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Matching and Saving in Continuous Time: Proofs

Christian Bayer(a) and Klaus Wälde(b)
(a) TU Berlin and

(b) University of Mainz, CESifo and Université catholique de Louvain1

April 2010

This paper provides the proofs to the analysis of a continuous time match-
ing model with saving in Bayer and Wälde (2010a). The paper proves the
results on consumption growth, provides an existence proof for optimal
consumption and a detailed derivation of the Fokker-Planck equations.

JEL Codes: C62, C65
Keywords: continuous time uncertainty, Fokker-Planck equations,

existence proof

1 Introduction

The paper by Bayer and Wälde (2010a) �BW10 in what follows �studies optimal
saving in a matching model in continuous time. It states many results without proving
them. All proofs are presented here.
This paper starts by recapitulating the essential equations of BW10 in the next

section. The Keynes-Ramsey rule (Euler equation) in BW10 describes the impact
of the interest rate, the time-preference rate and the precautionary savings term on
consumption growth. Section 3 provides the proofs behind this description. This sec-
tion also proves concavity of the value function, a result which is useful for numerical
analysis. The only assumption we base our proofs on is continuous di¤erentiability
of the consumption function and a �nite number of sign changes in a �nite interval.
These are very weak assumptions which are easily acceptable for our applications.
Once the Keynes-Ramsey rule is understood, BW10 continues by using a phase

diagram to illustrate consumption-wealth dynamics. The existence proof of optimal
consumption paths that corresponds to the phase-diagram (in some approximative
sense) is provided in section 4. Such an existence proof is of importance as it estab-
lishes that intuitive reasoning is in fact true. What is more, as numerical identi�cation

1Large parts of this paper were written while the authors were working at the Royal Institute
of Technology (KTH) in Stockholm and the University of Glasgow, respectively. We are grateful to
these institutions for their stimulating research environment. Christian Bayer: TU Berlin, Institute
of Mathematics, Straße des 17. Juni 136, 10623 Berlin, bayer@math.tu-berlin.de, Klaus Wälde: Uni-
versity of Mainz, Mainz School of Management and Economics, Jakob-Welder-Weg 4, 55128 Mainz.
klaus@waelde.com, www.waelde.com. We are very grateful to Walter Schachermayer for comments
and guidance, Michael Graber, Giuseppe Moscarini, Sevi Rodríguez Mora, Josef Teichmann and
Carlos Carrillo Tudela for comments and Jeremy Lise for discussions. The second author is indebted
to Ken Sennewald and Christian Bauer for earlier collaboration on this topic.
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of an optimal path is not always straightforward, knowing that the objective one looks
for actually exists is very reassuring.
The analysis of BW10 becomes a general equilibrium analysis by using Fokker-

Planck equations to describe the evolution of the density of the state variables over
time. This density is required to close the model and obtain an endogenous interest
and wage rate which is linked to the aggregate capital stock. The derivation of these
equations is in section 5. This derivation is relatively detailed in order to show that
applications in other contexts are possible as well.
Having obtained Fokker-Planck equations as a tool to describe the evolution of dis-

tributions raises the question about existence, uniqueness and stability of the limiting
distribution for the state variables. A companion paper (Bayer and Wälde, 2010b)
proves that the low interest rate case exhibits a unique invariant distribution and the
system is ergodic: the distribution always converges to the invariant distribution as
time approaches in�nity.
Our proofs are related to various methods and strands in the literature. Tools for

the Keynes-Ramsey proofs are elementary. The existence proof for optimal consump-
tion builds on the classical theorem of continuous dependence of the solution to an
ordinary di¤erential equation on its initial value. The proof continues by showing that
�hitting times�are continuous in initial values - which is far from obvious. We con-
clude by applying a version of the intermediate value theorem, speci�cally designed
for our purpose. We note that the classical theory of ordinary di¤erential equation,
see, for instance, Mattheij and Molenaar (2002) is only applicable in our case af-
ter some modi�cations, because the right hand side satis�es the standard Lipschitz
conditions only after a variable transformation.
The principles behind and the derivation of the Fokker-Planck equation for Brown-

ian motion are treated e.g. in Friedman (1975, ch. 6.5) or Øksendal (1998, ch. 8.1).
For our case of a stochastic di¤erential equation driven by a Markov chain, we use
the in�nitesimal generator as presented e.g. in Protter (1995, ex. V.7). From general
mathematical theory, we know that the density satis�es the corresponding Fokker-
Planck equation @

@t
p(t; x) = A�p(t; x), where p denotes the density of the process at

time t and A� is the adjoint operator of the in�nitesimal generator A of the process
(x is the state variable). We follow this approach in our framework and obtain the
Fokker-Planck equation for the law of the employment-wealth process.
Our approach constitutes a considerable generalization to the closed-form solution

results used for structural estimation e.g. by Posch (2009) or Aït-Sahalia (2004). In
these models, estimation is possible only if a closed-form solution for the density can
be found. In many other structural estimation approaches, at least some structure for
the density is known, e.g. the generalized exponential distribution in many duration
models (Eckstein and Wolpin, 1995, Cahuc et al., 2006 or Launov and Wälde, 2010).
In our setup, the density is only implicitly given, i.e. one can derive densities for
estimating models with any dynamic property which is based on Brownian motions
or Poisson processes (or Lévy processes) and not only with properties which allow
for a (closed to) closed-form solution. As we present a very detailed derivation of the
di¤erential equations for the density, it should be easy to use this tool for structural
estimation in other contexts as well. Lo (1988) derives a Fokker-Planck equation as
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well for a one-dimensional stochastic process. We provide a setup with two processes
which also makes clear how the Fokker-Planck approach can be generalized to three
or more processes.

2 Background

In order to make this paper self-contained, we present all equations required for
subsequent proofs in this section. The economic background of these equations is in
Bayer and Wälde (2010a).

2.1 The model

Consider an individual that behaves optimally, according to some objective function
and given certain constraints (see (1) and (2) below), by following a consumption
function c (a (�) ; z (�)). Arguments of this function are the state variables wealth
a (�) and the labour market status z (�) 2 fw; bg : Wealth of such an individual
follows the budget constraint

da (�) = fra (�) + z (�)� c (a (�) ; z (�))g d� (1)

where r is the constant but endogenous interest rate and z (�) simultaneously denotes
labour market income. Labour market status and labour market income follow a
process z (�) driven by two Poisson processes with state-dependent arrival rates,

dz (�) = �dq� ��dqs; � � w � b: (2)

Arrival rates are � (b) = � > 0 and � (w) = 0 for q� and s (w) = s > 0 and s (b) = 0
for qs: Since qs is only active when z is in the state w, while q� is only active when
z is in the state b, this equation implies that z (�) jumps between the states w and
b: Labour income w (net wage) and b (unemployment bene�ts) are constant but
endogenous as well. This implies that z(�) is a time-homogeneous Markov chain (in
continuous time) with state space fw; bg.
The instantaneous utility function is of the CRRA type,

u (c (�)) =
c (�)1�� � 1
1� �

, (3)

where all proofs will work with a positive � 6= 1:

2.2 The reduced form

The reduced form in BW10 (sect. 4.2) describing optimal behaviour is expressed with
wealth a as the exogenous variable (instead of time t). De�ning

x(a) � c(a; w); y(a) � c(a; b); (4)
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the reduced form can be written as

