

)
x5 +

(n
7

)
x7 + etc.,

whence one finds∫
N∂v =

(n
1

) ∫
x∂v +

(n
3

) ∫
x3∂v +

(n
5

) ∫
x5∂v + etc.,

where, by the same reductions we applied for the letter M, each integral
formula can be reduced to the preceding one by means of the reduction∫

x2m∂v =
4m− 2

m

∫
x2m−2∂v.

For, having taken m = 3
2 it will be∫

x3∂v =
8
3

∫
x∂v.

For m = 5
2 it will be ∫

x5∂v =
16
5

∫
x3∂v.

Having taken m = 7
2 it will be∫

x7∂v =
24
7

∫
x5∂v

etc.,

whence it is plain, if just
∫

x∂v would vanish, that also all the following ones
would vanish.

§57 Therefore, since we found

∂v =
2C∂x√
4− xx

,

it will be

x∂v =
2Cx∂x√
4− xx

and hence
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∫
x∂v = 2C

√
4− xx,

which expression vanishes in the two cases x = +2 and x = −2. Therefore, if
we constitute the limits of integration as x = +2 and x = −2, not only that
added part Πx2m−1 but also the whole value of the integral

∫
N∂v vanishes;

and hence in this case we answered our question perfectly, since

p =

∫
∂v(1 + x)n

v
.

§58 Therefore, since we found

∂v =
2C∂x√
4− xx

,

its integral taken in such a way that it vanishes for x = 2 will be

v = 2C arcsin
x
2
− 2C

π

2
,

which expression is reduced to this one:

v = −2C arccos
x
2

;

having extended this integral to the other limit x = −2 v = −2Cπ results.
Therefore, having substituted these values the formula in question will be

p = − 1
π

∫
(1 + x)n∂x√

4− xx
.

Of course, this integral formula extended from the limit x = 2 to the limit
x = −2 will give the true value of p.

§59 To simplify this formula, let us set x = 2 cos ϕ, where it is evident that
in the case x = 2 the angle ϕ = 0; but in the case x = −2 ϕ = π such that
after the introduction of this angle the integral must be taken from the limit
ϕ = 0 to ϕ = π; but then it will be

∂x = −2∂ϕ sin ϕ and
√

4− xx = 2 sin ϕ;

after this substitution we will obtain this equation:
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p = +
1
π

∫
(1 + 2 cos ϕ)n∂ϕ

[
from ϕ = 0

to ϕ = π

]
.

DETERMINATION OF THE REMAINING LETTERS BY FINITE INTEGRAL
FORMULAS

§60 This will be easily achieved by the equation between these three letters
we gave above. Of course, first we had 2q = ∆p = p′ − p, where p′ arises from
p, if one writes n + 1 instead of n. Therefore, since we just found

p =
1
π

∫
(1 + 2 cos ϕ)n∂ϕ,

it will be

p′ =
1
π

∫
(1 + 2 cos ϕ)n+1∂ϕ,

and therefore it will be

p′ − p =
2
π

∫
∂ϕ cos ϕ(1 + 2 cos ϕ)n∂ϕ;

having substituted this value one will find

q =
1
π

∫
∂ϕ cos ϕ(1 + 2 cos ϕ)n

[
from ϕ = 0

to ϕ = π

]
;

therefore, hence it will further be

q′ =
1
π

∫
∂ϕ cos ϕ(1 + 2 cos ϕ)n+1.

§61 But above we saw that r = q′ − q− p, but now it will be

q′ − q =
2
π

∫
∂ϕ cos2 ϕ(1 + 2 cos ϕ)n.

Therefore, if p is subtracted from this, because of 2 cos2 ϕ− 1 = 2 cos 2ϕ, we
find the letter r

r =
1
π

∫
∂ϕ cos 2ϕ(1 + 2 cos ϕ)n,

whence again
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r′ =
1
π

∫
∂ϕ cos 2ϕ(1 + 2 cos ϕ)n+1.

§62 Therefore, since above we found s = r′ − r− q, first we will have here

r′ − r =
2
π

∫
∂ϕ cos 2ϕ(1 + 2 cos ϕ)n.

