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1.

It is a known theorem and one of highest importance that, having expanded a
function U into a series of cosines and sinus of multiples of the angle x, the
coefficients of the expansions are determined by the definite integrals

2π∫
0

U cos ixdx,
2π∫
0

U sin ixdx.

Since the values of these integrals can certainly always be found by quadra-
tures, one has a general method, to do expansions of such a kind.
If the expansion converges well, the value of the integrals, while i increases,
decreases rapidly; how this happens, is easily understood. For, for larger
numbers i the positive and negative values of the functions under the integral
sign alternate more rapidly, and cancel each other for the most part. But
hence a certain inconvenience of the method results; for, we see that the value
of a very small quantity in question is to be determined by differences of
very large quantities. In astronomical calculations the determination of huge
inequalities is extremely problematic because of this inconvenience.
In the special case, in which the following expression is propounded to be
expanded

*Original Title: "Formula Transformationis Integralium definitorum", first published in Crelle
Journal für die reine und angewandte Mathematik, Band 15, pp. 1-26, 1835; reprinted in C.G.J.
Jacobi’s Gesammelte Werke, Volume 6, pp. 85-118, translated by: Alexander Aycock for the
"Euler-Kreis Mainz".
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1√
1− 2a cos x + a2

,

Legendre once found an ingenious transformation of the integrals exhibiting
the coefficients of the expansion, by which this inconvenience is avoided. This
transformation is contained in the formula

π∫
0

cos ixdx√
1− 2a cos x + a2

= ai
π∫

0

sin2i xdx√
1− a2 sin2 x

.

The transformed integral is multiplied by a constant small factor ai; further-
more, even under the integral sign one finds the small factor sin2i x; so that,
if you apply quadratures to the transformed integral, you find the value of
the integral as the sum of very small positive quantities; this yields quick
and appropriate calculations. Legendre believed that that transformation
formula is the only one of its kind. But I recently coincidentally discovered a
general formula, by which, having propounded the expansion of function into
a series of cosines of multiple angles, the integrals exhibiting the coefficients
of the expansion are transformed into others, in which under the integral
sign instead of cos ix one finds the factor sin2i x, and instead of the function
to be expanded one finds its differential of order i with respect to cos x. If
the function to be expanded has several angles, e.g, x, y, having applied the
transformation to one variable after the other, double integrals exhibiting the
coefficients of the expansion are changed into others, in which instead of
the factor cos ix cos i′y one finds the factor sin2i x sin2i′ y and instead of the
functions its differential of order i with respect to cos x and of order i′ with
respect to cos y. This transformation formula is of the same kind as the one
once propounded by Legendre. In the following I will explain this subject and
will illustrate it in various examples.

2.

While m, n are positive integers, one has the known formulas

(1)

1
2 π∫
0

sin2m x cos2n xdx =
(2m− 1)(2m− 3) · 1 · (2n− 1)(2n− 3) · · · 1

(2m + 2n)(2m + 2n− 2) · · · 2 · π
2

,
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(2.)

1
2 π∫
0

cos2m x cos 2nxdx = (−1)n
1
2 π∫
0

sin2m x cos 2nxdx

=
1

22m ·
2m(2m− 1) · · · (m + n + 1)

1 · 2 · · · (m− n)
· π

2
,

(3.)

1
2 π∫
0

cos2m+1 x cos(2n + 1)xdx = (−1)n
1
2 π∫
0

sin2m+1 x cos(2n + 1)xdx

=
1

22m+1 ·
(2m + 1)2m · · · (m + n + 2)

1 · 2 · · · (m− n)
· π

2
.

The following single formula, which holds, if p− i denotes an even positive
number, contains the last two formulas:

(4.)

1
2 π∫
0

cosp x cos ixdx =
1
2p ·

p(p− 1) · · ·
(

p + i
2

+ 1
)

1 · 2 · · ·
(

p− i
2

) · π

2
,

which formula can also be exhibited this way:

1
2 π∫
0

cosp x cos ixdx

=
p(p− 1) · · · (p− i + 1)

1 · 3 · · · (2i− 1)
· (p− i− 1)(p− i− 3) · · · (2i− 1)(2i− 3) · · · 1

2 · 4 · 6 · · · (p + i)
· π

2
,

whence from (1) the following formula results

(5.)

1
2 π∫
0

cosp x cos ixdx =
p(p− 1) · · · (p− i + 1)

1 · 3 · · · (2i− 1)

1
2 π∫
0

sin2i x cosp−i xdx.

For this formula also to hold for and odd number p− i, let us extend both
integrals from 0 to π; having done this both vanish for odd p− i. Therefore,
while p, i denote positive integer numbers, it will be

(6.)
π∫

0

cosp x cos ixdx =
p(p− 1) · · · (p− i + 1)

1 · 3 · · · (2i− 1)

π∫
0

sin2i x cosp−1 xdx.
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3.

Let us suppose that a function of z, f (z), can be expanded into a power series
in z, and its expansion is

f (z) = ∑ Apzp;

further, following Lagrange, let us put

di f (z)
dzi = f (i)(z),

whence

f (i)(z) = ∑ p(p− 1) · · · (p− i + 1)Apzp−i;

from (6) it will be

π∫
0

f (cos x) cos ixdx = ∑ Ap

π∫
0

cosp x cos ixdx

=
1

1 · 3 · · · (2i− 1)

π∫
0

dx sin2i x
{
∑ p(p− 1) · · · (p− i + 1)Ap cosp−i x

}
or

(7)
π∫

0

f (cos x) cos ixdx =
1

1 · 3 · · · (2i− 1)

π∫
0

f (i)(cos x) sin2i xdx.

This formula for the definite integral suggests the propounded transformation.

4.

Formula (7), found in the preceding, can also be demonstrated using the
following memorable lemma:
"The differential of order (i− 1) of sin2i−1 x with respect to cos x is

(−1)i−11 · 3 · 5 · · · (2i− 1)
sin ix

i
,

or, having put cos x = z, one has
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di−1(1− z2)
2i−1

2

dzi−1 = (−1)i−11 · 3 · 5 · · · (2i− 1)
sin ix

i
."

To demonstrate it I observe that, having put

p = a + bz + cz2, q = b + 2cz,

one has in general

dn pr

dzn = r(r− 1) · · · (r−n+ 1)pr−nqn


1 +

n(n− 1)
r− n + 1

cp
q2 +

n(n− 1)(n− 2)(n− 3)
(r− n + 1)(r− n + 2) · 2

c2 p2

q4

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
(r− n + 1)(r− n + 2)(r− n + 3) · 2 · 3

c3 p3

q6 + · · · ,

cf. Lacroix, Traite du calculu differentiel et du calcul integral, Seconde edition, T. I.,
pag. 183. Hence, having substituted the values

p = a + bz + cz2 = 1− z2 = sin2 x, q = −2z = −2 cos x,

c = −1, r =
2i− 1

2
, n = i− 1,

it results

di−1(1− z2)
2i−1

2

dzi−1

(−1)i−13 · 5 · · · (2i− 1)
[

cosi−1 x sin x− (i− 1)(i− 2)
2 · 3 cosi−3 x sin2 x

+
(i− 1)(i− 2)(i− 3)(i− 4)

2 · 3 · 4 · 5 cosi−5 x sin5 x− · · ·
]

or by known trigonometric formulas

(8)
di−1(1− z2)

2i−1
2

dzi−1 = (−1)i−13 · 5 · · · (2i− 1)
sin ix

i
,

what was to be demonstrated.
Having demonstrated the lemma, formula (7) is easily proven by partial
integration, repeated i times. For, if a certain function w and its differentials
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up to the order i− 1 vanish in the limits of the integration, it is known that by
partial integration one has

∫
w

div
dzi dz = (−1)i

∫
v

diw
dzi dz.

