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Abstract

This paper develops a simulation estimation algorithm that is particularly
useful for estimating dynamic panel data models with unobserved endogenous
state variables. The new approach can easily deal with the commonly encoun-
tered and widely discussed “initial conditions problem,” as well as the more
general problem of missing state variables during the sample period. Repeated
sampling experiments on dynamic probit models with serially correlated errors
indicate that the estimator has good small sample properties. We apply the
estimator to a model of married women’s labor force participation decisions.
The results show that the rarely used Polya model, which is very difficult to
estimate given missing data problems, fits the data substantially better than
the popular Markov model. The Polya model implies far less state dependence
in employment status than the Markov model. It also implies that observed
heterogeneity in education, young children and husband income are much more
important determinants of participation, while race is much less important.
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1 Introduction

The problem of unobserved endogenous state variables arises frequently in the estima-
tion of dynamic discrete choice models. It is present whenever there are unobserved
initial conditions, i.e., the choice process begins prior to the first period of observed
data. It also arises if data on some choices is missing during the sample period. In ei-
ther case, consistent estimation requires “integrating out” all possible choice sequences
that the individual may have followed. However, as the length of the panel grows and
the choice set becomes larger, the “integrating out” solution begins to require very
high dimensional integrations, often rendering it computationally impractical.

In this paper, we assesses the performance of and empirically implement a new sim-
ulated maximum likelihood (SML) estimation algorithm that is particularly useful for
estimating dynamic panel data models with unobserved endogenous state variables.
The novel estimation technique was recently introduced by Keane and Wolpin (2001)
(KW) to estimate the parameters of a discrete choice dynamic programming problem
with both unobserved initial conditions and missing choices during the sample period.
However, the algorithm has a much wider applicability beyond the special case that
KW considered. In fact, it can be used to simulate the likelihood in any context
where it is tractable to perform unconditional simulations of data from the model.

The computational advantage of the new SML estimation algorithm lies in the fact
that in contexts where performing conditional simulations of data from a model would
be extremely difficult, unconditional simulation is often straightforward. Simulation
of the likelihood in dynamic models often involves conditional simulation (of choice
probabilities conditional on past history), but when past history is not fully observed,
conditional simulation is often computationally infeasible.!

In this study, we first describe how the SML algorithm developed by KW, which

'For example, the GHK algorithm (see Keane (1994)) builds up the likelihood of a choice history
via a series of conditional simulations. This may be infeasible in some cases (like that in KW) where

part of the history is unobserved. We discuss cases where GHK has trouble in Section 5.



only requires unconditional simulations, can be extended to a number of cases beyond
the specific discrete choice dynamic programming problem they considered. In partic-
ular, we assess the performance of the estimator on panel data probit models with a
time-varying exogenous covariate, lagged endogenous variables and serially correlated
errors. Such panel probit models have been a leading case in past discussions of dy-
namic panel data models with unobserved initial conditions (see Heckman (1981a)).
Specification of panel probit models, rather than discrete choice dynamic programs,
allows us to focus on and further develop the estimation technique. The results of a
series of repeated sampling experiments show that the SML estimator with the new
algorithm has good small sample properties.

We then apply the algorithm to dynamic probit models of female labor force par-
ticipation using PSID data from 1994-2003. A serious missing data problem naturally
arises in these data because, in addition to the usual initial conditions problem, re-
spondents were not interviewed at all in 1998, 2000 and 2002. Hyslop (1999) also
used the PSID to estimate dynamic probit models of female labor force participation,
and to test for endogeneity of fertility and nonlabor income in models that include
complex error structures. Using the new algorithm, we extend his results to allow for
classification error and missing data. This enables us to include the post-1994 data,
as well as to consider a more general specification of state dependence (i.e., the Polya
model). In contrast to the results in Hyslop (1999), we reject the null hypothesis that
fertility and nonlabor income are exogenous in these more general models.

The rest of this paper is organized as follows. Section 2 reviews the literature on
different approaches to the problem of unobserved endogenous state variables, and
places our algorithm in context. Section 3 describes the dynamic panel data probit
model used in the repeated sampling experiments. Section 4 develops two different
models of classification error that are incorporated into the estimation technique.
(Classification error in discrete outcomes is a key feature of the algorithm. Section 5

describes our algorithm in detail. Sections 6 and 7 present Monte-Carlo test results



under two models of classification error. Section 8 applies the algorithm to a model

of female labor force participation. Section 9 summarizes and concludes.

2 Background

Several solutions to the initial conditions problem, a special case of the problem
of unobserved endogenous state variables, have been proposed. Heckman (1981a)
showed how, in dynamic discrete choice models, the assumption of stationarity allows
one to derive the marginal probability of the initial state. As stationarity is often
problematic, Heckman (1981a) also considered estimation of fixed effects models. But
he concluded it works better to approximate the probability of the initial state by
a separate probit function (which depends on initial period covariates, and whose
error is correlated with errors during the sample period).? More recently, Wooldridge
(2003) proposed an alternative approximate solution to the initial conditions problem.
Below, we compare the Heckman and Wooldridge methods to the "exact" solution
obtained by using our algorithm to simulate from the start of the stochastic process.

In contrast to the initial conditions problem, the problem of missing data during
the sample period has been less extensively explored. But missing data problems
frequently arise in data sets used by economists, such as the National Longitudinal
Survey of Youth (NLSY) and the Panel Study of Income Dynamics (PSID).

One method for dealing with missing data during the sample period is the EM
algorithm (Dempster, Laird and Rubin (1977)). However, in EM it is often difficult
to compute the conditional distribution required for the E (expectation) step (see
Ruud (1991)). Another potential solution is the Gibbs-sampling algorithm. Geweke
and Keane (2000) used this approach to deal with unobserved initial conditions and

missing data in dynamic earnings models. But in Gibbs, as in EM, the distribution of

2This approximate solution performed better than fixed effects probit, but still produced biases

of more than 10% in repeated sampling experiments.



a missing value conditional on all other information can be quite complex (see Geweke
and Keane (2001)). Also, Geweke and Keane (2000) noted that Gibbs sometimes
exhibited instability when integrating over long pre-sample histories.

Due to the computational difficulties in solving the missing data problem, applied
economists frequently resort to the simpler methods of case deletion and imputation.
Case deletion can cause large amounts of information to be lost, resulting in inef-
ficient estimates. It can also introduce biases to the extent that complete histories
differ systematically from censored histories. Imputation of missing values by ad hoc
methods is also problematic. For instance, imputing averages tends to bias estimated
variances and covariances toward zero.

In contrast to the previous literature, the SML estimation algorithm that we
propose offers a systematic unified “solution” to both the initial conditions problem
and the problem of missing data during the sample period. The algorithm does not
involve case deletion or ad hoc imputations, yet it is computationally simple. It is
simple because it does not require calculation of the initial state probability, or the
probabilities of events at each date t conditional on the state at the start of time t,
which is the usual approach to constructing the likelihood in dynamic models. In our
algorithm, unconditional simulations of the model are used to form the likelihood.

The key assumption required to form the likelihood in dynamic models using only
unconditional simulations is that reported choices are measured with error. This al-
lows one to simulate probabilities of choice histories using unconditional frequency
simulation, as it avoids the usual problem in frequency simulation that an imprac-
tically large number of simulations is necessary to obtain non-zero probabilities of
low probability events. Furthermore, the assumption that choices are measured with
error is certainly valid in the vast majority of data sets that economists use.

Prior work showing the importance of classification error includes Poterba and
Summers (1986, 1995) and Flinn (1997). For example, Poterba and Summers (1986)
estimate that in the CPS the probability an employed person falsely reports being



unemployed or out-of-the-labor-force is 1.5%, while the probability an unemployed
person falsely reports being employed is 4.0% (our calculations based on the figures
in their Table II). If misclassification is present and not included in the analysis,
maximum likelihood estimation leads to biased and inconsistent parameter estimates
(Hausman, Abrevaya and Scott-Morton (1998)).3

The classification error process that we adopt simply specifies a probability the
reported choice is the true choice, and a probability it is not. This is without loss of
generality, as the investigator is free to specify the details of the process. All that is
required is that one can obtain tractable expressions for the probability of observed
choices conditional on true choices. We illustrate the flexibility of the algorithm by

considering two very different models of classification error in our experiments.

3 The Panel Data Probit Model

In the panel data probit model, the utility of the first option, for individual ¢ at time
t, is denoted as u;;, and the utility of the second option is normalized to zero. Utility
is unobserved by the researcher, but the individual is assumed to choose the option
that gives greatest utility. We will consider models of the general form

t—1

wip = By + B2 + Z dirpy + €t (1)

=0

where x;; is a strictly exogenous covariate and d;; is the indicator function

0 otherwise.

Note that the specification in (1) allows the entire history of past choices to affect

current utility. It is, therefore, more general than the familiar first-order Markov

3Repeated sampling experiments in Hausman et al. (1998) find considerable biases, in the range of

15% to 25%, in ordinary probit models that fail to incorporate classification error into the likelihood.



process.* Depreciation in the importance of past choices is captured through the
weights p.. The theoretical start of the process is, by definition, d;y = 0.

The error term ¢, in (1) is assumed to be serially correlated. Thus, lagged choices
are endogenous. In the simple case of serially independent errors, lagged choices are
exogenous, and the problems we consider in this paper do not arise. Although our
approach is very flexible in terms of the nature of the serial correlation that can be
accommodated, we consider three leading cases in our experiments. First, the source

of serial correlation could be time-invariant random individual effects, i.e.,

Eit = i T Myt (3)

where i, is normally distributed with zero mean and variance O'i, and 7, is normally
distributed with zero mean and variance 0'37. Second, serial correlation could derive

from an AR (1) process,
Eit = P1€ie—1 + Ty (4)

where 7;, has the same distribution as in (3). Third, serial correlation could arise from

a combination of time-invariant random individual effects and an AR(1) process, i.e.,

gt = pi+& (5)

§n = ¢1€i,t71+77it

where 7;, has the same distribution as in (3).

Although the model of (1)-(5) is restrictive, the estimation procedure can easily
accommodate a wide range of alternative specifications and distributions of the error
term. For example, KW employ a variant of the algorithm in a multinomial choice
setting with an error term that contains both a nonparametric individual effect and a

multivariate normal disturbance contemporaneously correlated across choices. Also,

4More general processes than first-order Markov have not been widely used in the economics
literature. We suspect that this is due, in part, to the difficulty in dealing with missing data. But,

more general models are quite standard in marketing. See, e.g., Erdem and Keane (1996).
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while we only consider a scalar process in (1), extension to vectors of discrete and
mixed discrete/continuous outcomes (as in KW) is straightforward. We emphasize
that our goal here is to focus on relatively simple processes, so that repeated sampling
experiments are feasible. Furthermore, the relatively simple processes we consider
have been widely used in the literature, and have been the focus of prior work on the

initial conditions problem (see Heckman (1981a) and Wooldridge (2003)).

4 Classification Error

In our approach, we assume that all discrete outcomes are measured subject to clas-
sification error. In most contexts in applied economics this is a sensible assumption.
Moreover, our approach can be implemented given any assumed classification error
process, provided one can obtain a tractable expression for the probability of observed
choices conditional on true choices. Letting d, denote the reported choice, the general

model of misclassification that we consider is characterized by four probabilities,

me = Pr(dy=1|dy=1), moe=1—m1 (6)

ot = Pl"(d;ktzl ‘ dit:0)7 Toor = 1 — o

where 71, is the probability that option one is reported to be chosen (d}, = 1) given
that it is the true choice (d; = 1); mo1; is the probability that option one is falsely
reported (df, = 1) given that option two is the true choice (d;z = 0); moo: and w0 are
the corresponding conditional probabilities for option two (d}, = 0).

The investigator has a great deal of leeway in specifying the classification error
rates mo1; and mi;. In the Monte Carlo analysis of our algorithm we consider cases
where classification error rates are dependent on true choices, but not on covariates.
Error rates would depend on the true choice if, for example, workers who change jobs
mis-report more often than workers who do not. Poterba and Summers (1995) and

Hausman et. al. (1998) find evidence of this type of misclassification in the CPS and



PSID. Similarly, Flinn (1997) finds that mis-reporting of dismissals in the NLSY is
an increasing function of the true dismissal rate.

Covariate-dependent misclassification could be easily incorporated into the model.
However, if the measurement error process is a sufficiently flexible function of covari-
ates and lagged choices, one would lose identification of the structural parameters in
(1). Identification of structural parameters will be stronger the more parsimonious
is the model of misclassification. Moreover, economic theory provides guidance for
specification of the decision model but not necessarily for the model of misclassifica-
tion. Thus, we focus on fairly simple specifications of the classification error process.
We consider specifications distinguished by whether classification error is biased or

unbiased, and whether there is dynamic mis-reporting.

4.1 Unbiased Classification Error

The assumption that classification error is unbiased imposes a very simple structure
on the conditional probabilities in (6). Unbiasedness in this context means that the
probability a person is observed to choose an option is equal to the true probability
that he/she chooses that option, or Pr(df, =1) = Pr(d; =1). The assumption of
unbiased classification error is appealing because it forces the structural parameters
of the model to fit the conditional choice frequencies in each period, as opposed to
allowing classification error to drive model fit.

Unbiased classification error implies that the conditional probabilities in (6) are

linear in the true choice probability. To see this, note that by definition,

Pr(dj,=1) = Pr(d,=1]|dy=1)Pr(dys=1) (7)

where, in writing Pr (d}, = 1) and Pr (d;; = 1), we suppress the obvious dependence of

these probabilities on z;; and lagged true choices in order to conserve on notation. If



we write the conditional probabilities as the following linear functions of Pr (d;; = 1),

Pr(di,=1|dy=1) = E+(1—E)Pr(dy=1) 8)
Pr(d,=1|dy=0) = (1—E)Pr(dy=1),

these expressions can be substituted into (7) to yield Pr(d}, =1) =Pr(d; =1).

