
ABSTRAGT VERSUS CLASSICAL ALGEBRAIC GEOMETRY 

A N D R é W E I L 

The word "classical", in mathematics as well as in music, literature or 
most other branches of human endeavor, may be taken in a chronological sense; 
it then means anything which antedates whatever one chooses to consider as 
"modern", and may be used to describe remote antiquity or the achievements 
of yesteryear, according to the mood and the age of the speaker. Sometimes, too, 
it is purely laudatory and is applied to any piece of work which is thought to be 
of permanent value. 

Here, however, while discussing algebraic geometry, I wish to use the words 
"classical" and "abstract" in a strictly technical sense which will be explained 
presently. Until not long ago algebraic geometers did their work exclusively 
with reference to the field of complex numbers; at the same time they worked 
on non-singular models, or at any rate their concern with multiple points was 
merely in order to try to push them out of the way by suitable birational trans
formations. Thus transcendental and topological tools of various kinds were 
available, and it was merely a matter of individual taste, personal inclination or 
expediency whether to use them or not on any given occasion. The most deci
sive progress ever made in the theory of algebraic curves was achieved by 
Riemann precisely by introducing such methods. Later authors took consider
able pains to obtain the same results by other means. In so doing, they were 
motivated, at least in part, by the fact that Riemann had given no justification 
for Dirichlet's principle and that it took many years to find one. Similarly, the 
use of topological methods by Poincaré and Picard, not to mention some more 
recent writers, has often been such as to justify doubts about the validity of their 
proofs, while conversely it has happened that theorems which had merely been 
made plausible by so-called geometrical reasoning were first put beyond doubt 
by the transcendental theory. 

Now we have progressed beyond that stage. Rigor has ceased to be thought 
of as a cumbersome style of formal dress that one has to wear on state occasions 
and discards with a sigh of relief as soon as one comes home. We do not ask any 
more whether a theorem has been rigorously proved but whether it has been 
proved. At the same time we have acquired the techniques whereby our prede
cessors' ideas and our own can be expanded into proofs as soon as they have 
reached the necessary degree of maturity; no matter whether such ideas are 
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based on topology or analysis, on algebra or geometry, there is little excuse left 
for presenting them in incomplete or unfinished form. 

What, then, is the true scope of the various methods which we have learnt 
to handle in algebraic geometry? The answer is obvious enough. Let us call 
"classical" those methods which, by their very nature, depend upon the pro
perties of the real and of the complex number-fields; such methods may be 
derived from topology, calculus, convergent series, partial differential equations 
or analytic function-theory. As examples, one may quote the use of the differ
ential calculus in the proof of the Kronecker-Castelnuovo theorem, of theta-
functions in the theory of elliptic curves and abelian varieties, of topology in the 
proof of the "principle of degeneracy". Let us call "abstract" those methods 
which, being basically algebraic, are essentially applicable to arbitrary ground-
fields; this includes for instance the theory of differentials of the first, second 
and third kinds (but of course not that of their integrals) and the greater part of 
the "geometric" proofs of the Italian school. Thus it is plain that, in all cases 
where an abstract proof is available, it may be expected to yield more than 
any classical proof for the same result. No one could deny this unless he had 
made up his mind to ignore fields of non-zero characteristic and was prepared 
to maintain that a theorem in algebraic geometry which has been proved for the 
field of complex numbers can always be extended to any field of characteristic 0. 
There are indeed many cases where this is so; quite often, however, the exten
sion can only be made to algebraically closed fields. As to denying any existence 
to algebraic geometry of non-zero characteristic, not merely would this, in 
view of recent developments, amount to denying motion; it would also deprive 
algebraic geometry of a rich and promising field of possible applications to 
number-theory, where one cannot do without reduction modulo p. 

