
On Wallis’ continued fractions *

Leonhard Euler

§1 After Brouncker had found his memorable continued fraction for the
quadrature of the circle and communicated it with Wallis without a proof,
the latter mostly spent his eagerness on that that he detects the source from
which Brouncker derived this extraordinary formula. But he (Wallis) believed
that he (Brouncker) had used that astounding formulas which he (Wallis)
found in his work Arithmetica infinitorum. Yes, hence by rather non straight-
forward calculations he not only found the Brounckerian continued fraction
but additionally rescued many other similar ones, which, as the Brounckerian
expression, are to considered worth one’s attention, from oblivion.

§2 But what from Wallis’ Arithmetica infinitorum, written long before the
invention of the Analysis of the Infinite, extends to this, can now in customary
manner be represented in such a way that, having extended the integral
formulas from the limit x = 0 to x = 1, the following quadratures are
exhibited:

*Original title: "De fractionibus continuis Wallisii", first published in: Memoires de l’academie
des sciences de St.-Petersbourg 5, 1815, pp. 24-44, reprint in: Opera Omnia: Series 1, Volume
16, pp. 178 - 199, Eneström-Number E745, translated by: Alexander Aycock for the project
„Euler-Kreis Mainz“.
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∫ x∂x√
1− xx

= 1 = 1,

∫ x3∂x√
1− xx

=
2
3

=
2 · 2
2 · 3,

∫ x5∂x√
1− xx

=
2 · 4
3 · 5 =

2 · 2 · 4 · 4
2 · 3 · 4 · 5,

∫ x7∂x√
1− xx

=
2 · 4 · 6
3 · 5 · 7 =

2 · 2 · 4 · 4 · 6 · 6
2 · 3 · 4 · 5 · 6 · 7,

∫ x9∂x√
1− xx

=
2 · 4 · 6 · 8
3 · 5 · 7 · 9 =

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8
2 · 3 · 4 · 5 · 6 · 7 · 8 · 9

etc.

§3 I arranged those formulas in the third column in such a way that the
denominators obviously admit an interpolation; and so it just remains that
also the numerators are transformed in such a way that they likewise allow
an interpolation, what will happen, if such a series progressing according to
an uniform law i.e. A, B, C, D, E, F etc. is investigated that

AB = 1 · 1, BC = 2 · 2, CD = 3 · 3, DE = 4 · 4 etc.,

which is that in which Wallis revealed the highest ingenuity of his mind, but
which investigation I will expedite a lot more generally and by a much easier
calculation in the following.

§4 But having found this series of the letters A, B, C, D etc. the whole task
will be completely done. For, since, as the following table shows:
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∫ x∂x√
1− xx

= 1 =
1
A
· A

1
,

∫ x3∂x√
1− xx

=
BC
2 · 3 =

1
A
· ABC

1 · 2 · 3,

∫ x5∂x√
1− xx

=
BCDE

2 · 3 · 4 · 5 =
1
A
· ABCDE

1 · 2 · 3 · 4 · 5,

∫ x7∂x√
1− xx

=
BCDEFG

2 · 3 · 4 · 5 · 6 · 7 =
1
A
· ABCDEFG

1 · 2 · 3 · 4 · 5 · 6 · 7

etc.,

the interpolation gives us the following quadratures:

∫ ∂x√
1− xx

=
1
A
· 1,

∫ xx∂x√
1− xx

=
1
A
· AB

1 · 2,

∫ x4∂x√
1− xx

=
1
A
· ABCD

1 · 2 · 3 · 4,

∫ x6∂x√
1− xx

=
1
A
· ABCDEF

1 · 2 · 3 · 4 · 5 · 6

etc.

§5 Now, since ∫
∂x√

1− xx
=

π

2

while π denotes the circumference of the circle with diameter = 1, for the
sake of brevity, let us write q = π

2 , then all values of the letters A, B, C, D etc.
will be expressed in terms if the quadrature of the circle in the following way:
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Differences

A =
1
q

= 0, 636620

0, 934176
B = q = 1, 570796

0, 975683

C =
4
q

= 2, 546479

0, 987813

D =
9q
4

= 3, 534292

0, 992782

E =
4 · 16

9q
= 4, 527074

0, 995257

F =
9 · 25
4 · 16

q = 5, 522331

etc.

