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The 2003 conference on Singularity theory in Oberwolfach was organised by J. Steenbrink
(Nijmegen), D. van Straten (Mainz) and V. Vassiliev (Moskow). A total of 23 lectures was
held on a variety of recent results and methods in the theory of singularities of mappings
and spaces. Besides more classical questions on the topology of normal surface singularities
and three-manifolds, applications of the newer techniques related to tropical geometry and
motivic integration were discussed in various lectures. A couple of talks were held on
topics in the neighbouring fields of classical algebraic geometry, homological algebra and
mixed Hodge Theory. Some lectures were devoted to algorithmic aspects and applications
of computer algebra.



Abstracts

A Tropical Approach to Enumeration of Singular Algebraic Curves
E. SHUSTIN

The tropical algebraic geometry is an algebraic geometry over the tropical semiring (R, ®, @)
with a ®b = a + b, a ® b = max{a,b}. For example, tropical curves in R* are non-
Archimedean amoebas, the images of algebraic curves in (K*)?, K being an algebraically
closed field of characteristic 0 with a non-Archimedean valuation v : K* — R such
that v(ab) = v(a) + v(b), v(a +b) < max{v(a),v(b)}, v(K*) = R and the map is
(21,22) € (K*)? — (v(21,22)) € R%. Tt is known that non-Archimedean amoebas are
1-dimensional graphs, the corner loci of convex piece-wise linear functions

Ny(z) = mgx(x cw+v(ay))

where f =" a,2¥ € K[z]. Kontsevich proposed to count nodal algebraic curves passing
through respective number of generic points via enumeration of "nodal” amoebas passing
through generic points in R?. Mikhalkin realized this for nodal curves on toric surfaces
associated with convex lattice polygons in R2, in the form: degree of the corresponding
Severi variety is equal to the number of specific “nodal” amoebas passing through generic
points in the plane and counted with weights. Furthermore, the counting of amoebas
reduces to counting of certain lattice paths in the given Newton polygon. We suggest an
algebraic-geometric proof of the theorem:

(1) We show that a singular curve over K is an equisingular family of complex curves.
(2) We define tropical limits of such families, which are curves on reducible surfaces,
whose components corresponds to polygons in subdivisions of the given Newton

polygon.
(3) The patchworking construction restores an equisingular family of curves out of the

tropical data.

As an application we present

Theorem 1. (Itenberg, Kharlamov, Shustin) Through any 3d — 1 generic points in RIP?

there exist > %’ real rational curves of degree d.

Iterated vanishing cycles and a conjecture of J. Steenbrink
MICHEL MERLE
(joint work with G. Guibert and F. Loeser)

Given an algebraic variety X over C and a function f : X — C one can define, fol-
lowing Loeser and Denef, the motivic Milnor fibre Sy, of f at x € X for any point z
where f vanishes. They also define S?@ as (=191 (Sy. — [C*]). S}, is an element of a
Grothendieck ring M . of varieties above X x C*, with a C*-action and a map to C*,
which is C*-equivariant.

If one is given another function g : X — C, g(z) = 0, one wants to define S,;(Sy). This
is an element of the Grothendieck ring Mg?;)(z*)Q of varieties with (C*)2-action and a map
to X x (C*)?, which is (C*)%-equivariant.



When a variety A has two maps u,v : A — C* the convolution is defined as

A A\(u + v)~(0) C* x (u+v)'(0)
A S M
Cr Cr

If Ae Mggzgi, then the convolution belongs to ME:.

Theorem 1. Let X be an algebraic variety, x € X, f, g algebraic maps to C such that
f(z) = g(x) =0. Then for N sufficiently large
*|S0s(SP] = SF = Sy gn
As an application, we give a new proof of Steenbrinks conjecture (first proved by M.
Saito): If dim(Sing(f)) =1 and g, say, a linear form, compute the difference between the
Spectrum(f, x) and Spectrum(f + ¢", ) in terms of the sheaf of vanishing cycles of f on
the smooth part of Sing(f).

Global Euler obstruction and polar invariants
MiuAr TIBAR
(joint work with Pepe Seade and Alberto Verjovsky)

We define a global Euler obstruction Eu(Y') for an affine singular variety Y € C¥ of pure
dimension d in a similar manner as the local Euler obstruction introduced by MacPherson,
i.e., as the obstruction to extend a radial vector, defined on the link at infinity of Y, to a
non-zero section of the Nash bundle.

We prove that Fu(Y) can be expressed as an alternating sum

(1) Eu(Y) = (-1)%{ + ... = al? 4 {7

where ag/l) is the number of Morse points of Y., of a Lefschetz pencil on Y and the following

ones are similar numbers defined on successive generic hyperplane slices of Y. For instance,
if Y is non-singular, then Eu(Y) = x(Y).