At present, abstract methods also possess the invaluable advantage of 
being inherently applicable to varieties with arbitrary singularities, while only 
the non-singular varieties fall within the scope of all but the most elementary 
of the classical methods known to us. For instance we have now a fully deve
loped abstract theory of the so-called Picard and Albanese varieties attached to 
a given algebraic variety. The corresponding classical theory depends upon 
Hodge's existence theorem for simple integrals of the first kind. In order to 
apply the latter to a given variety, of course over the field of complex numbers, 
one has to transform it first into a non-singular variety; this is a famous problem 
for which no general solution is yet available. The former method, however, 
requires no other preliminary step than the normalization of the given variety, 
a very simple process of universal scope; once this has been done, it is not subject 
to any limitation whatsoever concerning the groundfield. The situation is similar 
for Severi's theorem of the base and its extension by Néron to the abstract case. 
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On the other hand, partly because of our habits of thought, partly for 
more substantial reasons, it is frequently much easier to prove a theorem in the 
classical case and by classical methods than to prove it abstractly. For instance 
the so-called principle of degeneracy is almost trivial in the classical case, for 
elementary topological reasons; its abstract proof by Zariski is an awe-inspiring 
achievement and requires the formidable apparatus of the abstract meromor-

• phic functions. In the theory of abelian varieties, it is rather obvious that such 
a variety over complex numbers is a compact commutative Lie group and is 
therefore isomorphic to a torus of topological dimension 2n where n is the alge
braic dimension of the variety. The number of elements of given order r in the 
group is then r2n. This is still so in the abstract case provided / is prime to the 
characteristic; but there is no easy proof for it at present. Here we meet with a 
theorem whose abstract formulation requires an assumption involving the 
characteristic. If we reformulate it, however, by saying that division by r 
defines an extension of degree r2n of the field of algebraic functions on the 
variety, then it remains always true, whatever the characteristic may be. This 
example is fairly typical. If a result which can be formulated in purely algebraic 
terms is known to be true in the classical case, it almost invariably happens that 
there is a corresponding result in the abstract theory; just what this may be is 
sometimes a matter for guesswork. 

I do not mean to suggest that classical methods have no other purpose than 
occasionally to give easier proofs for abstract results under suitable additional 
assumptions. Algebraic varieties are objects of considerable interest to analysts 
and topologists; it is right and proper that they should study them for their 
own sake or as special cases of more general objects with no counterpart in 
algebraic geometry, for instance complex or quasi-complex manifolds. From the 
point of view of the algebraic geometer, however, it cannot be denied that the 
chief use of classical methods is to lend plausibility to results which have then 
to be attacked directly. Some examples of this will now be discussed in greater 
detail. 

The first one deals with correspondences between curves. If C, C' are two 
curves, one says that a correspondence between them, i.e. a cycle on the surface 
C x C', is equivalent to 0 if it is linearly equivalent to an element of the group 
generated by all curves P X C' (where P is any point of C) and C X P' (where 
P' is any point of C ) . One of Castelnuovo's most interesting theorems gives an 
"enumerative" criterion for equivalence; it attaches to every correspondence 
an integer ò(X) ^ 0, the so-called "equivalence defect", such that ô(X) = 0 
is necessary and sufficient for X to be equivalent to 0. Let X' be the correspon
dence between C and C obtained by interchanging the two factors of the product 
C x C. The multiplication of correspondences being defined in a fairly obvious 
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manner, X'X is then a correspondence between C and itself. If Z is any such 
correspondence, let f(Z) be the number of its fixed points, i.e. its intersection-
number with the diagonal of the product C x C; let d(Z), d'(Z) be its degrees, 
i.e. its intersection-numbers with the curves P X C, C X P, respectively. Put 

S(Z) = d(Z) + d'(Z) -f(Z). 
It is easily seen that S(Z) is the same for any two equivalent correspondences 
and that it has the formal properties of a trace on the ring of classes of corres
pondences. Castelnuovo's equivalence defect can then be expressed as d(X) = 
S (X'X); and his theorem can be written as S (X'X) ^ 0, with S (X'X) = 0 if 
and only if X is equivalent to 0. In this form, it may be regarded as the funda
mental theorem on correspondences; for instance, the so-called Riemann hypo
thesis for function-fields follows from it almost immediately. 