If q is subtracted from this, because of 2 cos ϕ cos 2ϕ− cos ϕ = cos 3ϕ, it will
be

s =
1
π

∫
∂ϕ cos 3ϕ(1 + 2 cos ϕ)n.

In like manner, it is already evident that it will be

t =
1
π

∫
∂ϕ cos 4ϕ(1 + 2 cos ϕ)n;

and in the same way one will find

s =
1
π

∫
∂ϕ cos 5ϕ(1 + 2 cos ϕ)n;

and hence it will be in general

z =
1
π

∫
∂ϕ cos λϕ(1 + 2 cos ϕ)n.

§63 Since the analysis we used here is completely unique and hardly usual,
it will be convenient to confirm the validity of these formulas by an analytical
proof, which can be given for each one in the same step. One will have to start
from the expansion of the formula (1 + 2 cos ϕ)n, which leads to this series:

1 +
(n

1

)
2 cos ϕ +

(n
2

)
4 cos2 ϕ +

(n
3

)
8 cos3 ϕ +

(n
4

)
16 cos 4ϕ + etc.

But by familiar reductions of angles it is known
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2 cos ϕ = 2 cos ϕ,

4 cos2 ϕ = 2 cos 2ϕ + 2,

8 cos3 ϕ = 2 cos 3ϕ + 6 cos ϕ,

16 cos4 ϕ = 2 cos 4ϕ + 8 cos 2ϕ + 6,

32 cos5 ϕ = 2 cos 5ϕ + 10 cos 3ϕ + 20cos ϕ,

...
...

...
...

2α cosα ϕ = 2 cos αϕ + 2
(α

1

)
cos(α− 2)ϕ + 2

(α

2

)
cos(α− 4)ϕ

+ 2
(α

3

)
cos(α− 6)ϕ + etc.

where it is to be noted, whenever the last term is an absolute term, that then it
only has to be taken once and not twice as the others; furthermore, the cosines
of negative angles have to be omitted completely.

§64 Therefore, having arranged these formulas properly it will be

(1+ 2 cos ϕ)n = 1+
(n

1

)
2 cos ϕ+

(n
2

)
2(cos 2ϕ+ 1)+ 2

(n
3

)
(cos 3ϕ+ 3 cos ϕ)

+2
(n

4

)
(cos 4ϕ + 4 cos 2ϕ + 3) + 2

(n
5

)
(cos 5ϕ + 5 cos 3ϕ + 10 cos ϕ)

+
(n

6

)
(cos 6ϕ + 6 cos 4ϕ + 15 cos 2ϕ + 10) + etc.,

from where the following integrations are to be derived.

§65 Let us start with the first letter p, where this series must be multiplied
by ∂ϕ and integrated. Therefore, since in general∫

∂ϕ cos mϕ =
1
m

sin mϕ,
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that value already vanishes for ϕ = 0; for the other limit of integration, ϕ = π,
it obviously also vanishes, if just all numbers n are integers. Therefore, only
the absolute terms are left in the integration; but then having taken the integral
properly it will be

∫
∂ϕ = π, having observed which our integral will be∫

∂ϕ(1 + 2 cos ϕ)n = π + 2
(n

2

)
π + 6

(n
4

)
π + 20

(n
6

)
π + etc.

If the general form given above is consulted here, these numerical coefficients
are reduced to the forms

( 2
1

)
,
( 4

2

)
,
( 6

3

)
etc., completely as the validity of the

formula requires it. For, it will be

p =
1
π

∫
∂ϕ(1 + 2 cos ϕ)n = 1

(
2
1

)(n
2

)
+

(
4
2

)(n
4

)
+

(
6
3

)(n
6

)
+ etc.

§66 Let us proceed to the second letter, q, where the above series must be
multiplied by ∂ϕ cos ϕ and integrated. To this end, observe that in general

∫
∂φ cos ϕ cos mϕ =

1
2(m + 1)

sin(m + 1)ϕ +
1

2(m− 1)
sin(m− 1)ϕ,

which expression goes over into zero for ϕ = π, except for the case m = 1, in
which ∫

∂ϕ cos ϕ cos ϕ =
1
2

ϕ =
π

2
.