The invariants agﬁ) can be viewed as global polar multiplicities. Local polar multiplicities
where used by L and Teissier in the formula [LT, Annals of Math., ‘81] for the local Euler
obstruction. Our proof of (1) has different flavour than L-Teissier’s proof in the local case.
It relies on the repeated use of the Lefschetz slicing method and on extending a radial
vector field starting from a slice.

On a filtration defined by arcs on a variety
WOLFGANG EBELING
(joint work with Sabir M. Gusein-Zade)

Let (V,0) be a germ of a complex analytic variety and let Oy be the ring of germs of
functions on it. We define a filtration on Oy, which we call arc filtration. An arc ¢ on
(V,0) is a germ of a complex analytic mapping ¢ : (C,0) — (V,0). For a germ g € Oy,



its order v, (g) on the arc ¢ is defined as the order of the composition g o ¢ at the origin.
Let v(g) be the minimum over all arcs ¢ on (V,0) of the orders v,(g). The arc filtration

OV’OZFUDFlDFQD...

on the ring Oy, is the filtration by the ideals F; := {g € Oy, | v(g) > i}.

We compute the Poincarseries of this filtration for the surface singularities from Arnold’s
lists including the simple and the uni- and bimodular ones. The classification of the
unimodular singularities by these Poincaré series turns out to be in accordance with the
hierarchy defined by E. Brieskorn using the adjacency relations. Besides that, we give a
general formula for the Poincaré series of the arc filtration for isolated surface singularities
which are stabilizations of plane curve singularities.

Poincaré series and zeta functions
JAN STEVENS

Several cases are known when the (-function of the monodromy of a singularity is related
to the Poincaré series of its coordinate ring. The first instance of this phenomenon was
observed by Campillo, Delgado and Gusein-Zade: For an irreducible plane curve singularity,
the (-function equals its Poincaré series. There are several (-functions around in singularity
theory. The monodromy is a direct analogue to (-functions from number theory.

For quasi-homogeneous complete intersections, a formula of Ebeling and Gusein-Zade
computes the Poincaré series (multiplied with an orbit invariant) in terms of the (-functions
of the function f; on the zero set of fi,..., fj_1.

. From this we derive the original formula for irreducible curves. Key ingredients are that
the monomial curve with the same semi-group is a complete intersection and that the plane
curve is a deformation of it. This enables us to give a model for the monodromy knowing
the singular quasi-homogeneous Milnor fibre and the local Milnor fibres of its singularities.

In this way, the quasi-homogeneous formula becomes the primary object, which has to
be explained conceptually.

Betti numbers of semi- and subalgebraic sets
A. GABRIELOV
(joint work with N. Vorobjov (Bath, UK) and T. Zell (Purdue))

Spectral sequences associated with surjective maps and Hausdorff limits allow one to
compute or at least to obtain an upper bound for the Betti numbers of sets defined by
expressions with semialgebraic conditions and quantifiers, preserving additional structure
such as sparsity of the semialgebraic conditions.

Degeneration of the Leray spectral sequence for certain quotient mappings
J. STEENBRINK
(joint work with Chris Peters)

We consider an affine complex algebraic group G acting on a smooth algebraic variety X
with geometric quotient ¢ : X — Y. We give geometric conditions ensuring that the Leray
spectral sequence of ¢ in rational cohomology degenerates at Ey;. We show that these are
fulfilled for X = V\X, V = Clzo, ..., 2,]¢, & = discriminant, G = GL(n + 1,C), d > 3.
We communicate the result of Orsola Tommasi, proved using similar methods: The Betti
numbers b; of the moduli space M, of smooth Riemann surfaces of genus four are equal
to one if i € {0,2,4,5} and zero else.



Hurwitz numbers of generalized polynomials
S. SHADRIN

A Hurwitz number is the number of coverings with fixed ramification types over fixed
points in the target. We give some relations for Hurwitz numbers coming from the inter-
section theory of the moduli spaces of curves. In fact, these relations are just geometrical
interpretation of some formulas. The initial formulas for intersection numbers on the mod-
uli spaces of curves are a powerful tool for computation of concrete integrals. We generalize
this approach to give an algorithm for calculation of the simplest Hodge integrals.

Monodromy and “Dessin d’Enfants”
NORBERT A’CAMPO

A generic relatively immersed curve P in the unit disc D? C R? defines by L(P) =
TPNS? aknot or link in S3. Indeed, think of the tangent space TP as a subset in R* via
the chain of inclusions TP C TD C TR? = R* and S? as unit sphere in R*. Links of type
L(P) are very special: (We assume P to be connected)

(1) The complement S*\L(P) is fibred over S*. The monodromy is a product of u =
hy(fibre) positive Dehn twists. The position of the core curves of the twists on the

fibre is read off from the combinatorics of P C D.
(2) The contact structure of the fibred link as constructed by Emanuel Gicoux is tight.
(3) If P is the image of [0,1] in D?, then the unknotting number u(L(P)) of the knot
L(P) equals §(P) := number of double points of P. The 4-genus g4(L(P)) = §(P).
The construction {P C D?} — {L(P) C S3} of classical links fits with singularity theory:
The saddle points level Pf on R? N D, of a real morsification f of a plane curve singularity

{f = 0} with real equation and with Milnor ball B, C C? is an immersed curve to which
the construction applies. We get

Theorem 1. The links L(Pf) C S* and {f = 0} N 0B, C 9B, are equivalent as oriented
links.

