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Abstract

This paper develops a simulation estimation algorithm that is particularly

useful for estimating dynamic panel data models with unobserved endogenous

state variables. The new approach can easily deal with the commonly encoun-

tered and widely discussed “initial conditions problem,” as well as the more

general problem of missing state variables during the sample period. Repeated

sampling experiments on dynamic probit models with serially correlated errors

indicate that the estimator has good small sample properties. We apply the

estimator to a model of married women’s labor force participation decisions.

The results show that the rarely used Polya model, which is very difficult to

estimate given missing data problems, fits the data substantially better than

the popular Markov model. The Polya model implies far less state dependence

in employment status than the Markov model. It also implies that observed

heterogeneity in education, young children and husband income are much more

important determinants of participation, while race is much less important.
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1 Introduction

The problem of unobserved endogenous state variables arises frequently in the estima-

tion of dynamic discrete choice models. It is present whenever there are unobserved

initial conditions, i.e., the choice process begins prior to the first period of observed

data. It also arises if data on some choices is missing during the sample period. In ei-

ther case, consistent estimation requires “integrating out” all possible choice sequences

that the individual may have followed. However, as the length of the panel grows and

the choice set becomes larger, the “integrating out” solution begins to require very

high dimensional integrations, often rendering it computationally impractical.

In this paper, we assesses the performance of and empirically implement a new sim-

ulated maximum likelihood (SML) estimation algorithm that is particularly useful for

estimating dynamic panel data models with unobserved endogenous state variables.

The novel estimation technique was recently introduced by Keane and Wolpin (2001)

(KW) to estimate the parameters of a discrete choice dynamic programming problem

with both unobserved initial conditions and missing choices during the sample period.

However, the algorithm has a much wider applicability beyond the special case that

KW considered. In fact, it can be used to simulate the likelihood in any context

where it is tractable to perform unconditional simulations of data from the model.

The computational advantage of the new SML estimation algorithm lies in the fact

that in contexts where performing conditional simulations of data from a model would

be extremely difficult, unconditional simulation is often straightforward. Simulation

of the likelihood in dynamic models often involves conditional simulation (of choice

probabilities conditional on past history), but when past history is not fully observed,

conditional simulation is often computationally infeasible.1

In this study, we first describe how the SML algorithm developed by KW, which

1For example, the GHK algorithm (see Keane (1994)) builds up the likelihood of a choice history

via a series of conditional simulations. This may be infeasible in some cases (like that in KW) where

part of the history is unobserved. We discuss cases where GHK has trouble in Section 5.
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only requires unconditional simulations, can be extended to a number of cases beyond

the specific discrete choice dynamic programming problem they considered. In partic-

ular, we assess the performance of the estimator on panel data probit models with a

time-varying exogenous covariate, lagged endogenous variables and serially correlated

errors. Such panel probit models have been a leading case in past discussions of dy-

namic panel data models with unobserved initial conditions (see Heckman (1981a)).

Specification of panel probit models, rather than discrete choice dynamic programs,

allows us to focus on and further develop the estimation technique. The results of a

series of repeated sampling experiments show that the SML estimator with the new

algorithm has good small sample properties.

We then apply the algorithm to dynamic probit models of female labor force par-

ticipation using PSID data from 1994-2003. A serious missing data problem naturally

arises in these data because, in addition to the usual initial conditions problem, re-

spondents were not interviewed at all in 1998, 2000 and 2002. Hyslop (1999) also

used the PSID to estimate dynamic probit models of female labor force participation,

and to test for endogeneity of fertility and nonlabor income in models that include

complex error structures. Using the new algorithm, we extend his results to allow for

classification error and missing data. This enables us to include the post-1994 data,

as well as to consider a more general specification of state dependence (i.e., the Polya

model). In contrast to the results in Hyslop (1999), we reject the null hypothesis that

fertility and nonlabor income are exogenous in these more general models.

The rest of this paper is organized as follows. Section 2 reviews the literature on

different approaches to the problem of unobserved endogenous state variables, and

places our algorithm in context. Section 3 describes the dynamic panel data probit

model used in the repeated sampling experiments. Section 4 develops two different

models of classification error that are incorporated into the estimation technique.

Classification error in discrete outcomes is a key feature of the algorithm. Section 5

describes our algorithm in detail. Sections 6 and 7 present Monte-Carlo test results
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under two models of classification error. Section 8 applies the algorithm to a model

of female labor force participation. Section 9 summarizes and concludes.

2 Background

Several solutions to the initial conditions problem, a special case of the problem

of unobserved endogenous state variables, have been proposed. Heckman (1981a)

showed how, in dynamic discrete choice models, the assumption of stationarity allows

one to derive the marginal probability of the initial state. As stationarity is often

problematic, Heckman (1981a) also considered estimation of fixed effects models. But

he concluded it works better to approximate the probability of the initial state by

a separate probit function (which depends on initial period covariates, and whose

error is correlated with errors during the sample period).2 More recently, Wooldridge

(2003) proposed an alternative approximate solution to the initial conditions problem.

Below, we compare the Heckman and Wooldridge methods to the "exact" solution

obtained by using our algorithm to simulate from the start of the stochastic process.

In contrast to the initial conditions problem, the problem of missing data during

the sample period has been less extensively explored. But missing data problems

frequently arise in data sets used by economists, such as the National Longitudinal

Survey of Youth (NLSY) and the Panel Study of Income Dynamics (PSID).

One method for dealing with missing data during the sample period is the EM

algorithm (Dempster, Laird and Rubin (1977)). However, in EM it is often difficult

to compute the conditional distribution required for the E (expectation) step (see

Ruud (1991)). Another potential solution is the Gibbs-sampling algorithm. Geweke

and Keane (2000) used this approach to deal with unobserved initial conditions and

missing data in dynamic earnings models. But in Gibbs, as in EM, the distribution of

2This approximate solution performed better than fixed effects probit, but still produced biases

of more than 10% in repeated sampling experiments.
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a missing value conditional on all other information can be quite complex (see Geweke

and Keane (2001)). Also, Geweke and Keane (2000) noted that Gibbs sometimes

exhibited instability when integrating over long pre-sample histories.

Due to the computational difficulties in solving the missing data problem, applied

economists frequently resort to the simpler methods of case deletion and imputation.

Case deletion can cause large amounts of information to be lost, resulting in inef-

ficient estimates. It can also introduce biases to the extent that complete histories

differ systematically from censored histories. Imputation of missing values by ad hoc

methods is also problematic. For instance, imputing averages tends to bias estimated

variances and covariances toward zero.

In contrast to the previous literature, the SML estimation algorithm that we

propose offers a systematic unified “solution” to both the initial conditions problem

and the problem of missing data during the sample period. The algorithm does not

involve case deletion or ad hoc imputations, yet it is computationally simple. It is

simple because it does not require calculation of the initial state probability, or the

probabilities of events at each date t conditional on the state at the start of time t,

which is the usual approach to constructing the likelihood in dynamic models. In our

algorithm, unconditional simulations of the model are used to form the likelihood.

The key assumption required to form the likelihood in dynamic models using only

unconditional simulations is that reported choices are measured with error. This al-

lows one to simulate probabilities of choice histories using unconditional frequency

simulation, as it avoids the usual problem in frequency simulation that an imprac-

tically large number of simulations is necessary to obtain non-zero probabilities of

low probability events. Furthermore, the assumption that choices are measured with

error is certainly valid in the vast majority of data sets that economists use.

Prior work showing the importance of classification error includes Poterba and

Summers (1986, 1995) and Flinn (1997). For example, Poterba and Summers (1986)

estimate that in the CPS the probability an employed person falsely reports being
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unemployed or out-of-the-labor-force is 1.5%, while the probability an unemployed

person falsely reports being employed is 4.0% (our calculations based on the figures

in their Table II). If misclassification is present and not included in the analysis,

maximum likelihood estimation leads to biased and inconsistent parameter estimates

(Hausman, Abrevaya and Scott-Morton (1998)).3

The classification error process that we adopt simply specifies a probability the

reported choice is the true choice, and a probability it is not. This is without loss of

generality, as the investigator is free to specify the details of the process. All that is

required is that one can obtain tractable expressions for the probability of observed

choices conditional on true choices. We illustrate the flexibility of the algorithm by

considering two very different models of classification error in our experiments.

3 The Panel Data Probit Model

In the panel data probit model, the utility of the first option, for individual i at time

t, is denoted as uit, and the utility of the second option is normalized to zero. Utility

is unobserved by the researcher, but the individual is assumed to choose the option

that gives greatest utility. We will consider models of the general form

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit (1)

where xit is a strictly exogenous covariate and dit is the indicator function

dit =

⎧⎨⎩ 1 if uit ≥ 0
0 otherwise.

(2)

Note that the specification in (1) allows the entire history of past choices to affect

current utility. It is, therefore, more general than the familiar first-order Markov

3Repeated sampling experiments in Hausman et al. (1998) find considerable biases, in the range of

15% to 25%, in ordinary probit models that fail to incorporate classification error into the likelihood.
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process.4 Depreciation in the importance of past choices is captured through the

weights ρτ . The theoretical start of the process is, by definition, di0 = 0.

The error term εit in (1) is assumed to be serially correlated. Thus, lagged choices

are endogenous. In the simple case of serially independent errors, lagged choices are

exogenous, and the problems we consider in this paper do not arise. Although our

approach is very flexible in terms of the nature of the serial correlation that can be

accommodated, we consider three leading cases in our experiments. First, the source

of serial correlation could be time-invariant random individual effects, i.e.,

εit = μi + ηit (3)

where μi is normally distributed with zero mean and variance σ
2
μ, and ηit is normally

distributed with zero mean and variance σ2η. Second, serial correlation could derive

from an AR (1) process,

εit = φ1εi,t−1 + ηit (4)

where ηit has the same distribution as in (3). Third, serial correlation could arise from

a combination of time-invariant random individual effects and an AR(1) process, i.e.,

εit = μi + ξit (5)

ξit = φ1ξi,t−1 + ηit

where ηit has the same distribution as in (3).

Although the model of (1)-(5) is restrictive, the estimation procedure can easily

accommodate a wide range of alternative specifications and distributions of the error

term. For example, KW employ a variant of the algorithm in a multinomial choice

setting with an error term that contains both a nonparametric individual effect and a

multivariate normal disturbance contemporaneously correlated across choices. Also,

4More general processes than first-order Markov have not been widely used in the economics

literature. We suspect that this is due, in part, to the difficulty in dealing with missing data. But,

more general models are quite standard in marketing. See, e.g., Erdem and Keane (1996).
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while we only consider a scalar process in (1), extension to vectors of discrete and

mixed discrete/continuous outcomes (as in KW) is straightforward. We emphasize

that our goal here is to focus on relatively simple processes, so that repeated sampling

experiments are feasible. Furthermore, the relatively simple processes we consider

have been widely used in the literature, and have been the focus of prior work on the

initial conditions problem (see Heckman (1981a) and Wooldridge (2003)).

4 Classification Error

In our approach, we assume that all discrete outcomes are measured subject to clas-

sification error. In most contexts in applied economics this is a sensible assumption.

Moreover, our approach can be implemented given any assumed classification error

process, provided one can obtain a tractable expression for the probability of observed

choices conditional on true choices. Letting d∗it denote the reported choice, the general

model of misclassification that we consider is characterized by four probabilities,

π11t = Pr (d∗it = 1 | dit = 1) , π10t = 1− π11t (6)

π01t = Pr (d∗it = 1 | dit = 0) , π00t = 1− π01t

where π11t is the probability that option one is reported to be chosen (d∗it = 1) given

that it is the true choice (dit = 1); π01t is the probability that option one is falsely

reported (d∗it = 1) given that option two is the true choice (dit = 0); π00t and π10t are

the corresponding conditional probabilities for option two (d∗it = 0).

The investigator has a great deal of leeway in specifying the classification error

rates π01t and π10t. In the Monte Carlo analysis of our algorithm we consider cases

where classification error rates are dependent on true choices, but not on covariates.

Error rates would depend on the true choice if, for example, workers who change jobs

mis-report more often than workers who do not. Poterba and Summers (1995) and

Hausman et. al. (1998) find evidence of this type of misclassification in the CPS and
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PSID. Similarly, Flinn (1997) finds that mis-reporting of dismissals in the NLSY is

an increasing function of the true dismissal rate.

Covariate-dependent misclassification could be easily incorporated into the model.

However, if the measurement error process is a sufficiently flexible function of covari-

ates and lagged choices, one would lose identification of the structural parameters in

(1). Identification of structural parameters will be stronger the more parsimonious

is the model of misclassification. Moreover, economic theory provides guidance for

specification of the decision model but not necessarily for the model of misclassifica-

tion. Thus, we focus on fairly simple specifications of the classification error process.

We consider specifications distinguished by whether classification error is biased or

unbiased, and whether there is dynamic mis-reporting.

4.1 Unbiased Classification Error

The assumption that classification error is unbiased imposes a very simple structure

on the conditional probabilities in (6). Unbiasedness in this context means that the

probability a person is observed to choose an option is equal to the true probability

that he/she chooses that option, or Pr (d∗it = 1) = Pr (dit = 1). The assumption of

unbiased classification error is appealing because it forces the structural parameters

of the model to fit the conditional choice frequencies in each period, as opposed to

allowing classification error to drive model fit.

Unbiased classification error implies that the conditional probabilities in (6) are

linear in the true choice probability. To see this, note that by definition,

Pr (d∗it = 1) = Pr (d∗it = 1 | dit = 1)Pr (dit = 1) (7)

+Pr (d∗it = 1 | dit = 0)Pr (dit = 0)

where, in writing Pr (d∗it = 1) and Pr (dit = 1), we suppress the obvious dependence of

these probabilities on xit and lagged true choices in order to conserve on notation. If
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we write the conditional probabilities as the following linear functions of Pr (dit = 1),

Pr (d∗it = 1 | dit = 1) = E + (1−E) Pr (dit = 1) (8)

Pr (d∗it = 1 | dit = 0) = (1− E) Pr (dit = 1) ,

these expressions can be substituted into (7) to yield Pr (d∗it = 1) = Pr (dit = 1) .

Note that as the true choice probability, Pr (dit = 1), approaches one, the prob-

ability of a correct classification, Pr (d∗it = 1 | dit = 1), also approaches one, which
must be the case to preserve unbiasedness. Further, as Pr (dit = 1) approaches zero,

Pr (d∗it = 1 | dit = 1) approaches E. E can thus be interpreted as a “baseline” classi-

fication rate. In other words, low probability events have a probability equal to E of

being classified correctly. The probability of a correct classification increases linearly

from E toward one as the true choice probability approaches one.

