
On certain definite integrals and

infinite series*

Ernst Eduard Kummer

The definite integrals, which I want to discuss now, are connected very
intimately to those infinite series, which I considered in the paper published
in this journal on the hypergeometric series Volume 15, pp. 138 sq., which, to
represent them more easily, I will denote by these functions:

1. 1 +
α · x
β · 1 +

α(α + 1) · x2

β(β + 1) · 1 · 2 +
α(α + 1)(α + 2) · x3

β(β + 1)(β + 2) · 1 · 2 · 3 + · · · = φ(α, β, x)

2. 1 +
x

α · 1 +
x2

α(α + 1) · 1 · 2 +
x3

α(α + 1)(α + 2) · 1 · 2 · 3 + · · · = ψ(α, x)

3. 1 − α · β
1 · x +

α(α + 1)β(β + 1)
1 · 2 · x2 − α(α + 1)(α + 2)β(β + 1)(β + 2)

1 · 2 · 3 · x3 + · · · = χ(α, β, x)

Hence the transformation of these series found in the mentioned paper can be
exhibited this way:

4. φ(α, β, x) = exφ(β− α, β,−x)

5. ψ(α, x) = e±2
√

xφ
(
α− 1

2 , 2α− 1,±4
√

x
)

,

which formula is the same as
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Eduard Kummer Collected Papers II, pp. 196 - 210“, translated by: Alexander Aycock for the
project „Euler-Kreis Mainz“
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6. φ(α, 2α, x) = e
x
2 ψ

(
α +

1
2

,
x2

16

)
and

7. χ(α, β, x) =
xαΠ(β− α− 1)

Π(β− 1)
φ(α, α− β, x)+

xβΠ(α− β− 1)
Π(α− 1)

φ(β, β− α+ 1, x).

Having prepared these things, I will first discuss the question about the
integral

8. y =

∞∫
0

uα−1 · e−u · e− x
u du,

from which it follows

dy
dx

= −
∞∫

0

uα−2 · e−u · e− x
u du,

d2y
dx2 =

∞∫
0

uα−3 · e−u · e− x
u du

by differentiation of the quantity uα−1 · e−u · e− x
u :

d
(

uα−1 · e−u · e− x
u

)
= −uα−1 · e−u · e− x

u du + (α− 1)uα−2 · e−u · e− x
u du + x · uα−3 · e−u · e− x

u du,

and by integration between the limits 0 and ∞

0 = −
∞∫

0

uα−1 · e−u · e− x
u du + (α− 1)

∞∫
0

uα−2 · e−u · e− x
u du

+x
∞∫

0

uα−3 · e−u · e− x
u du

or, what is the same,

9. 0 = y + (α− 1)
dy
dx
− x

d2y
dx2 .

The complete integral of this equation can easily be found in terms of the
series we denoted by the function ψ
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10. A · ψ(1− α, x) + B · xα · ψ(1 + α, x),

where A and B are arbitrary constants. Hence this expression of the propoun-
ded integral follows

∞∫
0

uα−1 · e−u · e− x
u du = A · ψ(1− α, x) + B · xα · ψ(1 + α, x).

The determination of the constant A is easy; for, if we assume α to be a positive
quantity and put x = 0, we have

∞∫
0

uα−1 · e−udu = A

or

A = Π(α− 1).

To determine the constant B in the same way, the integral y must be transfor-
med by means of the substitution u = x

v , whence

∞∫
0

uα−1 · e−u · e− x
u du = xα

∞∫
0

v−α−1 · e−v · e− x
v dv,

having applied this transformation of the integral, equation (11.) goes over
into this one:

∞∫
0

v−α−1 · e−v · e− x
v dv = A · x−αψ(1− α, x) + B · ψ(1 + α, x),

hence, if we assume the quantity α to be negative and put x = 0, we have

∞∫
0

v−α−1e−udv = B

or

B = Π(−α− 1),

having substituted which values of the constants, we have:
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12.
∞∫

0

uα−1 · e−u · e− x
u du = Π(α− 1)ψ(1− α, x)+Π(−α− 1)xα−1xαψ(1+ α, x).

