
On the Binomial Coefficients and

their Interpolation *

Leonhard Euler

§1 Let us represent the expansion of the power (1 + x)n in the following
manner by means of appropriate characters:

(1 + x)n = 1 +
(n

1

)
x +

(n
2

)
x2 +

(n
3

)
x3 + etc.,

such that the characters included in brackets(n
1

)
,
(n

2

)
,
(n

3

)
etc.

denote the coefficients. Therefore, it will be(n
1

)
= n,

(n
2

)
=

n
1
· n− 1

2
,
(n

3

)
=

n
1
· n− 1

2
· n− 2

3
etc.

Hence it will be in general(
p
q

)
=

n
1
· n− 1

2
· n− 3

4
· · · · · n− q + 1

q
,

which expansion therefore has no difficulty, as often as q was an integer
positive number. Therefore, the whole task reduces to this that also the values
of this general character

(
p
q

)
are explored, whenever for q either fractional or

even negative numbers are taken. Additionally, for the case q = 0 it is manifest

*Original title: “ De unciis potestatum binomii earumque interpolatione“, first published in
„Memoires de l’academie des sciences de St.-Petersbourg 9 (1819/20), 1824, p. 57-76“, reprinted in
in „Opera Omnia: Series 1, Volume 16.2, pp. 241 - 266 “, Eneström-Number E768, translated
by: Alexander Aycock for „Euler-Kreis Mainz“
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per se that it will be
( n

0

)
= 1, since hence the first term of the expanded power

has to arise.

§2 Since the expansion of the power (1 + x)n itself involves only powers of
x, whose exponents are positive integer numbers, it will indeed admit no
interpolation. Nevertheless, if we consider this form

(
n
q

)
as a certain function

of the numbers n and q such that, if q is considered as the abscissa of a
certain curve, its ordinate is

(
n
q

)
, there is no doubt that such a curve will

have a certain law of continuity, which I therefore decided to investigate here.
But it will be convenient to repeat the principles of interpolation from the
hypergeomtric series of Wallis

1, 2, 6, 24, 120, 720 etc.,

since the expansion of our characters has an extraordinary connection to this
series.

§3 Since every arbitrary term of the hypergeometric series is involved in this
product: 1 · 2 · 3 · 4 · · ·m, instead of this, for the sake of brevity, let us write
ϕ : p, since this form can certainly be considered as a certain function of m,
whose interpolation I already taught a long time ago and demonstrated it to
be

ϕ =
1
2
=

1
2
√

π and ϕ : −1
2
=
√

ϕ

while π denotes the circumference of the circle described by the radius 1. But
if other fractions as 1

3 , 1
4 etc. are taken, the values require continuously higher

transcendental quantities; therefore, if we reduce our characters to formulas
of this kind ϕ : m, the interpolation has no difficulty anymore.

PROBLEM

§4 To reduce the value of the character
(

n
q

)
to terms of the harmonic progression.

SOLUTION

Since it is
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(
n
q

)
=

n(n− 1)(n− 2) · · · (n− q + 1)
1 · 2 · 3 · · · · · q ,

but on the other hand from the hypergeometric series it is

ϕ : n = n(n− 1)(n− 2) · · · 1,

it can be represented this way:

ϕ : n = n(n− 1)(n− 2) · · · (n− q + 1)× (n− q)(n− q− 1) · · · 1,

whence it is plain that the numerator of our fraction is

ϕ : n
ϕ : (n− q)

;

therefore, because the denominator immediately is ϕ : q, the value of our
character

(
n
q

)
will be

ϕ : n
ϕ : q× ϕ : (n− q)

.

COROLLARY

§5 Therefore, if instead of n we write a + b and a instead of q, we will have
this equation: (

a + b
a

)
=

ϕ : (a + b)
ϕ : a× ϕ : b

,

in which formula the letters a and b admit a permutation; hence it is concluded
that it will always be (

a + b
a

)
=

(
a + b

b

)
and hence also (

n
q

)
=

(
n

n− q

)
,

whence the following most remarkable theorems can be deduced.
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THEOREM 1

§6 Now matter which numbers are assumed for a, b and n, this equation will always
hold: (n

a

)(n− a
b

)
=
(n

b

)(n− b
a

)
.