Note that as the true choice probability, Pr(d; = 1), approaches one, the prob-
ability of a correct classification, Pr(dj, =1 | d; = 1), also approaches one, which
must be the case to preserve unbiasedness. Further, as Pr(d;; = 1) approaches zero,
Pr(dj, =1 | dy = 1) approaches E. E can thus be interpreted as a “baseline” classi-
fication rate. In other words, low probability events have a probability equal to E of
being classified correctly. The probability of a correct classification increases linearly
from E toward one as the true choice probability approaches one.

In terms of the original notation, the conditional probabilities in (6) can be written:

™11t = E + (1 - E) Pr (dzt = 1) (9)
ot — (1 — E) Pr (dzt = 1) .

Note the great parsimony that unbiasedness imposes on the classification error process.
It depends on the single parameter F, which is treated as a free parameter in esti-
mation. One could generalize this specification by letting £ depend on covariates. In

that case, one obtains unbiasedness conditional on covariates.

4.2 Biased Classification Error

Any classification error scheme that does not impose the linear relationships in (8)
will, in general, lead to a biased classification error process in which Pr(d}, = 1) #
Pr(d;; = 1). The biased classification error scheme that we consider as an alternative

to (8) is characterized by the following index function,

lit = vo +71dit + Yoy + wir (10)



where d}, denotes the reported choice and w; is a stochastic term. If [; > 0 then
df, = 1, while d, = 0 otherwise. Notice that the specification in (10) allows the
probability of reporting a particular choice to differ by the true choice, and allows
for dynamic mis-reporting, since d};,_; appears in the index function. The greater in
magnitude is 7, (the coefficient on d7, _,), the more likely is persistent mis-reporting.

Assuming w;; is distributed logistically yields tractable expressions for classifica-
tion probabilities:

VotV t2di

T = Pr (dZt =1 ‘ di = 1) - 1 + evotritredy (11)

eVotV2di;_q

Toit — Pr(d;"t: 1 ‘ dltIO) =

1 4 eYotredi_i”

In the next section, we outline the SML estimation algorithm for any specification
of the classification error process in (6), as well as for the two specific classification

error processes (biased and unbiased) described above in (9) and (11).

4.3 Identification

Hausman, Abrevaya and Scott-Morton (1998) (HAS) discuss identification of discrete
choice models with classification error. Note that the unconditional probability that

outcome one is observed is:

P (d;kt - ].) — 7T11tP (dzt - ].) ‘I— 7T01tP (dzt - 0)
= (1 — WlOt)P(dz‘t = 1) +7T01t (1 — P(dlt = 1))

= 7ot + (1 — mor — more) P (dy = 1)

HAS point out that identification of a fully parametric discrete choice model given
classification error requires (i) that the probability a choice is reported be monoton-
ically increasing in the probability it is the true choice, and (ii) that the discrete
choice model satisfies index sufficiency. Here, the monotonicity assumption is met if

T10t + mo1x < 1, which means that the probability of an observed "1" is increasing

10



in the probability of a true "1". This basically means that classification error can’t
be so severe that people mis-report their state more often than they report correctly
(certainly a mild requirement).” In (10) this is equivalent to v, > 0.

Interestingly, in our model with unbiased classification error, we can use equation
(9) to obtain myg; + mo1; = 1 — E. Thus, identification requires that £ > 0, which
means that even very low probability events must have some positive probability of
being classified correctly.® To further clarify this point, note that, in equation (8), if
E = 0 then the probability of observing choice "1" is simply P (d; = 1), regardless
of whether the true choice is one or two. Hence, when E = 0, the probability of

n

observing "1" is no greater when it is the true choice than when it is not.

5 The SML Estimation Algorithm

Suppose the data consist of {Df, z;}~ | where D¥ = {d}}]_, is the history of reported
choices for individual i, x; = {xit}le is the history of the exogenous covariate for
individual 7, and N is the number of individuals in the sample. For ease of exposition,
assume that {xit}le is fully observed for each individual ¢, and that ¢ = 1 is the first
period of observed data. Since there may be missing choices during the sample period,
let I (d, observed) be an indicator equal to one if d}, is observed, and zero otherwise.
Under these conditions, simulation of the likelihood function requires constructing M

simulated choice histories for each {xit}le history as follows:

SHAS also note that extreme values of X’ convey important information about error rates. No
matter how large is X’f3, the probability of an observed "1" cannot exceed 1— my¢;. Similarly, no

matter how small is X'/, the probability of an observed "0" cannot exceed 1 — mg1¢.

6 A recent paper by Gould (2007) claims to implement our algorithm using E = 0, but, as we see
here, this is not possible. What Gould actually did is set P (d}, = 1|X;;) = P (dix = 1), i.e., set the
choice probability conditional on a person’s state X;; equal to the unconditional choice probability

in the population. Hence, any parameters capturing dynamics in his model are not identified.
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1. For each individual ¢, draw M sequences of errors from the joint distribution of
N M
(€i1, -+, €ir) to form {{{5?3}54} }
=1 m=1
N M
and the error sequences { {{EZ}}L} } , construct M
i=1

m=1

2. Given {{xit}il }N

N M
simulated choice histories for each individual 7 {{{dﬁ}f_l} } according
1

= m=1

to (1) and the decision rule (2).

M
3. Construct the conditional probabilities {{%ﬂt}f_l} for each individual i,
—Jm=1
where j denotes the simulated choice and k£ denotes the reported choice. The
procedure to do this depends on the assumed classification error process, as we

discuss below in steps (3a) and (3b).

4. Form a simulator of the likelihood contribution for each individual 7 as:

I(d;‘t observed)
) (12)

where 6 is the vector of model parameters. This simulator is unbiased.

Step (3a):
In the special case of unbiased classification error, the 77;,’s in step (3) depend
on the true choice probability Pr(d; = 1) (see equation (9)). Therefore, Pr(d; = 1)

must also be simulated. Pr(d; = 1) can be approximated by the unbiased simulator

M t—1

~ 1

P(dy=1] Hj) = i Z Pr (51‘1& < Bo+ Bz + ZCZZPT) (13)
m=1 =0

where HJ' = {{x”}izl Adr i;ll} is the history of the exogenous covariate and the

simulated lagged endogenous covariate through time ¢.7

TIf g4 is distributed i.i.d. N(0,02), the probability in the summation is ® (a) where a = 'z /0.,
t—1
'z =B+ Bz + >, d7p,, and ® is the standard normal c.d.f.. If ;; is serially correlated, then

T=

the probability in (13) must, of course, be conditional on {{sw}i;})}

12



Then 77}, and 7y, are:

A = Pr(dy=1]dp=1)=E+(1—E)P(dy=1|H}) (14)

Fo, o= Pr(dy=1]dy=0)=(1-E)P(dy=1|HJ)

Step (3b):

For the biased classification error process given by (11), the 7j;,’s in step (3)
depend on the reported choice in the previous period d;, ;. If dj,_; is missing, it must
be simulated. This can be easily done using (10) . Let the simulated d;, ; be denoted

71, and let dfgm =1 (d*t 1 observed) di, 1+ (1 -1 (d;",t,1 observed)) 7it1- Then
711, and gy, are:

670+W1+72d:t(ﬁ) e%‘*‘%@fﬁ?

~m -~m

T = s N — (15)
1 4 eYotvitedi—y 1 4 eYotredi—y

The simulation algorithm described in steps (1) to (4) builds the likelihood con-
tribution for each individual by averaging, over M simulated choice histories, the
product of the appropriate classification probabilities {ﬁ;’}gt}T_ , heeded to reconcile
the simulated choice history {d7;},_, and the observed history {d%},_,. In step (4)
the indicator I [d}} = j, d}, = k]| “picks out” the appropriate classification probability
by comparing d}, to df}. If df, is unobserved, I (d}, observed) is zero, and there is no
contribution to the likelihood (i.e., simply enter one in the product in period ).

Note that any observed choice history has non-zero probability conditional on
any simulated choice history. This reflects the fact that any simulated choice history
can generate any observed choice history when there is classification error. It is also
important to note that (12) builds the likelihood using unconditional simulations of
the model. The simulation of conditional probabilities like P (d;; | Hj) is completely
avoided, circumventing the severe computational problems that may arise if H;; is not

fully observed. In the unconditional approach, the state space is updated according

8If choices are not missing at random, the probability that the choice is not observed can be

incorporated into the product. A similar correction can be made to handle endogenous attrition.
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to previous simulated choices, rather than previous reported choices, which greatly
simplifies the problem.’

The asymptotic properties of the SML estimator described here are the same as
in Lee (1992) and Pakes and Pollard (1989). Consistency and asymptotic normality
require \/—MN — 00 as N — oo. Our estimator is just a special case of SML, differen-
tiated from past approaches only by the algorithm used to simulate the likelihood.
But the importance of this should not be underestimated. Past Monte Carlo work
has shown that within the class of SML estimators that share common asymptotic

properties, finite sample performance hinges critically on the quality of the algorithm

used to simulate choice probabilities (see Geweke and Keane (2001) for a review).

5.1 Missing Covariates and Initial Conditions

The estimation procedure described above need only be slightly modified to accom-
modate missing exogenous covariates and/or an initial conditions problem. In the

case of missing covariates, each missing x;; is simulated according to the assumed

9Tt is important to understand when the GHK algorithm has problems in dynamic models. GHK
builds up the likelihood of a choice history using period-by-period conditional simulations. In a
simple panel probit model with serial correlation but no state dependence, missing choices present
no problem for GHK. To simulate a choice probability at time ¢, one needs a draw for the lagged
stochastic terms that is consistent with observed choices up through ¢-1. Thus, in periods when
choices are missing, one simply draws from the unconditional distribution of the stochastic terms.
However, GHK runs into problems in three cases: (i) with state dependence one must also condition
on lagged simulated choices in periods when the actual choice is missing. As one iterates on the model
parameters, the simulated choice may change, leading to discontinuities in the simulated likelihood.
A possible solution is to integrate over all possible missing choices (weighting by the probability of
each), but this becomes infeasible as the number of periods with missing choices grows large; (ii) if,
as in KW, there is more then one choice variable, and only a subset is observed, drawing from the
conditional distribution of the stochastic terms given the subset of observed choices can be extremely
difficult; (iii) if choices are subject to classification error, then, drawing stochastic terms from their

conditional distribution given the (possibly misclassified) observed choice can be extremely difficult.
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process generating the xz;’s. For example, suppose the z;’s are time-varying and

stochastic and follow the AR(1) process,
Tip = PoTip—1 + Vi (16)

where v is normally distributed with zero mean and variance o2, and where ;0 =
0. If 24 is observed and z;; is missing, then the missing z;; is replaced by ZJ}
which equals ¢,z 1 plus a draw from the v; distribution. A new draw from the v
distribution is taken for each simulated choice history m.

The likelihood contribution for each individual ¢ in this case becomes

P(Dpa; | 0) =

1 M T 1 1
M Z Hf (J;zt) (zi¢ observed) (ZZ%\J tI dZL = j, d:t = k]

m=1 t=1 7=0 k=0

I(d;‘t observed)
) (17)

where f,, (z;) is the density of the exogenous covariate.
Under the assumption that v;; is distributed normally, the density of z;; according
to draw sequence m is,
~(m)
1 Tit — Pallyy
m (i) = —¢ | ———— 18
fon ) = -6 ( & (19

where @@1 = [ (w41 observed) i1 + (1 — I (x;4—1 observed))z}}_, and ¢ is the

standard normal p.d.f.. Note that in periods in which x;; is missing, the density does
not affect the likelihood. f,, (z;) enters the likelihood only when z;; is observed. The
parameters ¢, and o, now become part of the parameter vector 6.

In the case of an initial conditions problem, ¢ = 1 is not the first period of observed
data. Let t = T be the first period of observed data where 7 > 1. Simulated choice
histories are still constructed from the theoretical start of the process, i.e., from ¢t = 0
with d;g = x;0 = 0, irrespective of the value of 7. If the x;;’s are also missing, the path

of x;;’s must be simulated from ¢t = 1 until ¢t = 7.1°

10Tf the first period of observed data is individual specific, simply replace 7 with 7;. Note that if
the model before 7; is different from the model after 7; (e.g., due to non-stationarity), one would

simply simulate outcomes from the appropriate model.
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The likelihood contribution for each individual 7 in this case takes the form

I(d;‘t observed)
) (19)

1 M T 1 1
= D T fon () o (Z N[y = jody = K
m=1t=7

j=0 k=0

The only difference between (17) and (19) is that here the first d7, is observed at
t = 7. In Heckman’s approximation method, one would specify a distribution for d-.
In our method, it is not necessary to construct a marginal distribution for the initial
state. The distribution of the initial state in period 7 is implicitly determined by the
simulated choice and covariate history from ¢ = 1 through t =7 — 1.

In some applications, the process has a natural start date (e.g., age 16 for decisions
to stay in school or enter the labor force). In others, all that can be known reliably
is that the process started well before the observation period. In that case, one
might just set 7 large enough so that estimates are not sensitive to further increases.
Alternatively, if the theoretical start of the process can not be determined, one could
easily nest Heckman’s approximation method inside our algorithm, as a simple way
to handle the initial period, while using our approach to handle missing data during

the sample period. Such "hybrid" approaches will be explicitly considered below.

5.2 Importance Sampling

Non-smoothness of the simulated likelihood function based on (19) arises because,
holding the draw sequence {527?}?:1 fixed, a change in # can induce discrete changes
in the {d;?;}le sequence. However, the estimation procedure can be easily modified
to take advantage of importance sampling techniques that smooth the likelihood
and enable the use of standard gradient methods of optimization.!! We smooth the

likelihood by first constructing simulated choice histories {d(6)},_, at an initial 6.