Hence, having put

v = f (z), w = (1− z2)
2i−1

2 ,

and having extended the integration from −1 to +1, it results

+1∫
−1

f (i)(z)(1− z2)
2i−1

2 dz = (−1)i
+1∫
−1

f (z)
di(1− z2)

2i−1
2

dzi dz.

For, (1− z2)
2i−1

2 and its differentials up to order i − 1 vanish for the limits
z = −1, z = +1. But having differentiated (8) with respect to z, we have

di(1− z2)
2i−1

2

dzi = (−1)i−13 · 5 · · · (2i− 1) cos ixdx.

Hence, having put z = cos x, the preceding formula goes over into the
following:

π∫
0

f (i) sin2i xdx = 3 · 5 · · · (2i− 1)
π∫

0

f (cos x) cos ixdx,

which is the propounded formula (7).
The preceding proof assumes nothing but that the function f (cos x) and its
differentials up to order i for the assigned limits of integration do not become
infinite; and it does not assume, as the first proof, that the function f (cos x)
can be expanded into a series of integer powers of cos x. Therefore, formula
(7) is not restricted to this case. Hence, having put f (cos x) = cosp x, it is
plain that formula (6) also holds if p is not an integer number, if just p > i.

5.

To these results we want to add the following considerations. For the sake of
brevity let us set
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Bi =
1 · 3 · · · (2i− 1)

2 · 4 · · · 2i
,

from (7) it will be

Bi

π∫
0

f (cos x) cos ixdx =

π∫
0

f (i)(cos x) sin2i xdx
2i · 1 · 2 · 3 · · · i .

Hence, since, while h denotes a constant smaller than 1,

1
2

{
1√

1− hex
√
−1

+
1√

1− he−x
√
−1

}
= 1+ B1h cos x+ B2h2 cos 2x+ B3h3 cos 3x+ · · · ,

by means of Taylor’s theorem one finds

(9)
1
2

π∫
0

dx f (x)

{
1√

1− hex
√
−1

+
1√

1− he−x
√
−1

}
=

π∫
0

f
(

cos x +
h sin2 x

2

)
dx.

This formula can also be exhibited this way:

(10)
1
2

2π∫
0

f (cos x)dx√
1− hex

√
−1

=

π∫
0

f
(

cos x +
h sin2 x

2

)
dx.

Formula (9) can also be deduced from an indefinite transformation. For,
having put

cos η = cos x +
h sin2 x

2
,

it follows √
1− 2h cos η + h2 = 1− h cos x,

whence √
1− 2h cos η + h2 − (1− h cos η) =

h2 sin2 x
2

.

From this equation, having extracted the roots, this one results:
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√
1− heη

√
−1 −

√
1− he−η

√
−1 = −h sin x

√
−1.

Having multiplied this by√
1− heη

√
−1 +

√
1− he−η

√
−1,

and after a division by h, it results

2 sin η = sin
{√

1− heη
√
−1 +

√
1− he−η

√
−1
}

.

Now, having differentiated the propounded equation, we obtain

sin ηdη = sin [1− h cos x] dx.

But from the preceding

2 sin η

sin x [1− h cos x]
=

1√
1− heη

√
−1

+
1√

1− he−η
√
−1

;

hence we see that having put

(11) cos η = cos x +
h sin2 x

2
,

we have

(12) dx =
1
2

{
1√

1− heη
√
−1

+
1√

1− he−η
√
−1

}
dη,

and hence also

(13)
∫

f
(

cos x +
h sin2 x

2

)
dx =

1
2

∫
f (cos η)

{
1√

1− heη
√
−1

+
1√

1− he−η
√
−1

}
dη.

If h is smaller than 1, while x grows from 0 to π, the expression cos x + h sin2 x
2

continuously decreases from 1 to −1, whose differential − sin x [1− h cos x]
always gives negative values; hence at the same time the angle η continuously
increases from 0 to π. Hence it is plain, that in formula (13), having extended
the one integral from 0 to π, also the other is extended from 0 to π. Formula
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(9) yields this.
Additionally, I observe that from the given formulas√

1− 2h cos η + h2 = 1− h cos x,√
1− heη

√
−1 +

√
1− he−η

√
−1 = −h sin x

√
−1,

it follows

(14)

{
1−

√
1− heη

√
−1
}{

1 +
√

1− he−η
√
−1
}
= hex

√
−1

{
1 +

√
1− heη

√
−1
}{

1−
√

1− he−η
√
−1
}
= he−x

√
−1.

From formula (12) by integration one has the expression for the angle x

(15) x = η +
1
2

η sin η +
1 · 3
2 · 4

h2 sin 2η

2
+

1 · 3 · 5
2 · 4 · 6

h3 sin 3η

3
+ · · ·

The same is also deduced from the Lagrangian theorem, that, given

α− z + ϕ(z) = 0,

one has

ψ(z) = ψ(a)+ ϕ(a)ψ′(a)+
1
2

d
[
ϕ(α)2ψ′(α)

]
dα

+
1

2 · 3
d2 [ϕ(α)3ψ′(α)

]
dα2 +

1
2 · 3 · 4

d
[
ϕ(α)4ψ′(α)

]
dα3 + · · ·

From this series, having put

ψ(z) = arccos z, α = cos η, ϕ(z) = −h(1− z2)

2
,

and recalling (8), formula (15) results. Vice versa from formula (15) applying
the Lagrangian theorem one can deduce (8).

6.

To deduce the formula mentioned above, found by Legendre, from the general
formula (7),

9



π∫
0

cos ixdx√
1− 2a cos x + a2

= ai
π∫

0

sin2i xdx√
1− a2 sin2 x

,

one can argue as this:
Having put

f (cos x) = [1− 2a cos x + a2]−
1
2 ,

one has

f (i)(cos x)
1 · 3 · · · (2i− 1)

= ai[1− 2a cos x + a2]−
2i+1

2 ,

whence from (7)

(16)
π∫

0

cos ixdx√
1− 2a cos x + a2

= ai
π∫

0

sin2i xdx

(1− 2a cos x + a2)
1
2 (2i+1)

.

Now having put

(17) sin y =
sin x√

1− 2a cos x + a2
,

one obtains, what is a known transformation of elliptic integrals due to Landen

(18)
dy√

1− a2 sin2 y
=

dx√
1− 2a cos x + a2

.

Where the limits of x are 0 and π, the limits of y are also 0 and π, whence
from (17), (18)

(19)
π∫

0

sin2i xdx

(1− 2a cos x + a2)
1
2 (2i+1)

=

π∫
0

sin2i ydy√
1− a2 sin2 y

,

which substituted in (16) gives the propounded formula.
On the given occasion I want to mention an indefinite transformation, which
reveals the true nature of Legendre’s formula. In its proof I will use signs and
notations introduced in the my book Fundamenta nova etc.
If f (u) is a periodic function, this means, a function which does not change
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its value, having increased the argument u by a certain constant, which we
call the index of the period: The integral∫

f (u)du,

taken for two arbitrary limits, whose difference is equal to the index of the
period, gives the same value, having increased the argument u by an arbitrary
real or imaginary quantity, as long as the function to be integrated does not
become infinite within the boundaries of integration.
Hence, if we set

f (u) = sin2n am u,

while i denotes the imaginary quantity
√
−1, it will be

2π∫
0

sin2n ϕdϕ√
1− k2 sin2 ϕ

=

4K∫
0

sin2n am udu =

4K∫
0

sin2n am
(

u +
iK′

2

)
du.

Having put am u = ϕ, am a = α, from the Eulerian theorem one has

sin am(u + a) =
cos α∆α sin ϕ + sin α cos ϕ∆ϕ

1− k2 sin2 α sin2 ϕ
,

having put a = iK′
2 in which formula, whence

sin α =
i√
k

, cos α =

√
1 + k

k
, ∆α =

√
1 + k,

one finds

√
k sin am

(
u +

iK′

2

)
=

(1 + k) sin ϕ + i cos ϕ∆ϕ

1 + k sin2 ϕ
.