_x(a) =
r � �+ s

h�
x(a)
y(a)

��
� 1
i

ra+ w � x (a)

x (a)

�
; (5a)

_y(a) =
r � �� �

h
1�

�
y(a)
x(a)

��i
ra+ b� y (a)

y (a)

�
: (5b)

Here, _x and _y denote the respective derivatives of x and y with respect to a. Additional
parameters appearing here are the time preference rate �; the separation rate s and
the matching rate � plus the degree of risk-aversion �: We will assume for all proofs
that r < �: This is a non-autonomous system due to the appearance of a in the
denominators in both equations.
BW10 has shown that there is a natural borrowing limit which implies that any

solution to (5) must satisfy
y (�b=r) = 0: (6)

2.3 Boundary conditions

When graphically illustrating the full stochastic system in a phase diagram, BW10
introduced a point (a�w; c (a

�
w; w)) = (a

�
w; x (a

�
w)) in R2 called temporary steady state

(TSS). At this point, the stochastic system (a(�); c(a(�); w)) (the stochastic Keynes-
Ramsey rules and the budget constraints, see (8) � (11) in BW10) is temporarily
(until the next jump of qs) at rest. We know about the TSS from BW10 that

x (a�w) = ra�w + w; (7)

and that the value of consumption after a jump, i.e. c (a�w; b) = y (a�w) ; is given by
y (a�w) =  x (a�w) where

 �
�
1� r � �

s

��1=�
< 1: (8)

In all cases where  is used, r is su¢ ciently low such that  is a real number.
As the TSS must be part of any optimal consumption path c (a; z) ; we are inter-

ested in solutions to the reduced form (5) which contain the point (a�w; x (a
�
w) ; y (a

�
w)) :

Note that this point is from R3 in contrast to the TSS which is from R2: Note also
that this point is not a steady state of this ODE system: _y (a�w) is negative and �
what is �worse�in a sense � _x (a�w) is not de�ned as � _x (a

�
w) = 0=0�.

For the latter reason, BW10 introduced an auxiliary temporary steady state
(aTSS) de�ned by (a�w; xv (a

�
w)) from R2 where

xv (a
�
w) = ra�w + w � v (9)

and where v > 0 is an arbitrarily small positive number. This value for x (a�w) replaces
the value in (7). Obviously, (a�w; x0 (a

�
w)) = (a

�
w; x (a

�
w)). The value for y adjusts as

well as it is given by
yv (a

�
w) =  xv (a

�
w) (10)
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where  is the value in (8). This aTSS corresponds to a point (a�w; xv (a
�
w) ; yv (a

�
w))

for the ODE (5) from R3. This point, written as

� � �v (â) = (â; xv (â) ; yv (â)) (11)

will later serve as terminal values when solving our ODE systems. Note that �
depends on v.

2.4 The framework for the proofs

The only assumption we make for our proofs is an assumption on continuity.

Assumption 1 Relative consumption � (a) � c (a; w) =c (a; b) is continuously di¤er-
entiable in wealth a: The number of sign changes of �0 (a) in any interval of �nite
length is �nite.2

This is obviously a very weak assumption which does not impose any economically
relevant restriction on our solutions.
In addition to this assumption, we have no ambition in understanding the system

(5) in all generality. We rather restrict ourselves to the domain where equilibrium
dynamics take place. This region was identi�ed in the �g. 1 in BW10 as the one
delimited by �b=r and a�w for wealth and by the zero-motion lines for consumption
levels, where we interpret the zero-motion lines as planes in the (a; x; y)-space. More-
over, we restrict our attention to cases where x � y, i.e. the consumption of the
unemployed cannot be larger than the consumption of the employed.3 Altogether, we
consider the domain

Qv = f(a; x; y) 2 R3 j a � �b=r; x � ra+ w � v; y � ra+ b; y � 0; x � yg: (12)

where v is the small positive constant used in (9) as well.
In the proofs, it will be convenient to restrict attention to a bounded set. Thus,

we consider

Rv;	 = Qv \
�
(a; x; y) 2 R3 jx � 	 <1; a � (	� w + v)=r

	
(13)

where	 only serves to make Rv;	 � R3 a compact set, which we need to obtain global,
uniform Lipschitz constants. We shall see below that 	 has to be chosen larger than
	0 =

 w�b
(1� )r . In this case, however, 	 does not interfere with the construction.

2The second sentence of this assumption is required to rule out �pathological cases�. One can
construct continuously di¤erentiable functions that change sign in�nitely often in a �nite neighbor-
hood (think of x sin (1=x) in a neighborhood of zero). None of these functions would be economically
plausible in any way. This second sentence is used in the proof of prop. 4.

3We will prove later in lem. 3.10 that x > y: In this sense, the restriction for our domain Qv is
not binding in any economic sense.
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3 Proof of the predictions of the Keynes-Ramsey
rule

We will now prove prop. 3 of BW10. We repeat it here for reference, as our prop. 3.1.

Proposition 3.1 Consider a low interest rate, i.e. 0 < r � �. De�ne a threshold
level a�w by

u0 (c (a�w; b))

u0 (c (a�w; w))
� 1� r � �

s
: (14)

For our instantaneous utility function (3), this de�nition reads

c (a�w; b) =  c (a�w; w) (15)

where  is from (8).
(i) Consumption of employed workers increases if the worker owns a su¢ ciently

low wealth level, a < a�w. Employed workers with a > a�w choose falling consumption
paths.
(ii) Consumption of unemployed workers always decreases.
(iii) Consumption of employed workers exceeds consumption of unemployed work-

ers at the threshold a�w; i.e.  � 1 in (15) for r � �:

Let us recall the �ndings in BW10 on consumption growth. Here, and for the
remainder of this section, we use the notation as in BW10, i.e. aw and ab satisfy the
ODE _az(�) = raz(�) + z � c(az(�); z) for �xed z 2 fw; bg.

Lemma 3.2 (BW10) Individual consumption rises if and only if current consumption
relative to consumption in the other state is su¢ ciently high.
For the employed worker, consumption rises if and only if c (aw; w) relative to

c (aw; b) is su¢ ciently high,

dc (aw(�); w)

d�
� 0, u0 (c (aw(�); b))

u0 (c (aw(�); w))
� 1� r � �

s
, c (aw(�); w)

c (aw(�); b)
� 1= ; (16)

where  is from (8).
For the unemployed worker, consumption rises if and only if c (ab; b) relative to

c (ab; w) is su¢ ciently high,

dc (ab(�); b)

d�
� 0, u0 (c (ab(�); w))

u0 (c (ab(�); b))
� 1� r � �

�
: (17)

3.1 Proof of part (i)

3.1.1 A local result

We �rst show that consumption c (aw; w) rises in time for wealth smaller than but
close to a�w.
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Given that, by ass. 1, the number of sign changes of �0 (a) in any interval for a of
�nite length is �nite, for any a0 we can �nd an " > 0 such that � (a) � c (a; w) =c (a; b)
is monotonic in [a0 � "; a0]. Exploiting this for a�w; whatever the properties of relative
consumption, we can always �nd an " such that one of the following three cases must
holds for 
" � [a�w � "; a�w[

(i)
(ii)
(iii)

9=; �0 (a)ja2
"

8<:
<
>
=

9=; 0:
Note that we do not make any statement about the derivative in a�w: In fact, in case
(i) �0 (a)ja2a�w can be negative or zero, in case (ii), it can be positive or zero.