From this it is understood that only the terms of the above series containing
cos ϕ do not vanish, which are

2
(n

1

)
cos ϕ + 2

(
3
1

)(n
3

)
cos ϕ + 2

(
5
2

)(n
5

)
cos ϕ + 2

(
7
3

)(n
7

)
cos ϕ + etc.

But these terms, multiplied by ∂ϕ cos ϕ and integrated, because of∫
2∂ϕ cos2 ϕ = π,

divided by π will give this value

q =
(n

1

)
+

(
3
1

)(n
3

)
+

(
5
2

)(n
5

)
+

(
7
3

)(n
7

)
+ etc.
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§67 For the letter r, the above series must be multiplied by ∂ϕ cos 2ϕ. Since
in general

cos 2ϕ cos mϕ =
1
2

cos(m + 2)ϕ +
1
2

cos(m− 2)ϕ,

multiplying by ∂ϕ, the integral always vanishes for the limit ϕ = π except for
the case m = 2, in which case∫

∂ϕ cos2 2ϕ =
π

2
.

Therefore, from the above series only the terms multiplied by cos 2ϕ do not
vanish here, which are

2 cos 2ϕ

((n
2

)
+

(
4
1

)(n
4

)
+

(
6
2

)(n
6

)
+

(
8
3

)(n
8

)
+ etc.

)
.

Since 2
∫

∂ϕ cos2 ϕ = π, collecting all terms and dividing the sum by π one
finds

r =
(n

2

)
+

(
4
1

)(n
4

)
+

(
6
2

)(n
6

)
+

(
8
3

)(n
8

)
+ etc.

§68 To render these things more clear and that they can be accommodated
to the general value z more easily, let us arrange the expansion of the power
(1 + 2 cos ϕ)n into cosines of multiples of the angle ϕ in this way immediately:

(1 + 2 cos ϕ)n = 1 +

(
2
1

)(n
2

)
+

(
4
2

)(n
4

)
+

(
6
3

)(n
6

)
+

(
8
4

)(n
4

)
+ etc.

+2 cos ϕ

((n
1

)
+

(
3
1

)(n
3

)
+

(
5
2

)(n
5

)
+

(
7
3

)(n
7

)
+

(
9
4

)(n
9

)
+ etc.

)
+2 cos 2ϕ

((n
2

)
+

(
4
1

)(n
4

)
+

(
6
2

)(n
6

)
+

(
8
3

)(n
8

)
+

(
10
4

)( n
10

)
+ etc.

)
+2 cos 3ϕ

((n
3

)
+

(
5
1

)(n
5

)
+

(
7
2

)(n
7

)
+

(
9
3

)(n
9

)
+

(
11
4

)( n
11

)
+ etc.

)
...

...
...

...
...

...

+2 cos λϕ

(( n
λ

)
+

(
λ + 2

1

)(
n

λ + 2

)
+

(
λ + 4

2

)(
n

λ + 4

)
+

(
λ + 6

3

)(
n

λ + 6

)
+

(
9
4

)(n
9

)
+ etc.

)
etc.
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§69 If we multiply this equation by ∂ϕ cos λϕ and integrate, all these inte-
grals extended within the prescribed limits will vanish except for the term
2 cos λϕ(· · · ), since the product 2 cos2 λϕ contains an absolute part, whence
π results from integration such that

∫
∂ϕ cos λϕ(1+ 2 cos ϕ)n = π

((n
λ

)
+

(
λ + 2

1

)(
n

λ + 2

)
+

(
λ + 4

1

)(
n

λ + 4

)
+ etc.

)
,

which value divided by π gives the value found above for z; hence the validity
of these new expressions has been demonstrated lucidly.

§70 Furthermore, if we consider each series of the penultimate paragraph
even just superficially, we observe that they are equal to our letters p, q, r, s
etc. such that

(1 + 2 cos ϕ)n = p + 2q cos ϕ + 2r cos 2ϕ + 2s cos 3ϕ + 2t cos 4ϕ + etc.,

where at the same the reason why the letters q, r, s etc. are doubled, is obvious,
which is since in the expansion of the formula (1 + x + xx)n the letter p
just occurs once in the middle term, but the remaining letters occur twice,
namely in terms equally far removed from the middle. The extraordinary
affinity among the two powers (1 + x + xx)n and (1 + 2 cos ϕ)n is worth one’s
complete attention.