Now let us set

(1 + k) sin ϕ

1 + sin2 ϕ
= sin ψ,

2
√

k
1 + k

= λ,

whence also

cos ϕ∆ϕ

1 + k sin2 ϕ
= cos ψ,

1− k sin2 ϕ

1 + k sin2 ϕ
= ∆(ψ, λ),
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du =
dϕ

∆ϕ
=

dψ

(1 + k)∆(ψ, λ)
=

dψ√
1 + 2k cos 2ψ + k2

.

This is the substitution, by which Gauss exhibited Landen’s transformation
connected to the bisection. Having substituted the preceding formulas, it
results

√
k sin am

(
u +

iK′

2

)
= ie−iψ,

and hence

(20)
∫ cos 2nψ− i sin 2nψ√

1 + 2k cos 2ψ + k2
dψ = (−k)n

∫
sin2n am

(
u +

iK′

2

)
du.

This is the indefinite transformation, from which for definite limits Legendre’s
formula follows.
For, while u grows from 0 to 4K or ϕ from 0 to 2π, also ψ grows from 0 to 2π,
for which limits the imaginary part multiplied by sin 2nψ vanishes; hence it
results

(−k)n
2π∫
0

sin2n ϕdϕ√
1− k2 sin2 ϕ

= (−k)n
4K∫
0

sin2n am
(

u +
iK′

2

)
du

=
2π∫
0

cos 2nψdψ√
1 + 2k cos 2ψ + k2

,

which formula, having put k = −a, n = i goes over into the propounded one.

7.

The formula

π∫
0

cos ixdx√
1− 2a cos x + a2

= ai
π∫

0

sin2i xdx√
1− a2 sin2 x

is conveniently applied, if one discusses the expansion of the integral

π∫
0

cos ixdx√
1− 2a cos x + a2
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into a series, which we want to converge rapidly for large values of i. For,
since from (1)

π∫
0

sin2i x cos2n xdx =
1 · 3 · 5 · · · (2i− 1) · 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2i + 2n)
π

=
1 · 3 · · · (2i− 1)

2 · 4 · · · 2i
· 1 · 3 · · · (2n− 1)
(2i + 2)(2i + 4) · · · (2i + 2n)

π

and one has

1√
1− a2 sin2 x

=
1√

1− a2 + a2 cos2 x

=
1√

1− a2

[
1− 1

2
a2 cos2 x
1− a2 +

1 · 3
2 · 4

a4 cos4 x
(1− a2)2 −

1 · 3 · 5
2 · 4 · 6 ·

a6 cos6 x
(1− a2)8 + · · ·

]
,

one finds

(21.)
π∫

0

cos ixdx√
1− 2a cos x + a2

=
1 · 3 · 5 · · · (2i− 1)

2 · 4 · 6 · · · 2i
πai
√

1− a2

{
1− 1

2
1

2i + 2
a2

1− a2 +
1 · 3
2 · 4

1 · 3
(2i + 2)(2i + 4)

a4

(1− a2)2

−1 · 3 · 5
2 · 4 · 6

1 · 3 · 5
(2i + 2)(2i + 4)(2i + 6)

a6

(1− a2)
+ · · ·

}
which series is seen to converge very fast for larger values of i.
Legendre found a memorable more general expansion

(22)
π∫

0

cos ixdx
(1− 2a cos x + a2)n

=
n(n + 1) · · · (n + i− 1)

1 · 2 · · · i
πai

(1− a2)n

{
1 +

n(n− 1)
1 · (i + 1)

a2

1− a2 +
(n + 1)n(n− 1)(n− 2)

1 · 2 · (i + 1)(i + 2)
a4

(1− a2)2

(n + 2)(n + 1)n(n− 1)(n− 2)(n− 3)
1 · 2 · 3 · (i + 1)(i + 2)(i + 3)

· a6

(1− a2)3 + · · ·
}

,
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which is also plain to converge very fast for large values of i. In order to find
this expansion, Legendre, having explored the first term of the series by a
particular artifice, he assumed the following form of the series:

π∫
0

cos ixdx
(1− 2a cos x + a2)n = πP,

=
n(n + 1) · · · (n + i− 1)

1 · 2 · · · i
πai

(1− a2)n

[
1 +

c′

i + 1
+

c′′

(i + 1)(i + 2)
+

c′′′

(i + 1)(i + 2)(i + 3)
+ · · ·

]
,

while c′, c′′, c′′′, · · · do not depend on the number i. Having done this, by
means of linear relation, which holds among three terms Pi−1, Pi, Pi+1,

(i + 1− n)Pi+1 −
1 + a2

a
iPi + (i− 1 + n)Pi−1 = 0

he determined the terms c′, c′′, c′′′, · · · one after the another.
You might obtain a more direct proof of formula (22) by means of our theorem
(7) in the following way:
Having put

f (cos x) = (1− 2a cos x + a2)−n,

one has

f (i)(cos x) = (2a)i · n(n + 1) · · · (n + i− 1) · (1− 2a cos x + a2)−(n+i),

whence from (7):

(23)
π∫

0

cos ixdx
(1− 2a cos x + a2)n =

n(n + 1) · · · (n + i− 1)
1 · 3 · · · (2i− 1)

(2a)i
π∫

0

sin2i xdx
(1− 2a cos x + a2)n+1 .

Let us put
√

1− 2a cos x + a2 = R, sin x
R = sin y, it will be

sin2i xdx
(1− 2a cos x + a2)n+1 = − 1

(2n− 1)a
sin2i−1 ydR−(2n−1),

which, integrated from the limits 0 to π with respect to each of both variables,
gives
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π∫
0

sin2i xdx
(1− 2a cos x + a2)n+i = −

1
(2n− 1)a

π∫
0

sin2i−1 y
dR−(2n−1)

dy
dy.

Let us expand the expression R−(2n−1) into a power series in cos y. For this
purpose I observe that one has

R2 − sin2 x = (cos x− a)2 = cos2 y · R2,

and hence, since 2a(cos x− a) = 1− a2 − R2, we have

R2 + 2aR cos y = 1− a2.

Therefore, one has the expansion in question1

(24) R−(2n−1) =
√
(1− 2a cos x + a2)−(2n−1)

=
2n− 1√

(1− a2)2n−1

[
1

2n− 1
+

a cos y√
1− a2

+
2n− 1

2
a2 cos2 y
(1− a2)2 +

(2n− 2) · 2n
2 · 3

a3 cos3 y√
(1− a2)3

+
(2n− 3)(2n− 1)(2n + 1)

2 · 3 · 4
a4 cos4 y√

(1− a2)4 + · · ·

]
,

whence

− sin2i−1 y
(2n− 1)a

dR−(2n−1)

dy

= (1− a2)−n sin2i y

[
1 + (2n− 1)

a cos y√
1− a2

+
(2n− 2) · 2n

1 · 2
a2 cos2 y√
(1− a2)2

+
(2n− 3)(2n− 1)(2n + 1)

1 · 2 · 3
a3 cos3 y√

(1− a2)3 + · · ·

]
.