As topological application we have

Theorem 2. The higher Milnor linking invariants of the link L(P) of P C D?* with three
or more components vanish.

A graph in D? as T defines an immersed curve P(T) by putting on each edge

an “X” to obtain *— <. It is a lot of fun to draw these curves.

We study especially immersed curves of planar trees in D. It seems that links of planar
trees I';,I'y that are related by the action of Gal(Q/Q) on isotopy types of planar trees
have much in common. The action of Gal(Q/Q) on isotopy types of trees is defined in the
theory of “dessin d’enfants”, especially by using Belyi’s theorem. We speculate that the
knot groups of L(Pr,) and L(Pr,) are isomorphic after profinite completion, if T'; and Ty
are conjugated by Gal(Q/Q). We give a construction to support this speculation without
proving it. Recent work of A. Shumakovitch shows that the second Vassiliev invariant
va(L(P)) is related to the J* and “strangeness” invariants of Arnold of the underlying
immersed curve P.



The Casson Invariant Conjecture
WALTER NEUMANN
(joint work with J. Wahl)

The Casson Invariant Conjecture asserts that if (1, 0) is an isolated complete intersec-
tion surface singularity, F' its Milnor fibre and ¥ its link, and if ¥ is an integral homology

sphere, then

1
AX) = gsign(F)
where ) is the Casson invariant.

We formulated this conjecture 15 years ago and proved some specail cases. At the
time, finding explicit examples was difficult as well as then confirming the conjecture. The
conjecture can be strengthened by weakening “complete intersection” to “Gorenstein” and
replacing the equation by

NE) = =p,(V,0) = (& + e = 1)(7)

where V' is a resolution.

However, we conjecture:

Classification conjecture: If (V,0) is a Gorenstein surface singularity with homology
sphere link 3, then (V,0) is in fact a complete intersection and even of “splice type”.

“Splice type” is a natural generalization of Brieskorn-Pham complete intersections. Very
many, but not all homology sphere singularity links occur as links of splice type complete in-
tersections. The name “splice type” comes from the fact that the relevant homology spheres
are classified by certain weighted trees called “splice diagrams” (Eisenbud-Neumann, Ann.
Math. Studies 110, 1985).

Among the results discussed:

Theorem 1. The Casson Invariant Conjecture holds for a splice type singularity whose
splice diagram has all its nodes in a line.

Theorem 2. If (V,0) has a homology sphere link and each knot K C X corresponding to a
leaf of the splice diagram is cut out by a function {f(z) =0} on V then (V,0) is a complete
intersection of splice type.

Theorem 3. We have a conjectured topological description of the Milnor fibre of a complete
intersection with homology sphere link ¥ just in terms of X which would imply the Casson
Invariant Conjecture and which is valid at least for suspension hypersurfaces: 2" = f(z,y).

Some other cases of the Casson Invariant Conjecture have been proved by Collin and
Saveliev. Nemethi and Nicolaescu have a generalization to Q-homology sphere links.



Invariants of normal surface singularities
ANDRS NMETHI
(joint work with L. Nicolaescu)

Assume that (X, 0) is a normal surface singularity whose link M is a rational homology
sphere. If X is a resolution with s irreducible exceptional divisors and characteristic class
K, then K? + s is independent of the resolution, it is a topological invariant of (X, 0).

Let swjy .., be the (or any candidate for) Seiberg-Witten invariant of M associated with
the canonical spin‘-structure. (Here, one can consider the modified topological Seiberg-
Witten invariant; or the Turaev-Reidemeister torsion normalized by the Casson-Walker
invariant, or the Ozsvath-Szab invariant. Conjecturally, these are all equal.) Finally, let
pg be the geometric genus of (X, 0). Then the following facts holds conjecturally:

Conjecture 1. (1) pg < —5W}1am — K28+S
(2) the right hand side is an optimal topological upper bound: if (X, 0) is Q-Gorenstein,
then py = —5Wi can — K28+s,

The conjecture was verified for quotient singularities, suspension singularities (f(a, b) 4+
2" =0, f irreducible) and singularities with good C*-action. The case of singularities with
C*-action was discussed in some details.