Lemma 3.3 (a) Consumption of employed workers rises over time for a wealth level
a 2 
" if and only if case (i) holds,

dc (aw(�); w)

d�
> 0 for aw(�) 2 
" , case (i) holds.

(b) Consumption c (aw(�); w) falls over time for aw(�) 2 
" if and only if (ii) holds.

Proof. (a) By (16), dc(aw(�);w)
d�

> 0 , c (aw(�); w) =c (aw(�); b) > 1= . As
c (a�w; w) =c (a

�
w; b) = 1= at a�w, as w and b are parameters and using ass. 1, this

is a condition on the derivative of relative consumption with respect to wealth a in

": dc (aw(�); w) =d� is positive for aw(�) 2 
" if and only if case (i) holds.
(b) By (16), consumption falls over time if relative consumption lies below 1= :

This can be the case in 
" only if case (ii) holds.

Lemma 3.4 Relative consumption falls in wealth for a 2 
", �0 (a)ja2
" < 0; i.e.
case (i) holds.

Proof. a) Assume that case (ii) holds, i.e. �0 (a)ja2
" > 0. Then, by lem. 3.3,
dc(aw(�);w)

d�
< 0 for aw(�) < a�w: Consumption of unemployed workers would still de-

crease in time for all wealth levels. In our set Qv,
daw(�)
d�

> 0 and therefore dc(a;w)
da

< 0:

As dc(ab(�);b)
d�

< 0 and dab(�)
d�

< 0 in Qv; we know that
dc(a;b)
da

> 0: As a consequence,
�0 (a) < 0: This contradicts the assumption that case (ii) holds and case (ii) can be
excluded.
b) Now assume that case (iii) holds, i.e. relative consumption is �at, �0 (a)ja2
"[a�w =

0. As c (a�w; w) =c (a
�
w; b) = 1= , dc (aw(�); w) =d� = 0 for aw(�) 2 
":As dc (ab(�); b) =d� <

0; relative consumption is not constant �which contradicts the assumption that rela-
tive consumption is �at in wealth. As case (iii) is thereby excluded as well, the proof
is complete.
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3.1.2 A global result

We now complete the proof by a global result on consumption growth.

Lemma 3.5 Consumption c (aw; w) (a) rises in time for all a < a�w and (b) decreases
in time for all a > a�w.

Proof. (a) Imagine to the contrary of �c (aw; w) rises in time for all a < a�w�that
there is an interval ]�1;�2[ with �2 < a�w such that this is is the last interval before
a�w where c (aw; w) falls in time,

dc (aw(�); w) =d� < 0; 8 �1 < aw(�) < �2 < a�w: (18)

We now proceed as in the proof of lem. 3.4. As daw(�)
d�

> 0 in Qv; this would imply
that dc(a;w)

da
< 0 for �1 < a < �2: We know that

dc(a;b)
da

> 0 in Qv: Hence, we would
conclude that

�0 (a) < 0; 8 �1 < a < �2: (19)

By (16), the assumption in (18) would hold if and only if relative consumption
c(aw;w)
c(aw;b)

is below 1= for �1 < a < �2:
dc(aw(�);w)

d�
< 0 , c(aw(�);w)

c(aw(�);b)
< 1= : As c(a;w)

c(a;b)
is

continuous in wealth by ass. 1 and as case (i) holds by lem. 3.4, c(a;w)
c(a;b)

can be smaller
than 1= only if there is some range ]�3;�2[ in which �0 (a) > 0: (An example of such
a path is shown in �g. 1.) This is a contradiction to the conclusion in (19). Hence,
consumption must rise in time for all a < a�w:
(b) This proof is in analogy to the proof of (a).

Figure 1 An example for relative consumption � (a) � c(a;w)
c(a;b)
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3.2 Intermediary steps

Before we prove the rest of prop. 3.1, we need some further intermediary results �
which, however, are of some interest in their own right. Given that marginal utility
from (3) is positive and decreasing, u0 (c) > 0 and u00 (c) < 0; we can establish that
x (a) > y (a) ; i.e. consumption in the state of employment is larger than in the state of
unemployment, keeping wealth constant. We prove in passing that the value functions
V (a; z) are strictly concave in wealth a:

Lemma 3.6 Consumption rises in wealth, ca (a; z) > 0:

Proof. Prop. 3.1 (i) shows that dc (aw(�); w) =d� > 0 in Qv: As daw(�)=d� > 0
as well, the derivative _x (a) in (5) is positive in Qv:

Lemma 3.7 As marginal utility from consumption is positive, the value function
V (a; z) rises in wealth, Va (a; z) > 0:

Proof. The �rst-order condition for optimal consumption is given by (47) in the
appendix and reads

u0 (c (a; z)) = Va (a; z) : (20)

As marginal utility is positive by (3), the value function rises in wealth.

Lemma 3.8 As u00 (c) < 0 and as consumption rises in a by lemma 3.6, the value
function is strictly concave in a.

Proof. The partial derivative of the �rst-order condition with respect to wealth
implies

u00 (c (a; z)) ca (a; z) = Vaa (a; z) : (21)

As u00 (c (a; z)) < 0 from the concavity of (3) and ca (a; z) is positive by lem. 3.6,
Vaa (a; z) must be negative. With lem. 3.7, the value function is strictly concave.

Lemma 3.9 The shadow price for wealth is higher in the state of unemployment,
Va (a; b) > Va (a; w) :

Proof. The derivation of the Keynes-Ramsey rule gives us (see app. A.1)

(�� r)Va (a; z)� s (z) [Va (a; b)� Va (a; w)]� � (z) [Va (a; w)� Va (a; b)]

= [ra+ z � c (a; z)]Vaa (a; z) :

In state z = w; this means

(�� r)Va (a; w)� s (z) [Va (a; b)� Va (a; w)] = [ra+ w � x (a)]Vaa (a; w) : (22)

Given the region we are interested in (where ra + w � x (a) > 0) and given lemma
3.8, the right-hand side is negative. Hence, the left-hand side must be negative as
well. As (�� r)Va (a; w) is positive due to r < �, the second term must be negative.
This is the case only for Va (a; b) > Va (a; w) :

10



Lemma 3.10 Consumption of the employed worker is higher than consumption of
the unemployed worker, x (a) > y (a) :

Proof. As Va (a; b) > Va (a; w) ; the �rst-order condition implies u0 (c (a; b)) >
u0 (c (a; w)) : As the marginal utility is decreasing, c (a; w) > c (a; b) , x (a) > y(a):

3.3 Proof of parts (ii) and (iii)

We now complete the �nal bits of the proof.
Proof of prop. 3.1 � continuation. (ii) By (17), dc (ab(�); b) =d� < 0 ,

u0 (c (ab(�); w)) < {u0 (c (ab(�); b)) where { � 1� r��
�
� 1 as r � �:As u0 (c (ab(�); w)) <

u0 (c (ab(�); b)) with c (ab(�); w) > c (ab(�); b) from lem. 3.10, this condition always
holds.
(iii) This follows from solving (14) for relative consumption.