PROOF

Instead of n write a + b + c, and because it is by means of the superior
reduction (

a + b + c
a

)
=

ϕ : (a + b + c)
ϕ : a× ϕ : (b + c)

and (
b + c

b

)
=

ϕ : (b + c)
ϕ : b× ϕ : c

,

the product will become(
a + b + c

a

)(
b + c

b

)
=

ϕ : (a + b + c)
ϕ : ×ϕ : b× ϕ : c

,

whence it is plain that the letters a, b, c can be arbitrarily permuted. Hence
having resubtituted n for a + b + c it will be(n

a

)(n− 1
b

)
=
(n

b

)(n− b
a

)
;

for, each of both sides is equal to this form:

ϕ : n
ϕ : a× ϕ : b× ϕ : c

.

THEOREM 2

§7 This product of three characters(n
a

)(n− a
b

)(
n− a− b

c

)
always retains the same values, no matter how the letters a, b, c are permuted.
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PROOF

For, by reduction to the hypergeometric series we will have(n
a

)
=

ϕ : n
ϕ : a× ϕ : (n− a)

,
(

n− a
b

)
=

ϕ : (n− a)
ϕ : b× : (n− a− b)

,(
n− a− b

c

)
=

ϕ : (n− a− b)
ϕ : c× ϕ : (n− a− b− c)

,

whence the propounded product will be reduced to this form:

ϕ : n
ϕ : a× ϕ : b× ϕ : c× : (n− a− b− c)

which expression manifestly retains the same value, no matter how the letters
a, b, c are permuted, since what can be done in many ways, a lot of products
equal to each other of this kind can be exhibited.

COROLLARY

§8 This way it is possible to proceed further and one will be able to prove
that this product(n

a

)(n− a
b

)(
n− a− b

c

)(
n− a− b− c

d

)
will always retain the same value, no matter how the letters a, b, c, d are
permuted. For, its value will always be

ϕ : n
ϕ : a× ϕ : b× ϕ : c× ϕ : d× ϕ : (n− a− c− d)

.

THEOREM 3

§9 This product:
( a

b

) ( b
a

)
is always equal to this character:

( 0
b−a

)
.

PROOF

For, because by reduction to hypergeometric numbers it is( a
b

)
=

ϕ :
ϕ : b× ϕ : (a− b)
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and

ϕba =
ϕ : b

ϕ : ×ϕ : (b− a)
,

it manifestly is ( a
b

)(b
a

)
=

1
ϕ : (a− b)× ϕ : (b− a)

.

But then in similar manner it will be(
0

a− b

)
=

ϕ : 0
ϕ : (a− b)× ϕ : (b− a)

=
1

ϕ : (a− b)× ϕ : (b− a)

because of ϕ : 0 = 1, whence it follows( a
b

)(b
a

)
=

(
0

a− b

)
;

and hence it is plain that this product is always equal to zero, as often as a− b
is an integer number.

SCHOLIUM

§10 Having mentioned these things in advance let
(

P
Q

)
a general form of

this kind of functions I decided to expand here, where P and Q shall denote
arbitrary numbers, either integers or fractions either positive or negative, such
that in the formula an infinite amount of cases is contained, and we already
noted, as often as the denominator Q was a positive integer, that the expansion
can indeed always be done; hence we will consider these forms:

( P
i

)
as known

and by means of them we will try to reduce the remaining cases to a greater
simplicity. But by the following theorem the number of all cases is reduced to
its half.

THEOREM 4

§11 All cases of this form:
(

P
Q

)
are most easily reduced to the cases, in which Q is

greater than 1
2 P.
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PROOF

For, put Q = 1
2 P− s, and because it is in general( a

b

)
=

(
a

a− b

)
,

it will be (
P

1
2 P− s

)
=

(
P

1
2 P + s

)
and so all cases, in which Q is exceeded by 1

2 P, completely agree with those
in which it exceeds 1

2 P.

COROLLARY

§12 Therefore, if one imagines a curve, to whose abscissa x the ordinate
y =

( a
x

)
shall correspond, then the ordinate of the abscissa x = 1

2 a at the same
curve will be the diameter of the curve, since to the two abscissas x = 1

2 a + t
and x = 1

2 a − t equal ordinates correspond; hence it will suffice to have
determined only the one half of the function.