§6 Here I added the third column, which exhibits the numerical values of
these letters that it becomes more clear how those numbers increase according
to an uniform law, what would not have happened, if I had taken a wrong
value for q. Having explained these things, I will give a much simpler method
by which for each of these letters continued fractions can be found, and in the
same step I will make this operation a lot more general, while I resolve the
following problem.

PROBLEM

To find a series of letters A, B, C, D etc. progressing according to an uniform law
such that

AB = f f , BC = ( f + a)2, CD = ( f + 2a)2 etc.
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SOLUTION

§7 Here it is plain immediately what kind of function A was of f , that such
a function B must be of f + a, but then C of f + 2a, D of f + 3a and so forth.
If, having observed this law, we set

A = f − 1
2

a +
1
2 s
A′

,

one will have to put

B = f +
1
2

a +
1
2 s
B′

,

where the letters A′ and B′ have the same ratio to each other such that B′

originates from A′, if one writes f + a instead of f . Therefore, since after
having removed the fractions

2A = 2 f − a +
s

A′
and 2B = 2 f + a +

s
B′

,

the product of these formula is to be put equal to 4 f f , whence this equation,
already freed from fractions, results:

aaA′B′ − A′s(2 f − a)− B′s(2 f + a)− ss = 0.

Therefore, let us take s = aa that the equation, divided by aa, is

A′B′ − A′(2 f − a)− B′(2 f + a) = aa,

which can be expressed conveniently in terms of factors this way:

(A′ − 2 f − a)(B′ + 2 f + a) = 4 f f .

§8 Now since, if both letters A′ and B′ would be equal, from the left-hand
side it would be A′ = B′ = 4 f , following the law mentioned above let us set:

A′ = 4 f − 2a +
s′

A′′

and

B′ = 4 f + 2a +
s′

B′′
,
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having substituted which the last equation will take this form:(
2 f − 3a +

s′

A′′

)(
2 f + 3a +

s′

B′′

)
= 4 f f .

Therefore, after the expansion and having got rid of the fractions the following
equation will result:

9aaA′′B′′ − A′′s′(2 f − 3a)− B′′s′(2 f + 3a)− s′s′ = 0.

Therefore, take s′ = 9aa here that one has this equation:

A′′B′′ − A′′(2 f − 3a)− B′′(2 f + 3a) = 9aa,

which again can be represented in terms of factors this way:

(A′′ − 2 f − 3a)(B′′ − 2 f + 3a) = 4 f f .

§9 Since now again the intermediate value between A′′ and B′′ is 4 f , let us
further set

A′′ = 4 f − 2a +
s′′

A′′′
and B′′ = 4 f + 2a +

s′′

B′′′
,

and after the substitution this equation will emerge:(
2 f − 5a +

s′′

A′′′

)(
2 f + 5a +

s′′

B′′′

)
= 4 f f .

Therefore, having done the expansion and having got rid of the fractions it
will be

25aaA′′′B′′′ − A′′′s′′(2 f − 5a)− B′′′s′′(2 f + 5a)− s′′s′′ = 0.

Set s′′ = 25aa, and that equation will take on this form:

A′′′B′′′ − A′′′(2 f − 5a)− B′′′(2 f + 5a) = 25aa,

which can be represented in terms of factors this way:

(A′′′ − 2 f − 5a)(B′′′ − 2 f + 5a) = 4 f f .
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§10 Again, as before, set

A′′′ = 4 f − 2a +
s′′′

AIV and B′′′ = 4 f + 2a +
s′′′

BIV

and after the substitution it will be(
2 f − 7a +

s′′′

AIV

)(
2 f + 7a +

s′′′

AIV

)
= 4 f f ,

having expanded and ordered which equation one obtains

AIVBIV − AIV(2 f − 7a)− BIV(2 f + 7a) = 49aa,

where we put s′′′ = 49aa; but then in terms of factors it will be

(AIV − 2 f − 7a)(BIV − 2 f + 7a) = 4 f f .