INVESTIGATION OF THE SUM OF THE SERIES
P = 1 + x + 3xx + 7x3 + 19x4 + · · ·+ pxn + p′xn+1 + p′′xn+2 + ETC.

§71 Since the general term of this series is pxn, which is followed by p′xn+1

and p′′xn+2, among these three quantities p, p′, p′′ we found this relation
above [§ 38]:

(n + 2)p′′ = (2n + 3)p′ + 3(n + 1)p,

which we want to represent in this way for further use:

3(n + 1)p + (n + 1)p′ + (n + 2)p′ − (n + 2)p′′ = 0.
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§72 Since our series is

1 + x + 3xx + 7x3 + 19x4 + · · ·+ pxn + p′xn+1 + p′′xn+2 + etc.,

let us perform operations such that the before-mentioned relation is obtained,
which will be achieved most conveniently in the following way:

3∂Px
∂x

= 3 + 6x + 27xx + · · · + 3(n + 1)p xn + etc.,

+
∂P
∂x

= 1 + 6x + 21xx + · · · + (n + 1)p′ xn + etc.,

+
∂Px
x∂x

=
1
x
+ 2 + 9x + 28xx + · · · + (n + 2)p′ xn + etc.,

− ∂Px
x∂x

= − 1
x
− 6 − 21x − 76xx − · · · − (n + 2)p′′xn − etc.

Let us collect these four series into one sum and we will obtain the following
equation:

3∂Px
∂x

+
∂P
∂x

+
∂Px
x∂x
− ∂P

x∂x
= 0,

since these terms cancel each other.

§73 Therefore, in this way we were led to a finite differential equation of first
order, which multiplied by x∂x and arranged properly will look as follows:

P∂x(3x + 1) + ∂P(3xx + 2x− 1) = 0,

whence

∂P
P

=
∂x(1 + 3x)

1− 2x− 3xx
,

which equation, if it is integrated, gives

log P = −1
2

log(1− 2x− 3xx) + log C,

as a logical consequence

P =
C√

1− 2x− 3xx
.
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To define the constant C, just note that our series gives P = 1 for x = 0,
whence it is plain that one has to take C = 1 such that the sum of the series is

P =
1√

1− 2x− 3xx
.

§74 Therefore, against our expectation, we arrived at an algebraic sum, which
expression is of such a nature, if it is converted into a series, that it reproduces
our series; to have shown this will be worth one’s while. Since

P = (1− 2x− 3xx)−
1
2 ,

if the last parts of the trinomial are considered as one unit, the expansion will
give us

P = 1 +
1
2
(2x + 3xx) +

1 · 3
2 · 4 (2x + 3xx)2 +

1 · 3 · 5
2 · 4 · 6 (2x + 3xx)3 + etc.;

it will suffice to have expanded it just to the third power. In this way we will
obtain

P = 1 + x +
3
2

xx +
9
2

x3 + etc.

+
3
2

xx +
5
2

x3 + etc.

= 1 + x + 3xx + 7x3 + etc.,

which agrees perfectly with the above series.

§75 But this series can actually be found in still another way; of course from
the integral formula we found for the value of the letter p, i.e.

p =
1
π

∫
∂ϕ(1 + 2 cos ϕ)n

[
from ϕ = 0

to ϕ = π

]
.

For, this formula multiplied by x gives the second term, x, for n = 2. Further,
in the case n = 2, multiplied by xx, it gives the second term, 3xx; having
observed this the sum we are looking for can be represented this way:
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P =
1
π

∫
∂ϕ(1 + x(1 + 2 cos ϕ) + xx(1 + 2 cos ϕ)2 + x3(1 + 2 cos ϕ)3 + etc.),

where it must be noted that in this integration the quantity x has to be
considered as a constant quantity, since just the angle ϕ is variable.

§76 But it is evident that this infinite series, by which the element ∂ϕ must
be multiplied, is a geometric series, whose sum will therefore be

1
1− x(1 + 2 cos ϕ)

=
1

1− x− 2x cos ϕ
,

and so we will have this finite expression for P:

P =
1
π

∫
∂ϕ

1− x− 2x cos ϕ

[
from ϕ = 0

to ϕ = π

]
,

which equation can be exhibited in this way:

P =
1

π(1− x)

∫
∂ϕ

1− 2x
1−x cos ϕ

[
from ϕ = 0

to ϕ = π

]
,

where for the sake of brevity we want to set 2x
1−x = k such that we have

P =
1

π(1− x)

∫
∂ϕ

1− k cos ϕ
.