SCHOLIUM

§13 Therefore, because this way all cases contained in the formula
(

P
Q

)
are

reduced to half, in the following I will show, how they can be pushed into a
lot smaller intervals. If the letters m and n denote positive integer numbers,
this general formula:

(
p±m
q±n

)
can always be reduced to this form: ;

(
p
q

)
, where

the value of the factor M can be assigned absolutely. Therefore, this way our
general formula

(
P
Q

)
can always be reduced to such a one:

(
p
q

)
, in which

the numbers p and q lie within the limits. They can even be reduced that
they lie within the limits 0 and −1. Therefore, for this reduction the following
problems will be helpful, whose solution is founded on these lemmas.

LEMMA 1

§14 Because it is
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(
p + m

m

)
=

ϕ : (p + m)

ϕ : m× ϕ : p
,

it will be

ϕ : (p + m) = ϕ : m× ϕ : p×
(

p + m
m

)
,

the value of which character because of the integer number m can always be absolutely
assigned. Therefore, in the same manner it will be

ϕ : (q + n) = ϕ : n× ϕ : q×
(

q + n
n

)
.

LEMMA 2

§15 Because it is ( p
m

)
=

ϕ : p
ϕ : m× ϕ : (p−m)

,

it is concluded that it will be

ϕ : (p−m) =
ϕ : p
ϕ : m

:
( p

m

)
.

The same way it will be

ϕ : (q− n) =
ϕ : q
ϕ : n

:
( q

n

)
.

PROBLEM 1

§16 To reduce this formula:
(

p+m
q

)
, where m denotes a positive integer number, to

this simpler one :
(

p
q

)
.

SOLUTION

By means of our general reduction to hypergeometric numbers it will be(
p + m

q

)
=

ϕ : (p + m)

ϕ : q× ϕ : (p− q + m)
.
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If we now here from the first lemma for ϕ : (p + m) and ϕ : (p − q + m)
substitute the respective values, it will arise

(
p + m

q

)
=

ϕ : p
ϕ : q× ϕ : (p− q)

×

(
p+m

m

)
(

p−q+m
m

) .

Therefore, because it is

ϕ : p
ϕ : q× ϕ : (p− q)

=

(
p
q

)
,

we will have

(
p + m

q

)
=

(
p+m

m

)
(

p−q+m
m

) ×( p
q

)
.

PROBLEM 2

§17 To reduce this form:
(

p−m
q

)
, where m is a positive integer number, to the

simpler form
(

p
q

)
.

SOLUTION

Our reduction immediately yields this equation:(
p−m

q

)
=

ϕ : (p−m)

ϕ : q× ϕ : (p− q−m)
.

Here, now for ϕ : (p−m) and ϕ : (p− q−m) substitute the values from the
second lemma, and one will find the following expression:

(
p−m

q

)
=

ϕ : p
ϕ : q× ϕ : (p− q)

×

(
p−q
m

)
( p

m

) ,

or, because it is

ϕ : p
ϕ : q× ϕ : (p− q)

=

(
p
q

)
,

whence we will have this form:
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(
p−m

q

)
=

(
p−q
m

)
( p

m

) ×( p
q

)
.

PROBLEM 3

§18 To reduce this formula:
(

p
q+n

)
, where n denotes a positive integer number, to

the simpler one
(

p
q

)
.

SOLUTION

Here, our reduction yields(
p

q + n

)
=

ϕ : p
ϕ : (q + n)× ϕ : (p− q− n)

.

Now, from the first lemma for ϕ : (q + n), from the second one the other hand
for ϕ : (p− q− n) substitute the values and it will arise

(
p

q + n

)
=

ϕ : p
ϕ : q× ϕ : (p− q)

×

(
p−q

n

)
(

q+n
n

) =

(
p−q

n

)
(

q+n
n

) ×( p
q

)
.