Splice diagram complete intersection singularities
JONATHAN WAHL
(joint work with Walter Neumann)

Suppose (V,0) is a normal surface singularity whose link ¥ is a QHS (“rational homology
sphere”), i.e. H = H\(2,7) is finite. The UAC (“universal abelian covering”) & — ¥ is
realized by a map (‘N/, 0) — (V,0), an H-covering off the 0, and is also called the UAC.
From the resolution diagram I' of V' (a tree of rational curves), one associates another

graph A called a “splice diagram”, e.g.
2 -2

Most of the time, one can associate equations to A, defining “splice diagram complete
intersection singularities” X (A).

Further, “much of the time” there is an action of the group H on X (A). Specifically,
there are conditions on I' that equations and an H-action exists.

Theorem 1. X(A) has an isolated singularity, H acts freely on X (A)\{0}, X(A) —
X (A)/H is the universal abelian covering and T is a resolution dual graph for X (A)/H.

In other words, we construct equations of a singularity with given topological type
(determined by T').

Conjecture 2. Let (V,0) be Q-Gorenstein, with QHS link. Then the UAC of (V,0) is a

complete intersection, an equisingular deformation of X (A).

This generalizes a 1982 theorem of W. Neumann: if (V,0) is in addition weighted ho-
mogenous, the UAC is a Brieskorn complete intersection (a special case of X (A))).



Algorithmic resolution of singularities from a practical point of view
ANNE FRHBIS-KRGER
(joint work with Gerhard Pfister)

In the 1990s, algorithmic proofs of resolution of singularities were found independently by
Bierstone and Milman and by Villamayor. But it is still one more step from an algorithmic
proof to an implementable algorithm. In this talk, we have a look at the elements of Villa-
mayor’s proof and consider the modifications that are necessary to obtain an implementa-
tion which can handle interesting examples. On a few examples, the SINGULAR library
containing the (current state of) the implementation is presented. (work in progress)

Polynomial Lie algebras and versal deformations
V. BUCHSTABER
(joint work with D. V. Leikin)

We introduce and study a special class of infinite-dimensional Lie algebras that are modules
of finite type over a polynomial ring. They have canonical representations as moving frames
with polynomial structure functions. For simple singularities, the fields form moving frames
with polynomial connection on the subspace of parameters of positive weight.

A particular result is the direct computation of convolution of matrices. Convolution
matrices define moving frames related to the potential fields coming from the Vita mapping.
Under this map, we may loose the polynomiality of the connection coefficients, however,
the structure functions stay polynomial. The nature of this kind of results is due to the
fact that the theory of polynomial Lie algebras combines the properties of Lie algebroids
(studied in differential geometry) and free divisors (studied in singularity theory).

Pencils of K3-surfaces with maximal Picard number
A. SARTI
(joint work with W. Barth)

I describe three particular pencils of K3-surfaces with maximal Picard number. More
precisely the general member in each pencil has Picard number 19 and each pencil contains
four surfaces with Picard number 20. These surfaces are obtained as the minimal resolution
of quotients X/G, where G C SO(4,R) is some finite subgroup and X C P3(C) denotes
a G-invariant surface. The singularities of X/G come from fix points of G on X or from
singularities of X. In any case the singularities on X/G are A— D — E surface singularities.
The rational curves which resolve them give almost all the generators of the Neron-Severi
group of the minimal resolution.



Exterior Algebra Methods and Applications
FRANK-OLAF SCHREYER
(joint work with D. Eisenbud and G. Flgstad)

It is well known that the derived category of coherent sheaves on PP” is equivalent to the
stable module category of graded modules over the exterior algebra (Bernstein, Gel'fand,
Gel’fand, 1979):

mod(E) = D°(P")
by P — I/J_(\Ig) with

—~

L(P): ... P®0(-i)—>P_1@0(—i+1)—...

In this talk we answer the question how to find an element P € mod(F) corresponding to
a sheaf and which P correspond to sheaves.

The second part is an application to Chow forms and resultants. For example, the
Sylvester matrix for the resultant of two binary forms of the same degree can be thought
of as the syzygy matrix of the Bzout determinant of the resultant.

Def # Diff for 1-connected Surfaces
FAB1Z10 CATANESE
(joint work with B. Wajnryb)

Def = Diff was a speculation of Friedman-Morgan in the 80’s, namely that two smooth
algebraic surfaces are deformation equivalent iff they are diffeomorphic. Indeed, X ~g ¢ Y
implies the existence of a diffeomorphism ¢ : X — Y s.t.

¢"(Ky) = Kx (%)
where K is the class of the canonical divisor in H?(X, 7).

Counterexamples were given by Manetti in '97, later by Kharlamov-Kulikov and myself.
The later are obtained by exhibiting surfaces with S #4.¢ S, and indeed have the drawback
that there does not exist a diffeomorphism ¢ satisfying (x). Moreover, in these examples,
there is a finite etale cover S of S for which there is only one deformation type. I reported
on the following:

Theorem (C, Wajuryb). Vr 3r different deformation types with the same differentiable
type, and moreover they are 1-connected, i.e. m(S) = 0.