But some doubts concerning the determination of the constants are to be
removed, which can arise from the fact that the one constant was found for
α > 0, but the determination of the other constant demands the opposite
assumption. But nevertheless it is clear that these conditions were superfluous,
if in the determination of the constant we would not have used the value
x = 0, but certain other positive values, and hence the values of the constants
would not have been any different. Furthermore, it is to be noted that formula
(12.) only holds, if x is a positive quantity, otherwise that integral would
become infinite; but if x is positive, this integral has a finite value, whatever
the quantity α is, positive or negative.
From this formula (12.) one can deduce another integral, which is expressed
by two series of the form φ(α, β, x). Writing xv instead of v, multiplying by
e−v · vβ−1 · dv and integrating from 0 to ∞, we find

∞∫
0

∞∫
0

uα−1 · e−u · vβ−1 · e−v · e− xu
u dudv = Π(α− 1)

∞∫
0

vβ−1 · e−v · ψ(1− α, xv)dv

+Π(−α− 1)xα

∞∫
0

vα+β−1 · e−vψ(1 + α, xv)dv,

the integrations with respect to the variable v is easily executed; for,

∞∫
0

vβ−1e−vψ(1− α, xv)dv = Π(β− 1)ψ(β, 1− α, x)

∞∫
0

vα+β−1e−vψ(1− α, xv)dv = Π(α + β− 1)φ(α + β, 1 + α, x),

∞∫
0

vβ−1 · e−v · e− xv
u dv =

Π(β− 1)(
1 + x

u

)β

whence
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∞∫
0

∞∫
0

uα−1 · e−u · vβ−1 · e−vdudv = Π(β− 1)
∞∫

0

uα−1e−udu(
1 + x

u

)β

which integral, writing ux instead of u, is changed into

Π(β− 1)xα

∞∫
0

uα+β−1 · e−uxdu
(1 + u)β

,

having substituted which we have

Π(β− 1)xα

∞∫
0

uα+β−1 · e−uxdu
(1 + u)β

= Π(α− 1)Π(β− 1)φ(β, 1− α, x)+Π(−α− 1)Π(α+ β− 1)xαφ(α+ β, 1+ α, x),

which formula, changing α into α − β, is reduced to this more convenient
form

13.
∞∫

0

uα−1 · e−uxdu
(1 + u)β

=
Π(α− β− 1)

Π(α− 1)
xβ · φ(β, β− α + 1, x) +

Π(β− α− 1)
Π(β− 1)

xα · φ(α, α− β + 1, x).

Since the one side the equation, having interchanged the quantities α and β,
remains the same, it has to be

14.
xα

Π(α− 1)

∞∫
0

uα−1 · e−uxdu
(1 + u)β

=
xβ

Π(β− 1)

∞∫
0

uβ−1 · e−uxdu
(1 + u)β

.

If the transformation, equation (7.) contains, is applied to formula (13.), we
find

15.
xα

Π(α− 1)

∞∫
0

uβ−1 · e−uxdu
(1 + u)β

= χ(α, β, x).

Since the series χ(α, β, x) extends to the class of semiconvergent series, it
seems necessary to confirm formula (15.) by an own proof, from which it
becomes clear at the same time, that by computation of a certain number of
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initial terms of the series an approximate value of the integral is found. For
this purpose I apply the known equation

1− β

1
z +

β(β + 1)
1 · 2 z2 − · · ·+ (−1)k−1 β(β + 1) · · · (β + k− 2)

1 · 2 · · · (k− 1)
zk−1

=
1

(1 + z)β
− (−1)kβ(β + 1) · · · (β + k− 1)

1 · 2 · 3 · · · k zk
1∫

0

(1− u)k−1du
(1 + zu)β+k ;

by putting z = v
x , multiplying by vα−1 · e−v · dv, then integrating from v = 0

to v = ∞ and dividing Π(α− 1) we find

16. 1− α · β
1 · x +

α(α + 1)β(β + 1)
1 · 2 · x2 −· · · (−1)k−1 α(α− 1) · · · (α + k− 2)β(β + 1) · · · (β + k− 2)