'"The non-smooth version of the estimation algorithm considered until now necessitates the use

of (relatively slow) non-gradient methods of optimization such as the simplex method.
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We then hold the {d7}(fo)},_, sequences fixed as we vary #. Each simulated choice
sequence then has an associated importance sampling weight, W,, (#), that varies
with 6. The basic idea of importance sampling is that, when we change 6, sequences

that are more (less) likely under the new 6 receive increased (reduced) weight. Thus:

. PI‘( ?f(eg),..., %(90) ‘ Q,I‘Z)
W 0) = B (@ By), .. a2(60) | o, 2:) (20)

where the numerator is the joint probability that simulated choice history m occurs

given the current trial parameter vector #, while the denominator is the joint probabil-
ity that simulated choice history m occurs given the initial vector of trial parameters
0. For example, the joint probability of simulated choice history m in the dynamic

probit model with serially independent errors is simply:

H Pr <5lt < B+ Bywis + Z dZTpT> : (21)

An alternative way to smooth the likelihood function is to construct, at the
initial 6, simulated choice histories {d7(6y)},_, and the latent Variable sequences
(U (o)}, that generate {d7}(Ao)},_,, where UZ(8o) = By + Brwu + Z dp, + €t
One then holds both the {d7(60)};_, and {U7*(Ao)},_, sequences ﬁxed as @ varies.
In this approach, each simulated choice sequence receives an importance sampling

weight, W, (0), that takes the form,

o g( iT(HU)v'”? z?(eo) ‘ Q,SL’Z)
Wi 0) = T (0), - U 00) | or2) (22)

where g (+), the joint density of simulated latent variable sequence m, is the product
of standardized U]l'(6y) densities. For example, in the case of serially independent

errors, the joint density of simulated choice history m in (22) is

T t—1
g (U7"(80)10, 1) H — ( Uit (00) = Bo = Prie = Y _ di: wom]) (23)
7=0

15
where ¢ is the standard normal p.d.f.. The weights in (22) are easier to calculate than

the weights in (20) in some contexts. In the repeated sampling experiments reported

below, and in the empirical application, we use the weights in (22).
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The likelihood contribution for agent ¢ in the smooth version of the algorithm is

S
(=
5
s
~
B
§
:
g
s
&

T 11 1(dy, observed )

m (ZZ%;&;J (i =, d, = k])

j=0 k=0
(24)

Note that (19) is just a special case of (24) with W,, = 1 for each simulated choice
history m.!2

An important computational advantage of the re-weighting scheme over the im-
plicit equal weighting scheme in (19) is that it requires simulated choice histories to
be generated only once for each individual, with an initial vector of trial parame-
ters #y, as opposed to constructing simulated choice histories at each vector of trial
parameters #. KW used this smooth version of the algorithm to construct standard
errors (with weights as in (20)), but used the non-smooth version in estimation (us-
ing a simplex algorithm). Ackerberg (2001) describes an analogous use of importance

sampling and has a good discussion of how his approach differs from ours.

6 Monte-Carlo Tests - Unbiased Misclassification

This section reports Monte-Carlo tests of the SML estimator with unbiased clas-
sification error. The algorithm used to generate artificial data sets with unbiased
classification error is described in Appendix A. Subsections 6.1 and 6.2 present re-
sults for the random effects and AR(1) specifications of the error term, respectively.
In each repeated sampling experiment, a vector of true model parameters is chosen
and used to create 50 Monte-Carlo data sets which differ in the realizations of the
stochastic terms. Parameter estimates are then obtained for each data set.

Each estimation on the 50 different panels {D, 931} ., uses a different random

number generator seed to generate the M unconditional simulations for each individ-

12Efficiency of importance sampling is often improved by normalizing weights to sum to one.
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ual in the sample. For each repeated sampling experiment, the true parameters, the
mean, the median, the empirical standard deviations, the root mean square error of
the estimates, and the t-statistics for the statistical significance of the biases, based

on the empirical standard deviations, are reported.

6.1 Random Effects Model

In the random effects model, the error term e; follows the components of variance
structure in (3). The true start of the process is d;p = 0. The exogenous covariate x;
is generated by the AR (1) process in (16). The depreciation weights p_ are assumed

—a(t=7=1) The parameter o captures

to follow an exponential decay process, p. = pe
the “speed” of depreciation. The vector of estimable parameters for this model is
0 = {By, B1,p, 0, ¢y, 04,0,, E}. However, in the special case of no initial conditions
problem and no missing exogenous covariates, ¢, and o, need not be estimated.
Identification conditions for this type of model (a generalized Polya process with
decay) are discussed in Heckman (19810) .

Table 1 reports summary statistics, by time period, for a representative data set.
The number of individuals N is set to 500, the number of periods T is set to 10,
there are no missing choices or missing exogenous covariates, and the vector of true
parameters is set at ¢ = {—.10,1.00,1.00, .50, .25, .50, .80, .75}. To identify the scale
of utility, the variance of ¢; is normalized to one, so O'i + 037 = 1. Thus, individual
effect accounts for 64 percent of the variance in ¢, (as o, is set to .80).

The Mean d;; column in Table 1 shows that, over time, an increasing proportion
of individuals choose the first option. At ¢ = 1 just under 50 percent of the sample
have d; = 1. At t = 10, the proportion reaches 85 percent. The Mean d}, column
shows that the proportion that report choosing the first option closely tracks the

true proportion. This is a consequence of unbiased classification error. The Mean 'z

13We do not compare true average partial effects to estimated average partial effects. The reason

is that, in dynamic models, there are a multitude of average partial effects that could be calculated.
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column displays the mean and variance of 'z = 8y+ 8,7y +p ti e~t=7=1, and the
Mean ¢;; column displays the mean and variance of the com;:oosite error term. Over
time, the mean of 3’z increases at a decreasing rate, reflecting both the increasing
proportion of d; = 1 over time and the relatively strong depreciation of past choices.
The variance of 8’z is roughly comparable to the variance of ;; by the third period.

The Mean 711, and Mean 7qq; columns of Table 1 present the average probabilities
of a correct classification.!* The average probability of a correct match of d;; = 1 and
d7, =1, m14, is .863 in period 1 and increases over time to .956 in period 10. The
average probability of a correct match of d;; = 0 and d}, = 0, 7o, is .887 in period 1
and decreases to .794 in period 10. This pattern emerges because m11; is an increasing
linear function of the proportion choosing d;; = 1, and myy is a decreasing linear
function of the same proportion, as shown in (9). The slope of the linear functions

is (1 — E). The base classification error rate E is set to .75, implying that even low

probability events have a fairly high probability of being classified correctly.

6.1.1 Non-Smooth SML Algorithm

Table 2 reports the results of four repeated sampling experiments using the non-
smooth SML algorithm. The difference between the four experiments is in the pro-
portion of randomly missing choices during the sample period. The four panels cor-
respond to data generating processes (DGPs) with no missing choices, and 20%, 40%
and 60% missing choices, respectively. There are no missing exogenous covariates.
The number of simulated choice histories per individual, M, is set equal to 1000,
unless otherwise noted. For starting values, we use an initial parameter vector where
each element is bumped 20% away from the true values.

As the figures in Table 2 illustrate, the SML estimator produces biases, but they

are negligible in magnitude. The bias in the estimate of p is statistically significant

UWe use M = 1000 to calculate the classification probabilities.
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in all four panels; however, the magnitude of the bias never exceeds 5.1 percent. The
biases in the estimates of $; and E are sometimes significant but never exceed 2
percent. The medians of the parameter estimates are also quite close to the means,
suggesting that the sampling distributions are symmetric. Note that the empirical
standard errors of the estimates generally increase with the increased incidence of
missing choices. An increased incidence of missing choices does not change the point
estimates much since a higher proportion of missing choices does not substantially
alter reported choice frequencies. Since choices are missing at random, the effect of
a higher proportion of missing choices is only to reduce the effective sample size.
The t-statistics for significant biases generally decrease because the biases are mostly
unaffected and the empirical standard errors increase.

The biases we see in Table 2 are relatively small considering that biases on the
order of 5-8% are quite common even in panel data models estimated by classical
maximum likelihood (see Heckman (1981a)). But the models in Table 2, even that in
the first panel (with no missing choices and no initial conditions problem), are very
difficult to estimate by classical maximum likelihood. This is because conditional
choice probabilities are hard to construct when only lagged reported choices are known
and not lagged true choices. Missing choice data amplifies the problem.

The negligible small sample biases in Table 2 do not appear to be due to simulation
error. Doubling the number of simulated choice histories M to 2000 does little to
change the results. Lowering M to 500 also has little effect, but is 61% faster. Mean
time to convergence over the 50 repetitions in the second panel of Table 2 (20%
missing choices, M = 1000) is 3.73 hours with a standard deviation of .92. With
M = 500 this falls to 1.46 hours with a standard deviation of .34. The experiments
were run on a desktop computer with two 1.0 GHz processors and 0.5 GHz RAM.

Table 3 reports the results of three repeated sampling experiments analogous to
those in Table 2, except for a modified DGP where the exogenous covariate is also

missing when the choice is missing. Here, the parameters of the exogenous covariate
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process, ¢, and o,, are estimated jointly with the other model parameters. As the
results in Table 3 illustrate, adding missing covariates does not change the general
conclusions from Table 2. The bias in the estimate of p is statistically significant but
is still negligible in magnitude. The maximum bias over all parameters is only 4.8%.

Table 4 reports the results of three repeated sampling experiments that focus
on the initial conditions problem rather than missing information during the sample
period. The number of periods in the first two experiments is increased to 7' = 20.
The DGP is modified so that choices and covariates are completely missing in periods
t =1,...,10 but there are no missing choices or covariates from ¢t = 11, ..., 20.

The first panel of Table 4 reports the results of simulating from ¢ = 0, the theoret-
ical start of the process, and forming the likelihood for periods ¢t = 11 to t = 20 as in
equation (19). Biases in the estimates of 5, p, 0, and o, are statistically significant,
but negligible in magnitude (i.e., no more than 3 percent). Simulating choices from
the theoretical start of the process works quite well.

The second panel of Table 4 reports the results of simply ignoring the initial
conditions problem by assuming the choice process starts at ¢ = 10 with d; ;o = 0.
As missing pre-sample covariates are also ignored, the parameters of the exogenous
covariate process, ¢; and o,, are not estimated. The biases produced by this method
are generally substantial in magnitude. o, in particular is badly biased upwards. The
incorrect treatment of the initial condition results in a substantial overestimate of the
importance of individual effects.!®

The third panel of Table 4 reports the results of handling the initial conditions
problem by constructing a proxy for the initial value of t_zl dirp, using the observed
data. The number of periods in this experiment is increTa:SOed to T' = 30. The DGP

is modified so choices and covariates are completely missing in periods t = 1,...,10

15The variance of the composite error term is restricted to be between zero and one. Since almost
all of the estimates of o, are close to the upper boundary of one, the standard deviation over the

fifty estimates is very small.
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but are observed from ¢t = 11, ...,30. The observed choices in period t = 11, ..., 20 are
20

used to form a proxy for Z dirp, and the likelihood is constructed using only data
7=0
from ¢t = 21, ..., 30. In this method, the latent index at ¢ = 21, us;, is given by:

20
Uig1 = Bo + B1Tio1 +p Z €_a(21_7_1)dz} + gi01. (25)
=11

The biases produced by this method are generally substantial in magnitude. Sim-
ilar to the case where the initial conditions problem was ignored, there is substantial
upward bias in the estimated variance of the random effect. Also, the estimate of the
base classification error rate parameter F is severely biased downward.

Table 5 reports the results of four repeated sampling experiments in which there
is an initial conditions problem and the model has a more familiar first-order Markov
structure in past choices. The Markov model is nested in the general model by setting
a=0and 7 =t—1so that uy = 'z + pdy_1 +<4. The first panel of Table 5 reports
the results of handling the initial conditions problem by simulating from ¢ = 0 and
forming the likelihood using data from periods ¢t = 10 to ¢t = 20, as in equation (19).
Simulating choices from the theoretical start of the process works quite well in the
Markov model. The resulting biases are small in magnitude, never exceeding 4.1%.

The second panel of Table 5 reports the results of ignoring the initial conditions
problem in the Markov model by setting d;g = 0. The estimate of p in this experiment
is substantially biased downward and o, is substantially biased upward. The incorrect
treatment of the initial condition results in estimates that imply an overly weak effect
of previous choices on current utility, and an overly strong individual effect.

The third panel of Table 5 reports results of treating the initial condition as
exogenous (i.e., simply substituting the observed choice in period 10 into the utility
function in period 11). The biases produced by this method are generally less severe
than ignoring the initial conditions problem but, as might be expected when treating
the initial condition as exogenous, the estimate of p is biased upwards (by 14%).

The fourth panel of Table 5 applies the Heckman (1981a) method of approximating
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the marginal probability of the initial state using a probit model that incorporates
only information on exogenous covariates. This method specifies a different latent

index function, ufl, in the first period of observed data. The latent index at ¢ = 10 is

ulf =0+ 11T + e (26)

where the variance of €I/ is normalized to one and the correlation between € and
the individual effect p, is p,n. The parameters vy, 7; and p,.n are estimated jointly
with the other parameters of the model. We still use our algorithm to accommodate
classification error and form the likelihood using unconditional simulations from t =
10, ..., 20, except at ¢t = 10 we simulate from (26) instead of (1). In effect, we nest
Heckman’s procedure for handling the initial period within our algorithm.

The results show that nesting the Heckman method in our procedure works rela-
tively well in the random effects model. p is over-estimated by only 6.4%. Although
biases are not substantial for Heckman’s approximate solution approach (except for
the constant), simulation from the theoretical start of the process, when known, is
clearly preferable as the parameter estimates are less biased and more precise.

The fifth panel of Table 5 nests the Wooldridge (2003) approach to solving the
initial conditions problem within our algorithm. The Wooldridge method models the
conditional mean of the random effect as a function of the initial condition and the

entire path of exogenous covariates. Assuming the conditional mean is linear,
E[pi|dy, xian, ..., Tiso] = co + caadjig + coxing + - - - + a1&iso, (27)
the latent index in period t = 11, ..., 20, is
ul = By + Bywi + pdip—1 + ardlyy + aszan + -+ angis + 1y (28)

where Bo = By + ap. Note that (5, and o cannot be separately identified. The
additional parameters that are identified in this approach are o through a;;.
The estimation results show that nesting Wooldridge’s method within our algo-

rithm produces an estimate of p that is biased downward by 12.6%. In contrast, Heck-
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man’s method yields an estimate of p that is biased upward by 6.4%. Wooldridge’s
approach also produces a more significant bias in the estimate of £.1°

An interesting question is how our algorithm performs if there is in fact no (or neg-
ligible) classification error in the data. This scenario is implausible in micro datasets
(e.g., in our experience, even machine generated data like that from supermarket
scanners contain error, as human factors can always creep in), but it may be more
plausible in certain macro contexts (e.g., a cross country panel on sovereign defaults).
If classification error is not present, the assumption it exists serves simply as a tool
to guarantee a non-zero likelihood given a finite simulation size, analogous to Mc-
Fadden’s (1989) appending of extreme value errors onto the probit model to obtain
a "kernel smoothed" frequency simulator of probit choice probabilities. As there, the
extra source of error leads to bias in the simulator, which diminishes as the scale of
the auxiliary error goes to zero. How this affects estimates is an empirical question.