PROBLEM 4

§19 To reduce this formula :
(

p
q−n

)
, where n shall denote a positive integer number,

to the simpler form
(

p
q

)
.

SOLUTION

By means of the reduction to hypergeometric numbers it will be(
p

q− n

)
=

ϕ : p
ϕ : (q− n)× ϕ : (p− q + n)

.

If now form ϕ : (q− n) from the second lemma but for ϕ : (p− q + n) from
the first lemma the values are substituted, this expression will result
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(
p

q− n

)
?

ϕ : p
ϕ : q× ϕ : (p− q)

×
( q

n

)(
p−q+n

n

) =

( q
n

)(
p−q+n

n

) ×( p
q

)
.

PROBLEM 5

§20 If it was (
P
Q

)
=

(
p + m
q + n

)
,

to reduce its value to this form : M
(

p
q

)
, where M can be absolutely assigned, because

m and n are positive integer numbers.

SOLUTION

From Problem 1 we found

(
p + m

q

)
=

(
p+m

m

)
(

p−q+m
m

) ×( p
q

)
.

If now here instead of q we write q + n everywhere, it will be

(
p + m
q + n

)
=

(
p+m

m

)
(

p−q−n+m
m

) ×( p
q + n

)
.

Here, let us substitute the value from problem 3 for
(

p
q+n

)
, having done which

it will be

(
p + m
q + n

)
=

(
p+m

m

)
×
(

p−q
n

)
(

p−q−n+m
m

)
×
(

q+n
n

) ×( p
q

)
,

where it will therefore be

M =

(
p+m

m

)
×
(

p−q
n

)
(

p−q−n+m
n

)
×
(

q+n
n

) ,
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whose values because of the positive integer numbers can always be absolutely
assigned.

PROBLEM 6

§21 If it was (
P
Q

)
=

(
p + m
q− n

)
,

to reduce its value to the form M
(

p
q

)
.

SOLUTION

Because from the first problem it is

(
p + m

q

)
=

(
p+m

m

)
(

p−q+m
m

) ×( p
q

)
,

here instead of q write q− n everywhere that it arises

(
p + m
q− n

)
=

(
p+m

m

)
(

p−q+n+m
m

) ×( p
q− n

)
,

and here for
(

p
q−n

)
substitute the value from problem 4, having done which

for our form we will obtain this expression:

(
p + m
q− n

)
=

(
p+m

m

)
×
( q

n

)(
p−q+n+m

m

)
×
(

p−q+n
n

) ×( p
q

)
.

PROBLEM 7

§22 If it was (
P
Q

)
=

(
p−m
q + n

)
,

to reduce its value to the form m
(

p
q

)
.

12



SOLUTION

In problem 2 we found

(
p−m

q

)
=

(
p−q
m

)
( p

m

) ×( p
q

)
,

where, if instead of q we write q + n, the propounded formula will arise

(
p−m
q + n

)
=

(
p−q−n

m

)
( p

m

) ×
(

p
q + n

)
.

Hence, if from problem 3 for
(

p
q+n

)
the value is substituted, this expression

will arise

(
p−m
q + n

)
=

(
p−q−n

m

)
×
(

p−q
n

)
( p

m

)
×
(

q+n
n

) ×
(

p
q

)
.

PROBLEM 8

§23 If it was (
P
Q

)
=

(
p−m
q− n

)
,

to reduce its value to the simple form M
(

p
q

)
.

SOLUTION

Again from the second problem take the expression

(
p−m

q

)
=

(
p−q
m

)
( p

m

) ×( p
q

)
and in it instead of q write q− n that the propounded formula arises, which
will be

(
p−m
q− n

)
=

(
p−q+n

m

)
( p

m

) ×
(

p
q− n

)
,
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whence, by substituting its value found from problem 4 for the character(
p

q−n

)
, it will arise

(
p−m
q− n

)
=

(
p−q+n

m

)
×
( q

n

)
( p

m

)
×
(

p−q+n
n

) ×( p
q

)
.