1 · 2 · · · · (k− 1) · xk−1

=
1

Π(α− 1)

∫ vα−1 · e−v · dv(
1 + v

x
)β

− (−1)kβ(β + 1) · · · (β + k− 1)
Π(α− 1)1 · 2 · 3 · · · (k− 1)xk

1∫
0

∞∫
0

(1− u)k−1 · vα+k−1 · e−v · dv · du(
1 + uv

x
)β+k

this double integral together with its coefficient indicates the error, which is
committed, if the integral

1
Π(α− 1)

∫ vα−1 · e−v · dv(
1 + v

x

)β
, or what it the same

xα

Π(α− 1)

∫ vα−1 · e−vx · dv

(1 + v)β

is approximated by the first k terms of the series of that series. If k is so large
that β + k is positive, the quantity, which we called the error, changes its
sign as k changes into k + 1, or, if a certain number of terms of that series is
computed, this sum is either larger or smaller than the integral in question,
but if the subsequent term of the series is added, this new sum is smaller
than the integral in question, if that one was larger, and it is larger, if that one
was smaller. Therefore, the sums, which that series yields are alternatively
too large and too small, and it is clear that an approximate value is found, if
the computation is extended to the smallest terms of the semicovergent series.
The same can be proven from equation (16.) this way. Obviously, for positive
β + k:

1∫
0

∞∫
0

(1− u)k−1 · vα+k−1 · e−vdvdu(
1 + uv

x

)β+k <

1∫
0

∞∫
0

(1− u)k−1 · vα−k−1 · e−v · dvdu
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and

1∫
0

∞∫
0

(1− u)k−1 · e−v · vα+k−1dvdu =
Π(α + k− 1)

k
,

therefore, the error, which is expressed by that double integral, is always
smaller than

β(β + 1) · · · (β + k− 1)Π(α + k− 1)
1 · 2 · 3 · · · k ·Π(α)xk ,

since which is the first neglected term, it follows that the error is always
smaller than that term of the series, to which the summation is extended.
Having put β = 1− α equation (15.) goes over into this one:

xα

Π(α− 1)

∞∫
0

(u + u2)α−1 · e−ux · du

=
Π(2α− 2)
Π(α− 1)

x1−α · φ(1− α, 2− 2α, x) +
Π(−2α)

Π(−α)
xα · φ(α, 2α, x),

having transformed which series according to formula (6.), we have

xα

Π(α− 1)

∞∫
0

(u + u2)α−1 · e−ux · du

=
Π(2α− 2)
Π(α− 1)

x1−α · e x
2 · ψ

(
3
2
− α,

x2

16

)
+

Π(−2α)

Π(−α)
xα · e x

2 · ψ
(

1
2
+ α,

x2

16

)
;

further, if x is changed into 4
√

x, α into α + 1
2 , by a few reductions we have

17.
22α+1 ·

√
π · xα · e−2

√
x

Π
(
α− 1

2

) ∞∫
0

(u + u2)α− 1
2 · e−4u

√
x · du

= Π(α− 1)ψ(1− α, x) + Π(−α− 1)xαψ(1 + α, x),

hence by comparison to formula (12.) it follows

∞∫
0

uα−1 · e−u · e− x
u · du =

22α+1 ·
√

π · xα · e−2
√

x

Π
(
α− 1

2

) ∞∫
0

(u + u2)α− 1
2 · e−4u

√
x · du,
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from this formula, or if you like it more, from formula (12.), having put α = 1
2 ,

one easily deduces the extraordinarily simple value of the integral

18.
∞∫

0

e−u2 · e−
x

u2 · du =

√
π

2
· e−2

√
x.