§77 But it is known that the integral of this formula ∂ϕ
1+n cos ϕ reads

1√
1− nn

arccos
cos ϕ + n

1 + n cos ϕ
;

thus, if we write −k instead of n, for our case we obtain

P =
1

π(1− x)
√

1− kk
arccos

cos ϕ− k
1− k cos ϕ

,

where the addition of a constant is not necessary since the expression already
vanishes for ϕ = 0. Therefore, let us set ϕ = π for the other limit, whence

cos ϕ = −1 and arccos
cos ϕ− k

1− k cos ϕ
= arccos(−1) = π;
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therefore, we will have

P =
1

(1− x)
√

1− kk
,

which expression, because of k = 2x
1−x , goes over into this one:

P =
1√

1− 2x− 3xx
,

precisely as before.

§78 Since

1− 2x− 3xx = (1− x)2 − 4xx = (1 + x)(1− 3x),

it follows that our series, which we have to sum, becomes infinite in two cases,
namely in the case x = −1 and in the case x = 1

3 . Furthermore, our series will
have a finite sum whenever x is contained within the limits −1 and 1

3 ; but if x
lies outside these limits, the sum will always be imaginary. So for x = 1

4 one
will have this summation:

1 +
1
4
+

3
42 +

7
43 +

19
44 +

51
45 +

141
46 + etc. =

4√
5

.

INVESTIGATION OF THE SUM OF THE REMAINING SERIES Q, R, S ETC.
INTRODUCED ABOVE IN §6

§79 Let us start with the series Q, which is

Q = xx + 2x3 + 6x4 + · · ·+ qxn+1 + q′xn+2 + q′′xn+3 + etc.,

the first term of which, xx, results from the power n = 1; if we want this series
to start from n = 0, we must write the term 0x in front of it. But for this series
we showed above that q = 1

2 (p′ − p), whence the sum of this series can be
found from the first series p in the following way.

§80 Since

P = 1 + x + 3xx + · · ·+ pxn + p′xn+1 + etc.,

it will be
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Px = x + xx + · · ·+ pxn+1 + etc.,

the second series subtracted from the first gives

P(1− x) = 1 + 2xx + · · ·+ (p′ − p)xn+1 + etc.

Since p′ − p = 2q, it will be

P(1− x) = 1 + 2Q;

and in this way the sum of this series is found, since

Q =
P(1− x)− 1

2
.

But just before we saw that

P =
1√

1− 2x− 3xx
,

and so we will have

Q =
1− x−

√
1− 2x− 3xx

2
√

1− 2x− 3xx
.

§81 Let us proceed to the series R, which reads as follows:

R = x4 + 3x5 + 10x6 + · · ·+ rxn+2 + r′xn+3 + etc.,

the first term of which, x4, resulted from the power n = 2; therefore, the two
terms 0x2 + 0x3 have to be written in front of it; to find its sum note that
r = q′ − q− p. If the following operations are performed:

Q = xx + 2x3 + · · · + qxn+1 + q′xn+2 + etc.,

− Qx = − x3 − · · · − · · · − qxn+2 − etc.,

− Px2 = − xx − x3 − · · · − · · · − pxn+2 − etc.,

combining them it will be:

Q(1− x)− Pxx = x4 + 3x5 + · · ·+ (q′ − q− p)xn+2 + etc. = R.
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§82 Therefore, in this way we determined the sum R in terms of the two
preceding series Q and P; since they are known, we also obtained the sum of
the series R expressed by an algebraic function of x; we will show later, how
this function can be expanded conveniently.

