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1.

Semiconvergent series, by which the Geometers in the last century taught
to compute sums, which consist of a huge or infinite number of terms, are
especially useful, since the signs of the terms of these series alternate; so
that the series, computed to the n-th term to and the (n + 1)-th term, in the
first case is larger than the value of the sum in question, but smaller than
the complete sum in the second case. Hence one sees the limits, which the
committed error cannot exceed, if you stop the computation of the sum of the
series at a certain term. That has been observed frequently, but has only been
proven, as I am aware, in special cases. If this property is true, the formula can
safely and legitimately be applied to calculate the numerical value of the sum,
although it is also known that after a certain number of terms that sum starts
to diverge. Hence it seems worth one’s while, to demonstrate, how, what is a
non proved observation at this point, is reduced to a certain and accurate rule.
The following formula is known

(1) ψ(x+ h) = ψ(x)+ψ′(x)h+ψ′′(x)
h2

1 · 2 + · · ·+ψ(n)(x)
hn

Π(n)
+

h∫
0

(h− t)n

Π(n)
ψ(n+1)(x+ t)dt,

*Original Title: "Jacobi - De Usu legitimo Formulae summatoriae Maclaurianae", first pub-
lished in Crelle Journal für die reine und angewandte Mathematik, Band 12, pp. 263-272, 1834;
reprinted in C.G.J. Jacobi’s Gesammelte Werke, Volume 6, pp. 64-75, translated by: Alexander
Aycock for the "Euler-Kreis Mainz".

1



in which we put

Π(n) = 1 · 2 · 3 · · · n, ψ(m)(x) =
dmψ(x)

dxm .

Having put −h instead of h, and at the same time −t instead of t, that formula
goes over into this one:

(2)
ψ(x− h) = ψ(x)− ψ′(x)h + ψ′′(x)

h2

1 · 2 − · · ·+ (−1)nψ(n) hn

Π(n)

+(−1)n+1
h∫

0

(h− t)n

Π(n)
ψ(n+1)(x− t)dt.

Let

ψ(x) =
x∫

a

f (x)dx, ψ(x)− ψ(x− h) = ϕ(x),

and let us assume that x − a is a multiple of h, which in the following we
always assume to be positive; it will be

(3) ϕ(a + h) + ϕ(a + 2h) + · · ·+ ϕ(x) = ψ(x)− ψ(a) = ψ(x),

which sum we generally want to denote by

x

∑
a

ψ(x) = ϕ(a + h) + ϕ(a + 2h) + ϕ(a + 3h) + · · ·+ ϕ(x),

having excluded the lowest value ϕ(a) and having included the last ϕ(x). In
this notation from (3)

(4)
x

∑
a

ϕ(x) = ψ(x) =
x∫

a

f (x)dx.

But from (2) one has

(5)
ϕ(x) = ψ(x)− ψ(x− h)

= ψ′(x)h− ψ′′(x)
h2

1 · 2 + ·+ (−1)n−1ψ(n)ψ(x)
hn

Π(n)
+ (−1)n

h∫
0

(h− t)n

Π(n)
ψ(n+1)(x− t)dt
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or, since

ψ′(x) = f (x)

and generally

ψ(m+1)(x) = f (m)(x),

after the division by h it will be

(6)

ϕ(x)
h

= f (x)− f ′(x)
h
2
+ f ′′(x)

h2

2 · 3 − · · ·+ (−1)n−1 f (n−1)(x)
hn−1

Π(n)

+(−1)n
h∫

0

(h− t)n

hΠ(n)
f (n)(x− t)dt.

If in this formula we write a + h, a + 2h, a + 3h, · · · , x instead of x, and do the
summation, from (4) we obtain

a

∑
x

ϕ(x)
h

=

x∫
a

f (x)
h

dx

(7)
= ∑x

a

{
f (x)− f ′(x)

h
2
+ f ′′(x)

h2

2 · 3 − · · ·+ (−1)n−1 f (n−1)(x)
hn−1

Π(n)

}
+(−1)n

h∫
0

(h− t)n

hΠ(n) ∑x
a f (n)(x− t)dt.

2.