The integrals we just found have many applications in analysis, e. g., in
the integration of the Riccati equation, which by simple substitutions can
be changed into the form of (9.); but I will not spend more time on these
integrals here, but want to answer questions on similar other integrals, of
which I first take this one:

19. z =

π
2∫

0

cosv−1 v · cos
(

1
2

x tan v + βv
)

.

I assume the quantity x to be positive all the time, since its negative sign can
be transferred to the quantity β. By differentiation of the quantity

cosα−1 v · sin
(

1
2

x tan v + βv
)

we find

d
(

cosα−1 v sin
(

1
2

x tan v + βv
))

= −(α− 1) cosα−1 v · sin v · sin
(

1
2

x tan v + βv
)

dv

+
( x

2 cos2 v
+ β

)
cosα−1 v cos

(
1
2

x tan v + βv
)

,

and by integrating from v = 0 to v = π
2

20. 0 = −(α− 1)
π
2∫

0
cosα−2 · sin v · sin

(
1
2

x tan v + βv
)

dv

+
x
2

π
2∫

0
cosα−2 · cos v · sin

(
1
2

x tan v + βv
)

dv

+β

π
2∫

0
cosα−1 · cos v · sin

(
1
2

x tan v + βv
)

dv

further,
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dz
dx

= −1
2

π
2∫

0
cosα−2 · sin v · sin

(
1
2

x tan v + βv
)

dv,

dz2

dx2 = −1
4

π
2∫

0
cosα−3 · sin2 v · cos

(
1
2

x tan v + βv
)

dv,

and hence

z− 4
d2z
dx2 =

π
2∫

0

cosα−3 v cos
(

1
2

x tan v + βv
)

dv,

having substituted which, equation (30.) goes over into this one

21. 0 = (x + 2β)z + 4(α− 1)
dz
dx
− 4x

d2z
dx2 ,

this equation, by means of the substitution z = e−
x
2 y, is transformed into this

one

0 =
β− α + 1

2
y + (α− 1 + x)

dy
dx
− x

d2y
dx2 ,

whose complete integral is:

y = Aφ

(
β− α + 1

2
, 1− α, x

)
+ Bxαφ

(
β + α + 1

2
, 1 + α, x

)
,

and since z = e−
x
2 · y, we have

22.

π
2∫

0

cosα−1 v · cos
(

1
2

x tan v + βv
)

dv

= A · φ
(

β− α− 1
2

, 1− α, x
)
+ Bxαφ

(
β + α + 1

2
, 1 + α, x

)
.

The determination of the constant A is easily obtained by putting x = ∞, if
α is a positive quantity, but the determination of the other constant requires
peculiar artifices: We will obtain both constants at the same time by this
method. Multiply equation (22.) by xλ−1e−

x
2 dx and integrate from the limit

x = 0 to x = ∞, having done what
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23.
∞∫
0

π
2∫

0
cosα−1 v · xλ−1e−

x
2 cos

(
1
2

x tan v + β

)
dvdx

= A
∞∫
0

xλ−1 · e−xφ

(
β− α + 1

2
, 1− α, x

)
dx

+B
∞∫
0

xλ+α−1 · e−xφ

(
β + α + 1

2
, 1 + α, x

)
dx

The values of all these integrals can be expressed by known functions, for

∞∫
0

xc−1 · e−x · φ(a, b, x)dx = Π(c− 1)F(c, a, b, 1),

where F denotes the known hypergeometric series, having expressed which
by the function Π,

∞∫
0

xc−1 · e−x · φ(a, b, x)dx =
Π(c− 1)Π(b− 1)Π(b− a− c− 1)

Π(b− a− 1)Π(b− c− 1)
,

further,

∞∫
0

xλ−1 · e− x
2 · cos

(
1
2

x tan v + βv
)

dx = 2λΠ(λ− 1) cosλ v · cos(λ + β)v,

whence that double integral goes over into this one

2λΠ(λ− 1)

π
2∫

0

cosα+λ−1 · cos(λ + β)v · dv,

whose value is expressed by the function Π this way

π ·Π (λ− 1)Π (α + λ− 1)