§83 For the series S, which were propounded as follows:

S = x6 + 4x7 + 15x8 + · · ·+ sxn+3 + s′xn+4 + etc.,

the three terms 0x3 + 0x4 + 0x5 must be written in front of it, since we want
to start from the power n = 0. But above we found that s = r− r− q, whence
we perform the following operation:

R = x4 + 3x5 + 10x6 + · · · + rxn+2 + r′xn+3 + etc.,

− Rx = − x5 − 3x6 − · · · − · · · − rxn+3 − etc.,

− Qxx = − x4 − 2x5 − 6x6 − · · · − · · · − qxn+3 − etc.;

having added these three series this series results:

x6 + · · ·+ sxn+3 + etc.,

which is the series S. Therefore, the sum of this series is determined by the
two preceding ones Q and R in such a way that

S = R(1− x)−Qxx;

its expansion can be expedited rather easily, as it will be shown soon.

§84 In the same way the series T will be determined by the two preceding
ones R and S:

S = x6 + 4x7 + 15x6 + · · · + sxn+3 + s′xn+4 + etc.,

− Sx = − x7 − 4x8 − · · · − · · · − sxn+4 − etc.,

− Rxx = − x6 − 3x7 − 10x8 − · · · − · · · − rxn+4 − etc..
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Since s′ − s− r = t, these three series added together will give

S(1− x)− Rxx = x8 + · · ·+ txn+4 + etc.;

since this is the series T, it will be

T = S(1− x)− Rxx.

§85 Therefore, it is obvious that each of these series can easily be determined
by the two preceding ones and even by an uniform law. Let us list the
respective equation here.

Q =
P(1− x)− 1

2
,

R = Q(1− x)− Pxx,

S = R(1− x)−Qxx,

T = S(1− x)− Rxx,

U = T(1− x)− Sxx

etc.;

hence it is plain that all these sums proceed as recurring series whose scale of
relation is (1− x), −xx. But it will become clear soon that this series is even a
geometric series.

§86 Since after the expansion

Q
P

=
1− x−

√
1− 2x− 3xx
2

,

To show this, for the sake of brevity let us call

1− x−
√

1− 2x− 3xx
2

= v

such that we have Q = Pv; but having removed the irrational quantity, since
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√
1− 2x− 3xx = 1− x− 2v,

this equation will result:

(1− x)2 − 4xx = (1− x)2 − 4v(1− x) + 4vv,

which is reduced to this one:

v(1− x)− xx = vv;

it will be helpful to have noted this for the following.

§87 If we substitute the value Pv for Q, for the series R this equation will
result:

R = P(v(1− x)− xx)

and hence by the relation just mentioned

R = Pvv.

If we further substitute the values that we found for Q and R, in like manner
we will obtain:

S = Pv (v(1− x)− xx) = Pv3,

T = Pvv(v(1− x)− xx) = Pv4,

U = Pv3 (v(1− x)− xx) = Pv4,

...
...

...

Z = Pvλ(v(1− x)− xx) = Pvλ+1.

§88 If we transfer these equations which we found for the letters p, q, r, s
etc., to the integral formulas, since we found

z =
1
π

∫
∂ϕ cos λϕ(1 + 2 cos ϕ)n,
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and if we successively attribute the values 0, 1, 2, 3, 4 etc. to the exponent
n, since the series Z must be considered to start from the power xλ, the
differential formula ∂ϕ cos λϕ must be multiplied by this geometric series:

(1 + 2 cos ϕ)0xλ + (1 + 2 cos ϕ)1xλ+1 + (1 + 2 cos ϕ)2xλ+2 + etc.,

the sum of which is

xλ

1− x− 2x cos ϕ
;

therefore, having introduced this sum into the the calculation the sum Z that
is in question will be expressed in this way:

Z =
1
π

∫ xλ∂ϕ cos λϕ

1− x− 2x cos ϕ

[
from ϕ = 0

to ϕ = π

]
,

where the quantity x is constant.

§89 Since we found this sum here, i.e.