In terms of the original notation, the conditional probabilities in (6) can be written:

π11t = E + (1− E) Pr (dit = 1) (9)

π01t = (1−E) Pr (dit = 1) .

Note the great parsimony that unbiasedness imposes on the classification error process.

It depends on the single parameter E, which is treated as a free parameter in esti-

mation. One could generalize this specification by letting E depend on covariates. In

that case, one obtains unbiasedness conditional on covariates.

4.2 Biased Classification Error

Any classification error scheme that does not impose the linear relationships in (8)

will, in general, lead to a biased classification error process in which Pr (d∗it = 1) 6=
Pr (dit = 1). The biased classification error scheme that we consider as an alternative

to (8) is characterized by the following index function,

lit = γ0 + γ1dit + γ2d
∗
it−1 + ωit (10)
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where d∗it denotes the reported choice and ωit is a stochastic term. If lit > 0 then

d∗it = 1, while d∗it = 0 otherwise. Notice that the specification in (10) allows the

probability of reporting a particular choice to differ by the true choice, and allows

for dynamic mis-reporting, since d∗it−1 appears in the index function. The greater in

magnitude is γ2 (the coefficient on d∗it−1), the more likely is persistent mis-reporting.

Assuming ωit is distributed logistically yields tractable expressions for classifica-

tion probabilities:

π11t = Pr (d∗it = 1 | dit = 1) =
eγ0+γ1+γ2d

∗
it−1

1 + eγ0+γ1+γ2d
∗
it−1

(11)

π01t = Pr (d∗it = 1 | dit = 0) =
eγ0+γ2d

∗
it−1

1 + eγ0+γ2d
∗
it−1

.

In the next section, we outline the SML estimation algorithm for any specification

of the classification error process in (6), as well as for the two specific classification

error processes (biased and unbiased) described above in (9) and (11).

4.3 Identification

Hausman, Abrevaya and Scott-Morton (1998) (HAS) discuss identification of discrete

choice models with classification error. Note that the unconditional probability that

outcome one is observed is:

P (d∗it = 1) = π11tP (dit = 1) + π01tP (dit = 0)

= (1− π10t)P (dit = 1) + π01t (1− P (dit = 1))

= π01t + (1− π10t − π01t)P (dit = 1)

HAS point out that identification of a fully parametric discrete choice model given

classification error requires (i) that the probability a choice is reported be monoton-

ically increasing in the probability it is the true choice, and (ii) that the discrete

choice model satisfies index sufficiency. Here, the monotonicity assumption is met if

π10t + π01t < 1, which means that the probability of an observed "1" is increasing
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in the probability of a true "1". This basically means that classification error can’t

be so severe that people mis-report their state more often than they report correctly

(certainly a mild requirement).5 In (10) this is equivalent to γ1 > 0.

Interestingly, in our model with unbiased classification error, we can use equation

(9) to obtain π10t + π01t = 1 − E. Thus, identification requires that E > 0, which

means that even very low probability events must have some positive probability of

being classified correctly.6 To further clarify this point, note that, in equation (8), if

E = 0 then the probability of observing choice "1" is simply P (dit = 1), regardless

of whether the true choice is one or two. Hence, when E = 0, the probability of

observing "1" is no greater when it is the true choice than when it is not.

5 The SML Estimation Algorithm

Suppose the data consist of {D∗
i , xi}Ni=1 where D∗

i = {d∗it}Tt=1 is the history of reported
choices for individual i, xi = {xit}Tt=1 is the history of the exogenous covariate for
individual i, and N is the number of individuals in the sample. For ease of exposition,

assume that {xit}Tt=1 is fully observed for each individual i, and that t = 1 is the first
period of observed data. Since there may be missing choices during the sample period,

let I (d∗it observed) be an indicator equal to one if d
∗
it is observed, and zero otherwise.

Under these conditions, simulation of the likelihood function requires constructingM

simulated choice histories for each {xit}Tt=1 history as follows:

5HAS also note that extreme values of X0β convey important information about error rates. No

matter how large is X 0β, the probability of an observed "1" cannot exceed 1− π10t. Similarly, no

matter how small is X0β, the probability of an observed "0" cannot exceed 1− π01t.

6A recent paper by Gould (2007) claims to implement our algorithm using E = 0, but, as we see

here, this is not possible. What Gould actually did is set P (d∗it = 1|Xit) = P (dit = 1), i.e., set the

choice probability conditional on a person’s state Xit equal to the unconditional choice probability

in the population. Hence, any parameters capturing dynamics in his model are not identified.
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1. For each individual i, drawM sequences of errors from the joint distribution of

(εi1, ..., εiT ) to form
½n
{εmit }Tt=1

oN
i=1

¾M

m=1

.

2. Given
n
{xit}Tt=1

oN
i=1
and the error sequences

½n
{εmit }Tt=1

oN
i=1

¾M

m=1

, constructM

simulated choice histories for each individual i
½n
{dmit }Tt=1

oN
i=1

¾M

m=1

according

to (1) and the decision rule (2).

3. Construct the conditional probabilities
n©bπmjktªTt=1oMm=1 for each individual i,

where j denotes the simulated choice and k denotes the reported choice. The

procedure to do this depends on the assumed classification error process, as we

discuss below in steps (3a) and (3b).

4. Form a simulator of the likelihood contribution for each individual i as:

bP (D∗
i | θ, xi) =

1

M

MX
m=1

TY
t=1

Ã
1X

j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]

!I(d∗it observed)

(12)

where θ is the vector of model parameters. This simulator is unbiased.

Step (3a):

In the special case of unbiased classification error, the bπmjkt’s in step (3) depend
on the true choice probability Pr (dit = 1) (see equation (9)). Therefore, Pr (dit = 1)

must also be simulated. Pr (dit = 1) can be approximated by the unbiased simulator

bP (dit = 1 | Hm
it ) =

1

M

MX
m=1

Pr

Ã
εit ≤ β0 + β1xit +

t−1X
τ=0

dmiτρτ

!
(13)

where Hm
it =

©{xiτ}tτ=1 , {dmiτ}t−1τ=1

ª
is the history of the exogenous covariate and the

simulated lagged endogenous covariate through time t.7

7If εit is distributed i.i.d. N(0, σ2ε), the probability in the summation is Φ (a) where a = β0x/σε,

β0x = β0 + β1xit +
t−1P
τ=0

dmiτρτ , and Φ is the standard normal c.d.f.. If εit is serially correlated, then

the probability in (13) must, of course, be conditional on
n
{εiτ}t−1τ=0

o
.
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Then bπm11t and bπm01t are:
bπm11t = Pr (d∗it = 1 | dmit = 1) = E + (1−E) bP (dit = 1 | Hm

it ) (14)

bπm01t = Pr (d∗it = 1 | dmit = 0) = (1− E) bP (dit = 1 | Hm
it )

Step (3b):

For the biased classification error process given by (11), the bπmjkt’s in step (3)
depend on the reported choice in the previous period d∗i,t−1. If d

∗
i,t−1 is missing, it must

be simulated. This can be easily done using (10) . Let the simulated d∗i,t−1 be denoted

d∗mi,t−1, and let d
∗(m)
i,t−1 = I

¡
d∗i,t−1 observed

¢
d∗i,t−1+

¡
1− I

¡
d∗i,t−1 observed

¢¢
d∗mi,t−1. Thenbπm11t and bπm01t are:

bπm11t = eγ0+γ1+γ2d
∗(m)
it−1

1 + eγ0+γ1+γ2d
∗(m)
it−1

, bπm01t = eγ0+γ2d
∗(m)
it−1

1 + eγ0+γ2d
∗(m)
it−1

(15)

The simulation algorithm described in steps (1) to (4) builds the likelihood con-

tribution for each individual by averaging, over M simulated choice histories, the

product of the appropriate classification probabilities
©bπmjktªTt=1 needed to reconcile

the simulated choice history {dmit }Tt=1 and the observed history {d∗it}Tt=1. In step (4)
the indicator I [dmit = j, d∗it = k] “picks out” the appropriate classification probability

by comparing d∗it to d
m
it . If d

∗
it is unobserved, I (d

∗
it observed) is zero, and there is no

contribution to the likelihood (i.e., simply enter one in the product in period t).8

Note that any observed choice history has non-zero probability conditional on

any simulated choice history. This reflects the fact that any simulated choice history

can generate any observed choice history when there is classification error. It is also

important to note that (12) builds the likelihood using unconditional simulations of

the model. The simulation of conditional probabilities like P (dit | Hit) is completely

avoided, circumventing the severe computational problems that may arise if Hit is not

fully observed. In the unconditional approach, the state space is updated according

8If choices are not missing at random, the probability that the choice is not observed can be

incorporated into the product. A similar correction can be made to handle endogenous attrition.
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to previous simulated choices, rather than previous reported choices, which greatly

simplifies the problem.9

The asymptotic properties of the SML estimator described here are the same as

in Lee (1992) and Pakes and Pollard (1989). Consistency and asymptotic normality

require M√
N
→ ∞ as N → ∞. Our estimator is just a special case of SML, differen-

tiated from past approaches only by the algorithm used to simulate the likelihood.

But the importance of this should not be underestimated. Past Monte Carlo work

has shown that within the class of SML estimators that share common asymptotic

properties, finite sample performance hinges critically on the quality of the algorithm

used to simulate choice probabilities (see Geweke and Keane (2001) for a review).

5.1 Missing Covariates and Initial Conditions

The estimation procedure described above need only be slightly modified to accom-

modate missing exogenous covariates and/or an initial conditions problem. In the

case of missing covariates, each missing xit is simulated according to the assumed

9It is important to understand when the GHK algorithm has problems in dynamic models. GHK

builds up the likelihood of a choice history using period-by-period conditional simulations. In a

simple panel probit model with serial correlation but no state dependence, missing choices present

no problem for GHK. To simulate a choice probability at time t, one needs a draw for the lagged

stochastic terms that is consistent with observed choices up through t-1. Thus, in periods when

choices are missing, one simply draws from the unconditional distribution of the stochastic terms.

However, GHK runs into problems in three cases: (i) with state dependence one must also condition

on lagged simulated choices in periods when the actual choice is missing. As one iterates on the model

parameters, the simulated choice may change, leading to discontinuities in the simulated likelihood.

A possible solution is to integrate over all possible missing choices (weighting by the probability of

each), but this becomes infeasible as the number of periods with missing choices grows large; (ii) if,

as in KW, there is more then one choice variable, and only a subset is observed, drawing from the

conditional distribution of the stochastic terms given the subset of observed choices can be extremely

difficult; (iii) if choices are subject to classification error, then, drawing stochastic terms from their

conditional distribution given the (possibly misclassified) observed choice can be extremely difficult.

14



process generating the xit’s. For example, suppose the xit’s are time-varying and

stochastic and follow the AR(1) process,

xit = φ2xi,t−1 + νit (16)

where νit is normally distributed with zero mean and variance σ2v, and where xi0 =

0. If xit−1 is observed and xit is missing, then the missing xit is replaced by bxmit
which equals φ2xit−1 plus a draw from the νit distribution. A new draw from the νit

distribution is taken for each simulated choice history m.

The likelihood contribution for each individual i in this case becomesbP (D∗
i , xi | θ) =

1

M

MX
m=1

TY
t=1

fm (xit)
I(xit observed)

Ã
1X

j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]

!I(d∗it observed)

(17)

where fm (xit) is the density of the exogenous covariate.

Under the assumption that νit is distributed normally, the density of xit according

to draw sequence m is,

fm (xit) =
1

σv
φ

Ã
xit − φ2bx(m)it−1

σv

!
(18)

where bx(m)it−1 = I (xi,t−1 observed)xit−1 + (1− I (xi,t−1 observed)) bxmit−1 and φ is the

standard normal p.d.f.. Note that in periods in which xit is missing, the density does

not affect the likelihood. fm (xit) enters the likelihood only when xit is observed. The

parameters φ2 and σv now become part of the parameter vector θ.

In the case of an initial conditions problem, t = 1 is not the first period of observed

data. Let t = eτ be the first period of observed data where eτ > 1. Simulated choice

histories are still constructed from the theoretical start of the process, i.e., from t = 0

with di0 = xi0 = 0, irrespective of the value of eτ . If the xit’s are also missing, the path
of xit’s must be simulated from t = 1 until t = eτ .10
10If the first period of observed data is individual specific, simply replace eτ with eτ i. Note that if

the model before eτ i is different from the model after eτ i (e.g., due to non-stationarity), one would
simply simulate outcomes from the appropriate model.
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The likelihood contribution for each individual i in this case takes the formbP (D∗
i , xi | θ) =

1

M

MX
m=1

TY
t=τ

fm (xit)
I(xit observed)

Ã
1X

j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]

!I(d∗it observed)

(19)

The only difference between (17) and (19) is that here the first d∗it is observed at

t = eτ . In Heckman’s approximation method, one would specify a distribution for d∗iτ .
In our method, it is not necessary to construct a marginal distribution for the initial

state. The distribution of the initial state in period eτ is implicitly determined by the
simulated choice and covariate history from t = 1 through t = eτ − 1.
In some applications, the process has a natural start date (e.g., age 16 for decisions

to stay in school or enter the labor force). In others, all that can be known reliably

is that the process started well before the observation period. In that case, one

might just set eτ large enough so that estimates are not sensitive to further increases.
Alternatively, if the theoretical start of the process can not be determined, one could

easily nest Heckman’s approximation method inside our algorithm, as a simple way

to handle the initial period, while using our approach to handle missing data during

the sample period. Such "hybrid" approaches will be explicitly considered below.

5.2 Importance Sampling

Non-smoothness of the simulated likelihood function based on (19) arises because,

holding the draw sequence {εmit }Tt=1 fixed, a change in θ can induce discrete changes

in the {dmit }Tt=1 sequence. However, the estimation procedure can be easily modified
to take advantage of importance sampling techniques that smooth the likelihood

and enable the use of standard gradient methods of optimization.11 We smooth the

likelihood by first constructing simulated choice histories {dmit (θ0)}Tt=1 at an initial θ0.

11The non-smooth version of the estimation algorithm considered until now necessitates the use

of (relatively slow) non-gradient methods of optimization such as the simplex method.
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We then hold the {dmit (θ0)}Tt=1 sequences fixed as we vary θ. Each simulated choice

sequence then has an associated importance sampling weight, Wm (θ), that varies

with θ. The basic idea of importance sampling is that, when we change θ, sequences

that are more (less) likely under the new θ receive increased (reduced) weight. Thus:

Wm (θ) =
Pr (dmi1(θ0), ..., d

m
iT (θ0) | θ, xi)

Pr (dmi1(θ0), ..., d
m
iT (θ0) | θ0, xi)

(20)

where the numerator is the joint probability that simulated choice history m occurs

given the current trial parameter vector θ, while the denominator is the joint probabil-

ity that simulated choice history m occurs given the initial vector of trial parameters

θ0. For example, the joint probability of simulated choice history m in the dynamic

probit model with serially independent errors is simply:

TY
t=1

Pr

Ã
εit ≤ β0 + β1xit +

t−1X
τ=0

dmiτρτ

!
. (21)

An alternative way to smooth the likelihood function is to construct, at the

initial θ0, simulated choice histories {dmit (θ0)}Tt=1 and the latent variable sequences
{Um

it (θ0)}Tt=1 that generate {dmit (θ0)}Tt=1, where Um
it (θ0) = β0 + β1xit +

t−1P
τ=0

dmiτρτ + εit.