The examples are very simple, they are given by taking equations

2= f2a20(2, )

w? = G2e,25(,Y)
yielding a (Z/2)?-cover of P! x P* denoted by S(a, b, c). Here f,(x,y) denotes a bihomo-
geneous polynomial of bidegree (n,m).
Theorem 2 (C, Wajnryb). S" = S(a + 1,b,¢c — 1) is diffeomorphic to S = S(a, b, c).
Theorem 1 (C, Manetti; through a series of papers). Assume a > 2c+ 1, a > b+ 2,
¢ >b+2 and a,b, c even. Then the family of natural deformations

22 =f+wyp

w2:g

yields a complete deformation class.



Note: Z/2 acts by z — —z, and by w — —w on the quotient. I sketched the ideas
behind the proof: For theorem 1 one uses that if S, — Sy, the limit M, = P! x P!,
M, = ((S)/(Z/2)/(Z/2) — My,

A classification of the singularities of M, plus the fact that we have a Q-Gorenstein
smoothing and the Milnor fibre is C P! x P! shows that M, is smooth.

For theorem 2 we observe that S,S’" are fibre sums N;#N, and N;#,N, of 2 SLF
(Symplectic Lefschetz Fibrations) over A.

A lemma of Auroux shows that the fibre sum is independent of v if the monodromy on
OA is trivial and 1 is a product of the Dehn twists associated to N; — A. I showed some
pictures of 1) and of the vanishing cycles.

Limits of Hodge structures in several variables
TARO FUJISAWA

I talked about a generalization of the famous results by J. Steenbrink on limits of Hodge
structures. Here I treat a morphism over a higher dimensional polydisc which is proper,
surjective and satisfies some conditions (something like semi-stable degeneration). I ex-
plained how to construct a cohomological mixed Hodge complex which gives the limit
mixed Hodge structure. L.-H. Tu’s previous work suggested a candidate which I proved to
be the correct one for the C-structure level. But I had to construct a new Q-structure. I
talked about the construction of the Q-structure by using the log-structure associated to
the morphism which I considered.

Patchworking Singular Algebraic Curves
ILyA TYOMKIN
(joint work with E. Shustin)

In the talk we will discuss a method (called Geometric Patchworking) for constructing
algebraic varieties with prescribed “local” geometry. This method can be traced back to
Viro’s method (and its modifications suggested by Shustin). From our point of view Patch-
working (both Viro’s and Shustin’s versions) is equivalent to the study of deformations of
pairs consisting of a surface X; and a curve C; C X, (either real or complex; either smooth
or singular, depending on the context). More precisely, we study deformations of surfaces
(equipped with a line bundle £) having reducible central fiber and given generic fiber, i.e.
the surface X is a union of some surfaces ¢ and the generic fiber is the given surface ¥.
We construct a curve in the central fiber, given by a section of £, and having required
geometry, and we ask whether one can deform this curve into a curve on the generic fiber
preserving the geometry. As a result we will generalize some results of Greuel, Lossen,
Shustin, Keilen, Ciliberto and Chiantini.

Symplectic singularities from the Poisson point of view
DwmiTRY KALEDIN

Symplectic singularities are a new kind of singularities recently introduced by A. Beauville;
very important contributions were also made by Y. Namikawa. By definition, X has
symplectic singularities iff
(1) There is a non-degenerate closed two-form €2 on the smooth locus U C X (we
assume X to be a normal algebraic variety over C).
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(2) The form Q extends without poles to a smooth resolution X — X.

This definition does not depend on the resolution; it is easy to see that symplectic singu-
larities are Gorenstein, canonical and rational. Examples include:

(1) Quotient singularities V/G, G C Sp(V)
(2) so-called quiver varieties of Nakajima
(3) the nilpotent cone A C g of a semi-simple Lie algebra g

There is vague hope that all symplectic singularities are of “this type”, but it is too early
to formulate a precise conjecture.

There is one thing common to all the examples: In all the cases X admit a stratification
X; such that all the open strata X; are smooth and symplectic. The goal of the talk is
to produce such a stratification in the general setting. To be able to tie together all the
symplectic structures on all strata we make use of a Poisson scheme. Unlike the symplectic
form, the Poisson bracket requires no assumption of smoothness. It is easy to see that
a symplectic singularity is Poisson. We call a Poisson scheme holonomic if the induced
Poisson structure on every Poisson subscheme is non-degenerate in the generic point. Our
main result states that every symplectic singularity is holonomic as a Poisson scheme. The
stratification we are looking for then follows easily: The singular locus Sing(X) C X is a
Poisson subscheme, which is also holonomic. We take X\ Sing(X) as the first open stratum
and stratify Sing(X) by induction.