To address this issue, Table 6 reports results of three repeated sampling exper-
iments where the true DGP has no classification error (and no initial conditions
problem). The three panels display results for the random effects Polya model with
20%, 40% and 60% missing choices and covariates in each period, respectively. The
results show negligible biases that never exceed 5%. The mean estimate of E tends
towards the upper bound of one, so the estimated extent of classification error is
very small. As results illustrate, our algorithm is useful as a way to handle difficult

likelihood function simulations even when there is no classification error in the data.

6.1.2 The Smooth SML Algorithm (Importance Sampling)

The smooth version of the estimation algorithm differs from the non-smooth version

in that we simulate choice histories only once for each individual in the sample, at the

16The conclusions from the experiments are not sensitive to the extent of unbiased classification
error in the data generating process. Similar results were obtained for E, the base classification error

rate, set to .25 and .50. Lower values of E correspond to a greater extent of classification error.
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initial vector of trial parameters. Rather than simulating new histories as we iterate
on the model parameters, we apply importance sampling weights to the original set
of sequences. The smooth algorithm enables the use of standard gradient methods of
optimization, as opposed to generally more time consuming non-gradient methods.
We again set simulation size M = 1000 and use an initial parameter vector where
each element is bumped 20% away from true values.

Table 7 reports the results of three repeated sampling experiments that use the
smooth SML algorithm, with the weights specified in (22). These are analogous to the
repeated sampling experiments in Table 3 that use the non-smooth algorithm. The
three experiments differ in the proportion of missing choices and covariates during the
sample period, assuming no initial conditions problem. Like Table 3, Table 7 reveals
a few statistically significant biases, but the biases are trivial in magnitude.

It is important to note that the smooth version of the algorithm is faster. As
reported earlier, the mean time to convergence over the 50 repetitions in the second
panel of Table 2 (20% missing choices) is 3.73 hours with a standard deviation of .92.
But that for the first panel of Table 6 is only 1.94 hours with a standard deviation of

.97. Thus, the smooth version is roughly twice as fast.

6.2 AR(1) Error Model

In the AR (1) error model, the error term ¢;; follows the first-order serial correlation
process in (4). The theoretical start of the process is again d;y = 0. As in the
random effects model, the exogenous covariate z;; is generated by the AR (1) process
in (16). The depreciation weights p_ follow the same exponential decay process, p. =
pe~®t=7=1)_The vector of estimable parameters is § = {8, 31, p, @, ¢, T4, @1, E}.
Table 8 reports summary statistics, by time period, for a representative data set
produced by the Polya model with AR (1) errors. The data set is generated with
N = 500, T" = 10, no missing choices or covariates, and the true parameter vector

0 = {-.10,1.00, 1.00, .50, .25, .50, .80,.75}. Note that an AR (1) error parameter of
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.80 implies a considerable amount of serial correlation. As in the random effects
model, the variance of ¢; is normalized to one and the frequency simulator that is
used to compute true classification error rates has M set to 1000. A comparison of
Tables 1 and 8 shows that the summary statistics produced by the AR (1) error model

are quite similar to the summary statistics produced by the random effects model.

6.2.1 Non-Smooth SML Algorithm

The order of repeated sampling experiments on the AR(1) error model is similar to
that for the random effects model. Tables 9-11 correspond to Tables 3-5. The three
panels of Table 9 report the results of increasing the incidence of missing choices and
covariates during the sample period, assuming no initial conditions problem. As in
the experiments on the random effects model, the bias in p is generally significant
but negligible in magnitude, never exceeding 4.6%. The biases and standard errors of
the parameter estimates are generally smaller in the AR(1) error model than in the
random effects model (compare Tables 3 and 9).

In Table 10, different solutions to the initial conditions problem are examined.
The first panel shows that simulating choices from the theoretical start of the process
works quite well in the AR(1) model, just as it does in the random effects model.
But the second panel, in which the initial conditions problem is ignored (i.e., just
set d;10 = 0), reveals serious biases. In particular, the AR(1) parameter (¢,) is
substantially over-estimated (i.e., .92 vs. .80). The biases in the estimates of p and «
are also very large. Since p is biased downward and « is biased upward, the estimates
understate the importance of lagged choices.

The third panel shows results from treating the observed d; ;o as exogenous. The
magnitudes of the biases when using this approach are generally smaller in the AR(1)
model than in the random effects model. However, as in the random effects model,
the estimates of p and « are biased upward, understating state dependence.

Table 11 examines different solutions to the initial conditions problem in the
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Markov model with AR(1) errors. As in the random effects model, simulating from
the theoretical start of the process works well. Ignoring the initial conditions problem
produces substantial biases that are similar in direction and magnitude to the random
effects model (see Table 5). Treating the initial condition as exogenous (panel 3) or
using the Heckman approximation method (panel 4) result in more serious biases in
the AR(1) error model than in the random effects model. In these latter two methods,

the estimates of p are biased upward by 23% and 20%, respectively.!”

6.2.2 The Smooth SML Algorithm (Importance Sampling)

Table 12 reports the results of estimating the Polya model with AR(1) errors, missing
exogenous covariates but no initial conditions problem, and using the smooth SML
algorithm with the weights in (22). As in the random effects model (see Table 7), the
estimates have biases that are negligible in magnitude. Consistent with previously
reported results for the random effects model, the AR(1) model also converges much
faster when using the smooth algorithm. For example, while the mean time to con-
vergence over the 50 repetitions in the first panel of Table 9 (20% missing choices)
was 3.07 hours with a standard deviation of .71, that over the 50 repetitions in the

first panel of Table 12 was only 1.84 hours with a standard deviation of .72.

7 Monte-Carlo Tests - Biased Misclassification

This section presents Monte-Carlo tests of the SML estimator with biased classifica-
tion error, as specified in (11). The algorithm used to generate artificial data sets is
described in Appendix B. Subsections 7.1 and 7.2, present results for Polya models
with random effects and AR(1) errors, respectively. In subsection 7.3, we present

results for the Polya model with both random effects and AR(1) errors.

1"The Wooldridge approach is not applied in the AR(1) case because it was developed specifically

for a random effects model, as shown in (27).
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7.1 Random Effects Model
7.1.1 Non-Smooth SML Algorithm

The three panels of Table 13 report the results of using the non-smooth SML algorithm
on Polya models with random effects and biased classification error. The vector of
true structural parameters is the same as in the case of unbiased classification error.
In all three panels, 20% of the choices and exogenous covariates are missing in each
period and there is no initial conditions problem. The three experiments in Table 13
differ in the true parameters of the classification error process, 7v,, v; and 7,.

The first panel specifies values of v, 7; and 7y, that produce a relatively low level
of bias in classifications. The parameters in the second panel generate an intermediate
level of bias and the parameters in the third panel imply a relatively large bias. The
conditional probabilities w11, = Pr(d}, =1 | dy =1) and mp;; = Pr(d, =1 | dy =0)
are (.97,.18), (.95,.27) and (.95, .50), in the first, second and third panels, respectively.

The results reveal relatively few statistically significant biases. Only the estimates
of p and o, are consistently biased, but the magnitudes of these biases are negligible,
never exceeding 3 percent. In general, the algorithm seems to perform very well, both
in terms of uncovering the structural parameters and in terms of uncovering the pa-
rameters of the classification error process.'® Note that, as the extent of classification
bias increases, it leads to larger empirical standard errors. This is as expected: with

more classification error, the data contain less information about the true process.

18The algorithm with a high extent of classification bias, and 20% missing choices and covariates,
converges in similar time to the corresponding specification with unbiased classification error. For
example, the time to convergence per parameter is .54 hours in the former case and .57 hours in
the latter. The overall time to convergence for the unbiased and biased classification error models

cannot be directly compared because they have a different number of parameters.
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7.1.2 Smooth SML Algorithm

Table 14 reports the results of estimating the random effects Polya model with biased
classification error using the smooth SML algorithm with the weights in (22). As
in the first panel of Table 13, 20% of the choices and covariates are missing in each
period, there is no initial conditions problem and there is a relatively low extent of
true classification error bias. The results reveal slightly larger biases and standard
errors than when using the non-smooth algorithm (compare Tables 13 panel 1 and
14). However, the biases remain small. The largest biases are in the estimates of p

and «, which are biased by 5.4% and 8.8%, respectively.

7.2 AR(1) Error Model
7.2.1 Non-Smooth SML Algorithm

The three panels in Table 15 repeat the experiments of Table 13, but for a Polya
model with AR(1) errors rather than random effects. The results tell a similar story.
The biases are negligible in magnitude, rarely exceeding 3 percent, and the empirical

standard errors grow with the extent of bias in the true classification error process.

7.2.2 Smooth SML Algorithm (Importance Sampling)

Table 16 reports a similar experiment to that in Table 14 except with AR(1) errors
rather than random effects. The biases are once again negligible in magnitude and
noticeably smaller than in the random effects specification. The estimates of p and «

are biased by only 2.1% and 2.3%, respectively.

7.3 Random Effects and AR (1) Errors

Finally, we consider a model with both random effects and AR(1) errors. Here, the
error term ¢;; follows the error process in (5). The true o, is set to .80 while the

AR (1) parameter ¢, is set to ¢; = .40. To conserve on space we report results
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only for the Polya model, and only using the smooth algorithm (with the weights
in (22)). The results are reported in Table 17. As in Tables 14 and 16, there are
20% missing choices and covariates in each period and low classification error bias.
The smooth algorithm produces biases in the estimated parameters that are small in
magnitude. In particular, the biases in the estimates of p and a are only 2.2% and
6%, respectively. Recall that the biases in these parameters in the random effects
only model are 5.4% and 8%, respectively (see Table 14), and in the AR(1) errors
only model they are are 2.1% and 2.3%, respectively (see Table 16). It is interesting
that the algorithm seems to have little difficulty disentangling the various sources of

persistence in the data {p,a, 0, ¢ }."

8 Application to Female Labor Force Participation

In this section, we use our algorithm to estimate dynamic probit models of married
women’s labor force participation, using PSID data from 1994-2003. As respondents
were not interviewed every year during the sample period, the data contain both miss-
ing choices (missing endogenous state variables) and missing covariates, in addition
to an initial conditions problem. Thus, it would be extremely difficult to simulate the
likelihood using alternative approaches. We use our estimates to test for endogeneity

of fertility and nonlabor income (following Hyslop (1999)).

YFor instance, compared to the RE only model (Table 14), the increases in RMSE for p, o, and
o, are very modest when ¢, is added. RMSEs are considerably greater than in the AR(1) only
model (Table 16), but that is not the result of having random effects plus AR(1) errors. RMSEs for
p,a, and o, are already considerably larger in the models with RE (Table 14) than in models with
AR(1) errors (Table 16).
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8.1 The Data

The data are drawn from the 2004 PSID, including both the random Census sub-
sample of families and nonrandom Survey of Economic Opportunities. Restricting
the sample to 1994-2003 produces a panel of the same length as in the repeated sam-
pling experiments. A serious missing data problem arises because the PSID switched
from annual to biannual surveys after the 1997 wave. Hence, PSID families were
not interviewed in 1998, 2000, and 2002.2° Even in the seven years when labor force
participation is reported, it is likely to be measured with error.?!

We build a panel from the PSID that has N = 1310 women and 7" = 10 years.
We include women who are between the ages of 18 and 60 in 1995, are continuously
married during the period, and whose husbands were labor force participants in each
of the seven actual survey years. These are typical sample selection criteria in the

literature on female labor force participation (see, e.g., Hyslop (1999)).

Table 18 presents descriptive statistics for the estimation sample. The mean labor

20Respondents were asked a series of questions related to their activities in the "off-years" of the
PSID. However, we treat retrospective responses as missing. There is no retrospective information

collected on husband’s annual earnings (non-labor income).

21 For example, Poterba and Summers (1986) used the so called “CPS reconciliation data” to assess
the extent of classification error in reported employment status in the CPS. In the reconciliation
data, Census sends an interviewer to reinterview a household a week after its original interview. The
interviewer determines if reports disagree and, in the event if a disagreement, attempts to determine
true employment status. The figures in Poterba and Summers Table II imply that the probability
an employed person falsely reports being unemployed or out-of-the-labor-force is 1.5%, while the
probability an unemployed person falsely reports being employed is 4.0%. Unfortunately, there is
little direct evidence on classification error in the PSID itself, because the PSID validation study,
analysed in Bound et al. (1994) only covered a sample of respondents who worked for a single
large firm. As all participants were employed, these data cannot be used to assess the probability of
falsely reported employment when ones true state is unemployed. However, Bound et al. report that
between 29% and 37% of the variance in log hours is noise — see Table 3 panel B. This is suggestive

that classification error in employment status is likely to also be important.
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force participation rate is .82, while average annual husband’s earnings (the proxy for
nonlabor income) is $46,000. The fertility variables are the number of children aged
0-2, 3-5 and 6-17. The last three variables in the table, also used as covariates,
are age, the highest level of education attained over the sample period (which is
then held constant from 1994-2003), and race (equal to one if black). All covariates
except nonlabor income are available for the full ten years because they are either not
time-varying (education, race), vary in a known way (age) or can be re-constructed
from information in the 2004 panel (e.g., the fertility variables). In implementing
our estimation procedure, we assume an AR(1) process for the missing time-varying

covariate (nonlabor income).