Having integrated this expression with respect to y from 0 to π, the terms
multiplied by the odd powers of cos y vanish; for the remaining ones from (1)

(2n− 2m)(2n− 2m + 2) · · · (2n + 2m− 2)
1 · 2 · 3 · · · 2m

π∫
0

sin2i y cos2m ydy

1V. Lacroix, Traite du calcul differentiel er du calcul integral, Seconde edition, T. I p. 286,
where instead of α, β, γ, y, m, n you have to write 1− a2, 1, −2a cos y, R3, 1

2 , − 2n−1
2 .
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=
1 · 3 · · · (2i− 1)

2 · 4 · · · 2i
· (n−m)(n−m− 1) · · · (n + m− 1)

1 · 2 · · ·m · (i + 1)(i + 2) · · · (i + m)
π,

whence

π∫
0

sin2i xdx
(1− 2a cos x + a2)n+i = −

1
(2n− 1)a

π∫
0

sin2i−1 y
dR−(2n−1)

dy
dy

=
1 · 3 · · · (2i− 1)

2 · 4 · · · 2i
(1− a2)−nπ

[
1 +

(n− 1)n
1 · (i + 1)

a2

1− a2 +
(n− 2)(n− 1)n(n + 1)

1 · 2 · (i + 1)(i + 2)
· a4

(1− a2)2 + · · ·
]

,

which, substituted in (23), gives formula (22) propounded by Legendre.

8.

From formula (23) you even easily deduce a memorable formula due to Euler.
For, having put 2x instead of x, −a instead of a in (23), we have

π∫
0

cos 2ixdx
(1 + 2a cos 2x + a2)n =

n(n + 1) · · · (n + i− 1)
1 · 3 · · · (2i− 1)

(−2a)i
π∫

0

sin2i 2xdx
(1 + 2a cos 2x + a2)n+i ;

in the one integral let us put

1− a
1 + a

tan x = tan y,

whence

(1− a2) sin 2x
1 + 2a cos 2x + a2 = sin 2y, 1 + 2a cos 2x + a2 =

(1− a2)2

1− 2a cos 2y + a2 ,

(1− a2)dx
1 + 2a cos 2x + a2 = dy,

and hence

π∫
0

cos 2ixdx
(1 + 2a cos 2x + a2)n

=
n(n + 1) · · · (n + i− 1)

1 · 3 · · · (2i− 1)
· (−2a)i

(1− a2)2n−1

π∫
0

(1− 2a cos 2y + a2)n−i−1 sin2i 2ydy.
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But having written 1− n instead of n in (23), it results

π∫
0

(1− 2a cos 2x + a2)n−1 cos 2ixdx

=
(n− 1)(n− 2) · · · (n− i)

1 · 3 · · · (2i− 1)
(−2a)i

π∫
0

(1− 2a cos 2y + a2)n−i−1 sin2i 2ydy,

having substituted which formula in the preceding one, one obtains

π∫
0

cos 2ixdx
(1 + 2a cos 2x + a2)n

=
n(n + 1) · · · (n + i− 1)
(n− 1)(n− 2) · · · (n− i)

· 1
(1− a2)2n−1

π∫
0

(1− 2a cos 2x + a2)n−1 cos 2ixdx,

which is the extraordinary formula, which Euler once studied very extensively.

9.

Let ε, µ, e be the eccentric anomaly, mean anomaly, eccentricity, whence

µ = ε− e sin ε.

Let the cosines and sines of multiplies of the eccentric anomaly be expanded
into infinite series of sines and cosines of multiplies of the mean anomaly,

cos nε = pn + 2p′n cos µ + 2p′′n cos 2µ + 2p′′′n cos 3µ + · · · ,

sin nε = q′n sin µ + q′′n sin 2µ + q′′′n sin 3µ + · · · ,

it will be

17



pi
n =

1
π

π∫
0

cos iµ cos nεdµ =
n
iπ

π∫
0

sin iµ sin nεdε

=
n

2iπ

π∫
0

dε[cos((i− n)ε− ie sin ε)− cos((i + n)ε− ie sin ε)],

qi
n =

2
π

π∫
0

sin iµ sin nεdµ =
2n
iπ

π∫
0

cos iµ cos nεdε

=
n
iπ

π∫
0

dε[cos((i− n)ε− ie sin ε) + cos((i + n)ε− ie sin ε)],

which integral transformations are obtained by partial integration. Since if
we, following Bessel, put

1
π

π∫
0

cos(iε− k sin ε)dε = I(i)k ,

it will be

p(i)n =
n
2i

(
I(i−n)
ie − I(i+n)

ie

)
,

q(i)n =
n
i

(
I(i−n)
ie − I(i+n)

ie

)
.

Depending on whether i is an even or odd number, one also has

I(2i)
k =

1
π

π∫
0

cos(k sin ε) cos 2iεdε =
(−1)i

π

π∫
0

cos(k cos ε) cos 2iεdε,

I(2i+1)
k =

1
π

π∫
0

sin(k sin ε) sin(2i + 1)εdε =
(−1)i

π

π∫
0

sin(k cos ε) cos(2i + 1)εdε,

whence the transcendents I(2i)
k , I(2i+1)

k are the coefficients of the expansion of
cos(k cos ε), sin(k cos ε) into a series of cosines of multiples of ε

cos(k cos ε) = I(0)k − 2I(2)k cos 2ε + 2I(4)k cos 4ε− 2I(6)k cos 6ε + · · · ,

sin(k cos ε) = 2I(1)k cos ε− 2I(3)k cos 3ε + 2I(5)k cos 5ε− · · ·
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If the cosines and sines of a multiple of the mean anomaly are to be expanded
into a series of cosines and sines of multiples of the eccentricity, put

cos iµ = k(i) + 2k(i)1 cos ε + 2k(i)2 cos 2ε + 2k(i)3 cos 3ε + · · · ,

sin iµ = l(i)1 sin ε + l(i)2 sin 2ε + l(i)3 sin 3ε + · · · ,

it will be

k(i)n =
1
π

π∫
0

cos iµ cos nεdε =
1

2π

π∫
0

dε[cos((i− n)ε− ie sin ε) + cos((i + n)ε− ie sin ε)],

l(i)n =
2
π

π∫
0

sin iµ sin nεdε =
1
π

π∫
0

dε[cos((i− n)ε− ie sin ε)− cos((i + n)ε− ie sin ε)]

or

k(i)n =
1
2

(
I(i−n)
iε + I(i+n)

ie

)
=

i
2n

q(i)n ,

l(i)n = I(i−n)
iε − I(i+n)

ie =
2i
n

p(i)n .

Bessel explained the nature and the various applications of the transcendents
I(i)k for the determination of definte integrals in his celebrated paper De
Perturbationibus, quae a motu solis pendent (Acad. Berol. ad annum 1824). In this
paper he proved that the functions I(0)k , I(1)k , I(2)k , I(3)k , · · · are all expressed
by two of them linearly. Hence it is plain, having found the coefficients of
the expansion of cos ε, sin ε into a series of multiples of the mean anomaly,
that the coefficients of the expansion of cos nε, sin nε are determined linearly
from them. Since the same transcendents also occur in the theory of heat,
many famous men, which treated the subject of heat, noted various of their
properties.
But having mentioned all this, let us transform the integral I(i)k by means
of formula (7). By means of it, having respectively put f (z) = cos(kz),
f (z) = sin(kz), one finds
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π I(2i)
k = (−1)i

π∫
0

cos(k cos ε) cos 2iεdε

=
k2i

1 · 3 · 5 · · · (4i− 1)

π∫
0

cos(k cos ε) sin4i εdε,

π I(2i+1)
k = (−1)i

π∫
0

sin(k cos ε) cos(2i + 1)εdε

=
k2i+1

1 · 3 · 5 · · · (4i + 1)

π∫
0

cos(k cos ε) sin4i+2 εεdε,

whence, depending on whether i is even or odd,

π I(i)k =
ki

1 · 3 · · · (2i− 1)

π∫
0

cos(k cos ε) sin2i εdε.

And Bessel himself (formula 53 in the mentioned paper) demonstrated this
expression for the transcendent I(i)k by particular artifices.

10.