4 The existence of an optimal consumption path

De�nition 4.1 (Optimal consumption path)
(i) A consumption path is a solution4 (a; x(a); y(a)) of the ODE-system (5) for

the range �b=r � a � â in Rv;	 with terminal condition � from (11).5 The terminal
condition � satis�es (9), (10) for an arbitrary â > �b=r:
(ii) An optimal consumption path is a consumption path which additionally satis-

�es y (�b=r) = 0: If such a path exists, we denote the wealth level â of the terminal
condition by a�w.

We remark that the notion of an optimal consumption path depends on v (via �).
The objective of this section consists in proving the following

Theorem 4.2 There is an optimal consumption path.

4.1 Preliminaries

In what follows, we will use classical theorems for initial value problems for ODEs.
Currently, we have formulated our system (5) as a terminal value problem, since we
have set a value �, which the system should attain at â = a�w, i.e. at the end of the
interval [�b=r; a�w] under consideration. For ease of notation and to help intuition,
we shall now recast the problem into a classical initial value problem, i.e. we will
require the value � to be attained at the �xed beginning � = 0 of an interval [0; � �],
on which we study the problem.

4By a solution to (5), we here understand continuous maps x : [�b=r; â]! R, y : [�b=r; â]! R,
which are continuously di¤erentiable in ]� b=r; â[ and solve (5a) and (5b), respectively, in the open
interval. In particular, we do not require the derivatives of x and y to converge for a! �b=r.

5In the sense that an optimal consumption path satis�es x(â) = xv(â), y(â) = yv(â).
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To this end, it is more useful to work with an autonomous system. Hence, we
rewrite (5) by including m (a) = a as third variable which �replaces�wealth a, which
now purely serves as a parameter, i.e. as the independent variable. This gives the
system

_m(a) = 1;

_x (a) =
r � �+ s

h�
x(a)
y(a)

��
� 1
i

rm (a) + w � x (a)

x (a)

�
;

_y (a) =
r � �� �

h
1�

�
y(a)
x(a)

��i
rm (a) + b� y (a)

y (a)

�
:

Now de�ne � � â � a, x1 (�) � m (â� �), x2 (�) � x (â� �), x3 (�) � y (â� �) :
Then, d

d�
x1 (�) � _x1 (�) =

d
d�
m (â� �) = d

d[â�a]m (a) = �
d
da
m (a) = � _m (a) : Doing

the same for x and y; the �inverted�autonomous system therefore reads

_x1 (�) = �1; (23a)

_x2 (�) = �
r � �+ s

h�
x2(�)
x3(�)

��
� 1
i

rx1 (�) + w � x2 (�)

x2 (�)

�
; (23b)

_x3 (�) =
r � �� �

h
1�

�
x2(�)
x3(�)

��i
rx2 (�) + b� x3 (�)

x3 (a)

�
; (23c)

where now _xi denotes the derivative of xi(�) with respect to � , i = 1; 2; 3.

De�nition 4.3 Given (23) and for � � 0; let X(� ; �) = (x1(�); x2(�); x3(�)) denote
the solution of (23) started at X(0; �) = � 2 Rv;	 from (11) where �b=r � â �
	+v�w

r
. For later use, we also introduce the notation xi(�) = xi(� ; �), i = 1; 2; 3.

By passing from (5) to (23) we have reverted the time-direction �more precisely,
in our setting, the wealth-direction �and turned a non-autonomous system into an
autonomous one by including the independent variable as an additional component
of the solution. Thus, the curve a 7! (a; x(a); y(a)) with terminal value x(â) = xv(â),
y(â) = yv(â) is equal to the curve � 7! X(� ; �) with � = �(â), which is the solution
of an initial value problem in the classical sense. However, the parametrization is
reverted in the sense that in the former case we start at the left endpoint (�left� in
the sense of the smallest value of the a-component) and end in the right endpoint,
whereas in the latter case we start at the right endpoint and end in the left one. In
particular, the absolute value of the speed long the curve is equal, but the direction
is reversed.

4.2 Continuity of the solution in initial values

In order to be able to apply classical theorems, we need �nite derivatives on the right-
hand side of an ODE system. The right-hand side of the ODE (5), however, exhibits
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singularities at the boundary y = ra+b of Qv: This is of particular importance as the
de�nition of the optimal consumption path in De�nition 4.1 uses y (�b=r) = 0 �which
lies on this boundary. We obtain �nite derivatives by (i) a coordinate transformation
and by (ii) (temporarily) reducing the set on which we are interested in a solution by
demanding that y � ". We will later show how this reduction can then be removed
again by passing "! 0.

Lemma 4.4 (Coordinate transformation) Let x(a) and y(a) be solutions of (5). The
mapping a 7! y(a) is bijective. Change variables a = a(y) and consider x and a as
functions of y. Then

x0(y) � dx(y)

dy
=
r � �+ s

h�
x(y)
y

��
� 1
i

r � �� �
h
1�

�
y

x(y)

��i x(y)
y

ra(y) + b� y

ra(y) + w � x(y)
; (24a)

a0(y) � da(y)

dy
=

ra(y) + b� y

r � �� �
h
1�

�
y

x(y)

��i �
y
: (24b)

Proof. Since _y(a) > 0, y is a bijective function of a: As a0(y) = 1
_y(a)
, we obtain

the second equation by inserting (5b). The �rst equation follows from �dividing (5a)
by (5b)�.
We are going to avoid the singularity at y (�b=r) = 0 by temporarily requiring

these properties only to hold �up to an arbitrarily small number "�. We do this by
considering the domain R";v;	 as given in the following

De�nition 4.5 Fix a numbers " > 0 and de�ne

R";v;	 = Rv;	 \
�
(a; x; y) 2 R3 j y � "

	
: (25)

This de�nition implies that we temporarily replace the requirement that y (�b=r) =
0 by y (a) = " for some �b=r � a � �b=r + "=r.

Lemma 4.6 The right-hand side given in (24) is uniformly Lipschitz on R";v;	.

Proof. Consider the right-hand side of (24a). The only possible points, where
the Lipschitz constant can explode, are when the denominators in the right-hand side
become 0 or when a term under a fractional power (i.e. with exponent �) becomes 0.
In R = R";v;	, y is uniformly bounded away from 0 and x is uniformly bounded away
from ra+w. Moreover, note that r����

�
1�

�
y
x

���
= 0 if and only if

�
y
x

��
= 1� r��

�
.

Now 1� r��
�
> 1 by the assumption that r < �. On the other hand, y < x, implying

that
�
y
x

��
< 1. Consequently, all the denominators are uniformly bounded away from

0.
For the fractional powers, note that x=y > 1 is trivially uniformly bounded away

from 0. As x � 	,
y

x
>

�
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is uniformly bounded away from 0 on R";v;	. This shows that (24a) is uniformly
Lipschitz.
The same arguments show that the right-hand side of (24b) is uniformly Lipschitz,

too.

Remark 4.7 Since the right hand side of (24) is uniformly Lipschitz, we can now
apply the classical theory of ODEs. For instance, we have existence and uniqueness
of the solution by the Picard-Lindelöf theorem, see Mattheij and Molenaar (2002,
th. II.2.3, th. II.3.1). Moreover, the solution will be continuous as a function of the
initial value, see, again, Mattheij and Molenaar (2002, th. II.4.7). In the lemma
below, we will see how this even implies the corresponding properties for the non-
transformed system (23).