8.2 The Model

The models we fit to married womens’ labor force participation decisions are

Markov Uit = 60 + 61 ln(yzt) -+ ﬁ/QXZt + pdz’,t—l + Eit
t—1

Polya : wuy = By+ 81 In(yi) + 85X + Z dirp. + €it, p. = pe =D

7=0
di;y = 1if uy >0, 0 otherwise, d;g =0
In(yir) = ¢, ln(yi,t—l) + Vit vig ~ N (0, 012,) (29)

git = M+ &y
§i = G181+ Mig> M ~ N0, (1 - Ui)(l )
it = 7o+ 71di + V2djy_q + wit

T
i = 5:‘/Wit +0uCy G~ N(0,1)
=1

where y;; is the husband’s earnings in year ¢, and Xj; is a vector containing the fertility,
race and education covariates, as well as year effects. The error structure for both
the Markov and Polya models is random effects and AR(1) errors. We also assume a
classification error process where the probability of reporting a particular labor force

participation state depends on the true participation status as well as lagged reported
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status (to allow for the possibility of persistence in misreporting one’s state).

Note that the model in (29) is more general than those considered in the repeated
sampling experiments because we allow for correlated random effects (the last equa-
tion in (29)) or "CRE". That is, following Chamberlain (1982, 1984), the random
effects are allowed to be correlated with the vector W;; which contains In(y;) and
the three fertility variables. Then a test of the null hypothesis Hy: §; = 0 is a test
for whether fertility and nonlabor income are exogenous in the sense that they are
uncorrelated with the individual random effects.?

In estimating (29), we take the theoretical start of the process, t = 0, to be age 16.
Of course, most women in the sample are not observed at age 16. To deal with this
initial conditions problem, we simulate participation and nonlabor income from age
16 onward. We estimated the model using the smooth algorithm with the importance
sampling weights defined in (22). The number of simulated choices for each individual

in each time period, M, is set to 250.23

8.3 Estimation Results
8.3.1 The Markov Model

Table 19 displays results for four different Markov versions of the model in (29).
Column (1) reports point estimates and asymptotic standard errors for a restricted

version with random effects only (i.e., »; = 0 and §; = 0). The results show precisely

22Note that consistency (in N with T fixed) of the conventional RE model requires strict exogeneity
of the covariates. The CRE model relaxes this by letting p,; be correlated with the time-varying
covariates Wy, for all ¢ = 1,...,T. However, it still imposes that time-varying covariates W;, are

uncorrelated with lagged values of the time varying error terms &,,.

23Setting M=1000, as in the repeated sampling experiments, is not computationally practical for
N=1310. Thus, we performed additional repeated sampling experiments with N=1310 and M =250.
Biases remain negligible, although standard errors are higher. Biases also remain negligible with

changes in N and T'.
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measured effects of nonlabor income, fertility, age, race and education, and signs and
relative magnitudes of the effects are all in the expected directions.

The estimate p = 2.31 in Column (1) implies strong positive state dependence in
participation. Permanent unobserved heterogeneity is also important in explaining
persistence in participation. The estimate o, = .89 implies that 79% of the total
error variance is due to the individual effect. The AR(1) coefficient in the nonlabor
income process, 52 =.999, implies husband’s income is essentially a random walk.

The estimates of the classification error process, v, v, and v,, imply classification
error is important, and that there is considerable persistence in misclassification. The
estimates imply that 7oy, = .299 and 71o; = .073 when d7;, | = 0, and 7o;; = .677 and
10t = .016 when di;_1 = 1. Thus, the probability of mis-reporting a one (participa-
tion) when the true state is zero (nonparticipation) increases from 29.9% to 67.7% if
participation is reported in the previous period. Similarly, when participation is re-
ported in the previous period, the probability of mis-reporting nonparticipation when
the true state is participation falls from 7.3% to 1.6%. On average, the probability
of misreporting one’s state is 2.01%. Note that this is in the ballpark of the figures
obtained by Poterba and Summers (1986) for the CPS. Finally, the x? goodness of
fit statistic has a p-value of .1024, so the model is not rejected at the 10% level.?*

Column (2) reports results for the correlated random effects version of the model.
Allowing for correlated random effects produces qualitatively similar point estimates
and standard errors to those obtained in Column (1). However, the log-likelihood
improves 22 points leading to rejection of Hy: §; = 0. Specifically, the x? likelihood
ratio statistic is 44.58 with 27 degrees of freedom, giving a p-value of .0243. Thus, we

find clear evidence that fertility and nonlabor income are not exogenous in a random

24The Pearson chi-squared statistic is calculated by computing the frequency of actual and pre-
dicted sequences of participation over the seven years of observed choices in the ten-year panel. In
order to avoid small cell problems, the number of cells is reduced from 128 (27) to 48 by combining

"similar" cells. This is the same procedure that Hyslop (1999) employs to evaluate goodness-of-fit.
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effects probit model with first order state dependence.

The models in Columns (3) and (4) expand those in Columns (1) and (2) by adding
AR(1) transitory errors, introducing the additional parameter ¢,. The results show
that AR(1) serial correlation is an important component of persistence in female labor
force participation, in addition to random effects and first-order state dependence. In
Column (3), the point estimate is 51 = .608, and it is precisely estimated. However,
estimates of other parameters remain qualitatively similar, and the model exhibits
only a modest improvement in fit when AR(1) serial correlation is introduced.

Column (4) reports the estimation results for the correlated random effects Markov
model in (29), with random effects and AR(1) errors, and where the individual effect
is allowed to be correlated with nonlabor income and fertility. Allowing for correlated
random effects produces qualitatively similar results to those obtained in Column
(3). However, log-likelihood improves by 31 points leading to clear rejection of the
null hypothesis d; = 0 (i.e., the likelihood ratio x? has a p-value of .0002). The x>
goodness of fit statistic for this model is 56.40 with a p-value of .1637.

8.3.2 The Polya Model

Table 20 displays estimation results for the four different versions of the Polya model
that correspond to the four versions of the Markov model in Table 19. If we look
at the most general model, Column (4), we see that the Polya model implies much
greater effects of husband income, young children and education on female labor
supply than does the Markov model. It also implies a much smaller effect of race.
Interestingly, the estimated variance of the random effect is similar in the Markov
and Polya models, but the AR(1) serial correlation parameter is somewhat smaller in
the Polya model (i.e., .46 vs. .61).

The Polya process estimates, p and a, imply that past participation is an im-
portant determinant of current participation, but that the influence of past choices

falls quickly over time. For example, in Column (1), u;; increases by .6363 (the point
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estimate of p) when d,;;_; = 1, holding all else constant. This is in contrast to an
increase in u;; of 2.3 to 2.5 in the Markov models. In the Markov model d;;_» = 1 has
no effect on u;;, while in the Polya model, setting d;;—» = 1 increases u;; by .0959.
Moving further into the past, w; increases by only .0145 when d;;—3 = 1. Further
lags have negligible effects. The sum of the lag coefficients is .75. Thus, the degree
of true state dependence implied by the Polya models is much less than that implied
by the Markov models. Instead, the Polya models ascribe more of the persistence in
choices to observable heterogeneity (husband income, young children, education).

The Polya models imply only slightly lower classification error rates than the
Markov models. For example, in Column (1), the estimated classification error rates
in the Polya model are 7oy = .246 and 710, = .059 when dj, ; = 0, and 7oy, = .630
and T1o; = .012 when dj, ; = 1. The average probability of misreporting is 1.89%
compared to 2.01% in Table 19, Column (1).

The Polya models fit the data noticeably better than the Markov models. For
example, comparing the full models in Columns (4) of Tables 19-20, the improvement
in the log-likelihood is 105 points with the addition of only one parameter («).?® Also,
the Pearson chi-squared statistic is 51.02 with a p-value of .3186, compared to 56.40
with a p-value of .1637 in the Markov model.

Finally, the null hypothesis of exogenous fertility and nonlabor income is once
again rejected in the Polya models. In the model with only random effects, the y?
statistic for Hy: §; = 0 is 46.42 with a p-value of .0158. In the model that adds AR(1)
errors (Column (4)) it is 59.62 with a p-value of .0005.

Our findings contrast with those of Hyslop (1999), who cannot reject exogeneity of
fertility and husband’s income in models very similar to our Markov model. Our PSID
sample differs from his because, using our estimation algorithm, we are able to depart
from having a balanced panel and include women with missing data. But, as we show

in Keane and Sauer (2006), the discrepancy in results is mainly due to the fact that

25Note that the Markov model is nested in the Polya model by setting a = 0.
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we correct for classification error within our SML estimation algorithm. Allowing for
classification error leads to an inference that there is more true persistence in labor
supply choices (since our model interprets some transitions as spurious - arising due
to misclassification of employment state). This, in turns, leads to estimates that
imply a greater importance of individual effects, and, in turn, greater covariance of

the individual effects with fertility and husband’s income.

9 Conclusion

This paper assesses the performance of a new computationally practical SML esti-
mation algorithm for dynamic discrete choice panel data models with unobserved
endogenous state variables. The estimation technique offers a unified approach to
the initial conditions problem and the problem of missing data during the sample
period. The computational advantage of the estimation algorithm lies in the fact
that it requires only unconditional simulation of data from the model to form the
likelihood. Performing unconditional simulations is often straightforward in contexts
where performing conditional simulations is computationally infeasible. Therefore, in
such contexts, our algorithm may have a significant advantage over algorithms such
as GHK, MCMC and EM that require conditional simulation.

In order to make it feasible to simulate the likelihood using unconditional simu-
lations, a classification error process in discrete choices must be assumed. However,
the assumption that reported choices are misclassified is a reasonable one in almost
all empirical applications in economics. The estimation technique can also accommo-
date a wide range of classification error processes, as long as it is possible to write
a tractable expression for the classification error rates. The extent of classification
error in the data can be estimated jointly with the structural model parameters, or,
if good prior information is available, specified a priori.

The SML estimation algorithm was tested via a series of repeated sampling exper-

38



iments on a panel data probit model with a time-varying exogenous covariate, lagged
endogenous variables, serially correlated errors, and two different classification error
processes. The estimator was shown to have good small sample properties. Under
both the non-smooth and smooth versions of the algorithm, we found that biases are
negligible in magnitude even for high amounts of missing information in the data.

The new SML estimation algorithm can also be combined with either Heckman’s
(1981a) or Wooldridge’s (2003) approximate solution to the initial conditions prob-
lem. Such a hybrid approach may be appealing when there is no natural starting
point to the choice process, and missing data is a problem during the sample period.
Heckman’s method was found to work better than Wooldridge’s in our experiments
with a random effects model. But, Heckman’s method worked less well in our experi-
ments with an AR(1) error model (i.e., we found a 20% upward bias in the coefficient
on the lagged choice). Overall, it is preferable to simulate choices from the theoretical
start of the process if it can be determined.

Interestingly, our SML algorithm seems to perform a bit better (in terms of con-
sistently producing negligible bias) for models with biased as opposed to unbiased
classification error. In order to impose the constraint that classification error be un-
biased, one must specify that error rates are functions of true choice probabilities.
This means error rates must themselves be simulated, inducing additional noise into
the likelihood simulation as well as additional computation time. In contrast, with
biased classification error, one can specify that error rates are closed form functions
of true choices (and perhaps also lagged observed choices and covariates), avoiding
one component of simulation error and computation time.

We also apply the algorithm to panel data probit models of female labor force
participation using PSID data from 1994-2003. A serious missing data problem arises
in these data because (i) respondents were not interviewed in 1998, 2000 and 2002,
(ii) there is nonresponse in interview years, and (iii) the average age at which women

are first observed is 37, creating an initial conditions problem. We solve the initial
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conditions problem by simulating participation outcomes and nonlabor income real-
izations from the theoretical start of the process, assumed to be age 16. We estimate
both Markov and Polya models assuming biased classification error.

The utility of the algorithm was revealed in two ways. First, we found that the
Polya model, which is more difficult to estimate using conventional methods than
the much more commonly used Markov model (since missing data creates greater
problems), provides a substantially better fit to the data. It also leads to substantially
different economic results - i.e., state dependence is far less important as a source of
persistence in labor supply, while observed heterogeneity is more important. Second,
the ability to accommodate classification error enables the algorithm to adjust for the
impact of spurious transitions on the estimated degree of persistence in true choices.
This implies greater importance of individual random effects, and higher covariance
of these with observed characteristics. As a result, in contrast to results in Hyslop
(1999), we find strong evidence that husband’s income and fertility are endogenous
in dynamic probit models of women’s labor force participation.

Future research will examine the small sample properties of the estimation tech-
nique in more complex dynamic models. For example, observed continuous outcomes,
such as wages, can be incorporated into estimation by specifying measurement error
densities that enter the likelihood. The estimation method can also be extended to
handle cases in which the missing data are not missing at random, there is endogenous

attrition, or there is feedback from past choices to future covariates.
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Appendix A

Data Generating Process - Unbiased Classification Error

Defining the initial conditions of the model as d;; = x;0 = 0, each data set in
the repeated sampling experiments is constructed in two stages. In the first stage we
generate the exogenous covariates and compute the classification error rates. In the
second stage we generate the sequences of true and reported choices (using the error
rates computed in the first stage). The second stage also determines if a choice is

missing. The two stages of the data generating process are as follows:
Stage 1

1. Draw N sequences from the joint distribution of (z;1, ..., z;7) to form {{xit}le} .
i=1

N M
=1

2. Draw M times from the joint distribution of (¢;1, ..., &;7) to form { {{EZZ}Z; } A }
N t m=1
Note that M will generally differ from the number of simulated choice histories

M generated for each individual in estimation.

M

N N —
3. Given {{xit}le} and the error sequence {{{Eﬁ}f_l} } , construct M
1 i=1

= m=1

M
~~yT N
simulated choices for each individual ¢ in every period ¢ {{{d:’;} } }
t=1})i=1
m=1
according to (1) and the decision rule (2).

4. Form the frequency simulator P (c?,t =1] HZT) =

M =1 ~ 3\t
L S Pr <5it < Bo+ Bixi + D d 7) where Hl}' = {{:ciT}tT_l , {dﬁ} 1}.
7=0 T=

m=1

S

5. Construct the classification error rates m,;;; for each individual ¢, according to

(8), using P in place of Pr (diy = 1).
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Stage 2

1. Draw N sequences of errors from the joint distribution of (g1, ..., ;1) to form
N
T
{{5it}t:1}. .
i=1
N
i=1

2. Given the {{xit}le} sequence generated in the first stage, and the error
T N . T N .
sequence {{Eit}t:1} , construct N true choices {{dit}t=1} according to
i=1 i=1

(1) and the decision rule (2).