Castelnuovo's proof was "geometric"; in other words, it was such that its 
translation into abstract terms was essentially a routine matter once the ne
cessary techniques had been created; in fact, all modern proofs are based upon 
the ideas introduced by him and supplemented by the later work of other 
Italian geometers, particularly Severi, on the same subject. It will now be 
shown how a rather simple proof can be given in the classical case by using 
transcendental and topological methods. 

In the first place, any correspondence Z between two non-singular varie
ties V and W over complex numbers induces homomorphisms of the homology 
groups of V into those of W. If V, W and Z have the same dimension, these 
homomorphisms map the homology group of V for any dimension into that of 
W for the same dimension. If V is the same as W, the number of fixed points of 
Z (its intersection-number with the diagonal) is given by Lefschetz's formula as 
the alternating sum of the traces of the endomorphisms induced by Z on the 
homology groups of V. From this it follows immediately that in the case of a 
curve the integer S(Z) defined above is the trace of the endomorphism induced 
by Z on the homology group H oi C for dimension 1. If g is the genus of C, H 
is a free abelian group of rank 2g; for a given choice of generators, an endomor
phism of H is represented by an integral-valued square matrix of order 2g. 

Let X be a correspondence between two curves C, C'. Let H, H' be the 
homology groups of dimension 1 for C and C ; let ylt . . ., y2g be generators for 
H, and y[, . . ., y2g, generators for H'. Call E = \\ ek(JL || the intersection-matrix 
for the yh which is skew-symmetric of determinant 1; call E' the similar matrix 
for the y'Q. By a well-known theorem in topology, the cycles P X C'', C x P' 
and yK X y'Q generate the homology group of dimension 2 for C X C, so that 
X must be homologous on C X C to a linear combination 

d.(PxC')+d'.(C X P') + 2 a^ . (yx X y'Q). 
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Put A = \\akQ ||. I t is easily seen that the matrices of the homomorphisms of 
H into H' and of H' into H induced respectively by X and by X' are 

L = *(EA) , L' = AE' 

where * denotes the transpose of a matrix. This gives 

L' = E-1. lL . E'. 

Consider now on C the harmonic differentials, i.e. the real parts of the 
differentials of the first kind on C; the vector-space of such differentials is of 
(real) dimension 2g. Take for this a basis consisting of forms cox respectively 
homologous to the yk in the sense of de Rham, i.e. such that 

/ • 
(X, pi = 1,2, ...,2g). 

By de Rham's theorems, E is then also the matrix of the integrals 

\\ coA A cup taken on C. 

The differential £A of the first kind with the real part coA has an imaginary 
part which is also harmonic and can therefore be written as 2 c^co . Put 

/ = II ciyL II- From the fact that i£k is again of the first kind, it follows at once 
that J2 = — 1, where 1 denotes the unit matrix. We have £A A £̂  = 0; integrat
ing this over C and expressing £A, f in terms of the a>A, we find E = l] . E . J 
or the equivalent relation *(EJ) = E J, expressing that E J is a symmetric 
matrix. If £ is any differential of the first kind, we have z£ A £ ^ 0 everywhere, 
C being oriented in the usual manner. Integrating this over C, we find that the 
quadratic form wi th the matrix E J is positive-definite. These statements on E J 
are substantially identical with Riemann's bilinear relations and inequalities for 
the periods of the integrals of the first kind; nor does the proof just given differ 
in substance from Riemann's. 

Now let again X be as above; define the forms œ'Q, £̂  and the matrix / ' 
for C just as coA, <£"A, / have been defined for C. The differential form £A A£e 

induces 0 on every component of X since such components are algebraic sub-
varieties of C X C. Therefore J | £A A £̂ , taken on X, must be 0. Expressing X 

as above in terms of a homology basis on C X C' and expressing £A, £̂  in terms 
of the coÀ, œe, one finds, by taking the real and imaginary parts of the double 
integral, two equivalent relations, one of which is 

(EA)E' = * / . (EA) .E'J'. 

Take the transpose of this relation, remembering that t(EA) = L and that 
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E'J' is symmetric; multiply to the left by E'-1 and to the right by / _ 1 = — / ; 
we get 

LJ = J'L. 