Lemma 4.8 (Continuity in initial values) Consider the set R = R";v;	 from (25) and
the solution X(� ; �) from De�nition 4.3 with initial condition � given in (11). The
solution X(� ; �) depends continuously on its initial values �. More precisely, there is
a constant L > 0 and an increasing map � : [0;1[! [0;1[ (a modulus of continuity)
with limt&0 �(t) = �(0) = 0 such that

kX(�1; �1)�X(�2; �2)k � Lk�1 � �2k+ �(j�1 � �2j);

provided that �1;�2 2 R and X(� ; �i) 2 R for all 0 � � � max(�1; �2), i = 1; 2.
Here, k�k denotes the Euclidean norm on R3.

Proof. By classical results from the theory of ordinary di¤erential equations, see
for instance Mattheij and Molenaar (2002, th. II.4.7), the solution of an ODE-system
depends continuously on the initial data as long as the right-hand side is uniformly
Lipschitz. More precisely, let Y (� ; �) denote the solution of an ODE with uniformly
Lipschitz right-hand side (with Lipschitz constant C), started at Y (�0; �) = �, then

kY (� ; �1)� Y (� ; �2)k � exp (C(� � �0)) k�1 � �2k:

Now consider the transformed system (a(y); x(y)) from (24). By Lemma 4.6, the
right-hand side is uniformly Lipschitz. The solution of (24) therefore depends contin-
uously on its initial data (a0; x0). It is then obvious that the trajectory (a(y); x(y); y)
depends continuously on (a0; x0; y0): As system (24) is a reparameterized version of
(5), the solution (a; x (a) ; y (a)) to (5) from def. 4.1 is also continuous in its boundary
conditions �even though the right hand side of (5) is not uniformly Lipschitz. Sim-
ilarly, as (23) is just a reparameterization of (5), the solution X (� ; �) to (23) from
def. 4.3 is also continuous in its initial condition �.
In order to get the estimate, we now consider the ODE (23) and note that we

only consider it on the compact set R";v;	. In the parametrization by y given in (24),
y is the independent variable, i.e. plays the role of � in the above estimate. By
compactness of R";v;	, y only runs through a bounded set, therefore we can rewrite
the constant in the above inequality as exp(C(y � y0)) � L for some suitable L > 0.
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Given � 2 R";v;	. Then a�w � 	�w+v
r

, which implies that the solution X(� ;w) can
only stay inside R";v;	 until time � = 	�w+v+b

r
, at most. Consider

D = f(�;�) 2 [0;1[�R";v;	 jX(� ; �) 2 R";v;	g:

Then D is a closed subset of
�
0; 	�w+v+b

r

�
� R";v;	, implying that D is compact.

Consequently, X : D ! R";v;	 is uniformly continuous, which implies the existence
of a modulus of continuity � with

kX(�1; �1)�X(�2; �2)k � �(j�1 � �2j+ k�1 � �2k):

The inequality in the lemma then follows by the triangle inequality.

4.3 Continuity of the �rst hitting-wealth in initial values

While we have shown in the previous section that the solutions to all systems (5),
(23) and (24) are continuous in initial values, this does not automatically imply that
the solutions will be continuous on the boundary of the domain we are interested in,
in the sense that the place where the solution leaves the domain R might not depend
continuously on the initial data. This will now be proved in this section.
In the proofs and also in a later step, we will use the following

De�nition 4.9 (First hitting-wealth) Consider the set R";v;	 from (25) and the so-
lution X (� ; �) to the system (23). Consider the path y (a) that corresponds to x2 (�)
of this solution. Then we de�ne â1st = f (â) as the ��rst hitting-wealth�(in analogy
to �rst hitting-time), i.e. the wealth level where the path y (a) hits any boundary of
R";v;	 for the �rst time. Similarly denote �(�) � inff� � 0 jX(� ; �) 2 @R";v;	g and
F (�) � X(�(�); �).

We know that â1st exists because in the set R";v;	 the derivatives in (23) are well-
de�ned and a solution therefore exists. Notice that â1st equals the �rst component of
F (�(â)).
We also need

De�nition 4.10 Let N � R";v;	 with

N =

�
�(â)

���� â 2 �� br ;  [w � v]� b

r [1�  ]

��
be the set of all potential initial conditions from (11) for a solution in the sense of
def. 4.1. Here we implicitly assume that 	 is large enough that indeed N � R";v;	.6

De�ne M as
M =M1 [M2 [M3 � R";v;	 (26)

6This is the only necessary condition on 	 for the construction to work. In the sequel, we shall
assume this condition without further notice.
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with

M1 = f(a; x; y) 2 R";v;	 j y = ra+ bg;
M2 = f(a; x; y) 2 R";v;	 j a = �b=rg;
M3 = f(a; x; y) 2 R";v;	 j y = "g:

This set will turn out to be the set of all potential �rst hitting-wealths.

Since we know that x > y, the trajectory will not hit the boundary of R at the
part fx = yg. Therefore, we have the

Corollary 4.11 F : N ! M is a well-de�ned map from R3 to R3, i.e. for every
� 2 N , the corresponding solution path X(� ; �) exists and stays in R";v;	 until it
�nally hits M (and no other boundary of R";v;	).

Before formulating the main lemma of this section, let us �rst derive a simple
bound on the derivative _y(a) of the consumption of the unemployed.

Lemma 4.12 For (a; x; y) in the interior of Qv from (12), we have

_y(a) � r � �

ra+ b� y(a)

y(a)

�
:

Proof. By (5b) we have

_y (a) =
r � �� �

h
1�

�
y(a)
x(a)

��i
ra+ b� y (a)

y (a)

�

=

0@ r � �

ra+ b� y (a)
�
�
h
1�

�
y(a)
x(a)

��i
ra+ b� y (a)

1A y (a)

�
>

r � �

ra+ b� y (a)

y (a)

�
:

The last inequality follows from the fact that
�[1�( y(a)x(a))

�
]

ra+b�y(a) is negative (and therefore

��[1�( y(a)x(a))
�
]

ra+b�y(a) is positive) as ra+ b� y (a) is negative in the interior of Qv.
The key result in this section is presented in

Lemma 4.13 The map F : N !M is continuous.

Proof. We need to prove that for every � 2 N and every � > 0 there is an � > 0
such that

k�0 � �k < � =) kF (�0)� F (�)k < �: (27)

We start the proof by �xing �0; � 2 N such that k�0 � �k < � for some � > 0.
Let us �rst assume that �(�0) � �(�). By the triangle inequality and Lemma 4.8,
we have

kX(�(�0); �0)�X(�(�); �)k � kX(�(�0); �0)�X(�(�0); �)k+
+ kX(�(�0); �)�X(�(�); �)k

� L1 k�0 � �k+ �(j�(�0)� �(�)j); (28)
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for a constant L1 > 0 and the modulus of continuity �. In order to get an estimate
for j�(�0)� �(�)j, we have to distinguish between three di¤erent cases.
Case (i): F (�0) 2M1.