2αΠ
(

α−β−1
2

)
Π
(

α−β−1
2 + λ

)
having substituted which, equation (23.) goes over into this one:
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π ·Π (λ− 1)Π (α + λ− 1)

2αΠ
(

α−β−1
2

)
Π
(

α−β−1
2 + λ

)
= A

Π(λ− 1)Π(−α)Π
(
− α+β+1

2 − λ
)

Π
(
− α+β+1

2

)
Π(−α− λ)

+ B
Π(α + λ− 1)Π(α)Π

(
− α+β+1

2 − λ
)

Π
(

α−β−1
2

)
Π(−λ)

,

this equation is easily transformed to this more convenient form

π · cos
(

α+β
2 + λ

)
π

2αΠ
(

α−β−1
2

) =
A ·Π(−α) sin(α + λ)π

Π
(
− α+β+1

2

) +
B ·Π(α) sin λπ

Π
(

α−β−1
2

) ,

which, since it has to hold for every arbitrary value of the quantity λ, yields
these two

π cos α+β
2 π

2αΠ
(

α−β−1
2

) =
A · sin(απ)Π(−α)

Π
(
− α+β+1

2

) ,

−
π sin α+β

2 π

2αΠ
(

α−β−1
2

) =
A · cos(απ)Π(−α)

Π
(
− α+β+1

2

) +
B ·Π(α)

Π
(

α−β−1
2

) ,

from which one easily finds the values of the constants A and B

A =
π ·Π(α− 1)

2αΠ
(

α−β−1
2

)
Π
(

α+β−1
2

) , B = −
π · cos

(
α−β

2

)
π

2α · sin απΠ(α)
,

having finally substituted which values in equation (22.)

24.

π
2∫

0

cosα−1 v · cos
(

1
2

x tan v + βv
)

dv

π ·Π(α− 1)e−
x
2 · φ

(
β−α+1

2 , 1− α, x
)

2αΠ
(

α−β−1
2

)
Π
(

α+β−1
2

) −
π · cos α−β

2 π · xα · e− x
2 φ
(

β+α+1
2 , 1 + α, x

)
2α sin απΠ(α)

.

The most simple special cases of this formula are:
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25.
π
2∫

0
cosα−1 v · cos(x tan v− (α + 1)v)dv =

π · xα · e−x

Π(α)
,

26.
π
2∫

0
cosα−1 v · cos(x tan v + (α + 1)v)dv = 0,

the one of which is obtained for β = −α− 1, the other for β = α + 1. Combi-
ning formulas (25.) and (26.) also these follows

27.
π
2∫

0
cosα−1 v · cos(x tan v) cos(α + 1)v · dv =

π · xα · e−x

2Π(α)
,

28.
π
2∫

0
cosα−1 v · sin(x tan v) sin(α + 1)v · dv =

π · xα · e−x

2Π(α)
.

Formulas (25.) and (26.) agree with those found by Laplace, which others
later demonstrated by other method, confer Crelle Journal Volume 13 p. 231,
where Liouville by the method of differentiation with respect to arbitrary
indices found

∞∫
−∞

eα
√
−1 · dα

(x + α
√
−1)µ

=
2π · e−x

Γ(µ)
.

Having put β = α− 1 formula (24.) yields another very simple integral

29.

π
2∫

0

cosα−1 v · cos(x tan v + (α− 1)v)dv =
πe−x

2α
.

The two series, which are contained in the one side of equation (24.), having
put β = 0, become φ

( 1−α
2 , 1− α, x

)
and φ

( 1+α
2 , 1 + α, x

)
, and they can be

transformed into series of the class ψ by means of formula (6.). Having done
these transformations, if α is changed into 2α, x into 4

√
x, the following

formula results

10.
2Π
(
α− 1

2

)
√

π

π
2∫

0

cos2α−1 v · cos(2
√

x tan v)dv

= Π(α− 1)ψ(1− α, x) + Π(−α− 1) · xα · ψ(1 + α, x),
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hence by comparison with formula (12.)