COROLLARY

§24 Therefore, as often as the denominator Q was an positive or negative
integer number, then instead of q one will always be able to put 0, and since( p

0

)
= 1, the value of such a formula

(
P
Q

)
can always be absolutely assigned,

since in all characters the denominators are either m or n and hence integer
numbers. Therefore, it only remains that we investigate the cases, in which
Q is a certain positive or negative fraction, that the formula

(
P
Q

)
can be

reduced to
(

p
q

)
, where q will be a most simple fraction of the same kind and

smaller than one; therefore, the whole task reduces to this that the value of
this formula

(
p
q

)
is examined, whenever q is a fraction. Therefore, for these

cases we will express the value of the formula
(

p
q

)
by means of a certain

integral formula.

PROBLEM

§25 To express the value of the formula
(

p
q

)
by means of the integral formula.

SOLUTION

For this aim, let us consider this form:∫
xq−1∂x(1− x)n,

whose value extended from x = 0 to x = 1 shall be denoted by 4; since it
is a certain function of q, say f : q, instead of q let us write q + 1 here and
4′ = f : (q + 1); it will be

4−4′ =
∫

xq−1∂x(1− x)n+1;
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and this way from each case of the number n the value of 4 will be found for
the case n + 1. Let us start from the case n = 0 and the values of 4 for the
following numbers n will behave as this:

n 4

0
1
q

1
1

q(q + 1)

2
1 · 2

q(q + 1)(q + 2)

3
1 · 2 · 3

q(q + 1)(q + 2)(q + 3)

Hence, it is already manifest that it will be in general

4 =
1
q
× 1 · 2 · 3 · 4 · · · · · n

(q + 1)(q + 2)(q + 3) · · · (q + n)

Since now it is (
q + n

n

)
=

(q + n)(q + n− 1) · · · (q + 1)
1 · · · 2 · 3 · · · · · n ,

it is evident that it will be

4 =
1
q

:
(

q + n
n

)
,

whence it will vice versa be (
q + n

n

)
=

1
q4 .

Now, let it be q + n = p or n = p− q that it is( p
n

)
=

(
p

p− n

)
=

(
p
q

)
,

and because it already is

4 =
∫

xq−1∂x(1− x)p−q,
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we conclude that it will be(
p
q

)
=

1
q
∫

xq−1∂x(1− x)p−q ,

such that the value of this integral formula extended from x = 0 to x = 1
produces the value of the character

(
p
q

)
.

COROLLARY

§26 Therefore, whatever fractions are substituted for p and q, one can always
exhibit an algebraic curve, on whose quadrature, and it is definite, of course,
whenever x = 1, the value of the formula

(
p
q

)
depends.

SCHOLIUM 1

§27 The analysis we used here seems to hold only in the cases, in which n is
a positive integer, and can therefore not be applied to the cases, in which p− q
is a fraction. But the principle of continuity seems to confirm the application to
fractional numbers sufficiently; nevertheless, it will be helpful to have shown
the agreement with the truth in a case known from elsewhere. Therefore,
consider this formula:

(
1
1
2

)
, where p = 1 and q = 1

2 , and by means of the

general reduction it will be(
1
1
2

)
=

ϕ : 1
ϕ : 1

2 × ϕ : 1
2

,

which expression, because of ϕ : 1 = 1 and ϕ : 1
2 = 1

2
√

π, it is 4
π . Therefore,

let us see, whether this expression agrees with

1
1
2

∫
∂x√

x (1− x)
1
2

.

But this denominator having put x = yy goes over into this one∫
∂y
√

1− yy =
∫

∂y√
1− yy

−
∫ yy∂y√

1− yy
.

But it is known, having extended these integrals from y = 0 to y = 1, that it is
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∫
∂y√

1− yy
=

π

2
and

∫ yy∂y√
1− yy

=
π

4
,

such that the difference is π
4 , and hence the value found here 4

π extraordinary
agrees with the preceding.