Now, after the expansion, let

(8)
1
2

e
1
2 h + e−

1
2 h

e
1
2 h − e−

1
2 h

=
1
2
+

1
eh − 1

=
1
h
+ αh− α2h3 + α3h5 − · · · ;

having multiplied by

eh − 1 = h +
h2

Π(2)
+

h3

Π(3)
+

h4

Π(4)
+ · · · ,
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we obtain the following relations, by which the coefficients αm are determined
one after the other, and the single coefficients are determined from the two
preceding ones in different ways,

(9)

1
Π(3)

− 1
2

1
Π(2)

= 0,

1
Π(4)

− 1
2

1
Π(3)

+
α1

Π(2)
= 0,

1
Π(5)

− 1
2

1
Π(4)

+
α1

Π(3)
− α2 = 0,

1
Π(6)

− 1
2

1
Π(5)

+
α1

Π(4)
− α2

Π(2)
= 0,

· · · · · · · · · · · · · · · · · · · · · · · ·

1
Π(2m + 1)

− 1
2

1
Π(2m)

+
α1

Π(2m− 1)
− α2

Π(2m− 3)
+ · · · + (−1)m+1 αm = 0,

1
Π(2m + 2)

− 1
2

1
Π(2m + 1)

+
α1

Π(2m)
− α2

Π(2m− 2)
+ · · · + (−1)m+1 αm

Π(2)
= 0,

By means of these relations it happens, that, if in formula (7) instead of f (x)
we write

f (x),
1
2

f ′(x)h, α1 f ′′(x)h2, −α2 f ′′′′(x)h4 , · · · , (−1)m+1αm f (2m)(x)h2m

and at the same time instead of n write

n, n− 1, n− 2, n− 4, · · · , n− 2m,

after the addition, on the one side of the equation under the summation sign,
which is found outside of the integration sign, the multiplied terms go over
into

f ′(x)h, f ′′(x)h2, f ′′′(x)h3, · · · , f (2m+1)(x)h2m+1.
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Hence, if we set

n = 2m + 2,

after the indicated addition the whole sum, which on the one side of equation
(7) is found outside of the integration sign, vanishes except for the first term
∑x

a f (x), and this memorable formula results

(10)

x∫
0

dx
{

f (x)
h

+
1
2

f ′(x) + α1 f ′(x) + α1 f ′′(x)h− α2 f ′′′′(x)h3 + · · ·+ (−1)m+1αm f (2m)(x)h2m−1
}

= ∑x
a f (x) +

h∫
0

Tm ∑x
a f (2m+2)(x− t)dt,

having put

(11)
Tm =

(h− t)2m+2

hΠ(2m + 2)
− 1

2
(h− t)2m+1

Π(2m + 1)
+ α1

(h− t)2mh
Π(2m)

− α2
(h− t)2m−2h3

Π(2m− 2)

+ α3
(h− t)2m−4h5

Π(2m− 4)
− · · ·+ (−1)m+1αm

(h− t)2h2m−1

Π(2)
.

Maclaurin once propounded the series on the left-hand side of equation (10)
to calculate the value of the sum ∑x

a f (x). Our equation additionally assigns
the committed error, if you stop the summation of the series at a certain term.
Since this error is expressed by a definite integral, in most cases its magnitude
can be estimated.
It is known that all numbers αm are positive. For, after the integration, it
follows from (8):

(12)
log
(

e
1
2 h − e−

1
2 h
)
= log h +

1
2

α1h2 − 1
4

α2h4 +
1
6

α3h6 − · · ·

= log h + log

[
1 +

1
Π(3)

(
h
2

)2

+
1

Π(5)

(
h
2

)4

+ · · ·
]

or, having resolved the expression e
1
2 h − e−

1
2 h into infinitely many factors,
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(13)
1
2

α1h2 − 1
4

α2h4 +
1
6

α3h6 − · · · =
∞

∑
1

log
(

1 +
h2

4p2π2

)
,

having attributed the values 1, 2, 3, · · · to infinity to p. Hence one has

(14)
1
2

αm =
1

(2π)2m

∞

∑
1

1
p2m =

1
(2π)2m

[
1 +

1
22m +

1
23m +

1
42m + · · ·

]
.