Hence it is perspicuous how these operations are to be continued.

§11 Therefore, collecting them, because of

s = aa, s′ = 9aa, s′′ = 25aa, s′′′ = 49aa etc.

for 2A we will obtain the following continued fraction:

2A = 2 f − a +
aa

4 f − 2a +
9aa

4 f − 2a +
25aa

4 f − 2a +
49aa

4 f − 2a + etc.

where, if instead of f in order we write f + a, f + 2a, f + 3a etc., similar
continued fractions for 2B, 2C, 2D etc. will result, which will look as follows:

2B = 2 f + a +
aa

4 f + 2a +
9aa

4 f + 2a +
25aa

4 f + 2a +
49aa

4 f + 2a + etc.

7



2C = 2 f + 3a +
aa

4 f + 6a +
9aa

4 f + 6a +
25aa

4 f + 6a +
49aa

4 f + 6a + etc.

2D = 2 f + 5a +
aa

4 f + 10a +
9aa

4 f + 10a +
25aa

4 + 10a +
49aa

4 f + 10a + etc.

etc.

§12 If we now put f = 1 and a = 1 here, the cases treated by Wallis will
result, whence the continued fractions found by Wallis together with its values
expressed in terms of the quadrature of the circle will be the following:
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WALLISIAN CONTINUED FRACTIONS

2A = 1 +
1

2 +
9

2 +
25

2 +
49

2 + etc.

=
2
q

=
4
π

,

2B = 3 +
1

6 +
9

6 +
25

6 +
49

6 + etc.

= 2q = π,

2C = 5 +
1

10 +
9

10 +
25

10 +
49

10 + etc.

=
8
q

=
16
π

,

2D = 7 +
1

14 +
9

14 +
25

14 +
49

14 + etc.

=
9q
2

=
9π

4
,

2E = 9 +
1

18 +
9

18 +
25

18 +
49

18 + etc.

=
128
9q

=
256
9π

,

the first of which is the continued fraction found by Brouncker.
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§13 But it is not probable at all that Brouncker got to its formula in such
an non straight-forward way; I believe that he rather had derived it from the
consideration of this very well-known series

1− 1
3
+

1
5
− 1

7
+

1
9
− etc. =

π

4
,

- which is usually attributed to Leibniz, but had been found much earlier
by Jacob Gregory, from whom Brouncker could have known it -, which was
possible by sufficiently easy and obvious operations in the following way:

Having put it will be

π

4
= 1 − α

α =
1
3
− β

β =
1
5
− γ

γ =
1
7
− δ

4
π

=
1

1− α
= 1 +

α

1− α
= 1 +

1
−1 + 1

α

1
α
=

3
1− 3β

= 3 +
9β

1− 3β
= 3 +

9
−3 + 1

β

1
β
=

5
1− 5γ

= 5 +
25γ

1− 5γ
= 5 +

25
−7 + 1

γ

1
γ

=
7

1− 7δ
= 7 +

49δ

1− 7δ
= 7 +

49
−7 + 1

δ

etc. etc.

If now here for 1
α , 1

β , 1
γ etc. the values just found are substituted, eventually

Brouncker’s continued fraction shows itself, since hence follows that it will be

4
π

= 1 +
1

2 +
9

2 +
25

2 +
49

2 + etc.

§14 But concerning our general solution of the problem, it even allows to
express the value of each continued fraction by certain quadratures, what we
will show in the following problem.
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PROBLEM

Having propounded the series A, B, C, D etc. progressing according to an uniform
law such that

AB = f f , BC = ( f + a)2, CD = ( f + 2a)2 etc.,

to investigate the value of each of these letters first expressed as infinite products, but
then in terms of integral formulas.