By Lemma 4.12, there are constants L2; `2 > 0 such that _y � L2 for jy�(ra+b)j � `2.
More precisely, we can choose `2 > 0 freely and obtain the bound for L2 = 1

`2

(��r)"
�
. If

L1� � `2, we can bound the absolute value of the derivative of x3(� ; �) from below by
L2 (for t � �(�0)). This implies that the path X(� ; �) hits M1 before time �(�0)+ �
for

�(L2 � r) = `2 () � =
`2

L2 � r
;

unless it hits another boundary of R";v;	 before that. Inserting into (28), this gives
the estimate

kF (�0)� F (�)k � L1� + �

�
`2

L2 � r

�
:

Choosing `2 = L1�, the bound is smaller than � provided that

�

 
L1

C
L1�

� r
�

!
+ L1� < �; (29)

where C � (��r)"
�
. Note that the left hand side in (29) converges to zero for � ! 0,

therefore we can �nd an �0(�) > 0 (only depending on the constants C, L1 and r and
the modulus of continuity �, but not on �0 or �) such that the desired inequality (27)
holds for � < �0. We have tacitly assumed that L2 = C=`2 =

C
L1�

> r, which can be
realized by choosing � small enough.
Case (ii): F (�0) 2M2.

Let â denote the �rst component of �, and â0 the �rst component of �0. Note that
x1(� ; �) = â � � , for every � � 0. Since X(�(�0); �0) 2 M2, we have �b=r =
x1(�(�0); �0) = â0 � �(�0), implying that �(�0) = â0 + b=r. On the other hand,
x1(�(�); �) � �b=r, implying that �(�) � â+ b=r. Combining these two results, we
obtain

j�(�0)� �(�)j = �(�)� �(�0) � â� â0 � k�0 � �k :
Consequently, the inequality (28) implies

kF (�0)� F (�)k � L1 k�0 � �k+ �(k�0 � �k) � L1� + �(�);

and (27) holds for � small enough such that

L1� + �(�) < �: (30)

Case (iii): F (�0) 2M3.
Since x3(�(�0); �0) = ", we have 0 � x3(�(�0); �)�" � L1�. By Lemma 4.12, we can
�nd a constant L3 > 0 such that _y � L3 on R";v;	 �note that L3 depends on ". Thus,
X(s; �) will hit the boundary M3 before time �(�0) + � with � = L1�=L3, unless it
hits another boundary of R";v;	 before. In any case, j�(�0)� �(�)j � L1�=L3, and
we obtain

kF (�0)� F (�)k � L1� + �

�
L1
L3
�

�
;
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and (27) is satis�ed for

L1� + �

�
L1
L3
�

�
< �: (31)

Choosing � small enough that both (29) and (30) and (31) are satis�ed, settles
the proof for �(�0) � �(�). Notice that none of the conditions (29), (30) and (31)
depends on �0. Therefore, in the other case �(�0) � �(�), we can just revert the
rôles of � and �0 and obtain the same results in cases (i), (ii) and (iii).

4.4 Existence of a solution

This section proves our main result formulated in Theorem 4.2.
Proof of Theorem 4.2. Fix some " > 0 and consider R";v;	. By an intermediate

value theorem applied to F : N ! M , we will obtain a point or points � 2 N such
that F (�) 2 M3 as used in (26), i.e. x3(�(�); �) = " provided that we can show the
existence of points (that could be called upper and lower bounds) �minv ;�maxv 2 N
with F (�minv ) 2 M2 and F (�maxv ) 2 M1. (Note that F = F" and all the Mi = Mi("),
i = 1; 2; 3, depend on " and v, but not on 	, provided that 	 is large enough.)
Choose

�minv = �(�b=r) = (�b=r; w � b� v;  [w � b� v]); �maxv = �

�
 (w � v)� b

(1�  )r

�
:

By construction, both �minv and �maxv are contained in N . Moreover, we trivially
have F"(�minv ) 2 M2("), F"(�maxv ) 2 M1(") for every " > 0 small enough. Note, in
particular, that Lemma 4.13 also implies continuity of F in the boundary points �minv

and �maxv of N . Therefore, the image set F"(N) is a connected set, with non-empty
intersection with both M1 and M2. Since the distance

dist(M1;M2) = inf fk�1 � �2k j�1 2M1; �2 2M2g =
"

r
> 0;

we may conclude that F"(N) \M3(") 6= ;. This establishes that there must be a �
such that F" (�) 2M3: In words, there is an initial condition � (â) such that the path
(a; x(a); y (a)) hits the boundary at y = ":
Now de�ne

N3(") � F�1" (M3(")) = f� 2 N jF"(�) 2M3(")g :

By continuity of F" : N ! M("), the set N3(") is compact. Moreover, the family
(N3("))">0 is directed in the sense that

0 < "2 < "1 =) N3("2) � N3("1):

By standard results from topology, the intersection of a directed family of non-empty,
compact sets is non-empty, i.e.

N3(0) �
\
">0

N3(") 6= ;:
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Indeed, take a decreasing sequence ("n)n�1 of positive numbers converging to zero.
For every n choose some �n 2 N3("n). By compactness of the largest set N3("1),
we can �nd a subsequence nk such that (�nk)k�1 converges to some �. Note that
� 2 N3("nk) for every k, since � = liml!1; l�k �nl and each such �nl lies in the
closed set N3("nk). Now choose any " > 0 and pick a k such that "nk < ". Then
� 2 N3("nk) � N3("), implying that � 2

T
">0N3(").

We claim that every element � 2 N3(0) corresponds to an aTSS. Indeed, the path
(a; x(a); y(a)) with terminal value (â; x̂; ŷ) = � (corresponding to the path X(� ; �))
satis�es the ODE (5) on ] � b=r; â]. Moreover, it starts at N by construction, and
for every " > 0, it takes on the value " somewhere on the interval ]� b=r;�b=r + "[.
Thus, using monotonicity of y, we may conclude that

lim
a&�b=r

y(a) = 0:

This establishes that there is an initial condition � (â) such that the path y (a) hits
the boundary at y = 0 in the sense that y(�b=r) = 0.

Remark 4.14 It is essential for the proof of Theorem 4.2 that the trajectory X(� ; �)
�or, equivalently, (a; x(a); y(a)) �does not depend on ", which only determines �how
long�we observe the trajectory. This means that we observe the trajectory X(� ; �)
for 0 � � � �(�), with the hitting time �(�) obviously depending on ". Therefore, we
can, for �xed � 2 N3(0), easily take the limit " ! 0, which means that we take the
limit in �(�), but do not change the trajectory itself. As a consequence, the ODE is
automatically satis�ed for the limit, at least for 0 � � < lim"!0 �(�).

Let us illustrate why we had to use the speci�c properties of the dynamic sys-
tem (23) in the proof of lem. 4.13. Continuity in initial conditions does not imply
continuity of ��rst hitting values�in general. Indeed, the �rst hitting times are inher-
ently non-continuous functionals, even if both the paths and the set, which determines
the hitting times, are smooth. This is sketched in ex. 4.15.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2 Non-continuity of the �rst hitting time in ex. 4.15.
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Example 4.15 Consider the di¤erential equation _z (t) = (1� z (t)) z (t) whose solu-
tion is z (t) =

�
1 +

�
z�10 � 1

�
e�t
��1

: This solution is continuous in the initial level
z0 (for z0 > 0 which we assume) and the solution is plotted for z0 2 f0:1; 0:2g in
�g. 2. Now consider the �rst-hitting time on the straight line 0:05 + t=5 as drawn.
Obviously, this time is not continuous in the initial values z0.