One then holds both the {dmit (θ0)}Tt=1 and {Um
it (θ0)}Tt=1 sequences fixed as θ varies.

In this approach, each simulated choice sequence receives an importance sampling

weight, Wm (θ), that takes the form,

Wm (θ) =
g (Um

i1 (θ0), ..., U
m
iT (θ0) | θ, xi)

g (Um
i1 (θ0), ..., U

m
iT (θ0) | θ0, xi)

(22)

where g (·), the joint density of simulated latent variable sequence m, is the product
of standardized Um

it (θ0) densities. For example, in the case of serially independent

errors, the joint density of simulated choice history m in (22) is

g (Um
i (θ0)|θ, xi) =

TY
t=1

1

σε
φ

Ã
1

σε

"
Um
it (θ0)− β0 − β1xit −

t−1X
τ=0

dmiτ (θ0) ρτ

#!
(23)

where φ is the standard normal p.d.f.. The weights in (22) are easier to calculate than

the weights in (20) in some contexts. In the repeated sampling experiments reported

below, and in the empirical application, we use the weights in (22).
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The likelihood contribution for agent i in the smooth version of the algorithm isbP (D∗
i , xi | θ) =

1

M

MX
m=1

Wm (θ)
TY
t=τ

fm (xit)
I(xit observed)

Ã
1X

j=0

1X
k=0

bπmjktI [dmit = j, d∗it = k]

!I(d∗it observed)

(24)

Note that (19) is just a special case of (24) with Wm = 1 for each simulated choice

history m.12

An important computational advantage of the re-weighting scheme over the im-

plicit equal weighting scheme in (19) is that it requires simulated choice histories to

be generated only once for each individual, with an initial vector of trial parame-

ters θ0, as opposed to constructing simulated choice histories at each vector of trial

parameters θ. KW used this smooth version of the algorithm to construct standard

errors (with weights as in (20)), but used the non-smooth version in estimation (us-

ing a simplex algorithm). Ackerberg (2001) describes an analogous use of importance

sampling and has a good discussion of how his approach differs from ours.

6 Monte-Carlo Tests - Unbiased Misclassification

This section reports Monte-Carlo tests of the SML estimator with unbiased clas-

sification error. The algorithm used to generate artificial data sets with unbiased

classification error is described in Appendix A. Subsections 6.1 and 6.2 present re-

sults for the random effects and AR(1) specifications of the error term, respectively.

In each repeated sampling experiment, a vector of true model parameters is chosen

and used to create 50 Monte-Carlo data sets which differ in the realizations of the

stochastic terms. Parameter estimates are then obtained for each data set.

Each estimation on the 50 different panels {D∗
i , xi}Ni=1 uses a different random

number generator seed to generate the M unconditional simulations for each individ-

12Efficiency of importance sampling is often improved by normalizing weights to sum to one.
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ual in the sample. For each repeated sampling experiment, the true parameters, the

mean, the median, the empirical standard deviations, the root mean square error of

the estimates, and the t-statistics for the statistical significance of the biases, based

on the empirical standard deviations, are reported.13

6.1 Random Effects Model

In the random effects model, the error term εit follows the components of variance

structure in (3). The true start of the process is di0 = 0. The exogenous covariate xit

is generated by the AR (1) process in (16). The depreciation weights ρτ are assumed

to follow an exponential decay process, ρτ = ρe−α(t−τ−1). The parameter α captures

the “speed” of depreciation. The vector of estimable parameters for this model is

θ = {β0, β1, ρ, α, φ2, σv, σμ, E}. However, in the special case of no initial conditions
problem and no missing exogenous covariates, φ2 and σv need not be estimated.

Identification conditions for this type of model (a generalized Polya process with

decay) are discussed in Heckman (1981b) .

Table 1 reports summary statistics, by time period, for a representative data set.

The number of individuals N is set to 500, the number of periods T is set to 10,

there are no missing choices or missing exogenous covariates, and the vector of true

parameters is set at θ = {−.10, 1.00, 1.00, .50, .25, .50, .80, .75}. To identify the scale
of utility, the variance of εit is normalized to one, so σ2μ + σ2η = 1. Thus, individual

effect accounts for 64 percent of the variance in εit (as σμ is set to .80).

The Mean dit column in Table 1 shows that, over time, an increasing proportion

of individuals choose the first option. At t = 1 just under 50 percent of the sample

have dit = 1. At t = 10, the proportion reaches 85 percent. The Mean d∗it column

shows that the proportion that report choosing the first option closely tracks the

true proportion. This is a consequence of unbiased classification error. The Mean β0x

13We do not compare true average partial effects to estimated average partial effects. The reason

is that, in dynamic models, there are a multitude of average partial effects that could be calculated.
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column displays the mean and variance of β0x = β0+β1xit+ρ
t−1P
τ=0

e−α(t−τ−1)diτ and the

Mean εit column displays the mean and variance of the composite error term. Over

time, the mean of β0x increases at a decreasing rate, reflecting both the increasing

proportion of dit = 1 over time and the relatively strong depreciation of past choices.

The variance of β0x is roughly comparable to the variance of εit by the third period.

The Mean π11t and Mean π00t columns of Table 1 present the average probabilities

of a correct classification.14 The average probability of a correct match of dit = 1 and

d∗it = 1, π11t, is .863 in period 1 and increases over time to .956 in period 10. The

average probability of a correct match of dit = 0 and d∗it = 0, π00t, is .887 in period 1

and decreases to .794 in period 10. This pattern emerges because π11t is an increasing

linear function of the proportion choosing dit = 1, and π00t is a decreasing linear

function of the same proportion, as shown in (9). The slope of the linear functions

is (1− E). The base classification error rate E is set to .75, implying that even low

probability events have a fairly high probability of being classified correctly.

6.1.1 Non-Smooth SML Algorithm

Table 2 reports the results of four repeated sampling experiments using the non-

smooth SML algorithm. The difference between the four experiments is in the pro-

portion of randomly missing choices during the sample period. The four panels cor-

respond to data generating processes (DGPs) with no missing choices, and 20%, 40%

and 60% missing choices, respectively. There are no missing exogenous covariates.

The number of simulated choice histories per individual, M , is set equal to 1000,

unless otherwise noted. For starting values, we use an initial parameter vector where

each element is bumped 20% away from the true values.

As the figures in Table 2 illustrate, the SML estimator produces biases, but they

are negligible in magnitude. The bias in the estimate of ρ is statistically significant

14We use fM = 1000 to calculate the classification probabilities.
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in all four panels; however, the magnitude of the bias never exceeds 5.1 percent. The

biases in the estimates of β1 and E are sometimes significant but never exceed 2

percent. The medians of the parameter estimates are also quite close to the means,

suggesting that the sampling distributions are symmetric. Note that the empirical

standard errors of the estimates generally increase with the increased incidence of

missing choices. An increased incidence of missing choices does not change the point

estimates much since a higher proportion of missing choices does not substantially

alter reported choice frequencies. Since choices are missing at random, the effect of

a higher proportion of missing choices is only to reduce the effective sample size.

The t-statistics for significant biases generally decrease because the biases are mostly

unaffected and the empirical standard errors increase.

The biases we see in Table 2 are relatively small considering that biases on the

order of 5-8% are quite common even in panel data models estimated by classical

maximum likelihood (see Heckman (1981a)). But the models in Table 2, even that in

the first panel (with no missing choices and no initial conditions problem), are very

difficult to estimate by classical maximum likelihood. This is because conditional

choice probabilities are hard to construct when only lagged reported choices are known

and not lagged true choices. Missing choice data amplifies the problem.

The negligible small sample biases in Table 2 do not appear to be due to simulation

error. Doubling the number of simulated choice histories M to 2000 does little to

change the results. Lowering M to 500 also has little effect, but is 61% faster. Mean

time to convergence over the 50 repetitions in the second panel of Table 2 (20%

missing choices, M = 1000) is 3.73 hours with a standard deviation of .92. With

M = 500 this falls to 1.46 hours with a standard deviation of .34. The experiments

were run on a desktop computer with two 1.0 GHz processors and 0.5 GHz RAM.

Table 3 reports the results of three repeated sampling experiments analogous to

those in Table 2, except for a modified DGP where the exogenous covariate is also

missing when the choice is missing. Here, the parameters of the exogenous covariate
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process, φ1 and σv, are estimated jointly with the other model parameters. As the

results in Table 3 illustrate, adding missing covariates does not change the general

conclusions from Table 2. The bias in the estimate of ρ is statistically significant but

is still negligible in magnitude. The maximum bias over all parameters is only 4.8%.

Table 4 reports the results of three repeated sampling experiments that focus

on the initial conditions problem rather than missing information during the sample

period. The number of periods in the first two experiments is increased to T = 20.

The DGP is modified so that choices and covariates are completely missing in periods

t = 1, ..., 10 but there are no missing choices or covariates from t = 11, ..., 20.

The first panel of Table 4 reports the results of simulating from t = 0, the theoret-

ical start of the process, and forming the likelihood for periods t = 11 to t = 20 as in

equation (19). Biases in the estimates of β1, ρ, σν and σμ are statistically significant,

but negligible in magnitude (i.e., no more than 3 percent). Simulating choices from

the theoretical start of the process works quite well.

The second panel of Table 4 reports the results of simply ignoring the initial

conditions problem by assuming the choice process starts at t = 10 with di,10 = 0.

As missing pre-sample covariates are also ignored, the parameters of the exogenous

covariate process, φ1 and σν, are not estimated. The biases produced by this method

are generally substantial in magnitude. σμ in particular is badly biased upwards. The

incorrect treatment of the initial condition results in a substantial overestimate of the

importance of individual effects.15

The third panel of Table 4 reports the results of handling the initial conditions

problem by constructing a proxy for the initial value of
t−1P
τ=0

diτρτ using the observed

data. The number of periods in this experiment is increased to T = 30. The DGP

is modified so choices and covariates are completely missing in periods t = 1, ..., 10

15The variance of the composite error term is restricted to be between zero and one. Since almost

all of the estimates of σμ are close to the upper boundary of one, the standard deviation over the

fifty estimates is very small.
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but are observed from t = 11, ..., 30. The observed choices in period t = 11, ..., 20 are

used to form a proxy for
20P
τ=0

diτρτ and the likelihood is constructed using only data

from t = 21, ..., 30. In this method, the latent index at t = 21, u21, is given by:

ui21 = β0 + β1xi21 + ρ
20X

τ=11

e−α(21−τ−1)d∗iτ + εi21. (25)

The biases produced by this method are generally substantial in magnitude. Sim-

ilar to the case where the initial conditions problem was ignored, there is substantial

upward bias in the estimated variance of the random effect. Also, the estimate of the

base classification error rate parameter E is severely biased downward.

Table 5 reports the results of four repeated sampling experiments in which there

is an initial conditions problem and the model has a more familiar first-order Markov

structure in past choices. The Markov model is nested in the general model by setting

α = 0 and τ = t−1 so that uit = β0xit+ρdit−1+εit. The first panel of Table 5 reports

the results of handling the initial conditions problem by simulating from t = 0 and

forming the likelihood using data from periods t = 10 to t = 20, as in equation (19).

Simulating choices from the theoretical start of the process works quite well in the

Markov model. The resulting biases are small in magnitude, never exceeding 4.1%.

The second panel of Table 5 reports the results of ignoring the initial conditions

problem in the Markov model by setting di9 = 0. The estimate of ρ in this experiment

is substantially biased downward and σμ is substantially biased upward. The incorrect

treatment of the initial condition results in estimates that imply an overly weak effect

of previous choices on current utility, and an overly strong individual effect.

The third panel of Table 5 reports results of treating the initial condition as

exogenous (i.e., simply substituting the observed choice in period 10 into the utility

function in period 11). The biases produced by this method are generally less severe

than ignoring the initial conditions problem but, as might be expected when treating

the initial condition as exogenous, the estimate of ρ is biased upwards (by 14%).

The fourth panel of Table 5 applies the Heckman (1981a)method of approximating
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the marginal probability of the initial state using a probit model that incorporates

only information on exogenous covariates. This method specifies a different latent

index function, uHit , in the first period of observed data. The latent index at t = 10 is

uHit = γ0 + γ1xit + εHit (26)

where the variance of εHit is normalized to one and the correlation between εHit and

the individual effect μi is ρμ�H . The parameters γ0, γ1 and ρμ�H are estimated jointly

with the other parameters of the model. We still use our algorithm to accommodate

classification error and form the likelihood using unconditional simulations from t =

10, ..., 20, except at t = 10 we simulate from (26) instead of (1). In effect, we nest

Heckman’s procedure for handling the initial period within our algorithm.

The results show that nesting the Heckman method in our procedure works rela-

tively well in the random effects model. ρ is over-estimated by only 6.4%. Although

biases are not substantial for Heckman’s approximate solution approach (except for

the constant), simulation from the theoretical start of the process, when known, is

clearly preferable as the parameter estimates are less biased and more precise.

The fifth panel of Table 5 nests the Wooldridge (2003) approach to solving the

initial conditions problem within our algorithm. The Wooldridge method models the

conditional mean of the random effect as a function of the initial condition and the

entire path of exogenous covariates. Assuming the conditional mean is linear,

E [μi|d∗i0, xi11, ..., xi20] = α0 + α1d
∗
i10 + α2xi11 + · · ·+ α11xi20, (27)

the latent index in period t = 11, ..., 20, is

uWit =
eβ0 + β1xit + ρdit−1 + α1d

∗
i10 + α2xi11 + · · ·+ α11xi20 + ηit (28)

where eβ0 = β0 + α0. Note that β0 and α0 cannot be separately identified. The

additional parameters that are identified in this approach are α1 through α11.

The estimation results show that nesting Wooldridge’s method within our algo-

rithm produces an estimate of ρ that is biased downward by 12.6%. In contrast, Heck-
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man’s method yields an estimate of ρ that is biased upward by 6.4%. Wooldridge’s

approach also produces a more significant bias in the estimate of E.16

An interesting question is how our algorithm performs if there is in fact no (or neg-

ligible) classification error in the data. This scenario is implausible in micro datasets

(e.g., in our experience, even machine generated data like that from supermarket

scanners contain error, as human factors can always creep in), but it may be more

plausible in certain macro contexts (e.g., a cross country panel on sovereign defaults).