SCHOLION 2

§28 But concerning the integral formula
∫

xq−1∂x(1− x)p−q, from the analy-
sis it is plain that its value, extended from x = 0 to x = 1, can only be finite, if
q > 0 and at the same time p− q > −1. But since it is possible for us to bring
these numbers p and q, to which we reduced the general formula

(
P
Q

)
, within

the limits 0 and 1, the found integral formula can always be transferred to
completely all cases. Furthermore, it is already manifest that in the cases, in
which Q is a either positive or negative integer number, the expansion can
actually be performed, and it will even succeed in the cases, in which P−Q
is an integer number, whence the use of our integral formula will be immense
in case, in which neither Q nor P−Q are integers. Here, the most memorable
case occurs, whenever P is an either positive or negative integer number; for,
then, whatever fraction is assumed for Q, the value of this expression

(
P
Q

)
can be assigned by the circumference of the circle.

1 PROBLEM

§29 To reduce the value of the formula
(

P
Q

)
, as often as P was an either positive or

negative integer number, to the quadrature of the circle.

SOLUTION

Whenever P is an either positive or negative integer number, this form can
always be reduced to this one :

(
0
q

)
, such that p = 0; and so by means of the

integral formula it will be(
0
q

)
=

1
q
∫

xq−1∂x(a− x)−q ;

therefore, let us expand this integral formula more accurately, which reduced
to this form:
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∫
∂x
x

(
x

1− x

)q

having put

x
1− x

= z or x =
z

1 + z
must be extend from z = 0 to z = ∞. Because of

∂x
x

=
∂z

z(1 + z)

the formula is on the other hand transformed into this one:

∫ zq−1∂z
1 + z

.

But once I showed the values of this integral formula

∫ zm−1∂z
1 + zn

extended from z = 0 to z = ∞ is

π

n sin mπ
n

.

Therefore, in our case it will be m = q and n = 1, whence our integral will be
π

sin qπ , having substituted which we will have(
0
q

)
=

1
qπ

sin qπ

=
sin qπ

qπ
.

COROLLARY

§30 As often as q was an either positive or negative integer number, that
formula because of sin qπ = 0 goes over into zero except for the single case
q = 0. But having assumed q to be infinitely small because of sin qπ = qπ it
will of course be (

0
q

)
= 1,

as the matter of things requires it.
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COROLLARY

§31 Because by means of our general reduction it is(
0
q

)
=

ϕ : 0
ϕ : q× ϕ : −q

,

because of ϕ : 0 = 1 it will be

ϕ : q× ϕ : −q =
qπ

sin qπ
,

such that, whatever values are attributed to q, so the values ϕ : q as ϕ : −q are
referred to transcendental quantities of the higher classes; nevertheless, their
product will be expressed by means of the quadrature of the circle.

SCHOLIUM

§32 Because it is (
p
q

)
=

1
q
∫

xq−1∂x(1− x)p−q ,

if this integral is extended from x = 0 to x = 1 and if we substitute those
values in the theorems mentioned above on the relation of the formulas

(
p
q

)
,

we will obtain the following theorems for the relation of the integral formulas,
which seem to be most memorable.

THEOREM

§33 If the following integrals are extended from x = 0 to x = 1, this equation will
always hold

∫
xa−1∂x(1− x)n−a ×

∫
xb−1∂x(1− x)n−a−b

=
∫

xk−1∂x(1− x)n−b ×
∫

xa−1∂x(1− x)n−b−a.
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COROLLARY

§34 If in such formulas the exponent of x vanishes that we have∫
∂x(1− x)p,

its value can be absolutely assigned and it will be 1
p+1 . But if the exponent of

1− x vanishes that we have ∫
xp∂,

its value will manifestly be 1
p+1 ; but if the integral formula was such a one:∫

xq−1∂(1− x)−q,

its value, as we saw, will be π
sin qπ , whence an remarkable relations arise.

Furthermore, it will be helpful to have noted here that the exponents of x and
1− x can be permuted, such that it always is∫

xp∂x(1− x)q =
∫

xq∂x(1− x)p.

THEOREM

§35 If all integral are extended from x = 0 to x = 1, the product of these three
integral formulas:

∫
xa−1∂x(1− x)n−a ×

∫
xb−1∂x(1− x)n−a−b ×

∫
xc−1∂x(1− x)n−a−b−c

will always retain the same value, no matter how the values of the letters a, b, c are
interchanged.