3. In order to construct the sequence of reported choices, draw T' times for each

individual ¢ from a uniform random number generator to obtain the sequence

{{Uz‘t}tT_l}N

4. Compare the uniform random draws to the classification error rates to deter-
mine if choices are correctly reported. That is, construct N reported choices
{{d;‘t i]il}j_l by implementing the following rule: if d; = 1 and U;; < 71y, then
d;, =1, else_d;*t = 0. Similarly, if d;; = 0 and U;; < oo, then df; =0, else d, = 1.

5. In order to determine if a reported choice is missing, draw T times for each

individual ¢ from a uniform random number generator to obtain the sequence

(@}

i=1

6. Compare the uniform draws to the probability 7 that d, is missing in period
t. That is, implement the following rule: if Uy < 7 then I (d% observed) = 1,
else [ (d, observed) = 0.

°bs as a function of the exogenous covariates or

Note that step 6 does not specify 7
the observed choices. The data are thus missing completely at random. Generating
an initial conditions problem and/or non-randomly missing covariates simply involves

modifying 7°* accordingly.
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Appendix B

Data Generating Process - Biased Classification Error

The data generating process in the case of biased classification error follows the
same general rules as in the case of unbiased classification error. The only difference
is that the data generating process can be accomplished in one stage rather than two.

True choice probabilities do not need to be simulated. The procedure is as follows:

1. Draw N sequences from the joint distribution of (z;1, ..., 2;7) to form {{xit}thl} :
i=1

2. Draw N sequences of errors from the joint distribution of (g;1, ..., ;1) to form

{{git}thl }jv_l :

. r N T : r Y
3. Given {{xit}tzl} and {{5it}t:1} , construct N true choices {{dit}tzl}
1 1

i= i=1
according to (1) and the decision rule (2).
4. Draw T times for each individual 7 from a uniform random number generator

N
to obtain the sequence {{Uit}thl}

T
5. Construct N reported choices {{d;} ZJL} by implementing the following rule:
t=1
if diy = 1 and U < w114 then df, = 1, else d, = 0. Similarly, if d;; = 0 and
Uit < moor then d, = 0, else d, = 1. The “true” classification error rates

are obtained directly from (11). It is assumed that d}, = d;o = 0.

6. Draw T times for each individual ¢ from a uniform random number generator

JUENY
to obtain the sequence {{UZ } } .

=1},

7. Implement the following rule: if Uy < m°* then I (df observed) = 1, else
I (d}, observed) = 0.
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Table 1

Summary Statistics
Representative Data Set

Random Effects Polya Model
Unbiased Classification Error

Mean Mean Mean Mean Mean Mean

i di d;, Bz €3t T11¢ To0t N

1 4800 4800 -.0124 .0094 .8630 .8870 500
(.2701) (1.0147)

2 .5780 .5780 .4909 .0149 .8947 .8553 500
(.5601) (1.0046)

3 .6560 .6660 .8940 -.0116 .9142 .8359 500
(.8547) (.9919)

4 7140 .7260 1.1917 -.0005 .9264 .8236 500
(1.0645)  (1.0102)

5 7460 .7440 1.4164 -.0232 .9347 .8153 500
(1.1355) (.9606)

6 .7640 .7580 1.6214 -.0089 9414 .8086 500
(1.2164)  (1.0396)

7 .8140 .8000 1.7812 -.0325 9474 .8026 500
(1.1329) (1.020)

8 .8120 .8100 1.8797 .0138 .9509 7991 500
(1.2081)  (1.0405)

9 .8220 .8100 1.9806 .0092 .9545 7955 500
(1.1668)  (1.0107)

10 .8460 .8500 1.9863 .0211 .9565 7935 500
(1.0949) (.9539)

Note: d;; is the true choice, dJ; is the reported choice, 711+ and mgg; are the probabilities of a correct
classification, and 8’z = uy — B,. Variances are in parentheses. The frequency simulator that is

used to compute the true classification error rates has M set to 1000. The model is:

0, pr = pe”
GoTip—1 + Vi, Vi ~ N (0,02)
By Mgy Py ~ N(0,0’Z) y Tit NN(()?l 70—;21) .

t—1

Bo + Bizit + Z dirpr + €it
7=0

a(t—7—1)
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Table 2

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

(No Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean # Median 3 Std(@ RMSE  t-Stat

No Missing Choices (¢t = 1, ..., 10)

Bo -.1000 -.0975 -.0950 .0427 .0427 42
B 1.0000 1.0171 1.0196 .0552 .0578 2.20
p 1.0000 1.0463 1.0462 .0513 .0691 6.38
o .5000 4912 4926 .0499 .0506  -1.22
oy .8000 .8062 .8009 .0269 .0276 1.62
K .7500 .7408 7417 .0162 0186  -3.99

20% Missing Choices (t = 1, ..., 10)

Bo -.1000 -.0995 -.1017 .0428 .0428 .08
B 1.0000 1.0114 1.0199 0611 .0622 1.32
p 1.0000 1.0450 1.0356 .0528 .0694 6.04
o .5000 .4864 .4985 .0719 0731 -1.34
ou .8000 .8095 .8066 .0259 0275 2.59
K .7500 .7409 7399 0184 .0206  -3.50

40% Missing Choices (¢t =1, ..., 10)

Bo -.1000 -.1025 -.1001 .0530 .0530 -.33
B 1.0000 1.0183 1.0265 .0612 .0648 2.09
p 1.0000 1.0505 1.0425 .0524 .0728 6.81
o .5000 4887 4882 .0633 0643 -1.26
ou .8000 .8047 .7989 .0339 .0343 98
K .7500 7437 7412 .0231 0239 -1.94

60% Missing Choices (t =1, ...,10)

Bo -.1000 -.1070 -.1052 .0596 .0600 -.82
B 1.0000 1.0147 1.0161 .0860 .0872 1.21
p 1.0000 1.0485 1.0562 .0603 0773 5.68
o .5000 4970 .4982 0817 .0817 -.26
ou .8000 .8016 .8012 .0486 .0487 23
K .7500 7477 .7426 .0287 .0288 -.95

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(S3) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

The model is the same as in Table 1.
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Table 3

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(@ RMSE t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1051 -.1023 .0436 .0439 -.83
81 1.0000 1.0167 1.0191 .0611 .0634 1.92
p 1.0000 1.0479 1.0446 .0444 .0653 7.63
o .5000 4977 .5031 .0656 .0657 -.24
o .2500 .2520 .2505 .0176 0177 .80
oy .5000 .5015 .5016 .0057 .0059 1.86
oy .8000 .8056 .8017 0287 .0292 1.38
K .7500 7428 .7430 0172 0187  -2.95

40% Missing Choices and X’s (t = 1,...,10)

Bo -.1000 -.1087 -.1099 .0539 0546  -1.15
B4 1.0000 1.0141 1.0233 .0678 .0692 1.48
p 1.0000 1.0458 1.0374 .0636 .0784 5.10
o .5000 4953 .4949 .0600 .0602 .56
09 .2500 2521 .2546 .0253 .0254 .59
oy .5000 5012 5012 .0069 .0070 1.21
oy .8000 .8046 .8063 .0347 .0350 94
E .7500 7474 .7416 .0245 .0246 -.74

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0997 -.1116 .0542 .0543 .05
B 1.0000 1.034 1.0258 .0894 .0924 1.85
p 1.0000 1.0401 1.0512 .0682 .0791 4.15
o .5000 4957 4973 0721 0722 -42
o .2500 .2507 .2498 .0372 .0373 13
oy .5000 5011 5017 .0089 .0090 .88
oy .8000 .8096 .8044 .0421 .0432 1.61
K .7500 .7493 .7440 .0288 .0288 -.16

Note: The number of replications in each experiment is 50 and the number of individuals in the

—

sample is 500. Std(83) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 1.
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Table 4

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean B Median B Std(@ RMSE  t-Stat
Simulate from start of process with d;o =0 (¢t = 11, ..., 20)
Bo -.1000 -.1001 -.1022 .0295 .0295 -.02
B4 1.0000  1.0286 1.0337 .0454 .0537 4.46
p 1.0000  1.0298 1.0253 .0324 .0440 6.51
@ .5000 .5044 .5004 .0320 .0323 .98
o5 .2500 .2501 .2526 .0135 .0135 .05
oy .5000 5015 .5025 .0042 .4985 2.56
ou .8000 .8130 .8145 .0245 0277 3.74
E .7500 7450 7410 .0193 0199  -1.82
Assume process starts with d; 10 =0 (¢ = 11, ..., 20)
Bo -.1000 .9367 9513 .0543  1.0381 135.05
B4 1.0000 .2966 .2844 .0938 7096  -53.01
P 1.0000 .9543 .9333 .3278 .3310 -.99
@ .5000 4187 .3995 .2957 3067 -1.94
ou .8000 .9905 9923 .0090 1907 149.11
E .7500 7144 7125 .0230 0424 -10.96
Use reported data from ¢ = 11, ..., 20 to proxy
for initial condition at ¢t = 21 (¢t = 11, ..., 30)
Bo -.1000 -.5239 -.4859 .3039 5216 -9.86
B1 1.0000 4742 4671 1788 .5553  -20.80
P 1.0000  1.0522 1.1064 .3076 .3120 1.20
e .5000 .5839 .6139 .2299 .2448 2.58
Ou .8000 .9388 9758 .0811 1608 12.10
E .7500 5795 5714 .0615 1812 -19.61

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%)
The model is the same as in Table 1.
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Table 5

Repeated Sampling Experiments
Random Effects Markov Model
Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value MeanB Median /3 Std(,/é’j RMSE  t-Stat

Simulate from start of process with d;o = 0 (¢ = 10, ..., 20)

Bo -.1000  -.1127 -.1086  .0391 0411 -2.30
51 1.0000  1.0379 1.0364  .0324 .0500 8.25
P 1.0000  1.0330 1.0319  .0386 .0508 6.04
o .2500 .2496 2511 .0136 .0136 -.19
oy .5000 .5014 5011 .0045 .4986 2.17
oy .8000 .8137 8133 .0294 .0324 3.29
E .7500 7293 7294 .0150 0256  -9.75
Assume process starts with d;g =0 (¢t = 10, ..., 20)
Bo -.1000 .1598 1594 0775 2712 23.70
51 1.0000 .9126 9171 .0693 A115  -8.92
P 1.0000 .6396 6171 .1025 3747 -24.87
oy .8000 .8823 .8948  .0369 .0902  15.80
E .7500 7218 71226 .0222 0395  -8.99
Treat d; 19 as exogenous
Bo -.1000  -.1882 -.1867  .0771 A171 -8.09
51 1.0000  1.0328 1.0480  .0595 .0679 3.90
p 1.0000 1.1369 1.1465 .1024 1710 9.45
o .8000 7838 7843 .0460 0488  -2.49
E .7500 7240 7262 .0233 0349  -7.91

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

t—1
The Markov model replaces > dirp, in Table 1 with pd; ;1.

7=0
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Table 5 (continued)

Repeated Sampling Experiments
Random Effects Markov Model
Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value MeanB Median /3 Std(,/é’j RMSE  t-Stat

Use Heckman’s approximation method to proxy
for initial condition at ¢ = 10 (¢ = 10, ...,20)

Bo -.1000 -.1721 -.1705 .0728 1025 -7.01
51 1.0000 .9868 9831 .0616 0630  -1.52
p 1.0000 1.0637 1.0673 1074 1249 4.20
oy .8000 7735 1767 .0472 0642 -3.97
E .7500 .7438 .7456 .0181 0191 -2.44
Yo .3819 .3843 0757
Y1 .6857 .6799 .1008
Puet .6565 .6589 0627

Use Wooldridge’s method of conditioning the
distribution of the unobserved effect (¢t = 11, ..., 20)

Bo -.1000 -.3276 -.3045 0872 2438 -18.46
B 1.0000 .9520 9611 .0628 0790  -5.40
p 1.0000 8734 .8741 0712 1453 -12.57
oy .8000 .8034 .7988 .0478 .0479 .50
E .7500 .7046 .7064 .0308 0549  -10.43
o .4522 4314 1124
o9 -.0137 -.0132 .0700
o3 -.0055 .0009 0741
o .0162 .0234 .0761
os .0124 .0009 .0852
o6 .0042 .0058 0617
o -.0043 -.0053 0714
osg .0125 .0021 .0683
o9 -.0022 -.0076 .0794
10 .0094 .0061 .0708
o1l .0124 .0132 .0815

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

-1
The Markov model replaces Y d;rp, in Table 1 with pd; ;1.

t
7=0
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Table 6

Repeated Sampling Experiments
Random Effects Polya Model
No Classification Error in DGP
(Missing X’s, No Initial Conditions Problem)

Parameter True Value MeanB Median /3 Std(,/é’j RMSE  t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0856 -.0852 .0460 .0482 2.21
51 1.0000 1.0219 1.0220 1113 1135 1.39
p 1.0000 1.0177 1.0223 .0745 .0766 1.68
o .5000 .5015 4918 .0633 .0633 .16
o .2500 2377 2441 .0697 0708  -1.24
ou .5000 4972 4979 .0142 0144  -1.38
ou .8000 .8005 .8009 .0465 .0465 .07
E 1.0000 .9249 9290 .0566 0937 -9.39

40% Missing Choices and X’s (¢ =1, ...,10)

Bo -.1000 -.0921 -.0850 .0833 0837 .67
B4 1.0000 1.0207 1.0250 1159 A177 1.26
p 1.0000 1.0403 1.0185 1072 1146 2.66
o .5000 .4864 5139 .1010 .1019 -.95
s .2500 2415 2351 1197 .1200 -.50
oy .5000 4963 .4992 .0270 0272 =97
ou .8000 .8045 .8096 .0614 .0615 .52
E 1.0000 9180 .9230 .0496 0955 -11.69