SOLUTION

§15 Therefore, since

A =
f f
B

, B =
( f + a)2

C
, C =

( f + 2a)2

D
etc.,

having substituted theses values continuously one will find

A =
f f ( f + 2a)2( f + 4a)2( f + 6a)2 · etc.
( f + a)2( f + 3a)2( f + 5a)2 · etc.

to infinity. But since this way no definite value results, since, wherever it
is terminated, either in the numerators or the denominators one factor is
redundant, this inconvenience will be avoided, if we arrange the simple
factors in the following way:

A = f · f ( f + 2a)
( f + a)( f + a)

· ( f + 2a)( f + 4a)
( f + 3a)( f + 3a)

· ( f + 4a)( f + 6a)
( f + 5a)( f + 5a)

· etc.

For, this way the factors will get continuously closer to 1 and at infinity will
become equal to it, and so that expression will certainly have a definite value.

§16 But to show how its value has to be reduced to integral formulas, let us
recall this lemma:

Having extended the integrals from x = 0 to x = 1 it will be

∫ xm−1∂x
n
√
(1− xn)n−k

=
m + k

m
· m + k + n

m + n
· m + k + 2n

m + 2n
· m + k + 3n

m + 3n
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·m + k + 4n
m + 4n

· · · · ·
∫ x∞∂x

n
√
(1− xn)n−k

.

To accommodate this lemma to our cases, since in our terms each factor
increases by 2a, one has to set n = 2a; but then having taken m = f and k = a
we will have

∫ x f−1∂x√
1− x2a

=
f + a

f
· f + 3a

f + 2a
· f + 5a

f + 4a
· · · · ·

∫ x∞∂x√
1− x2a

,

which expression, inverted, yields the first factors of each term. For the others
let us take m = f + a while still k = a, and having done so it will be

∫ x f+a−1∂x√
1− x2a

=
f + 2a
f + a

· f + 4a
f + 3a

· f + 6a
f + 5a

· · · · ·
∫ x∞∂x√

1− x2a
.

§17 Now it is evident that the second formula divided by the first exhibits
our infinite product, and this way the infinitesimal integrals cancel each other,
as a logical consequence, we have

A =
∫ x f+a−1∂x√

1− x2a
:
∫ x f−1∂x√

1− x2a
.

In like manner, immediately

A =
∫ x f+2a−1∂x√

1− x2a
:
∫ x f+a−1∂x√

1− x2a

B =
∫ x f+3a−1∂x√

1− x2a
:
∫ x f+2a−1∂x√

1− x2a

etc.

But this investigation can indeed be generalised even more, as the following
problem will teach.

MORE GENERAL PROBLEM

To find a series A, B, C, D etc. progressing according to an uniform law such that

AB = f f + c, BC = ( f + a)2 + c, CD = ( f + 2a)2 + c,
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DE = ( f + 3a)2 + c etc.,

where in each of the products the letter f is increased by the quantity a.

FIRST SOLUTION BY CONTINUED FRACTIONS

§18 Here it is evident again, what a function A was of f , that such a function
B must be of f + a, C of f + 2a, D of f + 3a and so forth. Therefore, since
AB = f f + c, if A and B would be equal, having omitted c it would be
A = B = f . Therefore, by what amount A is taken smaller than f , by that
amount B has to greater; hence having put A = f − x it will be B = f + x.
But since B results from A, if one writes f + a instead of f , it must also be
B = f + a− x, whence we conclude that x = 1

2 a; and so the principal parts
for A and B will be

A = f − 1
2

a and B = f +
1
2

a

or

2A = 2 f − a and 2B = 2 f + a

and hence for the following

2C = 2 f + 3a, 2D = 2 f + 5a, 2E = 2 f + 7a etc.

§19 Having found the principal values let us put that actually

2A = 2 f − a +
s

A′
and 2B = 2 f + a +

s
B′

.

But for s an appropriate value will emerge soon. Therefore, hence it will be

4AB = 4 f f − aa +
s

A′
(2 f + a) +

s
B′
(2 f − a) +

ss
A′B′

= 4 f f + 4c,

which equation, having got rid of the fractions, takes this form:

A′B′(aa + 4c)− A′s(2 f − a)− B′s(2 f + a)− ss = 0.