THEOREM

§36 If all integrals are extended from x = 0 to x = 1, the product of these four
integral formulas will always retain the same value, no matter how the letters a, b, c,
d are permuted, of course
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∫
xa−1∂x(1− x)n−a ×

∫
xb−1∂x(1− x)n−a−b

×
∫

xc−1∂x(1− x)n−a−b−c ×
∫

xd−1∂x(1− x)n−a−b−c−d.

COROLLARY

§36a Here, it is evident that the number of such formulas can be continuously
augmented, whence the number of variations, which can occur in the single
products, will grow to infinity; here I observe that the simplest case of the first
theorem completely agrees with those I had once propounded for the relation
between different integral formulas.

SCHOLIUM

§37 All those integrals are contained in this general form:∫
xp∂x(1− x)q,

which is known that it can be transformed in many ways into other forms,
while it is possible to augment or decrease the two exponents p and q by a
certain integer number, and among these different forms without any doubt
the simplest is the one in which this exponents are forced to lie within the
limits 0 and −1, which transformation is easily plain that it can be done most
conveniently by means of the following reductions:

∫
xp∂x(1− x)q = p

p+q+1

∫
xp−1 ∂x(1− x)q,∫

xp∂x(1− x)q = p+q+2
p+1

∫
xp+1 ∂x(1− x)q,∫

xp∂x(1− x)q = q
p+q+1

∫
xp ∂x(1− x)q−1,∫

xp∂x(1− x)q = p+q+2
q+1

∫
xp ∂x(1− x)q+1.

Often even this reduction, in which two of the preceding are done at one, will
provide an extraordinary use:
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p
∫

xp−1∂x(1− x)q = q
∫

xp∂x(1− x)q−1.

PROBLEM

§38 To describe the curved line, to whose abscissa x the ordinate y =
(m

x

)
shall

correspond, where m shall denote a positive integer number.

SOLUTION

Here, at first investigate the ordinate, whenever to the abscissa x integer
numbers are attributed, and one can easily define them immediately from the
form y =

(m
x

)
, because it is(m

0

)
= 1;

(m
1

)
= m;

(m
2

)
=

m(m− 1)
1 · 2 etc.,

until one gets to x = m, where it again is
(m

m

)
= 1. For, except for these

cases all ordinates, which correspond to negative values of x, yes, even of the
ones greater than x, vanish. But we on the other hand already observed that
this curve always has a perimeter, which the ordinate corresponding to the
abscissa x = 1

2 m yields, whence it will be sufficient to expand only these cases,
in which it is x > 1

2 m.

But if we attribute fractional values to the abscissa x, it is at first necessary that
the formula

(m
x

)
is reduced to this one:

( 0
x

)
, whose value we showed to be

sin πx
πx ; this will be most easily achieved by means of the reduction mentioned

above, by which we showed that it is

(
p + m

q

)
=

(
p+m

m

)
(

p−q+m
m

) ×( p
q

)
.

Therefore, now let it be p = 0 and q = x and one concludes(m
x

)
=

( o
x

)(m−x
m

) =
sin πx

πx
:
(

m− x
m

)
.

To expand the formula it will be sufficient to have gone through one interval
of length = 1, for which aim we want to set x = n + q, such that q is a
fraction smaller than unity, while n is a certain integer number, and it will
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be sin πx = ± sin πq, where the superior sign + will hold, if n is an even
number, − on the other hand, if an odd number. Having observed this we
will have

y = ± sin qπ

π(q + n)
:
(

m− n− q
m

)
,

from which formula one will already easily be able to assign all intermediate
values and so the whole curve will be described.

COROLLARY

§39 Here, it is evident that maximal ordinate of this curve always corre-
sponds to the abscissa x = 1

2 m, which will at the same time be the diameter
of the curve, whose determination for the cases, in which m is an even num-
ber, causes no difficulty; but if m is an odd number, this maximal ordinate
will depend on the quadrature of the circle, which we will investigate in the
following problem.

PROBLEM

§40 To investigate the ordinate of the curve just described, in which to the abscissa
x the ordinate y =

(m
x

)
shall correspond.