If classification error is not present, the assumption it exists serves simply as a tool

to guarantee a non-zero likelihood given a finite simulation size, analogous to Mc-

Fadden’s (1989) appending of extreme value errors onto the probit model to obtain

a "kernel smoothed" frequency simulator of probit choice probabilities. As there, the

extra source of error leads to bias in the simulator, which diminishes as the scale of

the auxiliary error goes to zero. How this affects estimates is an empirical question.

To address this issue, Table 6 reports results of three repeated sampling exper-

iments where the true DGP has no classification error (and no initial conditions

problem). The three panels display results for the random effects Polya model with

20%, 40% and 60% missing choices and covariates in each period, respectively. The

results show negligible biases that never exceed 5%. The mean estimate of E tends

towards the upper bound of one, so the estimated extent of classification error is

very small. As results illustrate, our algorithm is useful as a way to handle difficult

likelihood function simulations even when there is no classification error in the data.

6.1.2 The Smooth SML Algorithm (Importance Sampling)

The smooth version of the estimation algorithm differs from the non-smooth version

in that we simulate choice histories only once for each individual in the sample, at the

16The conclusions from the experiments are not sensitive to the extent of unbiased classification

error in the data generating process. Similar results were obtained for E, the base classification error

rate, set to .25 and .50. Lower values of E correspond to a greater extent of classification error.

25



initial vector of trial parameters. Rather than simulating new histories as we iterate

on the model parameters, we apply importance sampling weights to the original set

of sequences. The smooth algorithm enables the use of standard gradient methods of

optimization, as opposed to generally more time consuming non-gradient methods.

We again set simulation size M = 1000 and use an initial parameter vector where

each element is bumped 20% away from true values.

Table 7 reports the results of three repeated sampling experiments that use the

smooth SML algorithm, with the weights specified in (22). These are analogous to the

repeated sampling experiments in Table 3 that use the non-smooth algorithm. The

three experiments differ in the proportion of missing choices and covariates during the

sample period, assuming no initial conditions problem. Like Table 3, Table 7 reveals

a few statistically significant biases, but the biases are trivial in magnitude.

It is important to note that the smooth version of the algorithm is faster. As

reported earlier, the mean time to convergence over the 50 repetitions in the second

panel of Table 2 (20% missing choices) is 3.73 hours with a standard deviation of .92.

But that for the first panel of Table 6 is only 1.94 hours with a standard deviation of

.97. Thus, the smooth version is roughly twice as fast.

6.2 AR (1) Error Model

In the AR (1) error model, the error term εit follows the first-order serial correlation

process in (4). The theoretical start of the process is again di0 = 0. As in the

random effects model, the exogenous covariate xit is generated by the AR (1) process

in (16). The depreciation weights ρτ follow the same exponential decay process, ρτ =

ρe−α(t−τ−1). The vector of estimable parameters is θ = {β0, β1, ρ, α, φ2, σv, φ1, E}.
Table 8 reports summary statistics, by time period, for a representative data set

produced by the Polya model with AR (1) errors. The data set is generated with

N = 500, T = 10, no missing choices or covariates, and the true parameter vector

θ = {−.10, 1.00, 1.00, .50, .25, .50, .80, .75}. Note that an AR (1) error parameter of
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.80 implies a considerable amount of serial correlation. As in the random effects

model, the variance of εit is normalized to one and the frequency simulator that is

used to compute true classification error rates has M set to 1000. A comparison of

Tables 1 and 8 shows that the summary statistics produced by the AR (1) error model

are quite similar to the summary statistics produced by the random effects model.

6.2.1 Non-Smooth SML Algorithm

The order of repeated sampling experiments on the AR(1) error model is similar to

that for the random effects model. Tables 9-11 correspond to Tables 3-5. The three

panels of Table 9 report the results of increasing the incidence of missing choices and

covariates during the sample period, assuming no initial conditions problem. As in

the experiments on the random effects model, the bias in ρ is generally significant

but negligible in magnitude, never exceeding 4.6%. The biases and standard errors of

the parameter estimates are generally smaller in the AR(1) error model than in the

random effects model (compare Tables 3 and 9).

In Table 10, different solutions to the initial conditions problem are examined.

The first panel shows that simulating choices from the theoretical start of the process

works quite well in the AR(1) model, just as it does in the random effects model.

But the second panel, in which the initial conditions problem is ignored (i.e., just

set di,10 = 0), reveals serious biases. In particular, the AR(1) parameter (φ1) is

substantially over-estimated (i.e., .92 vs. .80). The biases in the estimates of ρ and α

are also very large. Since ρ is biased downward and α is biased upward, the estimates

understate the importance of lagged choices.

The third panel shows results from treating the observed di,10 as exogenous. The

magnitudes of the biases when using this approach are generally smaller in the AR(1)

model than in the random effects model. However, as in the random effects model,

the estimates of ρ and α are biased upward, understating state dependence.

Table 11 examines different solutions to the initial conditions problem in the
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Markov model with AR(1) errors. As in the random effects model, simulating from

the theoretical start of the process works well. Ignoring the initial conditions problem

produces substantial biases that are similar in direction and magnitude to the random

effects model (see Table 5). Treating the initial condition as exogenous (panel 3) or

using the Heckman approximation method (panel 4) result in more serious biases in

the AR(1) error model than in the random effects model. In these latter two methods,

the estimates of ρ are biased upward by 23% and 20%, respectively.17

6.2.2 The Smooth SML Algorithm (Importance Sampling)

Table 12 reports the results of estimating the Polya model with AR(1) errors, missing

exogenous covariates but no initial conditions problem, and using the smooth SML

algorithm with the weights in (22). As in the random effects model (see Table 7), the

estimates have biases that are negligible in magnitude. Consistent with previously

reported results for the random effects model, the AR(1) model also converges much

faster when using the smooth algorithm. For example, while the mean time to con-

vergence over the 50 repetitions in the first panel of Table 9 (20% missing choices)

was 3.07 hours with a standard deviation of .71, that over the 50 repetitions in the

first panel of Table 12 was only 1.84 hours with a standard deviation of .72.

7 Monte-Carlo Tests - Biased Misclassification

This section presents Monte-Carlo tests of the SML estimator with biased classifica-

tion error, as specified in (11). The algorithm used to generate artificial data sets is

described in Appendix B. Subsections 7.1 and 7.2, present results for Polya models

with random effects and AR(1) errors, respectively. In subsection 7.3, we present

results for the Polya model with both random effects and AR(1) errors.

17The Wooldridge approach is not applied in the AR(1) case because it was developed specifically

for a random effects model, as shown in (27).
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7.1 Random Effects Model

7.1.1 Non-Smooth SML Algorithm

The three panels of Table 13 report the results of using the non-smooth SML algorithm

on Polya models with random effects and biased classification error. The vector of

true structural parameters is the same as in the case of unbiased classification error.

In all three panels, 20% of the choices and exogenous covariates are missing in each

period and there is no initial conditions problem. The three experiments in Table 13

differ in the true parameters of the classification error process, γ0, γ1 and γ2.

The first panel specifies values of γ0, γ1 and γ2 that produce a relatively low level

of bias in classifications. The parameters in the second panel generate an intermediate

level of bias and the parameters in the third panel imply a relatively large bias. The

conditional probabilities π11t = Pr (d∗it = 1 | dit = 1) and π01t = Pr (d
∗
it = 1 | dit = 0)

are (.97, .18), (.95, .27) and (.95, .50), in the first, second and third panels, respectively.

The results reveal relatively few statistically significant biases. Only the estimates

of ρ and σv are consistently biased, but the magnitudes of these biases are negligible,

never exceeding 3 percent. In general, the algorithm seems to perform very well, both

in terms of uncovering the structural parameters and in terms of uncovering the pa-

rameters of the classification error process.18 Note that, as the extent of classification

bias increases, it leads to larger empirical standard errors. This is as expected: with

more classification error, the data contain less information about the true process.

18The algorithm with a high extent of classification bias, and 20% missing choices and covariates,

converges in similar time to the corresponding specification with unbiased classification error. For

example, the time to convergence per parameter is .54 hours in the former case and .57 hours in

the latter. The overall time to convergence for the unbiased and biased classification error models

cannot be directly compared because they have a different number of parameters.
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7.1.2 Smooth SML Algorithm

Table 14 reports the results of estimating the random effects Polya model with biased

classification error using the smooth SML algorithm with the weights in (22). As

in the first panel of Table 13, 20% of the choices and covariates are missing in each

period, there is no initial conditions problem and there is a relatively low extent of

true classification error bias. The results reveal slightly larger biases and standard

errors than when using the non-smooth algorithm (compare Tables 13 panel 1 and

14). However, the biases remain small. The largest biases are in the estimates of ρ

and α, which are biased by 5.4% and 8.8%, respectively.

7.2 AR (1) Error Model

7.2.1 Non-Smooth SML Algorithm

The three panels in Table 15 repeat the experiments of Table 13, but for a Polya

model with AR(1) errors rather than random effects. The results tell a similar story.

The biases are negligible in magnitude, rarely exceeding 3 percent, and the empirical

standard errors grow with the extent of bias in the true classification error process.

7.2.2 Smooth SML Algorithm (Importance Sampling)

Table 16 reports a similar experiment to that in Table 14 except with AR(1) errors

rather than random effects. The biases are once again negligible in magnitude and

noticeably smaller than in the random effects specification. The estimates of ρ and α

are biased by only 2.1% and 2.3%, respectively.

7.3 Random Effects and AR (1) Errors

Finally, we consider a model with both random effects and AR(1) errors. Here, the

error term εit follows the error process in (5). The true σμ is set to .80 while the

AR (1) parameter φ1 is set to φ1 = .40. To conserve on space we report results
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only for the Polya model, and only using the smooth algorithm (with the weights

in (22)). The results are reported in Table 17. As in Tables 14 and 16, there are

20% missing choices and covariates in each period and low classification error bias.

The smooth algorithm produces biases in the estimated parameters that are small in

magnitude. In particular, the biases in the estimates of ρ and α are only 2.2% and

6%, respectively. Recall that the biases in these parameters in the random effects

only model are 5.4% and 8%, respectively (see Table 14), and in the AR(1) errors

only model they are are 2.1% and 2.3%, respectively (see Table 16). It is interesting

that the algorithm seems to have little difficulty disentangling the various sources of

persistence in the data {ρ, α, σμ, φ1}.19

8 Application to Female Labor Force Participation

In this section, we use our algorithm to estimate dynamic probit models of married

women’s labor force participation, using PSID data from 1994-2003. As respondents

were not interviewed every year during the sample period, the data contain both miss-

ing choices (missing endogenous state variables) and missing covariates, in addition

to an initial conditions problem. Thus, it would be extremely difficult to simulate the

likelihood using alternative approaches. We use our estimates to test for endogeneity

of fertility and nonlabor income (following Hyslop (1999)).

19For instance, compared to the RE only model (Table 14), the increases in RMSE for ρ, α, and

σμ are very modest when φ1 is added. RMSEs are considerably greater than in the AR(1) only

model (Table 16), but that is not the result of having random effects plus AR(1) errors. RMSEs for

ρ, α, and σμ are already considerably larger in the models with RE (Table 14) than in models with

AR(1) errors (Table 16).
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8.1 The Data

The data are drawn from the 2004 PSID, including both the random Census sub-

sample of families and nonrandom Survey of Economic Opportunities. Restricting

the sample to 1994-2003 produces a panel of the same length as in the repeated sam-

pling experiments. A serious missing data problem arises because the PSID switched

from annual to biannual surveys after the 1997 wave. Hence, PSID families were

not interviewed in 1998, 2000, and 2002.20 Even in the seven years when labor force

participation is reported, it is likely to be measured with error.21

We build a panel from the PSID that has N = 1310 women and T = 10 years.

We include women who are between the ages of 18 and 60 in 1995, are continuously

married during the period, and whose husbands were labor force participants in each

of the seven actual survey years. These are typical sample selection criteria in the

literature on female labor force participation (see, e.g., Hyslop (1999)).

Table 18 presents descriptive statistics for the estimation sample. The mean labor

20Respondents were asked a series of questions related to their activities in the "off-years" of the

PSID. However, we treat retrospective responses as missing. There is no retrospective information

collected on husband’s annual earnings (non-labor income).

21For example, Poterba and Summers (1986) used the so called “CPS reconciliation data” to assess

the extent of classification error in reported employment status in the CPS. In the reconciliation

data, Census sends an interviewer to reinterview a household a week after its original interview. The

interviewer determines if reports disagree and, in the event if a disagreement, attempts to determine

true employment status. The figures in Poterba and Summers Table II imply that the probability

an employed person falsely reports being unemployed or out-of-the-labor-force is 1.5%, while the

probability an unemployed person falsely reports being employed is 4.0%. Unfortunately, there is

little direct evidence on classification error in the PSID itself, because the PSID validation study,

analysed in Bound et al. (1994) only covered a sample of respondents who worked for a single

large firm. As all participants were employed, these data cannot be used to assess the probability of

falsely reported employment when ones true state is unemployed. However, Bound et al. report that

between 29% and 37% of the variance in log hours is noise — see Table 3 panel B. This is suggestive

that classification error in employment status is likely to also be important.
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force participation rate is .82, while average annual husband’s earnings (the proxy for

nonlabor income) is $46, 000. The fertility variables are the number of children aged

0-2, 3-5 and 6-17. The last three variables in the table, also used as covariates,

are age, the highest level of education attained over the sample period (which is

then held constant from 1994-2003), and race (equal to one if black). All covariates

except nonlabor income are available for the full ten years because they are either not

time-varying (education, race), vary in a known way (age) or can be re-constructed

from information in the 2004 panel (e.g., the fertility variables). In implementing

our estimation procedure, we assume an AR(1) process for the missing time-varying

covariate (nonlabor income).

8.2 The Model

The models we fit to married womens’ labor force participation decisions are

Markov : uit = β0 + β1 ln(yit) + β02Xit + ρdi,t−1 + εit

Polya : uit = β0 + β1 ln(yit) + β02Xit +
t−1X
τ=0

diτρτ + εit, ρτ = ρe−α(t−τ−1)

dit = 1 if uit ≥ 0, 0 otherwise, di0 = 0
ln(yit) = φ2 ln(yi,t−1) + νit, νit ∼ N

¡
0, σ2ν

¢
(29)

εit = μi + ξit

ξit = φ1ξit−1 + ηit, ηit ∼ N(0, (1− σ2μ)(1− φ21))

lit = γ0 + γ1dit + γ2d
∗
it−1 + ωit

μi =
TP
t=1

δ0tWit + σμζi, ζi ∼ N(0, 1)

where yit is the husband’s earnings in year t, andXit is a vector containing the fertility,

race and education covariates, as well as year effects. The error structure for both

the Markov and Polya models is random effects and AR(1) errors. We also assume a

classification error process where the probability of reporting a particular labor force

participation state depends on the true participation status as well as lagged reported
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status (to allow for the possibility of persistence in misreporting one’s state).