Now let us take s = aa + 4c, and after a division it will be

A′B′ − A′(2 f − a)− B′(2 f + a) = aa + 4c,
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which equation we want to represent this way in terms of factors:

(A′ − 2 f − a)(B′ − 2 f + a) = 4 f f + 4c.

§20 Now reasoning the same way as before it is understood, if A′ and B′

were equal, that then the left-hand side will be

A′A′ − 4 f A′ = 0 and hence A′ = B′ = 4 f .

But since B′ must result from A′, if one writes f + a instead of f , it is evident
that the principal parts will be

A′ = 4 f − 2a and B′ = 4 f − 2a.

Therefore, let us put that actually

A′ = 4 f − 2a +
s′

A′′
and B′ = 4 f + 2a +

s′

B′′
,

whence, if these values are substituted, the preceding equation exhibited in
terms of factors will take this form:(

2 f − 3a +
s′

A′′

)(
2 f + 3a +

s′

B′′

)
= 4 f f + 4c,

which after the expansion leads to this equation:

(4 f f − 9aa) +
s′

A′′
(2 f + 3a) +

s′

B′′
(2 f − 3a) +

s′s′

A′′B′′
= 4 f f + 4c,

and having carried away the fractions it goes over into this one:

A′′B′′(9aa + 4c)− A′′s′(2 f − 3a)− B′′s′(2 f + 3a)− s′s′ = 0.

Therefore, having taken s′ = 9aa + 4c and after a division this equation results:

A′′B′′ − A′′(2 f − 3a)− B′′(2 f + 3a) = 9aa + 4c,

which can be represented via factors this way:

(A′′ − 2 f − 3a)(B′′ − 2 f + 3a) = 4 f f + 4c.
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§21 Since this equation is similar to the preceding and for the case A′′ = B′′

again A′′ = B′′ = 4 f would result, further set

A′′ = 4 f − 2a +
s′′

A′′′
and B′′ = 4 f + 2a +

s′′

B′′′
,

whence the last equation via factors would be(
2 f − 5a +

s′′

A′′′

)(
2 f + 5a +

s′′

B′′′

)
= 4 f f + 4c.

But having done the expansion and carried away the fractions it results:

A′′′B′′′(25aa + 4c)− A′′′s′′(2 f − 5a)− B′′′s′′(2 f + 5a)− s′′s′′ = 0.

Therefore, taking s′′′ = 25aa + 4c and dividing by s′′ it will be

A′′′B′′′ − A′′′(2 f − 5a)− B′′′(2 f + 5a) = 25aa + 4c

or as a product

(A′′′ − 2 f − 5a)(B′′′ − 2 f + 5a) = 4 f f + 4c.

§22 Further, set

A′′′ = 4 f − 2a +
s′′′

AIV and B′′′ = 4 f + 2a +
s′′′

BIV ,

and the above equation in terms of products having substituted these values
will be (

2 f − 7a +
s′′′

AIV

)(
2 f + 7a +

s′′′

BIV

)
= 4 f f + 4c,

which having repeated the same operations and taken s′′′ = 49aa + 4c is
reduced to the following form:

AIVBIV − AIV(2 f − 7a)− BIV(2 f + 7a) = 49aa + 4c,

or in terms of factors it will be

(AIV − 2 f − 7a)(BIV − 2 f + 7a) = 4 f f + 4c.

From these it is abundantly clear how the calculation is to be continued.
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§23 Therefore, having successively substituted these values, because of

s = aa + 4c, s′ = 9aa + 4c, s′′ = 25aa + 4c, s′′′ = 49aa + 4c etc.,

for A we will obtain the following continued fraction:

2A = 2 f − a +
aa + 4c

4 f − 2a +
9aa + 4c

4 f − 2a +
25aa + 4c

4 f − 2a +
49aa + 4c

4 f − 2a + etc.