I want to add an example of a transformation of a double integral, which can
also be useful in astronomical calculations. Let

f (i,i
′)(cos x, cos x′) =

∂i+i′ f (y, z)
∂yi∂zi′ ,

if after the differentiations one puts y = cos x, z = cos x′: From formula (7),
applying it to the variables x, x′ one after the other, one obtains:

(25)
π∫

0

π∫
0

f (cos x, cos x′) cos ix cos i′x′dxdx′

=
1

1 · 3 · · · (2i− 1) · 1 · 3 · · · (2i′ − 1)

π∫
0

π∫
0

f (i,i
′)(cos x, cos x′) sin2i x sin2i′ x′dxdx′.

Let

f (cos x, cos x′) = (l + 2l′ cos x + 2l′′ cos x′)−n,
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from (25) it will be

(26)
π∫

0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

= (−2)i+i′(l′)i(ll′′)i′ n(n + 1)(n + 2) · · · (n + i + i′ − 1)
1 · 3 · · · (2i− 1) · 1 · 3 · · · (2i′ − 1)

π∫
0

π∫
0

sin2i x sin2i′ xdxdx′

(l + 2l′ cos x + 2l′′ cos x′)n+i+i′ .

Let the radii of the circular orbit of two planets be a, a′, the inclination I,
the anomalies ϕ, ϕ′. Let it be propounded to expand the n-th power of the
reciprocal distance of these planets into a series of multiples of ϕ + ϕ′, ϕ− ϕ′;
let this expansion be

1

[a2 − 2aa′(cos ϕ cos ϕ′ + cos I sin ϕ sin ϕ′) + a′2]
1
2 n

= ∑ pi,i′ cos i(ϕ− ϕ′) cos i′(ϕ+ ϕ′),

having extended the sum to the numbers i, i′, from −∞ to +∞ for each of
them. Having put 1

2 n instead of n, further,

l = a2 + a′2, l′ = −aa′ cos2
(

1
2

I
)

, l′′ = −aa′ sin2
(

1
2

I
)

,

ϕ− ϕ′ = x, ϕ + ϕ′ = x′,

from (26) it will be

(27)

pi,i′ =
1

π2

π∫
0

π∫
0

cos ix cos i′x′dxdx′

[a2 − 2aa′(cos2( 1
2 I) cos x + sin2( 1

2 I) cos x′)]
1
2

=
n(n + 2)(n + 4) · · · (n + 2i + 2i′ − 2)

1 · 3 · · · (2i− 1) · 1 · 3 · · · (2i′ − 1)
ai+i′a′i+i′ cos2i

(
1
2

I
)

sin2i′
(

1
2

I
)

· 1
π2

π∫
0

π∫
0

sin2i x sin2i′ xdxdx′

[a2 − 2aa′(cos2
( 1

2 I
)

cos x + sin2 ( 1
2 I
)

cos x′) + a′2]
1
2 n+i+i′

.

This last expression, since both it shows the structure of the coefficient pi,i′ very
well, and, if one likes the computation by quadratures better, is convenient,
can be useful in perturbations, if the inclination, as it is the case for the newer
planets, is small.
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11.

Formula (7) can also be applied for the determination of the value of the

integral
π∫
0

U cos iϕdϕ, if i grows to infinity. This determinations demands,

that, having expanded U into a series of cosines of multiples of ϕ, the series

converges. For, having transformed the propounded integral
π∫
0

U cos iϕdϕ

into
π∫
0

V sin2i ϕdϕ by means of (7), for the determination of this for an infinite

i one can apply Laplace’s method for the approximate evaluation of integrals,
which contain large exponents under the integral sign.
For the sake of an example let

A =

π∫
0

cos ixdx
(l + 2l′ cos x)n ,

from (7) it will be

A =
n(n + 1) · · · (n + i− 1)

1 · 3 · · · (2i− 1)
(−2l′)i

π∫
0

(
sin2 x

l + 2l′ cos x

)i dx
(l + 2l′ cos x)n .

Let us find the maximal value of the expression raised to the i-th power under
the integral sign, which, having put cos x = y, becomes

sin2 x
l + 2l′ cos x

=
1− y2

l + 2l′y
.

Having put its differential = 0, we have

0 = y(l + 2l′y) + l′(1− y2) = l′ + ly + l′y2,

whence two values for y result

y =
−l ±

√
l2 − 4l′2

2l′
,

since the product of which is = 1, the one will be absolutely greater than
1, the other absolutely smaller tham 1. One has to chose the second, since
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y = cos x and hence absolutely smaller than 1; this value, if, what we assume,
l is positive, corresponds to the positive root. But for that value one has

1− y2

l + 2l′y
=

y(1− y2)

ly + 2l′y2 = − y
l′
=

l −
√

l2 − 4l′2

2l′2
=

2

l +
√

l2 − 4l′2
,

which is the maximum value in question. The second differential of the
expression

1− y2

l + 2l′y
=

4l′2 − l2

4l′2(l + 2l′2y)
+

l
2l′2
− l + 2l′y

4l′2
,

taken with respect to y, for the assigned value of y becomes

−2(l2 − 4l′2)
(l + 2l′y)3 = − 2√

l2 − 4l′2
.

Hence, having put

y =
−l +

√
l2 − 4l′2

2l′
− t√

i
,

it results:

1− y2

l + 2l′y
=

2

l +
√

l2 − 4l′2
− t2

i
√

l2 − 4l′2
+

αt3
√

i3
+ · · ·

and hence for the infinite i

(
1− y2

l + 2l′y

)i

=

(
2

l +
√

l2 − 4l′2

)i

e
− l+
√

l2+4l′2

2
√

l2−4l′2
t2

.

Further, for infinite i

dx
(l + 2l′ cos x)n = − dy√

1− y2(l + 2l′y)n
=

(
l +
√

l2 − 4l′2

2

) 1
2

(l2− 4l′2)−
2n+1

4
dt√

i
.

The limits of the integral for infinite i can be taken from −∞ to +∞; for these
limits one has
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(
l +
√

l2 − 4l′2

2

) 1
2 +∞∫
−∞

e
− l+
√

l2−4l′2

2
√

l2−4l′2
t2

dt =
4
√

l2 − 4l′2
√

π.

Having substituted everything, for infinite i it results

(28) A =
n(n + 1) · · · (n + i− 1)

1 · 3 · · · (2i− 1)
(l2 − 4l′2)−

1
2 n

(
−4l′

l +
√

l2 − 4l′2

)i√
π

i
.

If one sets l = 1 + a2, l′ = a, from (28)

A =
n(n + 1) · · · (n + i− 1)

1 · 3 · · · (2i− 1)
(1− a2)−n(−2a)i

√
π

i
.

One has the same expression from Legendre’s formula (22)

(30) A =
n(n + 1) · · · (n + i− 1)

1 · 2 · · · i (1− a2)−n(−a)iπ.

Hence having compared (29) and (30) to each other, for infinite i it results

(31)
1 · 3 · · · (2i− 1)

2 · 4 · · · 2i
=

1√
iπ

,

which is the known formula due to Wallis.

12.

Now let us find the value of the double integral

B =

π∫
0

π∫
0

cos ix cos ix′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

first, if one of the numbers i, i′ is infinite; then, if both become infinite.
Therefore, let i be infinite, i′ finite; by putting l + 2l′′ cos x′ instead of l in (28),
we obtain

B =
n(n + 1) · · · (n + i− 1)

1 · 3 · · · (2i− 1)

√
π

i
(−4l′)i

π∫
0

[(l + 2l′′ cos x′)2 − 4l′2]−
1
2 n cos i′xdx′

[l + 2l′′ cos x′ +
√
(l + 2l′′ cos x′)2 − 4l′2]i

.
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The maximal value of the expression under the integral raised to the i-th
power, if l′′ is positive, corresponds to the value x′ = π. Therefore, having put
x′ = π − t√

i
,

l + 2l′′ cos x′ +
√
(l + 2l′′ cos x′)2 − 4l′2

= l− 2l′′+
√
(l − 2l′′)2 − 4l′2 +

l − 2l′′ +
√
(l − 2l′′)2 − 4l′2√

(l − 2l′′)2 − 4l′2
l′′t2

i
+

αt4

i2 + · · · ,

whence for infinite i

[l + 2l′′ cos x′ +
√
(l + 2l′′ cos x′)2 − 4l′2]−i

= [l − 2l′′ +
√
(l − 2l′′)2 − 4l′2]−ie

− l′′ t2√
(l−2l′′)2−4l′2 .