31.
2Π
(
α− 1

2

)
√

π

π
2∫

0

cos2α−1 v · cos(2
√

x tan v)dv =

∞∫
0

uα−1 · e−u · e− x
u · du.

In like manner one can demonstrate the connection of the two integrals, which
are contained in the equations (13.) and (24.); for, this formula (24.), if one
writes α− β instead α, α + β− 1 instead of β and multiplies by 1

π Π(−β) · 2α ·
e

x
2 · xβ, takes on the form

32.
2Π(−β) · e x

2 · xβ

π

π
2∫

0

(2 cos v)α−β−1 · cos
(

1
2

x tan v + (α + β− 1)v
)

dv

=
Π(α− β− 1)

Π(α− 1)
xβφ(β, β− α + 1, x) +

Π(β− α− 1)
Π(β− 1)

xαφ(α, α− β + 1, x),

having compared which with formula (13.), one sees that

33.
∞∫

0

uβ−1 · e−ux · du
(1 + u)α

=
2 · e x

2

sin βπ

π
2∫

0

(2 cos v)α−β−1 · cos
(

1
2

x tan v + (α + β− 1)v
)

dv,

furthermore, if the one side of equation (32.) is transformed by formula (7.),

34.
2Π(−β)e

x
2 · xβ

π

π
2∫

0

(2 cos v)α−β−1 · cos
(

1
2

x tan v + (α + β− 1)v
)

dv = χ(α, β, x).

In like manner we will also treat the more general integral

y =

π
2∫

0

sinα−1 v · cosβ−1 v · cos(x tan v + γv)dv
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and we will find the cases, in which it can be expressed by the series mentioned
above. We always assume the quantity x to be positive in this integral, since its
negative sign can be transferred to the quantity γ. By differentiating formula
sinα v · cosβ v · cos(x tan v + γv), then integrating from u = 0 to u = π

2 , we
find

0 = α

π
2∫

0
sinα−1 v · cosβ+1 v · cos(x tan v + γv)dv

− β

π
2∫

0
sinα+1 v · cosβ−1 v · cos(x tan v + γv)dv

− x
π
2∫

0
sinα v · sinβ−2 v · cos(x tan v + γv)dv

− γ

π
2∫

0
sinα v · cosβ v · sin(x tan v + γv)dv,

from this equation, if the integrals are expressed by y and its differentials, one
easily deduces this differential equation of third order:

35. 0 = αy + (γ + x)
dy
dx

+ (β− 2)
d2y
dx2 − x

d3y
dx3 ,

now, if one puts

y = A0 + A1x + A2x2 + A3x3 + · · ·

one easily finds conditional equations, which must hold among the coefficients
of this series for it to satisfy the differential equation:

αA0 + γ · 1 · A1 − 1 · 2 · (2− β)A2

(α + 1)A1 + γ · 2 · A2 − 2 · 3 · (3− β)A3,

and generally

37. (α + k)Ak + γ · (k + 1)Ak+1 − (k + 1)(k + 2)(k + 2− β)Ak+2.

The same way, if one sets

38. y = xβ(B0 + B1x + B2x2 + B3x3 + · · · ),

14



one finds these relations among the coefficients

γ · βB0 − β(β + 1) · 1 · B1,

(α + β)B0 + γ(β + 1)B1 − (β + 1)(β + 2) · 2 · B2,

and generally

39. (α + β + k)Bk + γ(β + k + 1)Bk+1 − (β + k + 1)(β + k + 2)(k + 2)Bk+2,

hence it is plain that the complete integral of equation (35.) is

40. y = A0 + A1x + A2x + · · ·+ xβ(B0 + B1x + B2x2 · · · ),

for, by equations (37.) two of the quantities A0, A1, A2 etc., and by the
equations (39.) one of the quantities B0, B1, B2 etc. remains arbitrary, so that
this integral contains three arbitrary constants. Therefore, if one substitutes
the integral propounded above for y again,

41.