In like manner, it will hence be

2B = 2 f + a +
aa + 4c

4 f + 2a +
9aa + 4c

4 f + 2a +
25aa + 4c

4 f + 2a +
49aa + 4c

4 f + 2a + etc.

2C = 2 f + 3a +
aa + 4c

4 f + 6a +
9aa + 4c

4 f + 6a +
25aa + 4c

4 f + 6a +
49aa + 4c

4 f + 6a + etc.

2D = 2 f + 5a +
aa + 4c

4 f + 10a +
9aa + 4c

4 f + 10a +
25aa + 4c

4 f + 10a +
49aa + 4c

4 f + 10a + etc.

etc.

SECOND SOLUTION BY INFINITE PRODUCTS

§24 Since
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AB = f f + c, BC = ( f + a)2 + c, CD = ( f + 2a)2 + c, DE = ( f + 3a)2 + c etc.,

it will be

A =
( f f + c)(( f + 2a)2 + c)(( f + 4a)2 + c)(( f + 6a)2 + c)etc.

(( f + a)2 + c)(( f + 3a)2 + c)(( f + 5a)2 + c)etc.

But indeed in this expression, wherever one is positioned, either in the nu-
merator or in the denominator there will be one redundant factor. For this to
become more clear, let us first stop at the letter F, and it will be

A =
f f + c

( f + a)2 + c
· ( f + 2a)2 + c
( f + 3a)2 + c

· (( f + 4a)2 + c) · 1
F

.

But whenever we stop at the following letter, G, it will be

A =
f f + c

( f + a)2 + c
· ( f + 2a)2 + c

( f + 3a)2 · ( f + 4a)2 + c
( f + 5a)2 + c

· G.

§25 Therefore, if these two expressions are continued to infinity and are
multiplied by each other, the last literal factor, which is G

F here, obviously
becomes equal to 1. But since in this case the number of factors in the number
is greater by one, let us write its first factor separately in front of it, and the
product will be expressed in the following way:

A2 = ( f f + c) · ( f f + c)(( f + 2a)2 + c)
(( f + a)2 + c)(( f + a)2 + c)

· (( f + 2a)2 + c)(( f + 4a)2 + c)
(( f + 3a)2 + c)(( f + 3a)2 + c)

· etc.,

where the infinitesimal factors will become equal to 1 and so that expression
proceeds in an uniform way.
But here it will be convenient to distinguish two cases, depending on whether
c was a negative or positive number.

CASE 1 IN WHICH c = −bb

§26 In the first case each factor will admit to be resolved into two others.
Therefore, let us first set c = −bb in which case the continued fraction can be
exhibited in the following way:
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2A = 2 f − a +
(a + 2b)(a− 2b)

4 f − 2a +
(3a + 2b)(3a− 2b)

4 f − 2a +
(5a + 2b)(5a− 2b)

4 f − 2a +
(7a + 2b)(7a− 2b)

4 f − 2a + etc.

and instead of the expression as infinite product we will now have the follo-
wing for the simple letter A

A = ( f − b) · ( f + b)( f + 2a− b)
( f + a + b)( f + a− b)

· ( f + 2a + b)( f + 4a− b)
( f + 3a + b)( f + 3a− b)

· etc.,

in each term of which expression the sum of the factors of the numerator
become equal to sum of the factors of the denominator; because of this
property these factors can be expressed via an integral formula.

§27 For, it is known, if this integral formula:

∫ xm−1∂x
n
√
(1− xn)n−k

is extended from x = 0 to x = 1, that the value is reduced to the following
infinite product:

m + k
m
· m + k + n

m + n
· m + k + 2n

m + 2n
· · · · ·

∫ x∞∂x
n
√
(1− xn)n−k

.