Since π is the one limit of the propounded integration and x′ is not extended
further, the limits for t will be 0 and ∞. Having done the integration, for
infinite i, finite i′, it results

(32)
π∫

0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

= (−1)i+i′ n(n + 1) · · · (n + i− 1)
1 · 3 · · · (2i− 1)

π

2i
[(l − 2l′′)2 − 4l′2]−

2n−1
4

√
l′′

 4l′

l − 2l′′ +
√
(l − 2l′′)2 − 4l′2

i

,

if l′′ is assumed to be positive. But we see the number i′ to affect only the
sign of the mentioned values. The same formula, using (31), can also be
represented this way:

(33)

1 · 2 · 3 · · · i · 1 · 2 · 3 · · · i
1 · 3 · · · (2i− 1) · n(n + 1) · · · (n + i− 1)

1
π2

π∫
0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

= (−1)i+i′ [(l − 2l′′)2 − 4l′2]−
2n−1

4

2
√

l′′

 l′

l − 2l′′ +
√
(l − 2l′′)2 − 4l′2

i

.

If i′ is of the same order as
√

i, one puts
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i′√
i
= r,

which will be a finite quantity; we have

cos i′x′ = cos i′
(

π − t√
i

)
= (−1)i′ cos rt.

Hence, since one has the known formula

∞∫
0

dt cos rte−a2t2
=

√
π

2a
e−

r2

4a2 = e−
r2

4a2

∞∫
0

dte−a2t2
,

the one side of the equation (32) or (33) is still to be multiplied by

e−
r2
√

(l−2l′′)2−4l′2

4l′′ .

Now let us go over to the case, in which i′
i is a finite quantity.

13.

Therefore, let i′
i = r be a finite quantity: By means of formula (25) we find

(26)

B =

π∫
0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

= (−2)i+i′ n(n + 1) · · · (n + i + i′ − 1)
1 · 3 · · · (2i− 1) · 1 · 3 · · · (2i′ − 1)

(l′)i(l′′)i′

×
π∫

0

π∫
0

(
sin2 x sin2r x′

(l + 2l′ cos x + 2l′′ cos x′)1+r

)i dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n .

Let cos x = y, cos x′ = z, and let us find the maximum value of the expression

sin2 x sin2r x′

(l + 2l′ cos x + 2l′′ cos x′)1+r =
(1− y2)(1− z2)r

(l + 2l′y + 2l′′z)1+r .

Having differentiated this expression with respect to y and z, and having put
the differential equal to zero, these equations result
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(34)
(1 + r)l′ + ly + (1− r)l′y2 = −2l′′yz,

(1 + r)l′′ + rlz − (1− r)l′′z2 = −2rl′yz;

the values of y, z, which render the propounded expression a maximum, are
to be derived from these equations. Having found these, if we eliminate z
from the first equation or y from the second, one has

l + 2l′y + 2l′′z = −(1 + r)l′
1− y2

y
= − (1 + r)l′′

r
1− z2

z
,

and hence the maximum value in question

(35)
(1− y2)(1− z2)r

(l + 2l′y + 2l′′z)1+r =

(
− 1

1 + r

)1+r rr

l′(l′′)r yzr.

I observe, what the nature of the problem demands, that the one of the
equations (34) goes over into the other, having permuted l′ and l′′, y and z,
and having simultaneously put 1

r instead of r.
Let y = a, z = b be the value in question, from (34) it will be

al + [1 + r + (1− r)a2]l′ + 2abl′′ = 0,

rbl + 2rabl′ + [1 + r− (1− r)b2]l′′ = 0,

whence

(36) l : l′ : l′′ =
1 + a2

1− a2 + r
1 + b2

1− b2 : − a
1− a2 : − br

1− b2 .

If these equations are satisfied for given values of a, b, it is plain that the
equations same are also satisfied by their reciprocals.
Having introduced the multiplicator p, let us substitute the following equa-
tions for formula (36)

1 + a2

1− a2 + r
1 + b2

1− b2 = pl, − a
1− a2 = pl′, − br

1− b2 = pl′′,

whence, having put

1 + a2

1− a2 =
√

1 + 4p2l′2 = A, r
1 + b2

1− b2 =
√

r2 + 4p2l′′2 = B,

one finds
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A + B = pl;

having multiplied this equation by A− B, we have

pl(A− B) = 1− r2 + 4p2(l′l′ − l′′l′′),

whence
2plA = 1− r2 + p2(ll + 4l′l′ − 4l′′l′′)

2plB = −(1− r2) + p2(ll − 4l′l′ + 4l′′l′′).

Having squared the one of these equations, it results

0 = (1− r2)2 − 2[(1 + r2)ll − 4(1− r2)(l′l′ − l′′l′′)]p2 + Ep4,

if, for the sake of brevity, one puts

E = (l + 2l′ + 2l′′)(l + 2l′ − 2l′′)(l − 2l′ + 2l′′)(l − 2l′ − 2l′′).

For the propounded integral for the assigned limits of integration not to
become infinite, one has to set that the sum of 2l′, 2l′′, assumed to be positive,
is smaller than l; hence E will always be positive. In this case one has two
positive values of p2, given by the equation

Ep2 = M + 2l
√

R

or

p2 =
(1− r2)2

M− 2l
√

R
=

M + 2l
√

R
E

,

if for the sake of brevity one sets

M = (1 + r2)ll − 4(1− r2)(l′l′ − l′′l′′),

R = r2ll − 4(1− r2)(r2l′l′ − l′′l′′).

From the formulas, by which we exhibited pA, pB rationally in terms of p2,
we find

pA
1− r2 =

l
√

R
M− 2k

√
R

,
pB

1− r2 = − r2l −
√

R
M− 2l

√
R

,

or, since
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p =
1− r2√

M− 2l
√

R
,

it results

A =
l −
√

R√
M− 2l

√
R

, B = − r2l −
√

R√
M− 2l

√
R

,

whence

a = −A− 1
2l′p

= − l −
√

R−
√

M− 2l
√

R
2(1− r2)l′

,

b = −B− r
2l′′p

=
r2l −

√
R + r

√
M− 2l

√
R

2(1− r2)l′′

or even

a = − 2l′p
A + 1

= − 2(1− r2)l′

l −
√

R +
√

M− 2l
√

R
,

b = − 2l′′p
B + r

= − 2(1− r2)l′′
√

R− r2l + r
√

M− 2l
√

R
.

In the preceding expressions one finds two radicals,
√

R and
√

M− 2l
√

R,
from whose two signs four systems of values for a, b result. But in the
expressions A, B, p, a, b those radicals are to be taken with the same sign;
having done this, their corresponding values are determined without any
ambiguity.
If you change the sign of the radical

√
M− 2l

√
R into its opposite, while

√
R

remains the same, p goes over into −p, and at the same time a, b into 1
a , 1

b .
This is plain from the formula

A =
1 + a2

1− a2 =
l −
√

R√
M− 2l

√
R

, B = r
1 + b2

1− b2 = − r2l −
√

R√
M− 2l

√
R

or even from the values of a, b, since

M − R = ll − 4(1− r2)2l′l′,

r2M − R = r4ll − 4(1− r2)2l′′ll′′.
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The quantities E, M, R are always positive, further, since

M2 − 4llR = (1− r2)2E,

each of the expressions M± 2l
√

R will be positive. Let us suppose, what is
possible, that r = i′

i < 1, from the equations

R = ll − (1− r2)[ll + 4r2l′l′ − 4l′′l′′],

R = r4ll + (1− r2)[r2(ll − 4l′l′) + 4l′′l′′],

it follows that

l > ±
√

R > r2l.