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0678 -.0805 .0893 .0949 2.55
B 1.0000 9929 1.0300 1795 1797 -.28
p 1.0000 1.0280 1.0361 1139 1173 1.74
o .5000 4685 4938 1208 1249 -1.84
ol .2500 .2432 .2431 .1030 .1032 -.46
oy .5000 .4945 4961 .0230 0236 -1.68
ou .8000 .8055 .7908 .0694 .0696 .56
E 1.0000 .9366 9341 .0698 0922 -7.25

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(83) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%)
The model is the same as in Table 1.
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Table 7

Repeated Sampling Experiments
Random Effects Polya Model
Unbiased Classification Error

Smooth Algorithm
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(a RMSE t-Stat

20% Missing Choices and X’s (¢ = 1, ..., 10)

Bo -.1000 -.0900 -.0926 .0656 .0664 1.07
61 1.0000 9974 9927 .0962 .0962 -.19
p 1.0000 1.0347 1.0259 .1415 1457 1.73
o .5000 .5219 .5026 1275 1294 1.22
o .2500 .2512 .2494 .0162 .0163 .54
oy .5000 .5014 5021 .0055 .0057 1.80
ou .8000 8174 .8201 .0356 .0396 3.46
K .7500 7414 .7410 .0167 .0188  -3.65

40% Missing Choices and X’s (t = 1,...,10)

Bo -.1000 -.0951 -.0832 .0682 .0684 bl
B 1.0000 1.0193 1.0146 .1046 .1064 1.31
p 1.0000 1.0627 1.0371 1583 1703 2.80
o .5000 .5526 5167 1612 .1696 2.31
o .2500 .2498 .2536 .0246 .0246 -.05
oy .5000 5124 .5023 .0792 .0802 1.10
oy .8000 .8162 .8168 .0343 .0380 3.34
E .7500 7453 .7408 .0220 0225 -1.52

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0956 -.0783 .0933 .0934 .33
61 1.0000 1.008 1.0093 .1596 .1598 .35
p 1.0000 1.0546 1.0652 2215 2281 1.74
o .5000 .5488 5637 .1854 1917 1.86
o .2500 .2506 .2515 .0383 .0382 A1
oy .5000 5011 .5015 .0084 .0085 91
oy .8000 8115 8077 .0439 .0454 1.84
K .7500 .7498 7472 .0270 .0270 -.05

Note: The number of replications in each experiment is 50 and the number of individuals in the

sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 1.
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Table 8

Summary Statistics
Representative Data Set

Polya Model with AR (1) Errors
Unbiased Classification Error

Mean Mean Mean Mean Mean Mean

i diy dj, Bz €5t T11¢ Toot N

1 .4600 .4580 -.0125 -.0330 .8622 8878 500
(.2701) (1.0164)

2 .5740 .5700 .4709 -.0220 .8935 .8565 500
(.5272) (1.0525)

3 .6340 .6280 8778 -.0146 19128 8372 500
(.8917) (.9698)

4 .6940 .6800 1.1514 -.0055 .9265 .8235 500
(1.1668) (.8593)

5 7380 7420 1.3771 .0504 .9367 .8133 500
(1.2028) (.8507)

6 7700 .7840 1.5895 .0311 .9454 .8046 500
(1.2453) (.8962)

7 .8000 .7960 1.7679 .0392 .9537 7963 500
(1.1408) (.9582)

8 .8360 .8620 1.8576 .0142 .9588 7912 500
(1.1427) (.9893)

9 .8480 .8260 1.9912 .0086 .9640 7860 500
(1.1048)  (1.0212)

10 .8600 .8720 2.0187 .0233 9677 7823 500

(.9955)  (.9182)

Note: dj; is the true choice, d}, is the reported choice, w11 and 7o are the probabilities of a correct
classification, and 8'x = uy — 3,. Variances are in parentheses. The frequency simulator that is
used to compute the true classification error rates has M set to 1000. The model is:

dio = 0,p,=pe”
= GoTit—1 + Vit, Vit ~ N (0,07)
$1€i -1+ Migs Mg ~ N(0,1 = ¢7)

t—1

7=0
a(t—T—1)

95

Bo+ Buwis + Y dirp, + it



Table 9

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Unbiased Classification Error
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(@ RMSE t-Stat

20% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1042 -.0981 .0391 .0394 -.76
81 1.0000 1.0021 1.0060 .0519 .0519 .29
p 1.0000 1.0444 1.0393 .0424 .0614 7.40
o .5000 .5057 .5058 .0423 .0428 1.12
o .2500 .2521 .2486 .0181 .0183 .83
oy .5000 .5018 .5024 .0057 .0060 2.21
ol .8000 .7996 .8003 .0264 .0264 -.12
K .7500 7473 .7486 0174 .0176  -1.08

40% Missing Choices and X’s (t = 1,...,10)

Bo -.1000 -.1052 -.1014 .0400 .0403 -.92
B4 1.0000 1.0036 1.0011 .0566 .0567 45
p 1.0000 1.0460 1.0400 .0446 .0640 7.30
o .5000 .5018 .5053 .0405 .0405 .32
09 .2500 .2522 2531 .0261 .0262 .61
oy .5000 5019 .5026 .0067 .0070 1.98
ol .8000 .8002 .7989 .0301 .0301 .05
E .7500 .7504 7524 .0251 .0251 12

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.1041 -.0996 .0524 .0526 -.55
B 1.0000 1.0003 1.0124 .0748 .0748 .03
p 1.0000 1.0433 1.0372 .0610 0748 5.03
o .5000 .5047 5077 .0621 .0623 .54
o .2500 .2521 .2514 .0384 .0385 .39
oy .5000 .5007 .5018 .0086 .0086 .61
ol .8000 .7988 .8019 .0364 .0364 -.23
K .7500 7514 7514 .0346 .0348 77

Note: The number of replications in each experiment is 50 and the number of individuals in the

—

sample is 500. Std(83) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 8.
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Table 10

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value Mean B Median B Std(@ RMSE  t-Stat
Simulate from start of process with d;o =0 (¢t = 11, ..., 20)
Bo -.1000 -.0896 -.0925 .0265 .0285 2.77
B4 1.0000 1.0224 1.0221 .0479 .0529 3.31
p 1.0000  1.0194 1.0148 .0298 .0356 4.60
@ .5000 5121 5128 .0238 .0267 3.59
o5 .2500 2511 .2531 .0138 .0139 .56
oy .5000 5011 .5013 .0047 .0049 1.58
o .8000 .8071 .8100 .0280 .0289 1.80
E .7500 7420 7455 .0261 .0273 -2.16
Assume process starts with d; 10 =0 (¢ = 11, ..., 20)
Bo -.1000 .9503 .9682 0605  1.0520 122.84
B4 1.0000 .1699 .3883 4544 9463 -12.92
P 1.0000 .5849 .5266 .2792 .5003  -10.51
@ .5000 7102 7385 .3180 .3812 4.67
o .8000 9221 .9259 .0316 1261 27.33
E .7500 7656 7485 1323 1332 .83
Use reported data from ¢ = 11, ..., 20 to proxy
for initial condition at ¢t = 21 (¢t = 11, ..., 30)
Bo -.1000 -.0862 -.0812 .0617 .0632 1.58
B1 1.0000 .9406 9781 .0932 1105 -4.50
P 1.0000  1.0445 1.0219 .0924 .1026 3.41
e .5000 .5908 5674 0737 1170 8.72
N .8000 7562 7749 .0828 0937 -3.74
E .7500 7348 7378 .0288 0325 -3.73

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%)
The model is the same as in Table 8.
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Table 11

Repeated Sampling Experiments
Markov Model with AR (1) Errors
Unbiased Classification Error
(No Missing Choices or X’s, Initial Conditions Problem)

Parameter True Value MeanB Median /3 Std(,/é’j RMSE  t-Stat

Simulate from start of process with d;o = 0 (¢ = 10, ..., 20)

Bo -.1000  -.1171 -.1125 .0429 0462  -2.81
B4 1.0000  1.0185 1.0191 .0323 .0373 4.05
P 1.0000  1.0354 1.0316  .0465 .0585 5.38
o .2500 2511 2509 .0139 .0140 .56
oy .5000 .5013 .5016  .0050 .0052 1.89
ol .8000 .8081 .8077  .0266 .0278 2.15
E .7500 7401 7403 .0126 0160  -5.58
Assume process starts with d;g =0 (¢t = 10, ..., 20)
Bo -.1000 .1895 1797 .0547 2946 37.43
B4 1.0000 .8189 .8025 0727 1951 -17.63
P 1.0000 .5932 5807  .1054 4202 -27.29
o .8000 .8377 .8343  .0268 .0463 9.95
E .7500 7539 7544 .0164 .0168 1.68
Treat d; 10 as exogenous
Bo -.1000 -.2416 -.2501 .0492 1500  -20.36
51 1.0000  1.0150 1.0239  .0430 .0456 2.46
p 1.0000 1.2330 1.2380 .0702 2434 23.47
ol .8000 7480 7456 .0374 0640  -9.83
E .7500 7322 7316 .0151 0234  -8.35

Use Heckman’s approximation method to proxy
for initial condition at ¢ = 11 (¢ = 10, ...,20)

Bo -.1000 -.2181 -.2206 .0538 1298  -15.54
B 1.0000 1.0333 1.0315 0471 0577 5.00
p 1.0000 1.1997 1.2129 .0604 2086 23.37
o3} .8000 1727 7746 .0316 0418 -6.13
E .7500 7385 7385 .0116 .0164  -7.00
Yo 4149 4118 .0564
Y1 .6628 .6614 0722
Pt 7238 .7266 .0386

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(83) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)

t—1
The Markov model replaces Y d;rp, in Table 8 with pd; ;1.
=0
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Table 12

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Unbiased Classification Error
Smooth Algorithm
(Missing X’s, No Initial Conditions Problem)

Parameter True Value Mean 8 Median 3 Std(a RMSE t-Stat

20% Missing Choices and X’s (¢ = 1, ..., 10)

Bo -.1000 -.1007 -.0998 .0336 .0337 -.16
61 1.0000 9936 9838 .0519 .0522 -.87
p 1.0000 1.0336 1.0387 .0824 .0890 2.88
o .5000 5214 .5076 .0751 .0781 2.01
o .2500 .2513 .2494 .0162 .0163 .56
oy .5000 .5014 .5020 .0055 .0057 1.82
N .8000 .8004 .8009 .0203 .0203 14
K .7500 7475 .7490 .0175 0177 -.99

40% Missing Choices and X’s (t = 1,...,10)

Bo -.1000 -.1041 -.1028 .0285 .0288  -1.03
B 1.0000 .9892 9759 0721 0729  -1.05
p 1.0000 1.0604 1.0539 1118 1271 3.82
o .5000 .5406 .5226 .0998 1078 2.88
o .2500 2017 .2532 .0248 .0248 49
oy .5000 .5013 .5019 .0067 .0068 1.34
ol .8000 .7984 .8004 .0193 .0194 -.60
E .7500 .7506 7514 .0233 .0233 A7

60% Missing Choices and X’s (¢t = 1, ..., 10)

Bo -.1000 -.0979 -.0925 .0409 .0410 .35
61 1.0000 9833 9510 1107 1119 -1.07
p 1.0000 1.0625 1.0014 1819 1923 2.43
o .5000 .5465 .5126 .1566 1633 2.10
o .2500 .2537 .2515 .0364 .0366 .72
oy .5000 .5004 .5002 .0085 .0084 .30
ol .8000 .8004 7976 .0233 .0233 12
K .7500 7524 7527 .0314 .0315 .54

Note: The number of replications in each experiment is 50 and the number of individuals in the

sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square
error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is the same as in Table 8.
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Table 13

Repeated Sampling Experiments
Random Effects Polya Model
Biased Classification Error
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean # Median /3 Std(8) RMSE t-Stat

Low Classification Error Bias (t =1, ...,10)

Bo -.1000 -.0922 -.944 .0387 .0394 1.42
B 1.0000 1.0198 1.0131 .0531 .0567 2.63
P 1.0000 1.0144 1.0102 .0390 .0415 2.61
o .5000 .5031 .5104 .0489 .0490 45
o .2500 .2489 .2456 .0161 .0161 =47
oy .5000 .5018 .5018 .0050 .0053 2.47
ou .8000 .8068 .8041 .0239 .0248 1.99
Yo -3.5000  -3.4867 -3.4762 .0580 .0595 1.62
Y1 5.0000 4.9845 5.0033 .0728 0744 -1.51
Yo 2.0000 2.0161 2.0236 .0446 .0475 2.56
Medium Classification Error Bias (¢t = 1, ..., 10)
Bo -.1000 -.0941 -.0988 .0425 .0429 .98
B4 1.0000 1.0045 1.0119 .0608 .0609 .02
p 1.0000 1.0222 1.0232 .0465 .0515 3.37
« .5000 .5160 .5253 .0658 0677 1.71
o .2500 .2476 .2452 .0162 0163  -1.04
oy .5000 .5022 .5026 .0050 .0054 3.04
ou .8000 .8049 .8041 .0272 .0276 1.29
Yo -3.0000  -2.9902 -2.9826 .0561 .0570 1.24
Y1 4.0000 3.98 3.9951 0776 0787 -1.19
Yo 2.0000 2.0104 2.0134 .0782 .0789 .94
High Classification Error Bias (¢t =1, ..., 10)
Bo -.1000 -.0988 -.0918 .0708 .0708 12
B 1.0000 1.0145 1.0068 .0693 .0708 1.48
p 1.0000 1.0218 1.0228 .0791 .0820 1.94
o .5000 .5088 .0328 .0993 .0997 .63
o .2500 .2484 .2460 .0164 .0165 -.70
oy .5000 .5021 .5028 .0051 .2980 2.90
ou .8000 .8023 .7999 .0406 .3050 .40
Yo -3.0000  -2.9918 -2.9983 .0638 .0643 91
Y1 3.0000 2.9842 2.9920 .0829 0844  -1.34
Yo 3.0000 3.0190 3.0371 1018 1036 -1.32

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%(%_)g)

The model is the same as in Table 1.
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Table 14

Repeated Sampling Experiments
Random Effects Polya Model

Biased Classification Error
Smooth Algorithm

(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value MeanB MedianB Std(B)

RMSE

t-Stat

Low Classification Error Bias (t =1, ...,10)

Bo
B
p

«
o
Ov
Op
Yo
71
V2

-.1000 -.0795
1.0000 1.0265
1.0000 .9466

.5000 .4409
.2500 .2480
.5000 .5019
.8000 .8211

-3.5000 -3.3313
5.0000  4.7243
2.0000 2.1031

-.0686
1.0330
9374
4360
.2472
.5027
.8225
-3.2996
4.7334
2.0794

.0685
.0833
1410
.1038
.0153
.0048
.0321
.2606
3014
2372

0714
.0874
.1508
1195
.0155
.0052
.0384
.3104
.4084
.3185

2.12
2.25
-2.68
-4.02
-91
2.76
4.65
4.58
-6.47
3.07

Note: The number of replications is 50 and the number of individuals in the sample is 500. Std(@
and RMSFE refer to the sample standard deviation and the root mean square error, respectively,

of the estimated parameters. The t-statistics are calculated as /50 (

same as in Table 1.