Therefore, to accommodate this form to our expression, since each factor is
increased by the quantity 2a in the following term, one has to take n = 2a; but
then having put m = f + b and k = a one will find that it will be

f + a + b
f + b

· f + 3a + b
f + 2a + b

· f + 5a + b
f + 4a + b

· · · · ·
∫ x∞∂x√

1− x2a
=
∫ x f+b−1∂x√

1− x2a
,

which expression, inverted, contains the first factors of each term. But for the
second, while n = 2a, take m = f + a− b and k = a, having done which this
equation will results:

18



f + 2a− b
f + a− b

· f + 4a− b
f + 3a− b

· f + 6a− b
f + 5a− b

· · · · ·
∫ x∞∂x√

1− x2a
=
∫ x f+a−b−1∂x√

1− x2a
.

Therefore, if this equation is divided by the preceding, the last integral factors
will cancel each other and an infinite value converging to the value A and
expressed via integral formulas will result such that

A = ( f − b) ·
∫ x f+a−b−1∂x√

1− x2a
:
∫ x f+b−1∂x√

1− x2a
.

§28 To illustrate these things in an example, let us take f = 2, a = 1, b = 1
that we have these values:

AB = 3, BC = 8, CD = 15, DE = 24 etc.,

and in this case the continued fraction becomes

2A = 3−
3

6 +
5

6 +
21

6 +
45

6 +
77

6 + etc.
But by an infinite product it will be

A =
3 · 3
2 · 4 ·

5 · 5
4 · 6 ·

7 · 7
6 · 8 ·

9 · 9
8 · 10

· etc.

But then via integral formulas one will have

A =
∫ x∂x√

1− xx
:
∫ xx∂x√

1− xx
.

But it is known that for our limits of integration, from x = 0 to x = 1,∫ x∂x√
1− xx

= 1 and
∫ xx∂x√

1− xx
=

π

4
,

whence one concludes A = 4
π , what agrees with the Wallisian product, by

which
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π

2
=

2 · 2
1 · 3 ·

4 · 4
3 · 5 ·

6 · 6
5 · 5 · etc.,

extraordinarily.

CASE 2 IN WHICH c = +bb

§29 Now let us also expand the other case c = +bb, for which the continued
fraction takes this form:

2A = 2 f − a +
aa + 4bb

4 f − 2a +
9aa + 4bb

4 f − 2a +
25aa + 4bb

4 f − 2a +
49aa + 4bb

4 f − 2a + etc.

But the infinite product on the other hand results from the preceding form
writing b

√
−1 instead of b expressed via imaginary quantities this way:

A = ( f − b
√
−1) · ( f + b

√
−1)( f + 2a− b

√
−1)

( f + a + b
√
−1)( f + a− b

√
−1)
· ( f + 2a + b

√
−1)( f + 4a− b

√
−1)

( f + 3a + b
√
−1)( f + 3a− b

√
−1)
· etc.

But it is evident that in the same expression mentioned in § 26 one could also
have written −b

√
−1 instead of b, whence it would have resulted:

A = ( f + b
√
−1) · ( f − b

√
−1)( f + 2a + b

√
−1)

( f + a− b
√
−1)( f + a + b

√
−1)
· ( f + 2a− b

√
−1)( f + 4a + b

√
−1)

( f + 3a− b
√
−1)( f + 3a + b

√
−1)
· etc.

Therefore, the product of these two expressions becomes real; for, it will be

A2 = ( f f + bb)
( f f + bb)(( f + 2a)2 + bb)

(( f + a)2 + bb)(( f + a)2 + bb)
· (( f + 2a)2 + bb)(( f + 4a)2 + bb)
(( f + 3a)2 + bb)(( f + 3a)2 + bb)

· etc.,

which expression agrees with the one above in § 25.
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§30 But on the other hand the expression in terms of integral formulas
becomes imaginary. For, if in the formulas of § 27 one writes b

√
−1 instead of

b, the following expression will result:

A = ( f − b
√
−1)

∫ x f+a−1+b
√
−1∂x√

1− x2a
:
∫ x f−1+b

√
−1∂x√

1− x2a
.

But having changed the signs of the imaginary signs it will be

A = ( f + b
√
−1)

∫ x f+a−1−b
√
−1∂x√

1− x2a
:
∫ x f−1−b

√
−1∂x√

1− x2a
,

where there is no doubt that in each of both expression the imaginary quanti-
ties cancel each other, even though there is no method to actually expand this
mutual cancellation of the imaginary quantities.