Hence it is plain, if
√

R is assumed to be positive, that the expressions

A =
1 + a2

1− a2 =
l −
√

R√
M− 2l

√
R

, B = r
1 + b2

1− b2 =

√
R√

M− 2l
√

R

have the same sign, and, if
√

M− 2l
√

R is positive, that both will be positive,
and hence both a, b will be absolutely smaller than 1; if

√
M− 2l

√
R is

negative, both A, B will be negative, and hence both a, b will be absolutely
greater than 1. Further, if

√
R is negative, depending on whether

√
M− 2l

√
R

is positive or negative, either A will be positive, B negative, and hence a will
be absolutely smaller than 1, b absolutely greater than 1; or A will be negative,
B positive, and hence a absolutely greater than 1, b absolutely smaller than 1.
From the preceding it follows, if the sum of 2l′, 2l′′, here both assumed to be
positive, is smaller than l, what must be assumed in the propounded integral,
that a system always exists and one of the values y = a, z = b is absolutely
smaller than 1; these values, if r < 1, what can be assumed, correspond to
the positive radicals

√
R,
√

M− 2l
√

R. In the same way it is demonstrated, if
r > 1, that those values correspond to a positive

√
R, a negative

√
M− 2l

√
R.

The values of y, z, which were used in the propounded question, must be
absolutely smaller than 1, since y = cos x, z = cos x′. Hence the propounded
expression

sin2 x sin2r x′

(l + 2l′ cos x + 2l′′ cos x′)1+r

has only one maximum. This is found from (35), if r < 1,
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rr[2(1− r)]1+r

(l −
√

R +
√

M− 2l
√

R)(
√

R− r2l + r
√

M− 2l
√

R)r
= µ,

having assumed both radicals to be positive.
If r = 1, we have

p =
2l√

E
, A =

ll + 4l′l′ − 4l′′l′′√
E

, B =
ll − 4l′l′ + 4l′′l′′√

E
,

a = − 4l′l′

ll + 4l′l′ − 4l′′l′′ +
√

E
, b = − 4ll′′

ll − 4l′l′ + 4l′l′ + 4l′′l′′ +
√

E
;

the maximum in question is

µ =
2

ll − 4l′l′ − 4l′′l′′ +
√

E
.

Now let is find the values, which the second differential of the following
expression has

u =
(1− y2)(1− z2)r

(l + 2l′y + 2l′′z)1+r ,

if after the differentiations one puts y = a, z = b. We have the following first
differentials of u

∂u
∂y

= − 2u
(1− y2)(l + 2l′y + 2l′′z)

[(1 + r)l′ + ly + (1− r)l′y2 + 2l′′yz],

∂u
∂z

= − 2u
(1− z2)(l + 2l′y + 2l′′z)

[(1 + r)l′′ + rlz − (1− r)l′′z2 + 2rl′yz],

it results

∂2u
∂y2 = −2µ[l + 2(1− r)l′a + 2l′′b]

(1− a2)(l + 2l′a + 2l′′b)
,

∂2u
∂z2 = −2µ[rl − 2(1− r)l′′b + 2rl′a]

(1− b2)(l + 2l′a + 2l′′b)
,

∂2u
∂y∂z

= − 4µl′′a
(1− a2)(l + 2l′a + 2l′′b)

= − 4µrl′b
(1− b2)(l + 2l′a + 2l′′b)

.
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Using the found formulas these expressions go over into the following:

1
2

∂2u
∂y2 = − µ[1 + r− (1− r)a2]

(1 + r)(1− a2)2 = −µα,

1
2

∂2u
∂z2 = − µr[1 + r + (1− r)b2]

(1 + r)(1− b2)2 = −µγ,

∂2u
∂y∂z

=
4µrab

(1 + r)(1− a2)(1− b2)
= 2µβ,

whence

αγ− ββ =
r[1 + r− (1− r)(a2 − b2)− (1 + r)a2b2]

(1 + r)(1− a2)2(1− b2)2

=
(B + r2A)

(1 + r)(1− a2)(1− b2)
=

p
√

R
(1 + r)(1− a2)(1− b2)

.

Now let us put

cos x = y = a− t√
i
, cos x′ = z = b− t′√

i
,

it will be

sin2 x sin2r x′

(l + 2l′ cos x + 2l′′ cos x′)1+r = µ

(
1− αtt− 2βtt′ + γt′t′

i
+

δ√
i3
+ · · ·

)
,

whence for infinite i

[
sin2 x sin2r x′

(l + 2l′ cos x + 2l′′ cos x′)1+r

]i

=
sin2i x sin2i′ x

(l + 2l′ cos x + 2l′′ cos x′)i+i′ = µie−(αtt−2βtt′+γt′t′)

Further, for infinite i
dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

=
1√

(1− a2)(1− b2)

1
(l + 2l′a + 2l′′b)n

dtdt′

i
=

pndtdt′

i(1 + r)n
√
(1− a2)(1− b2)

.

The limits of integration for t, t′ become −∞, ∞; for these limits one has
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∫ ∫
dtdt′e−(αtt−2βtt′+γt′t′) =

π√
αγ− ββ

=
π
√

1 + r
√
(1− a2)(1− b2)
√

p 4
√

R
.

Hence finally for infinite i, i′ the value of the integral

π∫
0

∫
0π cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n ,

if i, i′ remains in the finite ratio i′
i = r, becomes

(−4)i+i′π

i
n(n + 1) · · · (n + i + i′ − 1)

1 · 3 · · · (2i− 1) · 1 · 3 · · · (2i′ − 1)
1

4
√

R(M− 2l
√

R)
1
4 (2n−1)

ri′(1− r)i+i′+ 1
2 (2n−1)(l′)i(l′′)i′

(l −
√

R +
√

M− 2l
√

R)i(
√

R− r2l + r
√

M− 2l
√

R)i′
,

where

R = r2ll − 4(1− r2)(r2l′l′ − l′′l′′),

M = (1 + r2)ll − 4(1− r2)(l′l′ − l′′l′′),

having assumed the radicals to be positive.
The numerical factor can also be exhibited this way from (31):

(−4)i+i′π

i
n(n + 1) · · · (n + i + i′ − 1)

1 · 3 · · · (2i− 1) · 1 · 3 · · · (2i′ − 1)
= π2(−2)i+i′ n(n + 1) · · · (n + i + i′ − 1)

1 · 2 · · · i · 1 · 2 · · · i′
√

r.

In the special case, in which i = i′, r = 1, for infinite i

π∫
0

π∫
0

cos ix cos ix′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

= 2i n(n + 1) · · · (n + 2i− 1)
1 · 2 · · · i · 1 · 2 · · · i

ln−1

E
1
4 (2n−1)

(l′)i(l′′)iπ2

(ll − 4l′l′ − 4l′′l′′ +
√

E)i
,

having put
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E = (l + 2l′ + 2l′′)(l + 2l′ − 2l′′)(l − 2l′2l′′)(l − 2l′2l′′).

If one sets

l =
1 + a2

1− a2 +
1 + b2

1− b2 , l′ = − a
1− a2 , l′′ = − b

1− b2 ,

we find

ll − 4l′l′ − 4l′′l′′ =
4(1 + a2b2)

(1− a2)(1− b2)
,
√

E = 2l =
4(1− a2b2)

(1− a2)(1− b2)
,

whence, while a, b are real quantities smaller than 1, for infinite i one has

π∫
0

π∫
0

cos ix cos ix′dxdx′(
1− 2a cos x + a2

2(1− a2)
+

1− 2b cos x′ + b2

2(1− b2)

)n

=
n(n + 1)(n + 2) · · · (n + 2i− 1)

2 · 4 · · · 2i · 2 · 4 · · · 2i

√
(1− a2)(1− b2)

1− a2b2 aibiπ2.