Note that the model in (29) is more general than those considered in the repeated

sampling experiments because we allow for correlated random effects (the last equa-

tion in (29)) or "CRE". That is, following Chamberlain (1982, 1984), the random

effects are allowed to be correlated with the vector Wit which contains ln(yit) and

the three fertility variables. Then a test of the null hypothesis H0: δt = 0 is a test

for whether fertility and nonlabor income are exogenous in the sense that they are

uncorrelated with the individual random effects.22

In estimating (29), we take the theoretical start of the process, t = 0, to be age 16.

Of course, most women in the sample are not observed at age 16. To deal with this

initial conditions problem, we simulate participation and nonlabor income from age

16 onward. We estimated the model using the smooth algorithm with the importance

sampling weights defined in (22). The number of simulated choices for each individual

in each time period, M , is set to 250.23

8.3 Estimation Results

8.3.1 The Markov Model

Table 19 displays results for four different Markov versions of the model in (29).

Column (1) reports point estimates and asymptotic standard errors for a restricted

version with random effects only (i.e., φ1 = 0 and δt = 0). The results show precisely

22Note that consistency (in N with T fixed) of the conventional RE model requires strict exogeneity

of the covariates. The CRE model relaxes this by letting μi be correlated with the time-varying

covariates Wit for all t = 1, ..., T . However, it still imposes that time-varying covariates Wit are

uncorrelated with lagged values of the time varying error terms ξit.

23Setting M=1000, as in the repeated sampling experiments, is not computationally practical for

N=1310. Thus, we performed additional repeated sampling experiments with N=1310 andM=250.

Biases remain negligible, although standard errors are higher. Biases also remain negligible with

changes in N and T .
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measured effects of nonlabor income, fertility, age, race and education, and signs and

relative magnitudes of the effects are all in the expected directions.

The estimate bρ = 2.31 in Column (1) implies strong positive state dependence in
participation. Permanent unobserved heterogeneity is also important in explaining

persistence in participation. The estimate bσμ = .89 implies that 79% of the total

error variance is due to the individual effect. The AR(1) coefficient in the nonlabor

income process, bφ2 = .999, implies husband’s income is essentially a random walk.

The estimates of the classification error process, γ0, γ1 and γ2, imply classification

error is important, and that there is considerable persistence in misclassification. The

estimates imply that bπ01t = .299 and bπ10t = .073 when d∗i,t−1 = 0, and bπ01t = .677 andbπ10t = .016 when d∗i,t−1 = 1. Thus, the probability of mis-reporting a one (participa-

tion) when the true state is zero (nonparticipation) increases from 29.9% to 67.7% if

participation is reported in the previous period. Similarly, when participation is re-

ported in the previous period, the probability of mis-reporting nonparticipation when

the true state is participation falls from 7.3% to 1.6%. On average, the probability

of misreporting one’s state is 2.01%. Note that this is in the ballpark of the figures

obtained by Poterba and Summers (1986) for the CPS. Finally, the χ2 goodness of

fit statistic has a p-value of .1024, so the model is not rejected at the 10% level.24

Column (2) reports results for the correlated random effects version of the model.

Allowing for correlated random effects produces qualitatively similar point estimates

and standard errors to those obtained in Column (1). However, the log-likelihood

improves 22 points leading to rejection of H0: δt = 0. Specifically, the χ2 likelihood

ratio statistic is 44.58 with 27 degrees of freedom, giving a p-value of .0243. Thus, we

find clear evidence that fertility and nonlabor income are not exogenous in a random

24The Pearson chi-squared statistic is calculated by computing the frequency of actual and pre-

dicted sequences of participation over the seven years of observed choices in the ten-year panel. In

order to avoid small cell problems, the number of cells is reduced from 128 (27) to 48 by combining

"similar" cells. This is the same procedure that Hyslop (1999) employs to evaluate goodness-of-fit.
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effects probit model with first order state dependence.

The models in Columns (3) and (4) expand those in Columns (1) and (2) by adding

AR(1) transitory errors, introducing the additional parameter φ1. The results show

that AR(1) serial correlation is an important component of persistence in female labor

force participation, in addition to random effects and first-order state dependence. In

Column (3), the point estimate is bφ1 = .608, and it is precisely estimated. However,

estimates of other parameters remain qualitatively similar, and the model exhibits

only a modest improvement in fit when AR(1) serial correlation is introduced.

Column (4) reports the estimation results for the correlated random effects Markov

model in (29), with random effects and AR(1) errors, and where the individual effect

is allowed to be correlated with nonlabor income and fertility. Allowing for correlated

random effects produces qualitatively similar results to those obtained in Column

(3). However, log-likelihood improves by 31 points leading to clear rejection of the

null hypothesis δt = 0 (i.e., the likelihood ratio χ2 has a p-value of .0002). The χ2

goodness of fit statistic for this model is 56.40 with a p-value of .1637.

8.3.2 The Polya Model

Table 20 displays estimation results for the four different versions of the Polya model

that correspond to the four versions of the Markov model in Table 19. If we look

at the most general model, Column (4), we see that the Polya model implies much

greater effects of husband income, young children and education on female labor

supply than does the Markov model. It also implies a much smaller effect of race.

Interestingly, the estimated variance of the random effect is similar in the Markov

and Polya models, but the AR(1) serial correlation parameter is somewhat smaller in

the Polya model (i.e., .46 vs. .61).

The Polya process estimates, bρ and bα, imply that past participation is an im-
portant determinant of current participation, but that the influence of past choices

falls quickly over time. For example, in Column (1), uit increases by .6363 (the point
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estimate of ρ) when di,t−1 = 1, holding all else constant. This is in contrast to an

increase in uit of 2.3 to 2.5 in the Markov models. In the Markov model di,t−2 = 1 has

no effect on uit, while in the Polya model, setting di,t−2 = 1 increases uit by .0959.

Moving further into the past, uit increases by only .0145 when di,t−3 = 1. Further

lags have negligible effects. The sum of the lag coefficients is .75. Thus, the degree

of true state dependence implied by the Polya models is much less than that implied

by the Markov models. Instead, the Polya models ascribe more of the persistence in

choices to observable heterogeneity (husband income, young children, education).

The Polya models imply only slightly lower classification error rates than the

Markov models. For example, in Column (1), the estimated classification error rates

in the Polya model are bπ01t = .246 and bπ10t = .059 when d∗i,t−1 = 0, and bπ01t = .630

and bπ10t = .012 when d∗i,t−1 = 1. The average probability of misreporting is 1.89%

compared to 2.01% in Table 19, Column (1).

The Polya models fit the data noticeably better than the Markov models. For

example, comparing the full models in Columns (4) of Tables 19-20, the improvement

in the log-likelihood is 105 points with the addition of only one parameter (α).25 Also,

the Pearson chi-squared statistic is 51.02 with a p-value of .3186, compared to 56.40

with a p-value of .1637 in the Markov model.

Finally, the null hypothesis of exogenous fertility and nonlabor income is once

again rejected in the Polya models. In the model with only random effects, the χ2

statistic for H0: δt = 0 is 46.42 with a p-value of .0158. In the model that adds AR(1)

errors (Column (4)) it is 59.62 with a p-value of .0005.

Our findings contrast with those of Hyslop (1999), who cannot reject exogeneity of

fertility and husband’s income in models very similar to our Markov model. Our PSID

sample differs from his because, using our estimation algorithm, we are able to depart

from having a balanced panel and include women with missing data. But, as we show

in Keane and Sauer (2006), the discrepancy in results is mainly due to the fact that

25Note that the Markov model is nested in the Polya model by setting α = 0.
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we correct for classification error within our SML estimation algorithm. Allowing for

classification error leads to an inference that there is more true persistence in labor

supply choices (since our model interprets some transitions as spurious - arising due

to misclassification of employment state). This, in turns, leads to estimates that

imply a greater importance of individual effects, and, in turn, greater covariance of

the individual effects with fertility and husband’s income.

9 Conclusion

This paper assesses the performance of a new computationally practical SML esti-

mation algorithm for dynamic discrete choice panel data models with unobserved

endogenous state variables. The estimation technique offers a unified approach to

the initial conditions problem and the problem of missing data during the sample

period. The computational advantage of the estimation algorithm lies in the fact

that it requires only unconditional simulation of data from the model to form the

likelihood. Performing unconditional simulations is often straightforward in contexts

where performing conditional simulations is computationally infeasible. Therefore, in

such contexts, our algorithm may have a significant advantage over algorithms such

as GHK, MCMC and EM that require conditional simulation.

In order to make it feasible to simulate the likelihood using unconditional simu-

lations, a classification error process in discrete choices must be assumed. However,

the assumption that reported choices are misclassified is a reasonable one in almost

all empirical applications in economics. The estimation technique can also accommo-

date a wide range of classification error processes, as long as it is possible to write

a tractable expression for the classification error rates. The extent of classification

error in the data can be estimated jointly with the structural model parameters, or,

if good prior information is available, specified a priori.

The SML estimation algorithm was tested via a series of repeated sampling exper-
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iments on a panel data probit model with a time-varying exogenous covariate, lagged

endogenous variables, serially correlated errors, and two different classification error

processes. The estimator was shown to have good small sample properties. Under

both the non-smooth and smooth versions of the algorithm, we found that biases are

negligible in magnitude even for high amounts of missing information in the data.

The new SML estimation algorithm can also be combined with either Heckman’s

(1981a) or Wooldridge’s (2003) approximate solution to the initial conditions prob-

lem. Such a hybrid approach may be appealing when there is no natural starting

point to the choice process, and missing data is a problem during the sample period.

Heckman’s method was found to work better than Wooldridge’s in our experiments

with a random effects model. But, Heckman’s method worked less well in our experi-

ments with an AR(1) error model (i.e., we found a 20% upward bias in the coefficient

on the lagged choice). Overall, it is preferable to simulate choices from the theoretical

start of the process if it can be determined.

Interestingly, our SML algorithm seems to perform a bit better (in terms of con-

sistently producing negligible bias) for models with biased as opposed to unbiased

classification error. In order to impose the constraint that classification error be un-

biased, one must specify that error rates are functions of true choice probabilities.

This means error rates must themselves be simulated, inducing additional noise into

the likelihood simulation as well as additional computation time. In contrast, with

biased classification error, one can specify that error rates are closed form functions

of true choices (and perhaps also lagged observed choices and covariates), avoiding

one component of simulation error and computation time.

We also apply the algorithm to panel data probit models of female labor force

participation using PSID data from 1994-2003. A serious missing data problem arises

in these data because (i) respondents were not interviewed in 1998, 2000 and 2002,

(ii) there is nonresponse in interview years, and (iii) the average age at which women

are first observed is 37, creating an initial conditions problem. We solve the initial
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conditions problem by simulating participation outcomes and nonlabor income real-

izations from the theoretical start of the process, assumed to be age 16. We estimate

both Markov and Polya models assuming biased classification error.

The utility of the algorithm was revealed in two ways. First, we found that the

Polya model, which is more difficult to estimate using conventional methods than

the much more commonly used Markov model (since missing data creates greater

problems), provides a substantially better fit to the data. It also leads to substantially

different economic results - i.e., state dependence is far less important as a source of

persistence in labor supply, while observed heterogeneity is more important. Second,

the ability to accommodate classification error enables the algorithm to adjust for the

impact of spurious transitions on the estimated degree of persistence in true choices.

This implies greater importance of individual random effects, and higher covariance

of these with observed characteristics. As a result, in contrast to results in Hyslop

(1999), we find strong evidence that husband’s income and fertility are endogenous

in dynamic probit models of women’s labor force participation.

Future research will examine the small sample properties of the estimation tech-

nique in more complex dynamic models. For example, observed continuous outcomes,

such as wages, can be incorporated into estimation by specifying measurement error

densities that enter the likelihood. The estimation method can also be extended to

handle cases in which the missing data are not missing at random, there is endogenous

attrition, or there is feedback from past choices to future covariates.

40



References

[1] Ackerberg, D. (2001), “A New Use of Importance Sampling to Reduce Compu-

tational Burden in Simulation Estimation,” unpublished manuscript.

[2] Bound, John; Brown, Charles; Duncan, Greg J., and Rodgers, Willard (1994).

“Evidence on the Validity of Cross-sectional and Longitudinal Labor Market

Data,” Journal of Labor Economics, 12, 345-368.

[3] Chamberlain, G. (1982), "Multivariate Regression Models for Panel Data," Jour-

nal of Econometrics, 18, pp. 5-46.

[4] Chamberlain, G. (1984), “Panel Data," Chapter 22 inHandbook of Econometrics,

Vol. 2, ed. by Z. Griliches and M.D. Intrilligator. Amsterdam: Elsevier Science

Publishers B.V.

[5] Dempster, A.P., N.M. Laird and D.B. Rubin (1977), “Maximum Likelihood From

Incomplete Data via the EMAlgorithm,” Journal of the Royal Statistical Society,

B 39, 1-38.

[6] Erdem, T. and M.P. Keane (1996), “Decision Making under Uncertainty: Cap-

turing Dynamic Brand Choice Processes in Turbulent Consumer Goods Mar-

kets,” Marketing Science, 15, 1-20.

[7] Flinn, C.J. (1997), “Equilibrium Wage and Dismissal Processes,” Journal of

Business and Economic Statistics, 15, 221-236.

[8] Geweke, J. and M.P. Keane (2000), “An Empirical Analysis of Male Income

Dynamics in the PSID: 1968-1989,” Journal of Econometrics, 96, 293-356.

[9] Geweke, J. and M.P. Keane (2001), “Computationally Intensive Methods for

Integration in Econometrics,” in Handbook of Econometrics, Volume V, eds.,

J.J. Heckman and E. Leamer, Elsevier Science B.V., pp. 3463-3568.

41



[10] Gould, E. (2007), "Cities, Workers, and Wages: A Structural Analysis of the

Urban Wage Premium," Review of Economics and Statistics, 74, 477-506.

[11] Hausman, J.A., J. Abrevaya and F.M. Scott-Morton (1998), “Misclassification

of the Dependent Variable in a Discrete-Response Setting,” Journal of Econo-

metrics, 87, 239-269.