Z = Pvλ =
vλ

√
1− 2x− 3xx

,

where

v =
1− x−

√
1− 2x− 3xx
2

,

we will be able to exhibit the algebraic value of the integral formula, since we
know now that

1
π

∫ xλ∂ϕ cos λ

1− x− 2x cos ϕ
=

vλ

√
1− 2x− 3xx

,

or, multiplying by π
xλ , we will have∫

∂ϕ cos λϕ

1− x− 2x cos ϕ
=

π√
1− 2x− 3xx

(v
x

)λ
.
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§90 Since this integration seems worthy of greater attention, let us transform
it into a more convenient form and since x and v are considered as constants
here and because of

v =
1− x−

√
1− 2x− 3xx
2

it will be

2bx = 1− x−
√

1− 2x− 3xx,

which equation, after having removed the irrational quantities, gives

4bbxx− 4bx(1− x) + (1− x)2 = (1− x)2 − 4xx,

which is reduced to this one:

bbx− b + bx = −x,

from which the quantity x is determined conveniently, since x = b
bb+b+1 and

hence

1− x =
bb + 1

bb + b + 1
,

and since

√
1− 2x− 3xx = 1− x− 2bx;

further, it will be

√
1− 2x− 3xx =

1− bb
1 + b + bb

.

§91 If we introduce the letter b instead of x into our calculation, the integra-
tion that we found will be reduced to this simpler form:

∫
∂ϕ cos λϕ

1− 2b cos ϕ + bb

[
from ϕ = 0

to ϕ = π

]
=

πbλ

1− bb
,

the truth of which is deduced from the calculation done up to this point; but it
can even be shown directly and immediately; having done this the preceding
will be confirmed even more.
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§92 To show this let us recall the familiar integration by which∫
∂ϕ

α + β cos ϕ
=

1√
αα− ββ

arccos
α cos ϕ + β

α + β cos ϕ
.

Now let α be = 1 + bb and β = −2b and we will have∫
∂ϕ

1− 2b cos ϕ + bb
=

1
1− bb

arccos
(1 + bb) cos ϕ− 2b
1− 2b cos ϕ + bb

,

which integral vanishes for ϕ = 0. Therefore, haven taken the other limit as
ϕ = π this integral becomes π

1−bb .

§93 Since for our limits of integration we found∫
∂ϕ

1− 2b cos ϕ + bb
=

π

1− bb

and obviously∫
∂ϕ = π and hence

∫
∂ϕ(1− 2b cos ϕ + bb)

1− 2b cos ϕ + bb
= π,

splitting this formula into two parts we will have

π = (1 + bb)
∫

∂ϕ

1− 2b cos ϕ + bb
− 2b

∫
∂ϕ cos ϕ

1− 2b cos ϕ + bb
,

from where we conclude∫
∂ϕ cos ϕ

1− 2b cos ϕ + bb
=

πb
1− bb

.

§94 Since for our limits of integration in general∫
∂ϕ cos iϕ = 0,

if i was an integer number of course, let us multiply the numerator and
denominator of this formula by 1 + bb− 2b cos ϕ and we will obtain∫

∂ϕ((1 + bb) cos iϕ− b cos(i− 1)ϕ− b cos(i + 1)ϕ)

1− 2b cos ϕ + bb
= 0.

If this formula is now split into three parts, it will give us
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(1 + bb)
∫

∂ϕ cos iϕ
1− 2b cos ϕ + bb

= b
∫

∂ϕ cos(i− 1)ϕ

1− 2b cos ϕ + bb
+ b

∫
∂ϕ cos(i + 1)ϕ

1− 2b cos ϕ + bb
,

from which we derive this general reduction:

∫
∂ϕ cos(i + 1)ϕ

1− 2b cos ϕ + bb
=

1 + bb
b

∫
∂ϕ cos iϕ

1− 2b cos ϕ + bb
−
∫

∂ϕ cos(i− 1)ϕ

1− 2b cos ϕ + bb
,

by means of which one can determine the integral for the angle (i + 1)ϕ from
the integrals for the angles iϕ and (i− 1)ϕ, whence it is possible to construct
the following table:

∫ ∂ϕ

1 + bb− 2b cos ϕ
=

π

1− bb
,∫ ∂ϕ cos ϕ

1 + bb− 2b cos ϕ
=

πb
1− bb

,∫ ∂ϕ cos 2ϕ

1 + bb− 2b cos ϕ
=

πbb
1− bb

,∫ ∂ϕ cos 3ϕ

1 + bb− 2b cos ϕ
=

πb3

1− bb
,∫ ∂ϕ cos 4ϕ

1 + bb− 2b cos ϕ
=

πb4

1− bb
,

...
...∫ ∂ϕ cos λϕ

1 + bb− 2b cos λϕ
=

πbλ

1− bb
,

precisely, as we found above.
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