SOLUTION

Let us denote this maximal ordinate by the letter M such that M =
(

m
1
2 m

)
, and

here one will have to expand two cases, depending on whether m was either
an even number or an odd number. Therefore, at first let it be m)2i, it will be

M =

(
2i
i

)
,

whose value is already known for a long time to be reduced to this expression:

2 · 6 · 10 · 14 · · · · · (4i− 2)
1 · 2 · 3 · 4 · · · · · i .

For, hence it is plain that for the case i = 1 it will be M = 2. If it is i = 2, it
will be M = 6; if it is i = 3, it will be M = 20 and so forth.
But if m was an odd number, put m = 2i + 1 and it will be
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M =

(
2i + 1
i + i

2

)
,

which value, if it is reduced to hypergeometric numbers, will become

M =
ϕ : (2i + 1)
(ϕ : (i + 1

2 ))
2

,

where it is

ϕ : (2i + 1) = 1 · 2 · 3 · 4 · · · · · (2i + 1).

But because it is

ϕ :
1
2
=

1
2
√

π

and hence further

ϕ :
(

1 +
1
2

)
=

1 · 3
2 · 2 ·

√
π,

ϕ :
(

2 +
1
2

)
=

1 · 3 · 5
2 · 2 · 2 ·

√
π

and hence in general

ϕ :
(

i +
1
2

)
=

1 · 3 · 5 · · · · · (2i + 1)
2 · 2 · 2 · · · · · 2 ·

√
π,

it will be

ϕ : (2i + 1)
ϕ :
(
i + 1

2

) =
2 · 4 · 6 · 8 · · · · · 2i× 2 · 2 · 2 · · · · · 2√

π

or

ϕ : (2i + 1)
ϕ :
(
i + 1

2

) =
2√
π
× 4 · 8 · 12 · 16 · · · · · 4i,

which expression divided by ϕ :
(
i + 1

2

)
again yields this one:

ϕ : (2i + 1)(
ϕ :
(
i + 1

2

))2 =
4
π
× 8 · 16 · 24 · 32 · · · · · 8i

3 · 5 · 7 · 9 · · · · · (2i + 1)
.
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So for the case m = 1 it will be i = 0 and

M =
4
π

,

for the case m = 3 it will be i = 1 and

M =
8
3
· 4

π
=

32
3π

,

for the case m = 5 it will be i = 2 and

M =
8 · 16
3 · 5 ·

4
π

=
512
15π

and so forth.

PROBLEM

§41 To describe the curve, to whose abscissas x the ordinates
(−m

x

)
shall correspond,

while m denotes an arbitrary positive integer.

SOLUTION

Form this formula y =
(−m

x

)
itself without difficulty the ordinate for all

abscissas expressed by integer numbers are found; for, it will be(
−m

o

)
= 1,

(
−m

1

)
= −m,

(
−m

2

)
=

m(m + 1)
1 · 2

and so forth, which ordinates therefore will proceed with alternating signs to
infinity. For the preceding ordinates note that it is(

−m
−m

)
= 1, −m−m− 1 = −m etc.

But on the other hand between the abscissas x = 0 and x = −m the interme-
diate ordinates corresponding to the abscissas −1, −2, −3, · · · , (−m + 1) will
all be equal to zero. If to the abscissa x fractional numbers are attributed, it is
again convenient to reduce the formula

(−m
x

)
to the formula

( 0
x

)
. But above

we found that it is

(
p−m

q

)
=

(
p−q
m

)
( p

m

) ×( p
q

)
.
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If now we put p = 0 and q = x here, it will be(
−m

x

)
=

(−x
m

)( 0
m

) ×(0
x

)
=

(−x
m

)( 0
m

) · sin πx
πx

.

Therefore, since the formula
( 0

m

)
always vanishes, the numerator on the other

hand, because if the now integer numbers for x, can never vanish, it is evident
that this ordinate y is always infinite, which is a completely singular case of a
curve having infinitely many finite ordinates, between which all intermediates
ones become infinitely large; a case of such a kind has certainly never occurred
to me before, which I therefore think to be worth of the Geometers’ attention.
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