This expresses the fact that X induces a linear mapping of the complex vector-
space of differentials of the first kind on C into the corresponding space for C , 
or also a complex homomorphism of the jacobian variety of C into that of C. 

All this is well-known. The inequality S (X'X) ^ 0 is now easy to prove. 
In fact, S (X'X) is no other than the trace of the matrix L'L, which is the same 
as that of M = J~XL'LJ. This may be written as 

M = J-1. E-1. *L . E'LJ = (EJ)-1. *L . E'J'L. 

As the quadratic form with the matrix E J is positive-definite, it can be trans
formed into a sum of 2g squares by a suitable substitution U. This gives 
*U . E J . U = 1 and therefore (EJ)-1 = U .*U. The trace of M is the same as 
that of the matrix 

N = U-mU = *(LU) . (E'J') . (LU). 

Put E'J' = || sea ||, LU = || xQÄ H; then the trace of N is 

Tr(N)=Ii(Iis6axQ,xa;i). 
À Q, a 

Since E'J' is positive-definite, it is clear that the right-hand side is ^ 0 and 
that it is > 0 except when LU = 0 i.e. when L = 0. In order to complete the 
proof, it only remains to show that L cannot be 0 unless X is equivalent to 0; 
this is an easy consequence of Abel's theorem. 

If I may be allowed a personal note here, this is precisely how I first per
suaded myself of the truth of the abstract theorem even before I had perceived 
the connection between the trace S(Z) and Castelnuovo's equivalence defect. 
No one with any experience in such matters will fail to acknowledge the co
gency of such an argument, even though no proof can be based on it. 

Is it possible to extend these results to higher dimensions? Many facts 
point to a generalization of the Riemann hypothesis which can be stated as 
follows. Let F be a variety over the field k with q elements. Then there is for 
each integer v a correspondence Iv between V and itself such that to each point 
of V with coordinates xlt . . ., xN there corresponds by Iv the point with the 
coordinates x^f, . . ., xN

qV. The fixed points for Iv are precisely those which have 
their coordinates in the extension kv of degree v oik. Let Nv be the number of 
such points; if V is non-singular, this is the intersection-number of Iv with the 
diagonal of V X V. 

Now in the classical case the numbers Nv of fixed points for the successive 
powers of a given correspondence Z between a compact non-singular variety V 
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and itself is given by Lefschetz's formula as being equal to 

In Bh 

Nv = 2 ( - 1)* 2 (aftir (A) 

where w is the complex dimension of V, Bh its Betti number for the (topological) 
dimension h, and the OLM, for 1 ^ i <£ BÄ, are the characteristic roots of the endo-
morphism induced by Z on the Betti group of V for the dimension h. This makes 
it plausible that in the case described above the number Nv of fixed points of 
the correspondence Iv is given by a formula of this type. 

Not only has this been found to be so in all cases where the Nv could 
actually be computed, but it turns out that the oihi are of absolute value qhl2 in 
all such cases. For n = 1 the latter fact is precisely the Riemann hypothesis; 
if true in general, it is therefore the generalization we have been looking for. 
Analogy suggests that it must depend upon some generalization of Castel
nuovo's theorem or rather of the inequality S (X'X) ^ 0; if so, then presuma
bly this generalization might admit a comparatively easy proof in the classical 
case by means of Hodge's theory of harmonic differentials. 

Before coming to the next example, let me recall the concept of numerical 
equivalence. Two cycles of the same dimension on a non-singular complete 
variety are said to be numerically equivalent if their intersection-numbers with 
every cycle of the complementary dimension are equal whenever they are both 
defined. In the classical case, two cycles which are homologous to each other are 
obviously equivalent in this sense; this implies at once that the group of equi
valence classes of cycles of a given dimension is finitely generated. In the ab
stract case, Néron's theorem shows that this is so for divisors (cycles of dimen
sion n — 1 on a variety of dimension n) and therefore also for cycles of dimen
sion 1 ; to prove i t for dimensions between 1 and n — 1 seems still beyond our 
reach at present. 