π
2∫

0

sinα−1 v · cosβ−1 v · cos(x tan v + γv)dv

= A0 + A1x + A2x2 + · · ·+ xβ(B0 + B1x + B2x2 + · · · ).

From the relations among the coefficients it is easily seen that these series and
this integral are higher transcendents than those we want to consider here;
but nevertheless in certain cases they agree with those. First, if we assume
γ = α + β, from the equations (39.) it follows

B1 =
α + β

1(1 + β)
B0,

B2 =
(α + β)(α + β + 1)

1 · 2 · (1 + β)(2 + β)
B0,

B3 =
(α + β)(α + β + 1)(α + β + 2)
1 · 2 · 3(1 + β)(2 + β)(3 + β)

B0

etc. etc.

Further, if β is positive, having put x = 0, it follows from equation (41.)

15



A0 =

π
2∫

0

sinα−1 v · cosβ−1 v · cos(α + β)v · dv =
cos απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

,

the same way, if equation (41.) is differentiated with respect to x and one sets
x = 0 after this, we have

A1 = −

π
2∫

0

sinα v · cosβ−2 v · sin(α + β)v · dv = −
cos απ

2 Π(α)Π(β− 2)
Π(α + β− 1)

.

therefore,

A1 =
α

1(1− β)
A0,

hence from the equations (37.) it easily follows

A2 =
α(α + 1)A0

1 · 2(1− β)(2− β)
,

A1 =
α(α + 1)(α + 2)A0

1 · 2 · 3(1− β)(2− β)(3− β)

etc. etc.

Therefore, in this case, in which γ = α + β, the two series, by means of which
we expressed our integral, extends to that class of series, which we denoted
by φ above, and formula (41.) goes over into this one:

π
2∫

0

sinα−1 v · cosβ−1 v · cos(x tan v + (α + β)v)dv

=
cos απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

φ(α, 1− β, x) + B0xβφ(α + β, 1 + β, x).

For the determination of the constant B0 we will use the same method as above
for the determination of the constants of (22.). Multiplying by xλ−1 · e−x · dx
and integrating from 0 to ∞

16



Π(λ− 1)

π
2∫

0

sinα−1 v · cosβ+λ−1 v · cos(α + β + λ)vdv

=
cos απ

2 Π(α− 1)Π(β− 1)Π(λ− 1)
Π(α + β− 1)

F(λ, α, 1− β, 1)

+B0Π(β + λ− 1)F(λ + β, α + β, 1 + β, 1),

and having expressed the hypergeometric series together with the integral by
the function Π,

cos απ
2 Π(λ− 1)Π(α− 1)Π(β + λ− 1)

Π(α + β + λ− 1)

=
cos απ

2 Π(λ− 1)Π(α− 1)Π(β− 1)Π(−β)Π(−β− α− λ)

Π(α + β− 1)Π(−α− β)Π(−β− λ)

B0
Π(β + λ− 1)Π(β)Π(−β− α− λ)

Π(−α)Π(−β)

after some reductions the quantity, as it has to, vanishes completely, and the
very simple value of the constant B0 results

B0 = cos
απ

2
Π(−β− 1),

having finally substituted which, we have

42.

π
2∫

0

sinα−1 v · cosβ−1 v · cos(x tan v + (α + β)v)

=
cos απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

φ(α, 1− β, x)

+xβ cos
απ

2
Π(−β− 1)φ(α + β, 1 + β, x).

A similar formula is deduced from this one by changing α into α− 1, β into
β + 1 and differentiating

42.

π
2∫

0

sinα−1 v · cosβ−1 v · sin(x tan v + (α + β)v)
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=
sin απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

φ(α, 1− β, x)

+xβ sin
απ

2
Π(−β− 1)φ(α + β, 1 + β, x).

and having compared these formulas to each other, one sees the connection of
the two integrals

43. cos
απ

2

π
2∫

0
sinα−1 v · cosβ−1 v · sin(x tan v + (α + β)v)dv

= sin
απ

2

π
2∫

0
sinα−1 v · cosβ−1 v · cos(x tan v + (α + β)v)dv

which formula can also be exhibited this way

44.