5 Deriving the Fokker-Planck equations

This section derives the Fokker-Planck equations of the wealth-employment process
(a(t); z(t)) as described in Section 2, i.e. the partial di¤erential equations which de-
scribe the dynamics in time of the density of these random variables. The derivation
is in great detail as this facilitates applications for other purposes. Before we go
through individual steps, here is the general idea. Step 1: We start with some func-
tion f having as arguments the variables whose density we would like to understand.
We compute the di¤erential of this function in the usual way. Step 2: The starting
point here is Dynkin�s formula. This formula, intuitively speaking, gives the expected
value of some function f; whose arguments are the random variables we are interested
in, as the sum of the current value of f plus the integral over expected future changes
of f . The expected change of f is expressed by using the density of our random vari-
ables. The Dynkin formula is di¤erentiated with respect to time. Step 3: By using
integration by parts or the adjoint operator, we get an expression for the change of
the expected value of f: Step 4: A di¤erent expression for this change of the expected
value can be obtained by starting from the expected value and di¤erentiating it. Step
5: Equating the two gives the di¤erential equations for the density.

5.1 The expected change of some function f

Assume there is a function f having as arguments the state variables a and z. This
function has a bounded support S, i.e. f(a; z) = 0 outside this support.7 Heuristically,
the di¤erential of this function, using a change of variable formula,8 gives

df (a (�) ; z (�)) = fa (:) fra (�) + z (�)� c (a (�) ; z (�))g d�
+ ff (a (�) ; z (�) + �)� f (a (�) ; z (�))g dq�
+ ff (a (�) ; z (�)��)� f (a (�) ; z (�))g dqs:

Due to the state-dependent arrival rates (see table 1), only one Poisson process is
active at a time. When we are interested in the expected change, we need to form
expectations. We view a (�) and z (�) with � � t as two stochastic processes which
start in t and where initial conditions a (t) and z (t) can be random variables. We
therefore form expectations about df by using the unconditional expectations operator

7We can make this assumption without any restriction. As we will see below, this function will
not play any role in the determination of the actual density.

8There are formal derivations of this equation in mathematical textbooks like Protter (1995). For
a more elementary presentation, see Wälde (2009, part IV).
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E as the randomness of initial values are then also taken into account. This is useful
for its generality and also when it comes to applications (see the discussion in BW10
on initial conditions and especially distributions).
Applying the conditional expectations operator E� and dividing by d� yields the

heuristic equation

E�df (:)

d�
= fa (:) fra (�) + z (�)� c (a (�) ; z (�))g

+ � [f (a (�) ; z (�) + �)� f (a (�) ; z (�))]1fbg(z(�))

+ s [f (a (�) ; z (�)��)� f (a (�) ; z (�))]1fwg(z(�)) (32)

In what follows, we denote this expression by

Af (a (�) ; z (�)) � E�df (a (�) ; z (�))

d�
(33)

which is, more precisely, the in�nitesimal generator A de�ned by

Af(a; z) = lim
�&0

E (f(z(� + �); a(� + �))jz(�) = z; a(�) = a)� f(a; z)

�
:

Notice that Af(a; z) does not depend on � , because the Markov-process (a(�); z(�))
is time-homogeneous. We understand A as an operator mapping functions (in a and
z) to other such functions. Moreover, note that all test-functions, i.e. C1 functions of
bounded support, are in the domain of the operator A, i.e. the domain of all functions
f such that the above limit exists (for all a and z).

5.2 Dynkin�s formula and its manipulation

To abbreviate notation, we now de�ne x (�) � (a (�) ; z (�)) : The expected value of
our function f (x (�)) is by Dynkin�s formula (e.g. Yuan and Mao, 2003) given by

Ef (x (�)) = Ef (x (t)) +

Z �

t

E (Af (x (s))) ds: (34)

To understand this equation, use the de�nition in (33) and formally write it as

Ef (x (�)) = Ef (x (t)) +

Z �

t

Edf (x (s))

ds
ds = Ef (x (t)) +

Z �

t

Edf (x (s)) :

Intuitively speaking, Dynkin�s formula says that the expected value of f (x (�)) is the
expectation for the current value, Ef (x (t)) (given that we allow for a random initial
condition x (t)), plus the �sum of�expected future changes,

R �
t
Edf (x (s)) :

Let us now di¤erentiate (34) with respect to time � and �nd

@

@�
Ef (x (�)) =

@

@�

Z �

t

E (Af(x (s))) ds = E (Af (x (�))) ; (35)

21



where the �rst equality used that Ef(x (t)) is a constant and pulled the expectations
operator into the integral. This equation says the following: We form expectations in
t about f (x (�)) : We now ask how this expectation changes when � moves further
into the future, i.e. we look at @

@�
E [f (x (�))]. We see that this change is given by the

expected change of f(x (�)); where the change is Af (x (�)) :
Now de�ne p (a; z; �) as the joint density of z (�) and a (�). Notice that z; a and

� are independent variables now: as soon as we integrate with respect to the density
p(a; z; �), the whole time-dependence has been absorbed into � . The expectation
operator E integrates over all possible states of x (�) : When we express this joint
density as p (a; z; �) � p (a; � jz) pz (�), we can write equation (35) as

@

@�
Ef (x (�)) = E (Af (x (�)))

= pw (�)

Z 1

�1
Af (a; w) p (a; � jw) da+ pb (�)

Z 1

�1
Af (a; b) p (a; � jb) da:

Now pull pw (�) and pb (�) back into the integral and use p (a; z; �) � p (a; � jz) pz (�)
again for z = w and z = b. Then

@

@�
Ef (x (�)) =

Z 1

�1
Af (a; w) p (a; w; �) da+

Z 1

�1
Af (a; b) p (a; b; �) da

� �w + �b: (36)

Remark 5.1 The law of x(�) will not have a density, unless we already start with a
density at the initial time t. In general, p will therefore be a measure or a distribution
(in the sense of a generalized function, see (Yosida 1995), not a true function. Even
in that case, the following derivation remains valid, though, using the usual calculus
for generalized functions.

5.3 The adjoint operator and integration by parts

This is now the crucial step in obtaining a di¤erential equation for the density. It
consists in applying an integration by parts formula which allows to move the deriva-
tives in Af(x (�)) into the density p (x; �) : Let us brie�y review this method, without
getting into technical details. Given two functions f; g : R ! R and two �xed real
numbers c < d, the factor rule of di¤erentiation

d(f(x) � g(x)) = df(x) � g(x) + f(x) � dg(x) (37)

implies that f(d)g(d)�f(c)g(c) =
R d
c
f 0(x)g(x)dx+

R d
c
f(x)g0(x)dx; a formula referred

to as partial integration rule. In particular, it also holds for c = �1 and d = +1,
if the function evaluations are understood as limits for c ! �1 and d ! +1,
respectively. If f has bounded support, i.e. is equal to zero outside a �xed bounded
set, then the function evaluations at �1 vanish and we getZ +1

�1
f 0(x)g(x)dx = �

Z +1

�1
f(x)g0(x)dx: (38)
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We now apply (38) to equation (36). We can do this as the expressions in (36)
�lost� all stochastic features. To this end, insert the de�nition of A given in (33)
together with (32) into (36). To avoid getting lost in long expressions, we look at the
both integrals in (36) in turn. For the second, observe that