Matveev-Piergallini theorem and singularities of cut loci
SERGEI ANISOV

A spine P of a 3-manifold M is a subpolyhedron of dimension < 2 such that the manifold M
(either with boundary or punctured in one point) can be collapsed onto P. Special spines
of M3 (spines that satisfy some genericity conditions) inherit all the information about M?3.
A manifold always has a special spine (infinitely many ones, in fact). Transformations T
and T~! are local surgeries converting special spines to other special spines of the same
3-manifold:

A A
D D
B — B
S 4
ABEC, £
ACED, and
B DER " ABCD and EBCD

In 1988, Matveev and Piergallini independently have proved that all special spines of the
same 3-manifold can be converted into each other by several T#!'-moves. This fact is
crucial, e.g. for the construction of Turaev-Viro invariants: a state sum defined for a spine
is an invariant of a manifold if 7*!'-moves do not change it. Both Matveev and Piergallini
proofs are rather sophisticated, technically as well as conceptually.

;From the singularity point of view, spines are cut loci for appropriate metrics on M3,
This observation leads to a knew proof of the Matveev-Piergallini theorem, still not very
short but more transparent.

11



Multipoint Seshadri Constants
JoAaQuIiM ROE
(joint work with B. Harbourne)

Working over C and formalizing and sharpening approaches introduced by Xu, Szemberg
and Tutaj-Gasinska, we give a method for verifying when a divisor on a blow up of P? at
general points is nef. The method is useful both theoretically and when doing computer
computations. The main application is to obtaining lower bounds on multipoint Seshadri
constants on P2. In combination with methods previously developed to estimate the degree
of singular curves, significantly improved explicit lower bounds are obtained.

Engel-like identities characterizing finite solvable groups
GERT-MARTIN GREUEL
(joint work with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister, E. Plotkin)

We report on a result by the above six (!) authors, characterizing finite solvable groups by
an inductively defined Engel-like sequence of two-variable identities.
Let G be a group and x,y € G. Define

Uq (ZL‘, y) = xiQy*Ix
and i (7, y) = [zun (2, )L yun (2, y)y ] for n > 2,
where [a,b] = aba 1b! is the commutator for all z,y € G.

Theorem 1. A finite group G is solvable if and only if for some n the identity u,(z,y) =1
holds for all x,y € G.

Note that this theorem is analogous to Zorn’s result which characterizes the finite nilpo-
tent groups by the condition that for some n, e, (z,y) = 0 for all z,y € G, where e,(z,y)
is the Engel sequence defined by ei(x,y) = [z,y], ent1(x,y) = len(x,y),y]. The above
theorem was conjectured by Plotkin in a slightly modified form.

Clearly, in every solvable group the identities u,(z,y) = 1 are satisfied for all n > some
ng. The non-trivial “if” part will be deduced from the following.

Theorem 2. Let G be one of the following groups:
(1) G=PSL(2,F,), where g >4 (¢ =7p", p a prime),
(2) G = 5Sz(2"), n > 3 and odd,
(3) G = PSL(3,F;).
Then there are x,y € G such that ui(z,y) # 1 and ui(x,y) = us(z,y).

Since the groups in theorem 2 contain Thompsons list of finite simple groups all of whose
subgroups are solvable, theorem 1 follows easily from theorem 2.

For small groups from the list in theorem 2 it is an easy computer exercise to verify the
statement. The general proof of theorem 2 is however surprisingly complex and involves
not only group-theoretic methods but also methods from algebraic geometry, arithmetic
geometry and computer algebra, in particular the computer algebra systems SINGULAR
and MAGMA. Not only proofs but even the precise statements of our results would hardly
have been found without extensive computer experiments.

The general idea is roughly as follows: For GG in the above list, use a matrix representation
over IF, and interpret solutions of the equation u (z, y) = us(x, y) as Fj-rational points of an
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algebraic variety. To ensure that u;(z,y) # 1 holds, we take x,y from appropriate Zariski-
closed subsets only. In the PSL(2,F,)-case, we obtain a curve defined over Z for which
the Hasse-Weil bound guaranties IF,-rational points if ¢ is big enough and if the reduction
mod ¢ is absolutely irreducible. The explicit bound for ¢ and the absolute irreducibility
(for all ¢!) are proved by Grbner basis methods using SINGULAR. The Suzuki groups
Sz(q), g = 2™, n odd, provide the most difficult case. Indeed, we construct a 2-dimensional
variety V C A® defined over I, which is affine, smooth, absolutely irreducible and which
is a-invariant where o : A®* — A® is the square root of the Frobenius sucht that non-zero
fixed points of @™ give rise to solutions of 1 # uy(z,y) = us(z,y) in Sz(2"). The existence
of such fixed points follows from the Lefschetz trace formula as conjectured by Deligne and
proved by Fujiwara. To apply all this, SINGULAR was an indispensible tool.

Edited by Konrad Mohring and Christian Sevenheck

13



Participants

Prof. Dr. Norbert A’Campo
norbert.acampo@unibas.ch
Mathematisches Institut
Universitat Basel

Rheinsprung 21

CH-4051 Basel

Prof. Dr. Francesca Aicardi
S.I.S.S.A.

