On THE CONTINUED FRACTION THE
 INTEGRAL $\int_{x} e^{-x x} d x$ CAN BE EXPANDED
 INTO *

Carl Gustav Jacob Jacobi

Having put $q=\frac{1}{2 x x}$, Laplace (Traite de Mecanique celeste, T. IV, L. X) gave the propounded integral, which is used in studies of celestial mechanics and in other questions, as the expansion into the following continued fraction,

$$
\begin{equation*}
\int_{x}^{\infty} e^{-x x} d x=\frac{e^{-x x}}{2 x} \cdot \frac{1}{1+\frac{q}{1+\frac{2 q}{1+\frac{3 q}{1+4 q}}}} \tag{1}
\end{equation*}
$$

$$
\ddots
$$

Nevertheless, the proof given by Laplace, since it utilizes divergent series, is hardly accepted by anyone nowadays; that demonstration can be rendered more accurate this way:
Let us set

$$
\text { (2) } \quad v=e^{x x} \int_{x}^{\infty} e^{-x x} d x
$$

[^0]by differentiation we have
$$
\text { (3) } \frac{d v}{d x}=2 x v-1 \text {. }
$$

Having differentiated this equation n times, it results

$$
\text { (4) } \frac{d^{n+1} v}{d x^{n+1}}=2 x \frac{d^{n} v}{d x^{n}}+2 n \frac{d^{n-1} v}{d x^{n-1}}
$$

or, having put

$$
\text { (5) } \quad v_{n}=\frac{1}{1 \cdot 2 \cdot 3 \cdots n} \frac{d^{n} v}{d x^{n}}
$$

we have

$$
\text { (6) } \quad(n+1) v_{n+1}=2 x v_{n}+2 v_{n-1}+2 v_{n-1}, \quad v_{1}=2 x v-1 \text {. }
$$

Further, having put

$$
(-1)^{n} 2 x^{n+1} v_{n}=y_{n+1}, \quad q=\frac{1}{2 x x},
$$

from (6)

$$
\text { (7) } y_{n}=y_{n+1}+(n+1) q y_{n+2}, \quad 1=y_{1}+q y_{2} \text {. }
$$

Hence it follows

$$
\frac{1}{y_{1}}=1+\frac{q y_{2}}{y_{1}}=1+\frac{q}{1+\frac{2 q y_{3}}{y_{2}}}=1+\frac{q}{1+\frac{2 q}{1+\frac{3 q y_{4}}{y_{3}}}}
$$

or in general

$$
\begin{align*}
\frac{1}{y_{1}}=1+\frac{q}{1+\frac{2 q}{1+\frac{3 q}{1+}}} & \tag{8}\\
& \ddots \\
& +\frac{n q}{1+\frac{(n+1) q y_{n+2}}{y_{n+1}}},
\end{align*}
$$

where

$$
\begin{align*}
& y_{1}=2 x e^{x x} \int_{x}^{\infty} e^{-x x}=2 x v \tag{9}\\
& y_{n+1}=(-1)^{n} \frac{2 x^{n+1}}{1 \cdot 2 \cdot 3 \cdots n} \frac{d^{n} v}{d x^{n}}
\end{align*}
$$

Laplace asserted that the value of $\frac{1}{y_{1}}$ in question is always contained between two subsequent values of the continued fraction; for this to be seen to be true he had to show that the neglected quotients

$$
\frac{(n+1) q y_{n+2}}{y_{n+1}}
$$

have the same sign. To prove this by expansions into series is rather difficult, but you will succeed, if you exhibit the differentials of v by definite integrals. For, from (2) one has
(10) $\quad v=e^{x x} \int_{x}^{\infty} e^{-t t} d t=e^{t t} \int_{0}^{\infty} e^{-(t+x)^{2}} d t=\int_{0}^{\infty} d t e^{-t t} e^{-2 t x}$,
whence
(11) $\frac{d^{n} v}{d x^{n}}=\int_{0}^{\infty} d t(-2 t)^{n} e^{-t t} e^{-2 t x}=e^{x} x \int_{0}^{\infty}(-2 t)^{n} e^{-(t+x)^{2}}$
or
(12) $\frac{d^{n} v}{d x^{n}}=(-2)^{n} e^{x x} \int_{x}^{\infty} d t(t-x)^{n} e^{-t t}$,
whence also
(13) $y_{n+1}=\frac{(2 x)^{n+1} e^{x x}}{1 \cdot 2 \cdot 3 \cdots n} \int_{x}^{\infty} d t(t-x)^{n} e^{-t t}$
which is always a positive quantity. Therefore, it immediately follows, what he had to prove, that the neglected quotient is always positive.

Koenigsberg, 30 June 1834

[^0]: *Original Title: "De fractione continua, in quam $\int_{x}^{\infty} e^{-x x} d x$ evolvere licet", first published in Crelle Journal für die reine und angewandte Mathematik, Band 12, pp. 346-347, 1834; reprinted in C.G.J. Jacobi's Gesammelte Werke, Volume 6, pp. 76-78, translated by: Alexander Aycock for the "Euler-Kreis Mainz".