Hence you easily assign the limits, by which the quantities αm are bounded.
For one has

∞

∑
1

1
p2m+2 < 1 +

1
22m

(
∞

∑
1

1
p2 − 1

)
or, since

∞

∑
1

1
p2 =

1
6

π2,

it will be

∞

∑
1

1
p2m+2 < 1 +

1
22m

(
π2

6
− 1
)

,

whence

(15)
1

(2π)2m <
1
2

αm <
1

(2π)m

[
1 +

1
22m

(
π2

6
− 1
)]

.

If one likes to, one can easily find more accurate limits.

3.

Let us examine the expression Tm more accurately. This, having put

(16) χ2m+1(x) =
x2m+2

Π(2m + 2)
+

1
2

x2m+1

Π(2m + 1)
+ α1

x2m

Π(2m)
− α2

x2m−2

Π(2m− 2)
+ · · ·+(−1)m+1αm

x2

Π(2)
,

becomes

(17) Tm = h2m+1X2m+1

(
t− h

h

)
.
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It is known and easily demonstrated from (10), while x denotes an arbitrary
integer number, that

(18) χ2m+1(x) =
x

∑
0

x2m+1

Π(2m + 1)
,

if we set the increment of the argument x to be h = 1. But in our case, in
which

x =
t− h

h
,

and in which by integration t takes on all values from 0 to h, x will be a
fractional negative quantity lying between 0 and −1. In this case χ2m+1(x)
can not be defined as a sum anymore. Nevertheless the following equation
holds

(19) χ2m+1(x + 1) = χ2m+1(x) +
(x + 1)2m+1

Π(2m + 1)
,

whatever value x has. For, since that equation, while x is an integer, is
immediately clear from (18), and hence holds for innumerable different
values of x, that one must be identical. But having set x = t−h

h , and having
multiplied by h2m+1, from (17)

(20) h2m+1χ2m+1

(
t
h

)
= Tm +

t2m+1

Π(2m + 1)
,

whence

(21) Tm =
t2m+2

hΠ(2m + 2)
− 1

2
t2m+1

Π(2m + 1)
+ α1

t2mh
Π(2m)

− α2
t2m−2h3

Π(2m− 2)
+ · · ·+(−1)m+1αm

t2h2m−1

Π(2)
.

Having compared this expression of Tm with the one above (11), we see that
Tm is of such a nature, that, having put h− t instead of t, remains unchanged.
Therefore, one has

(22) Tm = h2m+1χ2m+1

(
t− h

h

)
= h2m+1χ2m+1

(
− t

h

)
or

χ2m+1(x− 1) = χ2m+1(−x).
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These results are well known- And it is known that Tm can easily be expressed
in terms of only even powers of t − h

2 , which do not change, having put
h− t instead of t. They take on this form by means of a formula, which is
immediately clear,

(23)
x

∑
a
[ f (x), h] =

x

∑
a

[
f
(

x +
1
2

h
)

,
1
2

h
]
−

x

∑
a

[
f
(

x +
1
2

h, h
)]

,

where by the sign ∑[ f (x), h] I understand that the argument x is increased by
h. From this formula, having put

f (x) =
x2m+1

Π(2m + 1)
, a = 0, x =

t− h
h

,

you obtain

(24)

Tm =

(
t− h

2

)2m+2

hΠ(2m + 2)
− 1

2
α1

(
t− h

2

)2m

h

Π(2m)
+

7
8

α2

(
t− h

2

)2m−2

h3

Π(2m− 2)
− · · ·

+(−1)m
(

1− 1
22m−1

)
αm

(
t− h

2

)2

h2m−1

Π(2)
+ h2m+1Const.

I add, since Tm, having put h− t instead of t, is not changed, that our theorem
(10) can also be exhibited this way:

(25)

x∫
a

{
f (x)

h
+

1
2

f ′(x) + α1 f ′′(x)h− α2h3 + · · ·+ (−1)m+1αm f (2m)(x)h2m−1
}

= ∑x
a f (x) +

h∫
0

Tm ∑x
a f (2m+2)(x− h + t)dt

= ∑x
a f (x) +

1
2 h∫
0

Tm ∑x
a

[
f (2m+2)(x− t) + f (2m+2)(x− h + t)

]
dt.

4.