Via Beirut 2 - 4

[-34014 Trieste

Dr. Sergei Anisov
anisov@math.uu.nl
S.Anisov@math.uu.nl
Mathematisch Instituut
Universiteit Utrecht
Budapestlaan 6

P. O. Box 80.010
NL-3508 TA Utrecht

Dr. Javier Fernande Bobadilla de
Olazabal

bobadilla@math.uu.nl

Mathematisch Instituut

Universiteit Utrecht

Budapestlaan 6

P. O. Box 80.010

NL-3508 TA Utrecht

Dr. Romain Bondil
Romain.Bondil@cmi.univ-mrs.fr
Fakultat fiir Mathematik

Ruhr-Universitat Bochum
D-44780 Bochum

Prof. Dr. Victor M. Buchstaber
buchstab@mendeleevo.ru

Steklov Mathematical Institute
Russian Academy of Science
Gubkina 8

117 966 Moscow GSP-1 — Russia

Igor Burban
burban@mathematik.uni-kl.de
Fachbereich Mathematik
Universitat Kaiserslautern
Erwin-Schrodinger-Strafie
D-67653 Kaiserslautern

Prof. Dr. Antonio Campillo
campillo@agt.uva.es

Depto. de Algebra, Geometria y
Topologia

Universidad de Valladolid
Facultad de Ciencias

E-47005 Valladolid

Gianmarco Capitanio
capitani@math. jussieu.fr
U. F. R. de Mathématiques
Case 7012

Université de Paris VII

2, Place Jussieu

F-75251 Paris Cedex 05

Prof. Dr. Fabrizio Catanese
fabrizio.catanese@uni-bayreuth.de
Lehrstuhl fiir Mathematik VIII
Universitat Bayreuth

NW - 11

D-95440 Bayreuth

Prof. Dr. Wolfgang Ebeling
ebeling@math.uni-hannover.de
Institut fiir Mathematik
Universitat Hannover
Welfengarten 1

D-30167 Hannover

Dr. Anne Friihbis-Kriiger
anne@mathematik.uni-kl.de
Fachbereich Mathematik
Universitat Kaiserslautern
Erwin-Schrodinger-Strafie
D-67653 Kaiserslautern

14



Dr. Taro Fujisawa
fujisawa@ge.nagano-nct.ac.jp
Nagano National College of
Technology

716 Tokuma

Nagano 381-8550 — Japan

Prof. Dr. Andrei Gabrielov
agabriel@math.purdue.edu
Department of Mathematics

Purdue University

150 N. University Street

West Lafayette IN 47907-2067 — USA

Dr. Mauricio D. Garay
Fachbereich Mathematik
Universitat Mainz

Saarstr. 21

D-55122 Mainz

Prof. Dr. Gert-Martin Greuel
greuel@mathematik.uni-kl.de
Fachbereich Mathematik
Universitat Kaiserslautern
Erwin-Schrédinger-Strafle
D-67653 Kaiserslautern

Prof. Dr. Helmut Arend Hamm
hamm@math.uni-muenster.de
Mathematisches Institut

Universitat Munster

Einsteinstr. 62

D—48149 Miinster

Prof. Dr. Theo de Jong
dejong@mathematik.uni-mainz.de
Fachbereich 17 Mathematik
Johannes Gutenberg-Universitat

Staudingerweg 9
D-55099 Mainz

15

Prof. Dr. Dmitry Kaledin
kaledin@balthi.dnttm.ru
Independent University of Moscow

B. Vlassievski per. 11
Moscow 119002 — Russia

Dr. Thomas Keilen
keilen@mathematik.uni-kl.de
Fachbereich Mathematik
Universitat Kaiserslautern
Erwin-Schrédinger-Strafle
D—-67653 Kaiserslautern

Prof. Dr. Viktor S. Kulikov
kulikov@mi.ras.ru

Department of Algebra

Steklov Mathematical Institute

Gubkina, 8

117966 Moscow GSP-1 — Russia

Prof. Dr. Francois Loeser
francois.loeser@ens.fr
Département de Mathématiques et
Applications

Ecole Normale Supérieure

45, rue d’Ulm

F-75230 Paris Cedex 05

Dr. Christoph Lossen
lossen@mathematik.uni-k1l.de
Fachbereich Mathematik
Universitat Kaiserslautern
Erwin-Schrodinger-Strafie
D—-67653 Kaiserslautern

Prof. Dr. Ignacio Luengo
iluengo@mat.ucm.es

Facultad de Matematicas

Depto. de Algebra

Universidad Complutense de Madrid
E-28040 Madrid



Prof. Dr. Alejandro Melle Hernan-
dez

amelle@mat.ucm.es

Facultad de Matematicas

Depto. de Algebra

Universidad Complutense de Madrid
E-28040 Madrid

Prof. Dr. Michel Merle
merle@math.unice.fr
Laboratoire J.-A. Dieudonné
Université de Nice