[12] Heckman, J. (1981a), “The Incidental Parameters Problem and the Problem

of Initial Conditions in Estimating a Discrete Time-Discrete Data Stochastic

Process,” in C. Manski and D. McFadden, eds., The Structural Analysis of Dis-

crete Data (MIT Press, Cambridge, MA).

[13] Heckman, J. (1981b), “Statistical Models for Discrete Panel Data,” in C. Manski

and D. McFadden, eds., The Structural Analysis of Discrete Data (MIT Press,

Cambridge, MA).

[14] Hyslop, D.R. (1999), “State Dependence, Serial Correlation and Heterogeneity

in Intertemporal Labor Force Participation of Married Women,” Econometrica,

67, 1255-1294.

[15] Keane, M.P., and K.I. Wolpin (2001), “The Effect of Parental Transfers and

Borrowing Constraints on Educational Attainment,” International Economic Re-

view, 42, 1051-1103.

[16] Lee, L.F (1992), “On the Efficiency of Methods of Simulated Moments and Max-

imum Simulated Likelihood Estimation of Discrete Response Models,” Econo-

metric Theory, 8, 518-522.

[17] McFadden, D. (1989), “A Method of Simulated Moments for Estimation of Dis-

crete Response Models without Numerical Integration,” Econometrica, 57, 995-

1026.

42



[18] Pakes A. and D. Pollard (1989), “Simulation and the Asymptotics of Optimiza-

tion Estimators,” Econometrica, 57, 1027-1057.

[19] Poterba J.M., and L.H. Summers (1986), “Reporting Errors and Labor Market

Dynamics,” Econometrica, 54, 1319-1338.

[20] Poterba J.M., and L.H. Summers (1995), “Unemployment Benefits and Labor

Market Transitions: A Multinomial Logit Model with Errors in Classification,”

Review of Economics and Statistics, 77, 207-216.

[21] Ruud, P.A. (1991) , “Extensions of Estimation Methods Using the EM Algo-

rithm,” Journal of Econometrics, 49, 305-341.

[22] Wooldridge, J.M. (2003), “Simple Solutions to the Initial Conditions Problem in

Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity,” Jour-

nal of Applied Econometrics, forthcoming.

43



Appendix A

Data Generating Process - Unbiased Classification Error

Defining the initial conditions of the model as di0 = xi0 = 0, each data set in

the repeated sampling experiments is constructed in two stages. In the first stage we

generate the exogenous covariates and compute the classification error rates. In the

second stage we generate the sequences of true and reported choices (using the error

rates computed in the first stage). The second stage also determines if a choice is

missing. The two stages of the data generating process are as follows:

Stage 1

1. DrawN sequences from the joint distribution of (xi1, ..., xiT ) to form
n
{xit}Tt=1

oN
i=1

.

2. Draw fM times from the joint distribution of (εi1, ..., εiT ) to form
½n
{eεmit }Tt=1oN

i=1

¾M

m=1

.

Note that fM will generally differ from the number of simulated choice histories

M generated for each individual in estimation.

3. Given
n
{xit}Tt=1

oN
i=1
and the error sequence

½n
{eεmit }Tt=1oN

i=1

¾M

m=1

, construct fM
simulated choices for each individual i in every period t

(½nedmitoT
t=1

¾N

i=1

)M

m=1
according to (1) and the decision rule (2).

4. Form the frequency simulator bP ³edit = 1 | Hm
it

´
=

1

M

MP
m=1

Pr

µ
εit ≤ β0 + β1xit +

t−1P
τ=0

edmiτρτ¶ where Hm
it =

½
{xiτ}tτ=1 ,

nedmiτot
τ=1

¾
.

5. Construct the classification error rates πjkt for each individual i, according to

(8) , using bP in place of Pr (dit = 1).

44



Stage 2

1. Draw N sequences of errors from the joint distribution of (εi1, ..., εiT ) to formn
{εit}Tt=1

oN
i=1
.

2. Given the
n
{xit}Tt=1

oN
i=1

sequence generated in the first stage, and the error

sequence
n
{εit}Tt=1

oN
i=1

, construct N true choices
n
{dit}Tt=1

oN
i=1

according to

(1) and the decision rule (2) .

3. In order to construct the sequence of reported choices, draw T times for each

individual i from a uniform random number generator to obtain the sequencen
{Uit}Tt=1

oN
i=1

.

4. Compare the uniform random draws to the classification error rates to deter-

mine if choices are correctly reported. That is, construct N reported choicesn
{d∗it}Ni=1

oT
t=1
by implementing the following rule: if dit = 1 and Uit < π11t then

d∗it = 1, else d
∗
it = 0. Similarly, if dit = 0 and Uit < π00t then d∗it = 0, else d

∗
it = 1.

5. In order to determine if a reported choice is missing, draw T times for each

individual i from a uniform random number generator to obtain the sequence½neUit

oT
t=1

¾N

i=1

.

6. Compare the uniform draws to the probability πobs that d∗it is missing in period

t. That is, implement the following rule: if eUit < πobs then I (d∗it observed) = 1,

else I (d∗it observed) = 0.

Note that step 6 does not specify πobs as a function of the exogenous covariates or

the observed choices. The data are thus missing completely at random. Generating

an initial conditions problem and/or non-randomly missing covariates simply involves

modifying πobs accordingly.
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Appendix B

Data Generating Process - Biased Classification Error

The data generating process in the case of biased classification error follows the

same general rules as in the case of unbiased classification error. The only difference

is that the data generating process can be accomplished in one stage rather than two.

True choice probabilities do not need to be simulated. The procedure is as follows:

1. DrawN sequences from the joint distribution of (xi1, ..., xiT ) to form
n
{xit}Tt=1

oN
i=1

.

2. Draw N sequences of errors from the joint distribution of (εi1, ..., εiT ) to formn
{εit}Tt=1

oN
i=1

.

3. Given
n
{xit}Tt=1

oN
i=1
and

n
{εit}Tt=1

oN
i=1

, construct N true choices
n
{dit}Tt=1

oN
i=1

according to (1) and the decision rule (2) .

4. Draw T times for each individual i from a uniform random number generator

to obtain the sequence
n
{Uit}Tt=1

oN
i=1

.

5. Construct N reported choices
n
{d∗it}Ni=1

oT
t=1
by implementing the following rule:

if dit = 1 and Uit < π11t then d∗it = 1, else d∗it = 0. Similarly, if dit = 0 and

Uit < π00t then d∗it = 0, else d∗it = 1. The “true” classification error rates πjkt

are obtained directly from (11). It is assumed that d∗i0 = di0 = 0.

6. Draw T times for each individual i from a uniform random number generator

to obtain the sequence
½neUit

oT
t=1

¾N

i=1

.

7. Implement the following rule: if eUit < πobs then I (d∗it observed) = 1, else

I (d∗it observed) = 0.
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Table 1

Summary Statistics
Representative Data Set

Random Effects Polya Model
Unbiased Classification Error

Mean Mean Mean Mean Mean Mean
t dit d∗it β0x εit π11t π00t N

1 .4800 .4800 -.0124 .0094 .8630 .8870 500
(.2701) (1.0147)

2 .5780 .5780 .4909 .0149 .8947 .8553 500
(.5601) (1.0046)

3 .6560 .6660 .8940 -.0116 .9142 .8359 500
(.8547) (.9919)

4 .7140 .7260 1.1917 -.0005 .9264 .8236 500
(1.0645) (1.0102)

5 .7460 .7440 1.4164 -.0232 .9347 .8153 500
(1.1355) (.9606)

6 .7640 .7580 1.6214 -.0089 .9414 .8086 500
(1.2164) (1.0396)

7 .8140 .8000 1.7812 -.0325 .9474 .8026 500
(1.1329) (1.020)

8 .8120 .8100 1.8797 .0138 .9509 .7991 500
(1.2081) (1.0405)

9 .8220 .8100 1.9806 .0092 .9545 .7955 500
(1.1668) (1.0107)

10 .8460 .8500 1.9863 .0211 .9565 .7935 500
(1.0949) (.9539)

Note: dit is the true choice, d∗it is the reported choice, π11t and π00t are the probabilities of a correct
classification, and β0x = uit − β0. Variances are in parentheses. The frequency simulator that is
used to compute the true classification error rates has fM set to 1000. The model is:

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit

di0 = 0, ρτ = ρe−α(t−τ−1)

xit = φ2xi,t−1 + νit, νit ∼ N
¡
0, σ2ν

¢
εit = μi + ηit, μi ∼ N

¡
0, σ2μ

¢
, ηit ∼ N

¡
0, 1− σ2μ

¢
.
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Table 2

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

No Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0975 -.0950 .0427 .0427 .42
β1 1.0000 1.0171 1.0196 .0552 .0578 2.20
ρ 1.0000 1.0463 1.0462 .0513 .0691 6.38
α .5000 .4912 .4926 .0499 .0506 -1.22
σμ .8000 .8062 .8009 .0269 .0276 1.62
E .7500 .7408 .7417 .0162 .0186 -3.99

20% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.0995 -.1017 .0428 .0428 .08
β1 1.0000 1.0114 1.0199 .0611 .0622 1.32
ρ 1.0000 1.0450 1.0356 .0528 .0694 6.04
α .5000 .4864 .4985 .0719 .0731 -1.34
σμ .8000 .8095 .8066 .0259 .0275 2.59
E .7500 .7409 .7399 .0184 .0206 -3.50

40% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1025 -.1001 .0530 .0530 -.33
β1 1.0000 1.0183 1.0265 .0612 .0648 2.09
ρ 1.0000 1.0505 1.0425 .0524 .0728 6.81
α .5000 .4887 .4882 .0633 .0643 -1.26
σμ .8000 .8047 .7989 .0339 .0343 .98
E .7500 .7437 .7412 .0231 .0239 -1.94

60% Missing Choices (t = 1, ..., 10)

β0 -.1000 -.1070 -.1052 .0596 .0600 -.82
β1 1.0000 1.0147 1.0161 .0860 .0872 1.21
ρ 1.0000 1.0485 1.0562 .0603 .0773 5.68
α .5000 .4970 .4982 .0817 .0817 -.26
σμ .8000 .8016 .8012 .0486 .0487 .23
E .7500 .7477 .7426 .0287 .0288 -.55

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 1.
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Table 3

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1051 -.1023 .0436 .0439 -.83
β1 1.0000 1.0167 1.0191 .0611 .0634 1.92
ρ 1.0000 1.0479 1.0446 .0444 .0653 7.63
α .5000 .4977 .5031 .0656 .0657 -.24
φ2 .2500 .2520 .2505 .0176 .0177 .80
σν .5000 .5015 .5016 .0057 .0059 1.86
σμ .8000 .8056 .8017 .0287 .0292 1.38
E .7500 .7428 .7430 .0172 .0187 -2.95

40% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1087 -.1099 .0539 .0546 -1.15
β1 1.0000 1.0141 1.0233 .0678 .0692 1.48
ρ 1.0000 1.0458 1.0374 .0636 .0784 5.10
α .5000 .4953 .4949 .0600 .0602 .56
φ2 .2500 .2521 .2546 .0253 .0254 .59
σν .5000 .5012 .5012 .0069 .0070 1.21
σμ .8000 .8046 .8063 .0347 .0350 .94
E .7500 .7474 .7416 .0245 .0246 -.74

60% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0997 -.1116 .0542 .0543 .05
β1 1.0000 1.034 1.0258 .0894 .0924 1.85
ρ 1.0000 1.0401 1.0512 .0682 .0791 4.15
α .5000 .4957 .4973 .0721 .0722 -.42
φ2 .2500 .2507 .2498 .0372 .0373 .13
σν .5000 .5011 .5017 .0089 .0090 .88
σμ .8000 .8096 .8044 .0421 .0432 1.61
E .7500 .7493 .7440 .0288 .0288 -.16

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 1.
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Table 4

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 11, ..., 20)

β0 -.1000 -.1001 -.1022 .0295 .0295 -.02
β1 1.0000 1.0286 1.0337 .0454 .0537 4.46
ρ 1.0000 1.0298 1.0253 .0324 .0440 6.51
α .5000 .5044 .5004 .0320 .0323 .98
φ2 .2500 .2501 .2526 .0135 .0135 .05
σν .5000 .5015 .5025 .0042 .4985 2.56
σμ .8000 .8130 .8145 .0245 .0277 3.74
E .7500 .7450 .7410 .0193 .0199 -1.82

Assume process starts with di,10 = 0 (t = 11, ..., 20)

β0 -.1000 .9367 .9513 .0543 1.0381 135.05
β1 1.0000 .2966 .2844 .0938 .7096 -53.01
ρ 1.0000 .9543 .9333 .3278 .3310 -.99
α .5000 .4187 .3995 .2957 .3067 -1.94
σμ .8000 .9905 .9923 .0090 .1907 149.11
E .7500 .7144 .7125 .0230 .0424 -10.96

Use reported data from t = 11, ..., 20 to proxy
for initial condition at t = 21 (t = 11, ..., 30)

β0 -.1000 -.5239 -.4859 .3039 .5216 -9.86
β1 1.0000 .4742 .4671 .1788 .5553 -20.80
ρ 1.0000 1.0522 1.1064 .3076 .3120 1.20
α .5000 .5839 .6139 .2299 .2448 2.58
σμ .8000 .9388 .9758 .0811 .1608 12.10
E .7500 .5795 .5714 .0615 .1812 -19.61

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 1.
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Table 5

Repeated Sampling Experiments
Random Effects Markov Model
Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 10, ..., 20)
β0 -.1000 -.1127 -.1086 .0391 .0411 -2.30
β1 1.0000 1.0379 1.0364 .0324 .0500 8.25
ρ 1.0000 1.0330 1.0319 .0386 .0508 6.04
φ2 .2500 .2496 .2511 .0136 .0136 -.19
σν .5000 .5014 .5011 .0045 .4986 2.17
σμ .8000 .8137 .8133 .0294 .0324 3.29
E .7500 .7293 .7294 .0150 .0256 -9.75

Assume process starts with di9 = 0 (t = 10, ..., 20)
β0 -.1000 .1598 .1594 .0775 .2712 23.70
β1 1.0000 .9126 .9171 .0693 .1115 -8.92
ρ 1.0000 .6396 .6171 .1025 .3747 -24.87
σμ .8000 .8823 .8948 .0369 .0902 15.80
E .7500 .7218 .7226 .0222 .0395 -8.99

Treat di,10 as exogenous
β0 -.1000 -.1882 -.1867 .0771 .1171 -8.09
β1 1.0000 1.0328 1.0480 .0595 .0679 3.90
ρ 1.0000 1.1369 1.1465 .1024 .1710 9.45
σμ .8000 .7838 .7843 .0460 .0488 -2.49
E .7500 .7240 .7262 .0233 .0349 -7.91

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The Markov model replaces
t−1P
τ=0

diτρτ in Table 1 with ρdi,t−1.
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Table 5 (continued)