Since in our theorem (10) or (25) only values of t lying between 0 and h are
considered, we will now demonstrate, which is the heart of our consideration,
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that for all those values of t the quantity Tm does not change its sign. The
proof can be given as follows.
One has

(26)
1
2

{
1− exz

1− ez −
1− e−xz

1− e−z

}
= zχ1(x− 1) + z3χ3(x− 1) + z5χ5(x− 1) + · · ·

This expansion, while x is an integer, is immediately clear from (18), since

1− exz

1− ez =
x

∑
0

ez(x−1),

having put the increment of x equal to 1. Hence, since equation (26) holds for
innumerable values of x, the same holds for an arbitrary value of x for the
nature of the functions χ(x), which are are rational, integral and finite. Now
let

x′ = 1− x,

it will be

(27)

1− exz

1− ez −
1− e−xz

1− e−z =
1− exz

1− ez +
ez − ex′z

1− ez =
(1− exz)(1− ex′z)

1− ez

= −

(
e

1
2 xz − e−

1
2 xz
) (

e
1
2 x′z − e−

1
2 x′z
)

e
1
2 z − e−

1
2 z

.

Hence from (26), if you resolve this expression into infinitely many factors,

(28) − zxx′∏

(
1 +

x2 p2

4p2π2

)(
1 +

x′2z2

4p2π2

)
(

1 +
z2

4p2π2

) = 2[zχ1(x− 1)+ z3χ3(x− 1)+ · · · ],

if you attribute the values 1, 2, 3, · · · , ∞ to p in the product denoted by the
prefixed sign Π.
Let us put
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y = − z2

4p2π2 ,

the expression under the multiplication sign in (28) will be

(29)

(1− x2y)(1− x′2y
(1− y)

= 1 + (1− x2 − x′2)y +
(1− x2)(1− x′2y2

1− y

= 1 + 2xx′y + xx′(2 + xx′)
y2

1− y
.

This expression, if expanded into a power series in y or (−z2), has only posi-
tive coefficients, if xx′ is positive. Therefore, in this case also the product Π,
consisting of the factors in (29), if it is expanded into a power series in (−z2),
will have only positive coefficients; or since in expression (28) the product Π
is still multiplied by −xx′z, the coefficients of that expression 2χ2m+1(x− 1),
if expanded, will be positive, if m is odd, negative, if m is an even number.
But xx′ = x(1− x) is positive for all values of x lying between 0 and 1 and
not for any other values. Hence

" χ2m+1(x− 1) will be positive for all values of x between 0 and 1, if m is an odd
number, negative, if m is odd."

Therefore, since, having put x = t
h , t lies between 0 and h, if x lies between 0

and 1, it follows from (17), having h always assumed to be positive,

"that for all values of t between 0 and h that Tm is positive, if m is an odd number,
negative, if m is odd."

5.

And starting from there we easily deduce the following theorem from our
formula (10):

"Having propounded the sum

x

∑
a

f (x) = f (a + h) + f (a + 2h) + f (a + 3h) + · · ·+ f (x),
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if the expression

x

∑
a

f (2m+2)(x− t) =
x

∑
a

∂2m+2 f (x− t)
∂x2m+2

for all values of t between 0 and h neither becomes infinite nor changes its sign: Then
the excess of the sum to (m + 2)-th term over the value of the propounded sum

x∫
0

{
f (x)

h
+

1
2

f ′(x) + α1 f ′′(x)− α2 f ′′′′(x)h3 + · · ·+ (−1)m+1αm f (2m)(x)h2m−1
}
−

x

∑
a

f (x)

has the same sign as ∑x
a f (2m+2)(x− t), if m is an odd number, the opposite sign, if

m is an even number."

This is the rigorous theorem on the matter, which has usually been proven by
rather vague arguments.
Let us call the value of the Maclaurin series up to the (m + 2)-th term Sm:

Sm =

x∫
a

dx
x∫

0

{
f (x)

h
+

1
2

f ′(x) + α1 f ′′(x)− α2 f ′′′′(x)h3 + · · ·+ (−1)m+1αm f (2m)(x)h2m−1
}

.

From the found theorem this one follows:

"If each of both expressions

x

∑
a

f (2m)(x− t),
x

∑
a

f (2m+2)(x− t)

for all values of t between 0 and 1 neither becomes infinite nor changes its sign, and
both have the same sign for that value, the value of the propounded sum ∑x

a lies
between the values Sm−1 and Sm."