61

MeanE’—Q
Std(B)

>. The model is the



Table 15

Repeated Sampling Experiments
Polya Model with AR (1) Errors
Biased Classification Error
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value Mean # Median /3 Std(8) RMSE t-Stat

Low Classification Error Bias (t =1, ...,10)

Bo -.1000 -.1033 -.1039 .0406 .0407 o7
B 1.0000 1.0176 1.0114 .0649 .0673 1.91
P 1.0000 1.0322 1.0325 .0385 .0502 5.92
o .5000 5017 .5050 .0461 .0461 .25
o .2500 .2496 .2502 .0165 .0165 -.16
oy .5000 .5018 .5023 .0049 .0052 2.62
ol .8000 7987 .7961 .0264 .0265 -.35
Yo -3.5000  -3.4987 -3.4809 .0664 .0665 .14
Y1 5.0000 4.9831 5.0056 .0697 .0r1r -1.72
Yo 2.0000 2.0265 2.0196 .0451 .0513 4.15
Medium Classification Error Bias (¢t = 1, ..., 10)
Bo -.1000 -.0893 -.0982 .0525 .0536 1.44
B4 1.0000 1.0075 1.0040 .0745 .0749 .71
p 1.0000 1.0283 1.0364 .0534 .0604 3.75
« .5000 .5162 .5101 .0540 .0563 2.12
o .2500 .2478 .2469 .0163 .0164 -94
oy .5000 .5024 .5027 .0046 .0052 3.74
0N .8000 .8016 .8023 .0312 .0312 .35
Yo -3.0000  -3.0058 -3.0009 .0716 .0718 -.57
Y1 4.0000 3.9802 3.9803 .0735 .0761  -1.90
Yo 2.0000 2.0151 2.0227 .0659 .0676 1.62
High Classification Error Bias (¢t =1, ..., 10)
Bo -.1000 -.0926 -.0896 .0756 .0758 .69
B 1.0000 1.0135 1.0201 0778 .0790 1.23
p 1.0000 1.0276 1.0255 .0682 .0735 2.86
o .5000 5074 .0033 .0624 .0629 .83
o .2500 .2476 .2446 .0152 .0153  -1.10
oy .5000 .5019 .5030 .0051 .0055 2.62
ol .8000 .7980 .8046 .0386 .0387 -.36
Yo -3.0000  -3.0026 -2.9870 .0823 .0824 -.23
Y1 3.0000 2.9899 2.9807 .0680 .0687  -1.04
Yo 3.0000 3.0186 3.0185 .0693 0717 1.90

Note: The number of replications in each experiment is 50 and the number of individuals in the

o~

sample is 500. Std(f3) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as v/50 (%(%_)g)

The model is the same as in Table 8.
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Table 16

Repeated Sampling Experiments
Polya Model with AR (1) Errors

Biased Classification Error
Smooth Algorithm

(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value MeanB MedianB Std(B)

RMSE

t-Stat

Low Classification Error Bias (t =1, ...,10)

Bo
B
p

«
o
Ov
o
Yo

71
V2

-.1000
1.0000
1.0000
.5000
.2500
.5000
.8000
-3.5000
5.0000
2.0000

-.0958
1.0016
1.0213
5117
.2488
.5020
.8035
-3.3707
4.7756
2.1014

-.0971
9979
1.0224
5171
.2466
.5028
.8030
-3.3710
4.7931
2.0863

.0336
.0539
.0746
.0633
.0151
.0047
0177
2730
2778
.1859

.0338
.0539
0775
.0644
.0152
.0051
.0181
3021
3971
.2957

.89
21
2.02
1.31
-.58
2.95
1.41
3.35
-5.71
3.86

Note: The number of replications is 50 and the number of individuals in the sample is 500. Std(@
and RMSFE refer to the sample standard deviation and the root mean square error, respectively,

of the estimated parameters. The t-statistics are calculated as /50 (

same as in Table 8.
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Table 17

Repeated Sampling Experiments
Polya Model with Random Effects and AR (1) Errors
Biased Classification Error
Smooth Algorithm
(20% Missing Choices and X’s, No Initial Conditions Problem)

Parameter True Value MeanB MedianB Std(8) RMSE t-Stat

Low Classification Error Bias (t =1, ...,10)

Bo -.1000 -.0823 -.0824 .0513 .0543 2.44
B 1.0000 1.0215 1.0082 .0907 .0932 1.67
p 1.0000 9782 .9948 1459 1475 -1.06
o .5000 4709 4931 .1092 1130 -1.89
o .2500 .2477 .2487 .0154 0155 -1.04
oy .5000 .5020 .5028 .0048 .0052 2.89
ou .8000 .8267 .8280 .0372 .0458 5.07
ol .4000 .3892 4114 1223 1228 -.62
Yo -3.5000  -3.3261 -3.2815 .2645 3165 4.65
Y1 5.0000  4.7020 4.7290 3270 4424 -6.44
Yo 2.0000  2.1233 2.1126 2316 .3495 3.76

Note: The number of replications in each experiment is 50 and the number of individuals in the
sample is 500. Std(S3) and RMSE refer to the sample standard deviation and the root mean square

error, respectively, of the estimated parameters. The t-statistics are calculated as /50 (%)
The model is:

t—1
Uit = Bo + leit + Zdi-,—p.,_ + Eit
=0
diO — 0’ P, = pefa(tfrfl)
Tit = GoTig—1+ vit, vie ~ N (0,07)
git = Wi+ &y
§i = $1&i—1 + MM ~ N(O, (1 — Ui)(l - ¢7))
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Table 18
Sample Characteristics
PSID Calendar Years 1994-2003
Missing Years 1998, 2000, and 2002

(N=1310)
Mean  Std. Dev.
(1) (2)
Participation .816 291
(avg. over T years) (.008)

Husband’s Annual Earnings 46.40 41.18
(avg. over 7 years) (11.38)
($1000 1994)

No. Children aged 0-2 years 135 231
(avg. over 10 years) (.006)
No. Children aged 3-5 years 181 .254
(avg. over 10 years) (.007)
No. Children aged 6-17 years 937 .864
(avg. over 10 years) (.024)
Age 36.93 8.00
(1994) (.221)
Education 13.56 2.10
(maximum over 10 years) (.06)
Race .198 .398
(1=Black) (.011)

Note: Means and standard errors (in parentheses) for 1310 continuously married women in the PSID
between 1994 and 2003, aged 18-60 in 1994, with positive husband earnings and hours worked in each non-
missing year. Earnings are in thousands of 1994 dollars. Variable definitions and sample selection criteria
are the same as those chosen by Hyslop (1999) for PSID calendar years 1980-1986.
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Table 19

Female Labor Force Participation Decisions
PSID Calendar Years 1994-2003
Missing Years 1998, 2000, and 2002
Markov Model with Random Effects and AR(1) errors
Biased Classification Error
Smooth Algorithm

Correlated
Correlated Random Effects Random Effects
Random Effects Random Effects + AR(1) Errors + AR(1) Errors

(1) (2) (3) (4)

In(yit) -.1669 (.0020)  -.1510 (.0035) 1697 (.0013)  -.1646 (.0024)
#kids0-2, -.6433 (.0036)  -.5382 (.0046) -.6659 (.0031)  -.4271 (.0038)
#kids3-5, -.3342 (.0033)  -.3524 (.0043) -.3650 (.0026)  -.3379 (.0032)
#kids6-17, -.0845 (.0015)  -.0830 (.0028) -.0808 (.0011)  0.0734 (.0019)
aget/lo 6676 (.0105)  .5818 (.0129) 6887 (.0101) 6792 (.0112)
age? /100 -.1438 (.0012)  -.1364 (.0014) -1525 (.0010)  -.1565 (.0011)
race; 5547 (.0034)  .5467 (.0040) 4518 (.0025) 4533 (.0031)
education; .0501 (.0076) .0407 (.0081) .0581 (.0059) .0392 (.0062)
2.3148 (.0256)  2.3582 (.0263) 2.4047 (.0243)  2.5099 (.0251)
by 19993 (.0052)  .9993 (.0058) 19992 (.0047) 19993 (.0049)
oy 2719 (.0061) 2718 (.0063) 2758 (.0060) 2755 (.0061)
op 8947 (.0012) 8949 (.0014) 8877 (.0011) 8905 (.0013)
Yo -.8535 (.0428)  -.9716 (.0521)  -0.8346 (.0419)  -.9454 (.0495)
v, 3.3974 (.0589)  3.4328 (.0625) 3.6335 (.0544)  3.5653 (.0583)
9 1.5943 (.0923) 1.6178 (.0968) 1.7012 (.0915) 1.6734 (.0937)
b - - .6084 (.0079) 6136 (.0085)
Log-Likelihood -12673.61 -12651.32 -12668.19 -12637.15
2 (Hy: 6 =0) - 44.58 (.0243) - 62.08 (.0002)
2 (Pearson GOF)  59.62 (.1024) 57.15 (.1474) 58.32 (.1245) 56.40 (.1637)
N 1310 1310 1310 1310
Note: The model is:
wr = Lo+ 01 In(yi) + ﬁ/int +pd;i -1+ €t
diO = 07
In(yir) = Gon(yie—1)+vit, vie ~ N (0,03)
git = Hit+&
Eire = 1&i—1 + N> M ~ N(0, (1 - ‘72)(1 - (b%))
lit = 7o+ 71dit +vodfy_1 + wit
T
My = tZICSQWit +0uC;s ¢~ N(0,1)

y;¢ 18 the husband’s annual earnings in year t. X;; contains year effects in addition to the fertility, race
and education covariates that appear explicitly in the table. Wj; contains In (yzt) and the three fertility
variables. Standard errors are in parentheses (p-values for the LRT and Pearson GOF chi-square statistics).
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Table 20

Female Labor Force Participation Decisions
PSID Calendar Years 1994-2003
Missing Years 1998, 2000, and 2002
Polya Model with Random Effects and AR(1) errors
Biased Classification Error
Smooth Algorithm

Correlated
Correlated Random Effects Random Effects
Random Effects Random Effects + AR(1) Errors + AR(1) Errors

(1) (2) (3) (4)
In(yir) -.3089 (.0019)  -.3111 (.0024)  -.3066 (.0015)  -.3040 (.0018)
kids0-2, _.5964 (.0043)  -.6000 (.0047)  -.6495 (.0035)  -.6339 (.0042)
#kids3-5, -.3648 (.0034)  -.3565 (.0039)  -.3325 (.0032)  -.3466 (.0038)
#kids6-17, ~.0145 (.0015)  -.0123 (.0021)  -.0211 (.0012)  -.0225 (.0014)
age; /10 7527 (0110) 7387 (.0112)  .7081 (.0109)  .7263 (.0111)
age? /100 ~1310 (0012)  -.1274 (.0014)  -.1262 (.0010)  -.1280 (.0013)
race; 3083 (.0033) 2272 (.0035)  .2945 (.0031)  .2684 (.0033)
education; 0652 (.0074) 0558 (.0081)  .0630 (.0069)  .0611 (.0077)
p 6363 (.0087) 7281 (.0095)  .6758 (.0084)  .6979 (.0089)
« 1.8924 (.0763) 1.9502 (.0821) 2.1278 (.0712) 2.1457 (.0759)
o 9994 (.0055) 9994 (.0057)  .9994 (.0054)  .9994 (.0055)
o, 2743 (.0072) 2736 (.0073) 2742 (.0066)  .2736 (.0069)
7, 8949 (.0015) 8970 (.0016)  .8952 (.0013)  .8960 (.0015)
Yo -1.1203 (.0498)  -.8962 (.0510)  -.9940 (.0482)  -.9404 (.0491)
" 3.8880 (.0610)  3.6738 (.0625)  3.6809 (.0600)  3.7190 (.0611)
Y 1.6520 (.0981)  1.5320 (.0989)  1.5658 (.0979)  1.6096 (.0980)
ol - - .4606 (.0091) .4596 (.0098)
Log-Likelihood -12568.10 -12544.89 -12561.69 -12531.88
2 (Ho: 6 =0) - 46.42 (.0158) - 59.62 (.0005)
2 (Pearson GOF)  54.62 (:2075)  51.90 (.2887)  53.32 (.2442) 5102 (.3186)
N 1310 1310 1310 1310
Note: The model is:
t—1
uir = Bo+ B In(yir) + 85X + Z dirp, + €it
7=0
dip = 0, p,=pe =771
n(yie) = ¢o(yis—1)+vie, vie ~ N (0,07)

git = p+8&u

it = D1&i—1 T Mg, M ~ N(0, (1 — UZ)(l —¢7))

lit = ~Yo+71dit +7odiy_1 +wi

T
i =) 5;Wit +0uC;, ¢~ N(0,1)
i=1

Y;¢ 1S the husband’s annual earnings in year t. X;; contains year effects in addition to the fertility, race
and education covariates that appear explicitly in the table. Wj; contains In (yzt) and the three fertility
variables. Standard errors are in parentheses (p-values for the LRT and Pearson GOF chi-square statistics).
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