Repeated Sampling Experiments
Random Effects Markov Model
Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Use Heckman’s approximation method to proxy
for initial condition at t = 10 (t = 10, ..., 20)

β0 -.1000 -.1721 -.1705 .0728 .1025 -7.01
β1 1.0000 .9868 .9831 .0616 .0630 -1.52
ρ 1.0000 1.0637 1.0673 .1074 .1249 4.20
σμ .8000 .7735 .7767 .0472 .0542 -3.97
E .7500 .7438 .7456 .0181 .0191 -2.44
γ0 .3819 .3843 .0757
γ1 .6857 .6799 .1008
ρμ�H .6565 .6589 .0627

Use Wooldridge’s method of conditioning the
distribution of the unobserved effect (t = 11, ..., 20)eβ0 -.1000 -.3276 -.3045 .0872 .2438 -18.46

β1 1.0000 .9520 .9611 .0628 .0790 -5.40
ρ 1.0000 .8734 .8741 .0712 .1453 -12.57
σμ .8000 .8034 .7988 .0478 .0479 .50
E .7500 .7046 .7064 .0308 .0549 -10.43
α1 .4522 .4314 .1124
α2 -.0137 -.0132 .0700
α3 -.0055 .0009 .0741
α4 .0162 .0234 .0761
α5 .0124 .0009 .0852
α6 .0042 .0058 .0617
α7 -.0043 -.0053 .0714
α8 .0125 .0021 .0683
α9 -.0022 -.0076 .0794
α10 .0094 .0061 .0708
α11 .0124 .0132 .0815

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The Markov model replaces
t−1P
τ=0

diτρτ in Table 1 with ρdi,t−1.
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Table 6

Repeated Sampling Experiments
Random Effects Polya Model
No Classification Error in DGP

(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0856 -.0852 .0460 .0482 2.21
β1 1.0000 1.0219 1.0220 .1113 .1135 1.39
ρ 1.0000 1.0177 1.0223 .0745 .0766 1.68
α .5000 .5015 .4918 .0633 .0633 .16
φ2 .2500 .2377 .2441 .0697 .0708 -1.24
σν .5000 .4972 .4979 .0142 .0144 -1.38
σμ .8000 .8005 .8009 .0465 .0465 .07
E 1.0000 .9249 .9290 .0566 .0937 -9.39

40% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0921 -.0850 .0833 .0837 .67
β1 1.0000 1.0207 1.0250 .1159 .1177 1.26
ρ 1.0000 1.0403 1.0185 .1072 .1146 2.66
α .5000 .4864 .5139 .1010 .1019 -.95
φ2 .2500 .2415 .2351 .1197 .1200 -.50
σν .5000 .4963 .4992 .0270 .0272 -.97
σμ .8000 .8045 .8096 .0614 .0615 .52
E 1.0000 .9180 .9230 .0496 .0955 -11.69

60% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0678 -.0805 .0893 .0949 2.55
β1 1.0000 .9929 1.0300 .1795 .1797 -.28
ρ 1.0000 1.0280 1.0361 .1139 .1173 1.74
α .5000 .4685 .4938 .1208 .1249 -1.84
φ2 .2500 .2432 .2431 .1030 .1032 -.46
σν .5000 .4945 .4961 .0230 .0236 -1.68
σμ .8000 .8055 .7908 .0694 .0696 .56
E 1.0000 .9366 .9341 .0698 .0922 -7.25

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 1.
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Table 7

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

Smooth Algorithm
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0900 -.0926 .0656 .0664 1.07
β1 1.0000 .9974 .9927 .0962 .0962 -.19
ρ 1.0000 1.0347 1.0259 .1415 .1457 1.73
α .5000 .5219 .5026 .1275 .1294 1.22
φ2 .2500 .2512 .2494 .0162 .0163 .54
σν .5000 .5014 .5021 .0055 .0057 1.80
σμ .8000 .8174 .8201 .0356 .0396 3.46
E .7500 .7414 .7410 .0167 .0188 -3.65

40% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0951 -.0832 .0682 .0684 .51
β1 1.0000 1.0193 1.0146 .1046 .1064 1.31
ρ 1.0000 1.0627 1.0371 .1583 .1703 2.80
α .5000 .5526 .5167 .1612 .1696 2.31
φ2 .2500 .2498 .2536 .0246 .0246 -.05
σν .5000 .5124 .5023 .0792 .0802 1.10
σμ .8000 .8162 .8168 .0343 .0380 3.34
E .7500 .7453 .7408 .0220 .0225 -1.52

60% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0956 -.0783 .0933 .0934 .33
β1 1.0000 1.008 1.0093 .1596 .1598 .35
ρ 1.0000 1.0546 1.0652 .2215 .2281 1.74
α .5000 .5488 .5637 .1854 .1917 1.86
φ2 .2500 .2506 .2515 .0383 .0382 .11
σν .5000 .5011 .5015 .0084 .0085 .91
σμ .8000 .8115 .8077 .0439 .0454 1.84
E .7500 .7498 .7472 .0270 .0270 -.05

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 1.
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Table 8

Summary Statistics
Representative Data Set

Polya Model with AR (1) Errors
Unbiased Classification Error

Mean Mean Mean Mean Mean Mean
t dit d∗it β0x εit π11t π00t N

1 .4600 .4580 -.0125 -.0330 .8622 .8878 500
(.2701) (1.0164)

2 .5740 .5700 .4709 -.0220 .8935 .8565 500
(.5272) (1.0525)

3 .6340 .6280 .8778 -.0146 .9128 .8372 500
(.8917) (.9698)

4 .6940 .6800 1.1514 -.0055 .9265 .8235 500
(1.1668) (.8593)

5 .7380 .7420 1.3771 .0504 .9367 .8133 500
(1.2028) (.8507)

6 .7700 .7840 1.5895 .0311 .9454 .8046 500
(1.2453) (.8962)

7 .8000 .7960 1.7679 .0392 .9537 .7963 500
(1.1408) (.9582)

8 .8360 .8620 1.8576 .0142 .9588 .7912 500
(1.1427) (.9893)

9 .8480 .8260 1.9912 .0086 .9640 .7860 500
(1.1048) (1.0212)

10 .8600 .8720 2.0187 .0233 .9677 .7823 500
(.9955) (.9182)

Note: dit is the true choice, d∗it is the reported choice, π11t and π00t are the probabilities of a correct
classification, and β0x = uit − β0. Variances are in parentheses. The frequency simulator that is
used to compute the true classification error rates has fM set to 1000. The model is:

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit

di0 = 0, ρτ = ρe−α(t−τ−1)

xit = φ2xi,t−1 + νit, νit ∼ N
¡
0, σ2ν

¢
εit = φ1εi,t−1 + ηit, ηit ∼ N(0, 1− φ21)

55



Table 9

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Unbiased Classification Error

(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1042 -.0981 .0391 .0394 -.76
β1 1.0000 1.0021 1.0060 .0519 .0519 .29
ρ 1.0000 1.0444 1.0393 .0424 .0614 7.40
α .5000 .5057 .5058 .0423 .0428 1.12
φ2 .2500 .2521 .2486 .0181 .0183 .83
σν .5000 .5018 .5024 .0057 .0060 2.21
φ1 .8000 .7996 .8003 .0264 .0264 -.12
E .7500 .7473 .7486 .0174 .0176 -1.08

40% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1052 -.1014 .0400 .0403 -.92
β1 1.0000 1.0036 1.0011 .0566 .0567 .45
ρ 1.0000 1.0460 1.0400 .0446 .0640 7.30
α .5000 .5018 .5053 .0405 .0405 .32
φ2 .2500 .2522 .2531 .0261 .0262 .61
σν .5000 .5019 .5026 .0067 .0070 1.98
φ1 .8000 .8002 .7989 .0301 .0301 .05
E .7500 .7504 .7524 .0251 .0251 .12

60% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1041 -.0996 .0524 .0526 -.55
β1 1.0000 1.0003 1.0124 .0748 .0748 .03
ρ 1.0000 1.0433 1.0372 .0610 .0748 5.03
α .5000 .5047 .5077 .0621 .0623 .54
φ2 .2500 .2521 .2514 .0384 .0385 .39
σν .5000 .5007 .5018 .0086 .0086 .61
φ1 .8000 .7988 .8019 .0364 .0364 -.23
E .7500 .7514 .7514 .0346 .0348 .77

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 8.
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Table 10

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 11, ..., 20)

β0 -.1000 -.0896 -.0925 .0265 .0285 2.77
β1 1.0000 1.0224 1.0221 .0479 .0529 3.31
ρ 1.0000 1.0194 1.0148 .0298 .0356 4.60
α .5000 .5121 .5128 .0238 .0267 3.59
φ2 .2500 .2511 .2531 .0138 .0139 .56
σν .5000 .5011 .5013 .0047 .0049 1.58
φ1 .8000 .8071 .8100 .0280 .0289 1.80
E .7500 .7420 .7455 .0261 .0273 -2.16

Assume process starts with di,10 = 0 (t = 11, ..., 20)

β0 -.1000 .9503 .9682 .0605 1.0520 122.84
β1 1.0000 .1699 .3883 .4544 .9463 -12.92
ρ 1.0000 .5849 .5266 .2792 .5003 -10.51
α .5000 .7102 .7385 .3180 .3812 4.67
φ1 .8000 .9221 .9259 .0316 .1261 27.33
E .7500 .7656 .7485 .1323 .1332 .83

Use reported data from t = 11, ..., 20 to proxy
for initial condition at t = 21 (t = 11, ..., 30)

β0 -.1000 -.0862 -.0812 .0617 .0632 1.58
β1 1.0000 .9406 .9781 .0932 .1105 -4.50
ρ 1.0000 1.0445 1.0219 .0924 .1026 3.41
α .5000 .5908 .5674 .0737 .1170 8.72
φ1 .8000 .7562 .7749 .0828 .0937 -3.74
E .7500 .7348 .7378 .0288 .0325 -3.73

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 8.
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Table 11

Repeated Sampling Experiments
Markov Model with AR (1) Errors
Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Simulate from start of process with di0 = 0 (t = 10, ..., 20)
β0 -.1000 -.1171 -.1125 .0429 .0462 -2.81
β1 1.0000 1.0185 1.0191 .0323 .0373 4.05
ρ 1.0000 1.0354 1.0316 .0465 .0585 5.38
φ2 .2500 .2511 .2509 .0139 .0140 .56
σν .5000 .5013 .5016 .0050 .0052 1.89
φ1 .8000 .8081 .8077 .0266 .0278 2.15
E .7500 .7401 .7403 .0126 .0160 -5.58

Assume process starts with di9 = 0 (t = 10, ..., 20)
β0 -.1000 .1895 .1797 .0547 .2946 37.43
β1 1.0000 .8189 .8025 .0727 .1951 -17.63
ρ 1.0000 .5932 .5807 .1054 .4202 -27.29
φ1 .8000 .8377 .8343 .0268 .0463 9.95
E .7500 .7539 .7544 .0164 .0168 1.68

Treat di,10 as exogenous
β0 -.1000 -.2416 -.2501 .0492 .1500 -20.36
β1 1.0000 1.0150 1.0239 .0430 .0456 2.46
ρ 1.0000 1.2330 1.2380 .0702 .2434 23.47
φ1 .8000 .7480 .7456 .0374 .0640 -9.83
E .7500 .7322 .7316 .0151 .0234 -8.35

Use Heckman’s approximation method to proxy
for initial condition at t = 11 (t = 10, ..., 20)

β0 -.1000 -.2181 -.2206 .0538 .1298 -15.54
β1 1.0000 1.0333 1.0315 .0471 .0577 5.00
ρ 1.0000 1.1997 1.2129 .0604 .2086 23.37
φ1 .8000 .7727 .7746 .0316 .0418 -6.13
E .7500 .7385 .7385 .0116 .0164 -7.00
γ0 .4149 .4118 .0564
γ1 .6628 .6614 .0722
ρμ�H .7238 .7266 .0386

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The Markov model replaces
t−1P
τ=0

diτρτ in Table 8 with ρdi,t−1.
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Table 12

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Unbiased Classification Error

Smooth Algorithm
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

20% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1007 -.0998 .0336 .0337 -.16
β1 1.0000 .9936 .9838 .0519 .0522 -.87
ρ 1.0000 1.0336 1.0387 .0824 .0890 2.88
α .5000 .5214 .5076 .0751 .0781 2.01
φ2 .2500 .2513 .2494 .0162 .0163 .56
σν .5000 .5014 .5020 .0055 .0057 1.82
φ1 .8000 .8004 .8009 .0203 .0203 .14
E .7500 .7475 .7490 .0175 .0177 -.99

40% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.1041 -.1028 .0285 .0288 -1.03
β1 1.0000 .9892 .9759 .0721 .0729 -1.05
ρ 1.0000 1.0604 1.0539 .1118 .1271 3.82
α .5000 .5406 .5226 .0998 .1078 2.88
φ2 .2500 .2517 .2532 .0248 .0248 .49
σν .5000 .5013 .5019 .0067 .0068 1.34
φ1 .8000 .7984 .8004 .0193 .0194 -.60
E .7500 .7506 .7514 .0233 .0233 .17

60% Missing Choices and X’s (t = 1, ..., 10)

β0 -.1000 -.0979 -.0925 .0409 .0410 .35
β1 1.0000 .9833 .9510 .1107 .1119 -1.07
ρ 1.0000 1.0625 1.0014 .1819 .1923 2.43
α .5000 .5465 .5126 .1566 .1633 2.10
φ2 .2500 .2537 .2515 .0364 .0366 .72
σν .5000 .5004 .5002 .0085 .0084 .30
φ1 .8000 .8004 .7976 .0233 .0233 .12
E .7500 .7524 .7527 .0314 .0315 .54

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 8.
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Table 13

Repeated Sampling Experiments
Random Effects Polya Model
Biased Classification Error

(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0922 -.944 .0387 .0394 1.42
β1 1.0000 1.0198 1.0131 .0531 .0567 2.63
ρ 1.0000 1.0144 1.0102 .0390 .0415 2.61
α .5000 .5031 .5104 .0489 .0490 .45
φ2 .2500 .2489 .2456 .0161 .0161 -.47
σν .5000 .5018 .5018 .0050 .0053 2.47
σμ .8000 .8068 .8041 .0239 .0248 1.99
γ0 -3.5000 -3.4867 -3.4762 .0580 .0595 1.62
γ1 5.0000 4.9845 5.0033 .0728 .0744 -1.51
γ2 2.0000 2.0161 2.0236 .0446 .0475 2.56