These are sufficiently simple formulas.

14.

On the given occasion I want to add some things about the integrals

π∫
0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

and similar ones; I will demonstrate them in another paper. First, I observe
that generally, what is a theorem of highest importance, while ∆ denotes an
arbitrary always positive rational function of cos x, sin x, cos x′, sin x′ that the
integrals

π∫
0

π∫
0

cos ix cos i′x′dxdx′

∆n ,
π∫
0

π∫
0

cos ix sin i′x′dxdx′

∆n

π∫
0

π∫
0

sin ix cos i′x′dxdx′

∆n ,
π∫
0

π∫
0

sin ix sin i′x′dxdx′

∆n
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for the different integer values of i, i′ can all be expressed linearly by a finite number
of them. And those same integrals are expressed linearly by the same for
the exponents of ∆ differing from the propounded number n by an arbitrary
integer.
The integrals

π∫
0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)n

can all be expressed linearly by four of them. If

∆ = a + b cos x + c sin x + cos x′(a′ + b′ cos x + c′ sin x)

+ sin x′ (a′′ + b′′cos x + c′′sin x),

the integrals

π∫
0

π∫
0

cos ix cos i′x′dxdx′

∆n ,
π∫
0

π∫
0

cos ix sin i′x′dxdx′

∆n

π∫
0

π∫
0

sin ix cos i′x′dxdx′

∆n ,
π∫
0

π∫
0

sin ix sin i′x′dxdx′

∆n

can all be expressed linearly by seven of them. Let us set that the preceding
expression of ∆ additionally contains the two terms d cos 2x + d′ cos 2x′, then
the form of ∆ corresponds to the square of the distance of two planets,
expressed by the eccentric anomalies. In this case one has the theorem:
"If it is propounded to expand the distance of two planets, which are moved in elliptic
orbits, raised to an arbitrary power, into an infinite series of cosines and sines of
multiples of their eccentric anomalies: then the infinitely many coefficients of the
expansion can all be expressed linearly by fifteen of them."
In the case, in which the sum of 2l′, 2l′′, both assumed to be positive, is equal
to l, the integral

π∫
0

π∫
0

cos ix cos i′x′dxdx′

(l + 2l′ cos x + 2l′′ cos x′)
1
2

can be reduced to a product of elliptic integrals, of which the modulus of the
one is the modulus of the other. For, let l′, l′′ be positive, l = 2(l′ + l′′), and
set
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κ2 =

√
l′ + l′′ −

√
l′′√

l′ + l′′ +
√

l′′
, κ′2 =

2
√

l′′√
l′ + l′′ +

√
l′′

,

λ2 =

√
l′ + l′′ −

√
l′√

l′ + l′′ +
√

l′
, λ′2 =

2
√

l′√
l′ + l′′ +

√
l′

,

I found, if i ≥ i′,

4
π2

1232 · · · (2i− 1)2

(2i′ + 2i− 1)(2i′ + 2i− 3) · · · (2i′ − 2i + 1)

π∫
0

π∫
0

cos ix cos i′xdxdx′

(l + 2l′ cos x + 2l′′ cos x′)
1
2

=
(−1)i+i′

√
l′ + l′′ +

√
l′′

1
2 π∫
0

sin2i′−2i ϕ cos2i ϕ(1−κ2 sin ϕ)2i−1dϕ

·
1
2 π∫
0

sin2i ϕ cos2i ϕ(1−κ2 sin ϕ)2i′−2i−1dϕ;

if i ≥ i′,

4
π2

1232 · · · (2i− 1)2

(2i + 2i′ − 1)(2i + 2i′ − 3) · · · (2i− 2i′ + 1)

π∫
0

π∫
0

cos ix cos i′xdxdx′

(l + 2l′ cos x + 2l′′ cos x′)
1
2

=
(−1)i+i′

√
l′ + l′′ +

√
l′′

1
2 π∫
0

sin2i−2i′ ϕ cos2i′ ϕ(1−κ2 sin ϕ)2i′−1dϕ

·
1
2 π∫
0

sin2i′ ϕ cos2i′ ϕ(1−κ2 sin ϕ)2i−2i′−1dϕ.

Since λ =
1−κ
1 +κ , the modulus λ results from the modulus κ′ by Landen’s

transformation. If

l + 2l′ cos x + 2l′′ cos x′ = 1 + 2a(cos2(
1
2

I) cos x + sin2(
1
2

I) cos x′) + a2,

in the case a = 1 one finds
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κ = tan
(

45◦ − 1
4

I
)

, λ = tan
(

1
4

I
)

,

1√
l′ + l′′ +

√
l′′

=
1

1 + sin( 1
2 I)

,
1√

l′ + l′′ +
√

l′
=

1
1 + cos( 1

2 I)
.

The formulas concern the case, in which the mean distances of two planets
to the sun are equal. In this case the ordinary expansions in powers of the
inclination fail.
From the preceding formulas, which were rather difficult to find, many other
and very memorable ones follow; we will discuss them all on another occasion.
If i = i′, two representations of the double integral in terms of simple integrals
result, which, by means of the substitution

cos ϕ∆(λ, ϕ) = sin 2ψ,

are reduced to each other.

15.

If in formula (7) we substitute its expansion into a series of cosines of multiples
of 2x for sin2i x, it results

(37)
π∫

0

f (cos x) cos ixdx

=
1

2 · 4 · 6 · · · 2i

π∫
0

f (i)(cos x)
[

1− 2
i

i + 1
cos 2x + 2

i(i− 1)
(i + 1)(i + 2)

cos 4x− · · ·
]

dx.

If the single integral signs are again transformed by the same (37), having
successively put i = 2, 4, 6, · · · , it results

2 · 4 · 6 · · · 2i
π∫

0

f (cos x) cos ixdx

=

π∫
0

dx

[
f (i) − 2

i
i + 1

f (i+2)

2 · 4

(
1− 4

3
cos 2x +

1
3

cos 4x
)
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+2
i(i− 1)

(i + 1)(i + 2)
f (i+4)

2 · 4 · 6 · 8

(
1− 8

5
cos 2x +

4
5

cos 4x− 8
5 · 7 cos 6x +

1
5 · 7 cos 8x

)
+ · · ·

]
.

Having repeated this transformation, we get to an infinite series, by which we
can represent the propounded integral,

(38)
π∫

0

f (cos x) cos ixdx =

π∫
0

dx(α f (i) − β f (i+2) + γ f (i+4) − δ f (i+6) + · · · ),

where f (m) denotes the value of
dm f (z)

dzm for z = cos x, and α, β, γ, δ, · · · are
constant numbers.
Let f (z) = cos(κz), i an even number, from (38) we will have

π∫
0

cos(κ cos x) cos ixdx

= (−1)
1
2 iκi

π∫
0

dx cos(κ cos x)[α + βκ2 + γκ4 + δκ + · · · ].

Let f (z) = sin(κz), i and odd number, from (38) it will be

π∫
0

sin(κ cos x) cos ixdx

= (−1)
1
2 (i−1)κi

π∫
0

dx cos(κ cos x)[α + βκ2 + γκ4 + δκ + · · · ].

Hence for either even or odd i from § 9

(39) α + βκ2 + γκ4 + δκ6 + · · · = I(i)n

κi I(0)n

=
1

2 · 4 · 6 · · · 2i

1− κ2

2 · (2i + 2)
+

κ4

2 · 4 · (2i + 2)(2i + 4)
− κ6

2 · 4 · 6 · (2i + 2)(2i + 4)(2i + 6)
+ · · ·

1− κ2

22 +
κ4

22 · 42 −
κ6

22 · 42 · · · 62 + · · ·
,

from which formula one can determine the numbers α, β, γ, δ, · · · .
9th of July 1835
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