The same is extended to a more general case, in which the difference of the
indices is an arbitrary odd number.
It is easily clear that in general

(30)
x∫

a

ϕ(x)dx =

h∫
0

x

∑
a

ϕ(x− t)dt.
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Hence, if ∑x
a f (2m+2)(x− t), for t lying between 0 and h, does neither change

its sign nor becomes infinite, the following integral will have the the same
sign

x∫
0

f (2m+2)(x)dx;

further, from the theorem we found that the following expression also has the
same sign

(−1)m+1

[
Sm −

x

∑
a

f (x)

]
.

Hence we have the theorem:

"If ∑x
a f (2m+2)(x− t), for t lying between 0 and h, neither changes its sign nor

becomes infinite, the excess Sm−∑x
a has the opposite sign as the term of the Maclaurin

series, which continues Sm,

(−1)mαm+2

x∫
a

f (2m+2)(x)dx.′′

The cases, in which the Maclaurin summation formula is mostly applied,
usually satisfy the mentioned preceding conditions. Therefore, in these cases
the limits of the error will be known, and the application of the series will be
safe and legitimate.

COROLLARY

I want to list the sum of the even powers of the natural numbers or the
function Π(2m + 1)χ2m+1(x) expressed by the quantity

u = x(x + 1).

We have
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∑x
0 x3 =

1
4

u2,

∑x
0 x5 =

1
6

u2
(

u− 1
2

)
,

∑x
0 x7 =

1
8

u2
(

u2 − 4
3

u +
2
3

)
,

∑x
0 x9 =

1
10

u2
(

u3 − 5
2

u2 + 3u− 3
2

)
,

∑x
0 x11 =

1
12

u2
(

u4 − 4u3 +
17
2

u2 − 10u + 5
)

,

∑x
0 x13 =

1
14

u2
(

u5 − 35
6

u4 +
287
15

u5 − 118
3

u2 +
691
15

u− 691
30

)
,

These expressions are especially useful for the sums of the lower powers, since
the number of their terms is twice as small as in the usual formulas.
To continue these expressions I observe, if

∑
p
0 x2p−3 =

1
2p− 2

[
up−1 − a1up−2 + a2up−3 − · · · + (−1)p−1ap−3u2

]
,

∑
p
0 x2p−1 =

1
2p

[
up − b1up−1 + b2up−2 − · · · + (−1)p bp−2u2

]
,

that one has

2p(2p− 1)a1 = 82p− 2)(2p− 3)b1 − p(p− 1),

2p(2p− 1)a2 = (2p− 4)(2p− 5)b2 − (p− 1)(p− 2)b1,

2p(2p− 1)a3 = (2p− 6)(2p− 6)b3 − (p− 2)(p− 3)b2,

· · · · · ·
2p(2p− 1)ap−3 = 5 · 6bp−3 − 3 · 4bp−4,

0 = 3 · 4bp−2 − 2 · 3bp−3.

By means of these relations, knowing am, the coefficients bm are computed
one by one. The calculation can even be done backwards, since you have the
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same last coefficient as in the usual formula, which proceeds according to the
powers of x.
You obtain similar expressions of the sums of the even powers from the
preceding by differentiating, since

x

∑
0

x2p =
1

2p + 1
d ∑x

0 x2p+1

dx
.

The preceding relations among the quantities a and b are easily found from a
known theorem, that the sum of the natural numbers raised to an odd power
differentiated twice and having thrown out the constant and having divided
by a constant, results as the sum of the natural numbers raised to the closest
smaller odd power.
From the same relations it is easily demonstrated that the propounded expres-
sions, as you can see in the mentioned examples, have alternating signs. This,
after it had been true in one case, will also hold for all the following ones
because of the nature of those relations. Hence, if u is a negative quantity,
all expressions have the same sign, which is determined from the sign of the
highest power. Hence one can derive a new more elementary proof of the
theorem propounded above, that the expression Tm has the same sign for all
values between 0 and h.
Poisson gave an expression for the remainder term of the Maclaurin sum-
mation formula different from ours in his extraordinary paper "Sur le calcul
numerique des Integrales definies" (Memoires de l’ Academie des Sciences de Paris,
Vol. VI pag. 571 sqq).

Written on 2 June 1834
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