Again in the classical case, more precise results are known under special 
assumptions. For instance, there are varieties whose homology groups are all 
generated by algebraic cycles; this implies that they vanish for the odd di
mensions. If V and W are such varieties, all algebraic cycles on V x W must 
then be numerically equivalent to linear combinations of cycles of the form 
X x Y, where X is a cycle on V and Y is a cycle on W. This must be so, in par
ticular, if V and W are non-singular rational surfaces, since the homology groups 
of such surfaces are known to have the property in question. Making use of 
Néron's theorem, Ave thus get the following purely algebraic statement. Let S, 
S' be two non-singular rational surfaces; let the Xi be generators for the group 
of divisor-classes o n 5 modulo algebraic equivalence; let the X\ be the generators 
for the corresponding group on 5 ' ; then every cycle of dimension 2 on 5 X S' is 
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numerically equivalent to a linear combination of the cycles P x S', S X P' 
(where P is a point of 5 and P' a point of S') and Xi X X'r It does not seem 
hopeless to try to find an abstract proof for this statement. 

Let us for a moment assume it to be true. Applying it to the diagonal of 
S X S, one deduces immediately from it the validity of Lefschetz's fixed point 
formula for S in the following form: if X is a correspondence of dimension 2 
between S and itself, the number of its fixed points is d(X) -j- d'(X) + S(X), 
where d(X), d'(X) are the degrees of X (its intersection-numbers with P x S 
and with S X P) and S(X) is the trace of the endomorphism induced by X on 
the group of divisor-classes on S modulo numerical equivalence. This can then 
be applied as above to a surface S defined over a finite field k of q elements and 
to the number Nv of points of S with coordinates in the field kv with qv elements. 
One finds that Nv is of the form 

where the t̂  are the characteristic roots for a certain linear substitution of finit i 
order and are therefore roots of unity. 

Under the same assumption, one can then verify in this case the following 
general conjecture. Let F be a non-singular complete variety of dimension n 
over an algebraic number-field K; for the sake of simplicity we assume that it 
is embedded in a projective space and write a set of equations for it as 
F^XQ, Xlf . . ., XN) = 0, where the F^ are homogeneous polynomials with 
coefficients in the ring of integers of K. Let B0, B1} . . ., B2n be the Betti 
numbers of V (with B0 = B2n = 1, since V is irreducible, and Bh = B2n_h by 
the duality theorem). Let $ be a prime ideal in K such that the equations 
F =0, reduced modulo £$r, define a non-singular variety Vq* of dimension n over 
the residue field K- oi K mod. $; it is not hard to show that all but a finite 
number of prime ideals in K have that property. Assuming the validity of a 
formula of type (A) for Vc*, and assuming (as is the case in all examples which 
could be treated so far) that the integers Bh in it are no other than the Betti 
numbers of V, call aÄt-(£$f), for 0 ^ h fg 2n, 1 5g i' ^ Bh, the numbers occurring 
in the right-hand side of the formula (A) for the variety Fcv ; as mentioned before, 
these numbers are of absolute value qhl2 whenever they can be calculated. Put 
now 

<pA(s) = n n (i-aÄ I(g).2vg-)-i . 

Then our examples indicate that 0h(s) coincides (except for a finite number of 
factors) with the Euler product for a Dirichlet series which can be continued in 
the whole plane and satisfies a functional equation of the familiar type 
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W(s) = W(h + 1 - s) 

where W is the product of the Dirichlet series, of a gamma factor and of an 
exponential factor. It is tempting to surmise that this is always so, but I have 
little hope that a general proof may soon be found. For non-singular rational 
surfaces at any rate the results stated above would imply that 02(s), except 
for a finite number of factors, is the same as a suitable L-iunction (in the sense 
of Artin) for a certain extension of K. For instance, for a non-singular cubic 
surface in the projective 3-space, one thus gets an L-i unction belonging to the 
extension of K determined by the 27 straight lines on the surface. The Galois 
group for this is known; it is a group of order 27 . 34 . 5 and has a simple sub
group of index 2. In general, therefore, the function @2(s) which we may 
expect to belong to a given cubic surface is essentially an L-function of a 
definitely non-abelian type. Here is a rather unexpected connection between 
number-theory and algebraic geometry. 
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