§31 But if both of these expression are multiplied by each other, then this
cancellation can easily be shown. For, since the product is

A2 = ( f f + bb)

∫ x f+a−1−b
√
−1∂x√

1−x2a ·
∫ x f+a−1+b

√
−1∂x√

1−x2a∫ x f−1−b
√
−1∂x√

1−x2a ·
∫ x f−1+b

√
−1∂x√

1−x2a

,

it can be shown that so in the numerator as in the denominator the imaginary
quantities cancels, to have shown which for the denominator will certainly
suffice, since the numerator arises from it writing f + a instead of f .

§32 To shorten the proof, for the sake of brevity, let us put

x f−1∂x√
1− x2a

= ∂V,

having done which the denominator of our expression affected by imaginary
quantities will be ∫

x+b
√
−1∂V ·

∫
x−b
√
−1∂V.

Now set
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the sum of the products =
∫
(xb
√
−1 + x−b

√
−1)∂V = p,

the difference of the products =
∫
(xb
√
−1 − x−b

√
−1)∂V = q,

and it is known that the propounded product will be∫
xb
√
−1∂V ·

∫
x−b
√
−1∂V =

pp− qq
4

.

Therefore, I will show that so pp as qq can be reduced to real quantities.

§33 To this end, let us write elog x instead of x in the imaginary powers that

p =
∫ (

eb log x
√
−1 + e−b log x

√
−1
)

∂V,

q =
∫ (

eb log x
√
−1 − e−b log x

√
−1
)

∂V.

Therefore, since we now that

eϕ
√
−1 + e−ϕ

√
−1 = 2 cos ϕ

and

eϕ
√
−1 − e−ϕ

√
−1 = 2

√
−1 sin ϕ,

for the sake of brevity having set b log x = ϕ it will be

p = 2
∫

∂V cos ϕ and q = 2
√
−1

∫
∂V sin ϕ,

whence without any effort the denominator follows

pp− qq
4

=

(∫
∂V cos ϕ

)2

+

(∫
∂V sin ϕ

)2

,

an expression which is obviously real.
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§34 Hence the value of the numerator is easily concluded, which will, of
course, be (∫

xa∂V cos ϕ

)2

+

(∫
xa∂V sin ϕ

)2

,

such that our expression disturbed by imaginary quantities is expressed in
just real quantities in the following way:

A2 = ( f f + bb)
(∫

xa∂V cos ϕ
)2

+
(∫

xa∂V sin ϕ
)2(∫

∂V cos ϕ
)2

+
(∫

∂V sin ϕ
)2

while

∂V =
x f−1∂x√
1− x2a

and ϕ = b log x.

§35 But in analysis one still desires a direct method to treat formulas of the
following kind by integration:

∫ x f−1∂x cos b log x√
1− x2a

and
∫ x f−1∂x sin b log x√

1− x2a
.

Nevertheless, if it was not for the denominator, each of both formulas could
indeed be integrated, which will be worth one’s while to have shown in the
following way.

§36 For, this can be achieved by means of the very well known reduction∫
P∂Q = PQ−

∫
Q∂P.

If for the first formula one takes

P = cos b log x and ∂Q = x f−1∂x,

it will be

∫
x f−1∂x cos b log x =

x f

f
cos b log x +

b
f

∫
x f−1∂x sin b log x.

But for the other, having taken
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P = sin b log x and ∂Q = x f−1∂x,

it will be

∫
x f−1∂x sin b log x =

x f

f
sin b log x− b

f

∫
x f−1∂x cos b log x.

Hence by substitution one further concludes

∫
x f−1∂x cos b log x =

x f

f f + bb
( f cos b log x + b sin b log x),∫

x f−1∂x sin b log x =
x f

f f + bb
( f sin b log x− b cos b log x).

But on the other hand, if the denominator is not absent, nothing more is
understood than that the integral is reduced to a still unknown class of most
transcendental quantities.
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