Medium Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0941 -.0988 .0425 .0429 .98
β1 1.0000 1.0045 1.0119 .0608 .0609 .52
ρ 1.0000 1.0222 1.0232 .0465 .0515 3.37
α .5000 .5160 .5253 .0658 .0677 1.71
φ2 .2500 .2476 .2452 .0162 .0163 -1.04
σν .5000 .5022 .5026 .0050 .0054 3.04
σμ .8000 .8049 .8041 .0272 .0276 1.29
γ0 -3.0000 -2.9902 -2.9826 .0561 .0570 1.24
γ1 4.0000 3.98 3.9951 .0776 .0787 -1.19
γ2 2.0000 2.0104 2.0134 .0782 .0789 .94

High Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0988 -.0918 .0708 .0708 .12
β1 1.0000 1.0145 1.0068 .0693 .0708 1.48
ρ 1.0000 1.0218 1.0228 .0791 .0820 1.94
α .5000 .5088 .5328 .0993 .0997 .63
φ2 .2500 .2484 .2460 .0164 .0165 -.70
σν .5000 .5021 .5028 .0051 .2980 2.90
σμ .8000 .8023 .7999 .0406 .3050 .40
γ0 -3.0000 -2.9918 -2.9983 .0638 .0643 .91
γ1 3.0000 2.9842 2.9920 .0829 .0844 -1.34
γ2 3.0000 3.0190 3.0371 .1018 .1036 -1.32

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 1.
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Table 14

Repeated Sampling Experiments
Random Effects Polya Model
Biased Classification Error

Smooth Algorithm
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0795 -.0686 .0685 .0714 2.12
β1 1.0000 1.0265 1.0330 .0833 .0874 2.25
ρ 1.0000 .9466 .9374 .1410 .1508 -2.68
α .5000 .4409 .4360 .1038 .1195 -4.02
φ2 .2500 .2480 .2472 .0153 .0155 -.91
σν .5000 .5019 .5027 .0048 .0052 2.76
σμ .8000 .8211 .8225 .0321 .0384 4.65
γ0 -3.5000 -3.3313 -3.2996 .2606 .3104 4.58
γ1 5.0000 4.7243 4.7334 .3014 .4084 -6.47
γ2 2.0000 2.1031 2.0794 .2372 .3185 3.07

Note: The number of replications is 50 and the number of individuals in the sample is 500. Std(cβ)
and RMSE refer to the sample standard deviation and the root mean square error, respectively,

of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
. The model is the

same as in Table 1.
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Table 15

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Biased Classification Error

(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.1033 -.1039 .0406 .0407 .57
β1 1.0000 1.0176 1.0114 .0649 .0673 1.91
ρ 1.0000 1.0322 1.0325 .0385 .0502 5.92
α .5000 .5017 .5050 .0461 .0461 .25
φ2 .2500 .2496 .2502 .0165 .0165 -.16
σν .5000 .5018 .5023 .0049 .0052 2.62
φ1 .8000 .7987 .7961 .0264 .0265 -.35
γ0 -3.5000 -3.4987 -3.4809 .0664 .0665 .14
γ1 5.0000 4.9831 5.0056 .0697 .0717 -1.72
γ2 2.0000 2.0265 2.0196 .0451 .0513 4.15

Medium Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0893 -.0982 .0525 .0536 1.44
β1 1.0000 1.0075 1.0040 .0745 .0749 .71
ρ 1.0000 1.0283 1.0364 .0534 .0604 3.75
α .5000 .5162 .5101 .0540 .0563 2.12
φ2 .2500 .2478 .2469 .0163 .0164 -.94
σν .5000 .5024 .5027 .0046 .0052 3.74
φ1 .8000 .8016 .8023 .0312 .0312 .35
γ0 -3.0000 -3.0058 -3.0009 .0716 .0718 -.57
γ1 4.0000 3.9802 3.9803 .0735 .0761 -1.90
γ2 2.0000 2.0151 2.0227 .0659 .0676 1.62

High Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0926 -.0896 .0756 .0758 .69
β1 1.0000 1.0135 1.0201 .0778 .0790 1.23
ρ 1.0000 1.0276 1.0255 .0682 .0735 2.86
α .5000 .5074 .5033 .0624 .0629 .83
φ2 .2500 .2476 .2446 .0152 .0153 -1.10
σν .5000 .5019 .5030 .0051 .0055 2.62
φ1 .8000 .7980 .8046 .0386 .0387 -.36
γ0 -3.0000 -3.0026 -2.9870 .0823 .0824 -.23
γ1 3.0000 2.9899 2.9807 .0680 .0687 -1.04
γ2 3.0000 3.0186 3.0185 .0693 .0717 1.90

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is the same as in Table 8.
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Table 16

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Biased Classification Error

Smooth Algorithm
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0958 -.0971 .0336 .0338 .89
β1 1.0000 1.0016 .9979 .0539 .0539 .21
ρ 1.0000 1.0213 1.0224 .0746 .0775 2.02
α .5000 .5117 .5171 .0633 .0644 1.31
φ2 .2500 .2488 .2466 .0151 .0152 -.58
σν .5000 .5020 .5028 .0047 .0051 2.95
φ1 .8000 .8035 .8030 .0177 .0181 1.41
γ0 -3.5000 -3.3707 -3.3710 .2730 .3021 3.35
γ1 5.0000 4.7756 4.7931 .2778 .3571 -5.71
γ2 2.0000 2.1014 2.0863 .1859 .2957 3.86

Note: The number of replications is 50 and the number of individuals in the sample is 500. Std(cβ)
and RMSE refer to the sample standard deviation and the root mean square error, respectively,

of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
. The model is the

same as in Table 8.
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Table 17

Repeated Sampling Experiments
Polya Model with Random Effects and AR (1) Errors

Biased Classification Error
Smooth Algorithm

(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean bβ Median bβ Std(cβ) RMSE t-Stat

Low Classification Error Bias (t = 1, ..., 10)
β0 -.1000 -.0823 -.0824 .0513 .0543 2.44
β1 1.0000 1.0215 1.0082 .0907 .0932 1.67
ρ 1.0000 .9782 .9948 .1459 .1475 -1.06
α .5000 .4709 .4931 .1092 .1130 -1.89
φ2 .2500 .2477 .2487 .0154 .0155 -1.04
σν .5000 .5020 .5028 .0048 .0052 2.89
σμ .8000 .8267 .8280 .0372 .0458 5.07
φ1 .4000 .3892 .4114 .1223 .1228 -.62
γ0 -3.5000 -3.3261 -3.2815 .2645 .3165 4.65
γ1 5.0000 4.7020 4.7290 .3270 .4424 -6.44
γ2 2.0000 2.1233 2.1126 .2316 .3495 3.76

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(cβ) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as
√
50

µ
Meanβ−β
Std(β)

¶
.

The model is:

uit = β0 + β1xit +
t−1X
τ=0

diτρτ + εit

di0 = 0, ρτ = ρe−α(t−τ−1)

xit = φ2xi,t−1 + νit, νit ∼ N
¡
0, σ2ν

¢
εit = μi + ξit
ξit = φ1ξit−1 + ηit, ηit ∼ N(0, (1− σ2μ)(1− φ21))
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Table 18
Sample Characteristics

PSID Calendar Years 1994-2003
Missing Years 1998, 2000, and 2002

(N=1310)

Mean Std. Dev.
(1) (2)

Participation .816 .291
(avg. over 7 years) (.008)

Husband’s Annual Earnings 46.40 41.18
(avg. over 7 years) (11.38)
($1000 1994)

No. Children aged 0-2 years .135 .231
(avg. over 10 years) (.006)

No. Children aged 3-5 years .181 .254
(avg. over 10 years) (.007)

No. Children aged 6-17 years .937 .864
(avg. over 10 years) (.024)

Age 36.93 8.00
(1994) (.221)

Education 13.56 2.10
(maximum over 10 years) (.06)

Race .198 .398
(1=Black) (.011)

Note: Means and standard errors (in parentheses) for 1310 continuously married women in the PSID
between 1994 and 2003, aged 18-60 in 1994, with positive husband earnings and hours worked in each non-
missing year. Earnings are in thousands of 1994 dollars. Variable definitions and sample selection criteria
are the same as those chosen by Hyslop (1999) for PSID calendar years 1980-1986.
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Table 19

Female Labor Force Participation Decisions
PSID Calendar Years 1994-2003
Missing Years 1998, 2000, and 2002

Markov Model with Random Effects and AR(1) errors
Biased Classification Error

Smooth Algorithm

Correlated
Correlated Random Effects Random Effects

Random Effects Random Effects + AR(1) Errors + AR(1) Errors
(1) (2) (3) (4)

ln(yit) -.1669 (.0020) -.1510 (.0035) -.1697 (.0013) -.1646 (.0024)
#kids0-2t -.6433 (.0036) -.5382 (.0046) -.6659 (.0031) -.4271 (.0038)
#kids3-5t -.3342 (.0033) -.3524 (.0043) -.3650 (.0026) -.3379 (.0032)
#kids6-17t -.0845 (.0015) -.0830 (.0028) -.0808 (.0011) 0.0734 (.0019)
aget/10 .6676 (.0105) .5818 (.0129) .6887 (.0101) .6792 (.0112)
age2t/100 -.1438 (.0012) -.1364 (.0014) -.1525 (.0010) -.1565 (.0011)
racei .5547 (.0034) .5467 (.0040) .4518 (.0025) .4533 (.0031)
educationi .0501 (.0076) .0407 (.0081) .0581 (.0059) .0392 (.0062)
ρ 2.3148 (.0256) 2.3582 (.0263) 2.4047 (.0243) 2.5099 (.0251)
φ2 .9993 (.0052) .9993 (.0058) .9992 (.0047) .9993 (.0049)
σν .2719 (.0061) .2718 (.0063) .2758 (.0060) .2755 (.0061)
σμ .8947 (.0012) .8949 (.0014) .8877 (.0011) .8905 (.0013)
γ0 -.8535 (.0428) -.9716 (.0521) -0.8346 (.0419) -.9454 (.0495)
γ1 3.3974 (.0589) 3.4328 (.0625) 3.6335 (.0544) 3.5653 (.0583)
γ2 1.5943 (.0923) 1.6178 (.0968) 1.7012 (.0915) 1.6734 (.0937)
φ1 - - .6084 (.0079) .6136 (.0085)
Log-Likelihood -12673.61 -12651.32 -12668.19 -12637.15
χ2 (H0: δ = 0) - 44.58 (.0243) - 62.08 (.0002)
χ2 (Pearson GOF) 59.62 (.1024) 57.15 (.1474) 58.32 (.1245) 56.40 (.1637)
N 1310 1310 1310 1310

Note: The model is:

uit = β0 + β1 ln(yit) + β02Xit + ρdi,t−1 + εit

di0 = 0,

ln(yit) = φ2 ln(yi,t−1) + νit, νit ∼ N
¡
0, σ2ν

¢
εit = μi + ξit
ξit = φ1ξit−1 + ηit, ηit ∼ N(0, (1− σ2μ)(1− φ21))

lit = γ0 + γ1dit + γ2d
∗
it−1 + ωit

μi =
TP
t=1

δ0tWit + σμζi, ζi ∼ N(0, 1)

yit is the husband’s annual earnings in year t. Xit contains year effects in addition to the fertility, race
and education covariates that appear explicitly in the table. Wit contains ln (yit) and the three fertility
variables. Standard errors are in parentheses (p-values for the LRT and Pearson GOF chi-square statistics).
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Table 20

Female Labor Force Participation Decisions
PSID Calendar Years 1994-2003
Missing Years 1998, 2000, and 2002

Polya Model with Random Effects and AR(1) errors
Biased Classification Error

Smooth Algorithm

Correlated
Correlated Random Effects Random Effects

Random Effects Random Effects + AR(1) Errors + AR(1) Errors
(1) (2) (3) (4)

ln(yit) -.3089 (.0019) -.3111 (.0024) -.3066 (.0015) -.3040 (.0018)
#kids0-2t -.5964 (.0043) -.6000 (.0047) -.6495 (.0035) -.6339 (.0042)
#kids3-5t -.3648 (.0034) -.3565 (.0039) -.3325 (.0032) -.3466 (.0038)
#kids6-17t -.0145 (.0015) -.0123 (.0021) -.0211 (.0012) -.0225 (.0014)
aget/10 .7527 (.0110) .7387 (.0112) .7081 (.0109) .7263 (.0111)
age2t/100 -.1310 (.0012) -.1274 (.0014) -.1262 (.0010) -.1280 (.0013)
racei .3083 (.0033) .2272 (.0035) .2945 (.0031) .2684 (.0033)
educationi .0652 (.0074) .0558 (.0081) .0630 (.0069) .0611 (.0077)
ρ .6363 (.0087) .7281 (.0095) .6758 (.0084) .6979 (.0089)
α 1.8924 (.0763) 1.9502 (.0821) 2.1278 (.0712) 2.1457 (.0759)
φ2 .9994 (.0055) .9994 (.0057) .9994 (.0054) .9994 (.0055)
σν .2743 (.0072) .2736 (.0073) .2742 (.0066) .2736 (.0069)
σμ .8949 (.0015) .8970 (.0016) .8952 (.0013) .8960 (.0015)
γ0 -1.1203 (.0498) -.8962 (.0510) -.9940 (.0482) -.9404 (.0491)
γ1 3.8880 (.0610) 3.6738 (.0625) 3.6809 (.0600) 3.7190 (.0611)
γ2 1.6520 (.0981) 1.5320 (.0989) 1.5658 (.0979) 1.6096 (.0980)
φ1 - - .4606 (.0091) .4596 (.0098)
Log-Likelihood -12568.10 -12544.89 -12561.69 -12531.88
χ2 (H0: δ = 0) - 46.42 (.0158) - 59.62 (.0005)
χ2 (Pearson GOF) 54.62 (.2075) 51.90 (.2887) 53.32 (.2442) 51.02 (.3186)
N 1310 1310 1310 1310

Note: The model is:

uit = β0 + β1 ln(yit) + β02Xit +
t−1X
τ=0

diτρτ + εit

di0 = 0, ρτ = ρe−α(t−τ−1)

ln(yit) = φ2 ln(yi,t−1) + νit, νit ∼ N
¡
0, σ2ν

¢
εit = μi + ξit
ξit = φ1ξit−1 + ηit, ηit ∼ N(0, (1− σ2μ)(1− φ21))

lit = γ0 + γ1dit + γ2d
∗
it−1 + ωit

μi =
TP
t=1

δ0tWit + σμζi, ζi ∼ N(0, 1)

yit is the husband’s annual earnings in year t. Xit contains year effects in addition to the fertility, race
and education covariates that appear explicitly in the table. Wit contains ln (yit) and the three fertility
variables. Standard errors are in parentheses (p-values for the LRT and Pearson GOF chi-square statistics).
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