Af (a; b) = fa (:) fra+ b� c (a; b)g+ � [f (a; w)� f (a; b)] ;

i.e. the term with s in (32) is missing given that we are in state b. Hence,

�b =

Z 1

�1
[fa (a; b) fra+ b� c (a; b)g+ � [f (a; w)� f (a; b)]] p (a; b; �) da

=

Z 1

�1
fa (a; b) fra+ b� c (a; b)g p (a; b; �) da

+

Z 1

�1
� [f (a; w)� f (a; b)] p (a; b; �) da:

Now integrate by parts. As this integral shows, we only need to integrate by parts for
the fa term. The rest remains untouched. This gives with (38), where g (x) stands
for fra+ b� c (a; b)g p (a; b; �) and x for a;

�b = �
Z 1

�1
f (a; b)

��
r � @

@a
c (a; b)

�
p (a; b; �) + fra+ b� c (a; b)g @

@a
p (a; b; �)

�
da

+

Z 1

�1
� [f (a; w)� f (a; b)] p (a; b; �) da: (39)

Now look at the �rst integral of (36). After similar steps (as the principle is the
same, we replace b by w and the arrival rate � by s in the last equation), this reads

�w = �
Z 1

�1
f (a; w)

��
r � @

@a
c (a; w)

�
p (a; w; �) + fra+ w � c (a; w)g @

@a
p (a; w; �)

�
da

+

Z 1

�1
s [f (a; b)� f (a; w)] p (a; w; �) da: (40)

Summarizing, we �nd
@

@�
Ef (x (�)) = �w + �b

=

Z 1

�1
f (a; w)

�
�
�
r � @

@a
c (a; w)

�
p (a; w; �)� fra+ w � c (a; w)g @

@a
p (a; w; �)

�
da

+

Z 1

�1
s [f (a; b)� f (a; w)] p (a; w; �) da

+

Z 1

�1
f (a; b)

�
�
�
r � @

@a
c (a; b)

�
p (a; b; �)� fra+ b� c (a; b)g @

@a
p (a; b; �)

�
da

+

Z 1

�1
� [f (a; w)� f (a; b)] p (a; b; �) da: (41)
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5.4 The expected value again and �nish

� The expected value again

Let us now derive the second expression for the change in the expected value. By
de�nition, and as an alternative to the Dynkin formula (34), we have

Ef (x (�)) =

Z 1

�1
f (a; b) p (a; b; �) da+

Z 1

�1
f (a; w) p (a; w; �) da: (42)

When we di¤erentiate this expression with respect to time, we get

@

@�
Ef (x (�)) =

Z 1

�1
f (a; b)

@

@�
p (a; b; �) da

+

Z 1

�1
f (a; w)

@

@�
p (a; w; �) da: (43)

Note that we can use

@

@�

Z 1

�1
f (a; z) p (a; z; �) da =

Z 1

�1
f (a; z)

@

@�
p (a; z; �) da

as z and a inside this integral are no longer functions of time.

� Step 5 - Equating the two expressions

We now equate (41) with (43). Collecting terms belonging to f (a; w) and f (a; b)
gives Z 1

�1
f (a; w)'wda+

Z 1

�1
f (a; b)'bda = 0; (44)

where

'w � �
�
r � @

@a
c (a; w) + s

�
p (a; w; �)� fra+ w � c (a; w)g @

@a
p (a; w; �)

+ �p (a; b; �)� @

@�
p (a; w; �)

and

'b � �
�
r � @

@a
c (a; b) + �

�
p (a; b; �)� fra+ b� c (a; b)g @

@a
p (a; b; �)

+ sp (a; w; �)� @

@�
p (a; b; �) :

Obviously, the above equation is satis�ed if

'b = 'w = 0: (45)

These are the Fokker-Planck equations used in BW10.
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It is easy to see that the integral equation can only be satis�ed for all functions
f , if these Fokker-Planck equations are satis�ed. Indeed, assume that 'b > 0 on an
interval I = [d � �; d + �]. One can �nd a non-negative function f smooth in a such
that f(a; w) = 0 for all a and

f(a; b) =

(
1; a 2 [d� �=2; d+ �=2];

0; a 2]�1; d� �] [ [d+ �;1[:

Inserting this test function into the integral equation givesZ 1

�1
f (a; w)'wda+

Z 1

�1
f (a; b)'bda = 0 +

Z d+�

d��
f (a; b)'bda > 0

by construction. Therefore, 'b = 0 has to hold for all a 2 R, and similarly for 'w.

6 Conclusion

This paper proves the results stated in Bayer and Wälde (2010a). In section 3, we
prove concavity of the value function and the link between the interest rate and con-
sumption growth. This proof is of interest as it is based only on very weak assumptions
about properties of optimal consumption.
In section 4, we give an existence proof for an optimal consumption path given

an auxiliary temporary steady state (aTSS). The aTSS is characterized by the fact
that we only end v-close to the zero-motion line of the employed, for any v > 0,
however small. It has proven to be very simple to work with this aTSS numerically.
Due to the non-continuity of hitting times of dynamic systems, see �g. 2, the proof
is designed for our purposes. We use the speci�c form of the dynamic system (5) at
hand in order to establish continuity in this special case. If this proof is to be used for
other systems, one always would have to make sure that lem. 4.13 or a corresponding
variant of it will hold.
In section 5, we give an easily accessible exposition into the mathematical methods

used to establish Fokker-Planck partial di¤erential equations for the dynamics of
densities of stochastic processes given by stochastic di¤erential equations. While
the derivation is based on the particular model introduced in section 2, we have
tried to keep it rather general. For systems driven by di¤erent stochastic di¤erential
equations, the in�nitesimal generator A will have a di¤erent form, thus requiring
di¤erent integrations by parts. In some abstract sense, these integrations by parts
serve to compute the adjoint operator to A, which in turn determines the Fokker-
Planck equation. Therefore, the derivation used in section 5 can be applied for a wide
class of stochastic models.
Concerning future work, it would be desirable from a theoretical perspective to

extend the proof of the auxiliary temporary steady state to an existence proof for a
temporary steady state of the wealth dynamics. In the notation used in section 4,
this means that we would like to take the limit v ! 0, like we took the limit "! 0.
There are, however, certain complications as compared with the latter situation. For
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once, note that the trajectory X(� ; �), � = �v, does not depend on ". Only the
time �(�), when X(� ; �) hits the boundary @R";v;K does. Therefore, we only had to
establish the existence of an initial value �v, such that the corresponding trajectory
satis�es x3(�b=r) = 0. In contrast, X(� ; �v) obviously does depend on v. Thus,
taking a limit v ! 0 involves taking a limit of solutions to the ODE, and we would
have to additionally show that the limiting trajectory again solves the ODE. We
could avoid this problem, if we knew how to choose �v = �v(â), such that two
trajectories X(� ; �v(â)) and X(� ; �0(â0)) coincide (on R";v;K). This already indicates
the dilemma, because we do not know how to solve the ODE for v = 0 because of the
singularity in (5a) at the zero-motion line of the employed. If we could overcome this
problem, we would still face a similar kind of �shooting�problem as in theo. 4.2. This
time, however, we would have to hit a line f(a; ra+w; (ra+w))j� b=r � a � amaxg
in (a; x; y)-space instead of the line f(�b=r; x; 0)jx � 0g.

7 Appendix

There is a short appendix which is available upon request.
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