π
2∫

0

sinα−1 v · cosβ−1 v · sin
(

x tan v + (α + β)v− απ

2

)
dv = 0.

The special case α = 0 of the formula (42.) is remarkable

45.

π
2∫

0

cosβ−1 · sin(x tan v + βv)
sin v

dv =
π

2
,

a special case of which, corresponding to the value X = 0 Liouville found in
this Journal Volume 13 p. 232. Furthermore, from the comparison of formulas
(42.) and (13.) one sees the connection of this integral to those we treated
above without any difficulty

46.
cos απ

2 Π(α− 1)
Π(α + β + 1)

xβ

∞∫
0

uα+β−1 · e−uxdu
(1 + u)α

=

π
2∫

0

sinα−1 v · cosβ−1 v · cos(x tan v + (α + β)v)dv.

Another case, in which the series of formula (41.) reduces to the series denoted
by the character φ, is γ = −α− β; for, in this case the same way as above it is
easily found that formula (41.) goes over into this one:
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π
2∫

0

sinα−1 cosβ−1 v · cos(x tan v− (α + β)v)dv

=
cos απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

φ(α, 1− β,−x) + B0xβφ(α + β, 1 + β,−x),

but in this case the constant B0 has another value we will find by multiplying
by xα+β · e−xdx and by integrating from x = 0 to x = ∞; after the integrations:

Π(α + β + 1)

π
2∫

0

sinα−1 v · cosα+2β−1 v · dv

= cos
απ

2
Π(α− 2)Π(β− 1)F(α + β, α, 1− β,−1)

+B0Π(α + 2β− 1)F(α + 2β, α + β, 1 + β,−1),

also these hypergeometric series, whose fourth element = −1, can be expres-
sed in terms of the function Π according to the formula

F(α, β, α− β + 1,−1) =
2−α
√

π

Π
(

α
2 − β

)
Π
(

α−1
2

) ,

which I demonstrated in the paper on the hypergeometric series of this
journal Volume 15 p. 135. Hence, if that integral and hypergeometric series are
expressed in terms of the function Π, after some simple reductions it results:

B0 = cos
(α

2
+ β

)
π Π(−β− 1),

and having substituted the value of this constant:

47.

π
2∫

0

sinα−1 v · cosβ−1 v · cos(x tan v− (α + β)v)dv

=
cos απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

φ(α, 1− β,−x)

+xβ cos
(α

2
+ β

)
πΠ(−β− 1)φ(α + β, 1 + β,−x).

A similar formula is easily deduced from this one by changing α into α− 1, β

into β + 1 and differentiating with respect to the variable x
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48.

π
2∫

0

sinα−1 v · cosβ−1 v · sin(x tan v− (α + β)v)dv

= −
sin απ

2 Π(α− 1)Π(β− 1)
Π(α + β− 1)

φ(α, 1− β,−x)

−xβ sin
(α

2
+ β

)
πΠ(−β− 1)φ(α + β, 1 + β,−x).

These formulas (47.) and (48.) can easily be combined in two ways so that
they have these simpler forms:

49.

π
2∫

0

sinα−1 v · cosβ−1 v · sin
(

x tan v− (α + β)v +
(α

2
+ β

)
π
)

dv

=
πΠ(α− 1)φ(α, 1− β,−x))

Π(−β)Π(α + β− 1)
,

50.

π
2∫

0

sinα−1 v · cosβ−1 v · sin
(

x tan v− (α + β)v +
απ

2
+
)

dv

=
πxβ

Π(β)
φ(α + β, 1 + β,−x)

In all integrals treated here, as we mentioned above already, x must always
be a positive quantity, but if x would be assumed to be negative, all sums we
found would be false; in this regard the integral of equation (50.) is especially
remarkable, since for positive x is equal to that series, but vanishes for negative
x, confer equation (44.).
Written in Liegnitz, in the month of April, 1837
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