Sophia Antipolis

Parc Valrose

F-06108 Nice Cedex 2

Konrad Mohring
konrad@mathematik.uni-mainz.de
Fachbereich 17 Mathematik
Johannes Gutenberg-Universitat

Staudingerweg 9
D-55099 Mainz

Prof. Dr. David Mond
mond@maths.warwick.ac.uk
Mathematics Institute
University of Warwick
Gibbet Hill Road
GB-Coventry, CV4 TAL

Prof. Dr. Andras Nemethi
nemethi@math.ohio-state.edu
Department of Mathematics

Ohio State University

231 West 18th Avenue

Columbus, OH 43210-1174 — USA

Prof. Dr. Walter David Neumann
neumann@math.columbia.edu

Dept. of Mathematics

Barnard College

Columbia University

New York, NY 10027 — USA

16

Prof. Dr. Patrick Popescu-Pampu
ppopescu@math. jussieu.fr

Institut de Mathématiques

Equipe Topologie, Géometrie et Dyn.
Université de Paris VII; Case 7012

2, Place Jussieu

F-75251 Paris Cedex 05

Prof. Dr. Elmer G. Rees
E.Rees@ed.ac.uk s

School of Mathematics
University of Edinburgh

James Clerk Maxwell Bldg.
King’s Building, Mayfield Road
GB-Edinburgh, EH9 3JZ

Prof. Dr. Dusan Repovs
dusan.repovs@uni-1j.si
Institute of Mathematics,
Physics and Mechanics
University of Ljubljana
P.O.Box 2964

1001 Ljubljana — Slovenia,

Dr. Joaquim Roe
jroe@mat.uab.es

Departament de Matematiques
Universitat Autonoma de Barcelona
Edifici C

E-08193 Bellaterra (Barcelona)

Dr. Alessandra Sarti
sarti@mathematik.uni-mainz.de
Fachbereich Mathematik und
Informatik

Universitat Mainz
D-55099 Mainz

Prof. Dr. Frank-Olaf Schreyer
schreyer@math.uni-sb.de

FB Mathematik und Informatik
Geb. 27

Universitat des Saarlandes
D—-66123 Saarbriicken



Dr. Mathias Schulze
mschulze@mathematik.uni-k1.de
Fachbereich Mathematik
Universitat Kaiserslautern
Erwin-Schrodinger-Strafie
D-67653 Kaiserslautern

Christian Sevenheck
sevenheck@mathematik.uni-mainz.de
Fachbereich 17 Mathematik
Johannes Gutenberg-Universitat
Staudingerweg 9

D-55099 Mainz

Sergei Shadrin

shadrin@mccme.ru

Independent University of Moscow
Bolshoi Vlasjevskii Pereulok 11
Moscow 119002 — Russia

Dr. Eugenii Shustin
shustin@post.tau.ac.il
Department of Mathematics
School of Mathematical Sciences
Tel Aviv University

Ramat Aviv, P.O. Box 39040
Tel Aviv 69978 — ISRAEL

Prof. Dr. Joseph H.M. Steenbrink

steenbri@math.kun.nl
Mathematisch Instituut
Katholieke Universiteit Nijmegen
Toernooiveld 1

NL-6525 ED Nijmegen

Dr. Jan Stevens
stevens@math.chalmers.se
Department of Mathematics
Chalmers University of Technology
S-412 96 Goteborg

Prof. Dr. Duco van Straten
straten@mathematik.uni-mainz.de
vstraten@msri.org

Fachbereich Mathematik
Universitat Mainz

Saarstr. 21

D-55122 Mainz

Prof. Dr. Susumu Tanabe
tanabe@mccme.ru

Independent University of Moscow
Bolshoi Vlasjevskii Pereulok 11
Moscow 119002 — Russia

Prof. Dr. Mina Teicher
teicher@macs.biu.ac.il
Dept. of Mathematics

Bar-Tlan University
52 900 Ramat-Gan — Israel

Prof. Dr. Mihai Tibar

tibar@agat.univ-lillel.fr
Mathématiques

UMR 8524 CNRS
Université de Lille 1
F-59655 Villeneuve d’Asq

Dr. Ilya Tyomkin
tyomkin@barak-online.net
Department of Mathematics

The Weizmann Institute of Science
P. O. Box 26

Rehovot 76 100 — ISRAEL

Prof. Dr. Victor A. Vassiliev
vassil@vassil.mccme.rssi.ru
Steklov Mathematical Institute

8 Gubkina str.

117966 Moscow GSP-1 — Russia

Prof. Dr. Jonathan M. Wahl
jwlmath.unc.edu

Dept. of Mathematics

University of North Carolina
Phillips Hall

Chapel Hill NC 27599-3250 — USA



