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Abstract

The generalized directed rural postman problem (GDRPP) is a generic type of arc routing
problem. In the present paper, it is described how many types of practically relevant single-
vehicle routing problems can be modelled as GDRPPs. This demonstrates the versatility of
the GDRPP and its importance as a unified model for postman problems. In addition, a heur-
istic solution approach, based on a transformation into the generalized asymmetric travelling
salesman problem (GATSP), is presented. Computational experiments using a state-of-the-
art heuristic for the GATSP (developed by Gutin and Karapetyan [27]) are performed, using
a large set of realistic instances. The results show excellent solution quality in short compu-
tation time and thus demonstrate the practical usefulness of the transformations.
Keywords: arc routing; rural postman problems; graph transformations; heuristics; general-
ized asymmetric travelling salesman problem

1 Introduction

This paper studies the generalized directed rural postman problem (GDRPP), which was first
considered in Drexl [18]. As its name implies, the problem is a generalization of the directed
rural postman problem (DRPP). The DRPP consists in finding an optimal postman tour in a
digraph, that is, a least-cost cycle traversing each arc of a specified subset of the digraph’s arcs
at least once. The GDRPP is, to the DRPP, what the generalized travelling salesman problem
(GTSP) is to the travelling salesman problem (TSP): In the GDRPP, there are several subsets
(groups, classes, clusters) of arcs and the requirement is to find a least-cost cycle traversing
at least one arc from each subset at least once. The subsets need neither be a partition of
the arc set, nor need they be disjoint. The GDRPP is an interesting problem in its own right,
but it is also important because many single-vehicle routing problems, especially arc routing
problems (ARPs), can be modelled as GDRPPs. Moreover, there are several practically relevant
constraints that can also be considered when modelling a problem as a GDRPP. Applications
of ARPs are numerous. Apart from the eponymous mail delivery context, there are case studies
in street sweeping (Bodin and Kursh [6]), meter reading (Stern and Dror [41]), winter gritting
(Eglese and Li [23]), and robot motion control (Benavent et al. [3]), among others.
The idea of transforming problems into other problems is not new. The contribution of the
present paper is that it extends and unifies existing transformation procedures under a com-
mon transformation target, the GDRPP. Moreover, to verify the applicability of the proposed
transformations, it presents and analyzes the results of extensive computational experiments on
a large set of test instances.
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In the following, it is assumed that the reader is familiar with basic graph theory concepts as
treated, for example, in West [43]. The standard reference textbook on arc routing is Dror [20];
a recent survey is Corberán and Prins [17]. The present paper extends the results described in
Drexl [18]. Relevant specialized literature and further related work is discussed in the respective
sections, where the problems to be transformed are introduced.
The rest of the paper is structured as follows. The next section specifies the formal notation
required to describe the subsequent models and transformations. In Section 3, an integer pro-
gramming formulation for the GDRPP is presented. Section 4 describes the proposed problem
transformations in detail. In Section 5, the results of the computational experiments are presen-
ted. The paper ends with a short conclusion in Section 6.

2 Notation

The following notation is used. G = (V,L) is a graph with vertex set V and link set L. Without
loss of generality, it is assumed throughout that all considered graphs are simple. This allows to
unequivocally identify a link by its two adjacent vertices. The index notation fi for the value
f(i) of a function f is used throughout. c : L→ R+ is a function denoting the length or the costs
of traversal of a link. M is an arbitrarily large positive constant. Links that may be traversed
in either direction are called edges; links that may be traversed only in one direction are called
arcs. An arc referenced by (i, j) can only be traversed from its tail i to its head j. Two arcs (i, j)
and (i′, j′) are called antiparallel if i = j′ and j = i′. Graphs containing only arcs are called
digraphs and are denoted by D = (V,A). Graphs containing edges as well as arcs are called
mixed graphs. A graph G = (V,L) is called windy if there are two functions

→
c : L → Z+ ] {∞}

and
←
c : L → Z+ ] {∞} denoting the costs of traversal of a link from tail to head and from

head to tail respectively. As the costs of traversal in one direction may be infinite, mixed graphs
are special cases of windy graphs. For a graph G = (V,L), L := E ] A, where E (A) is the
edge (arc) set of G, that is, the set of links that can be traversed in both directions (possibly
at different costs), and the set of links that can only be traversed from tail to head respectively.
Furthermore, for a digraph D = (V,A) and A′ ⊆ A, let HEA′ ⊆ V be the set of the heads of
the arcs in A′, and let TAA′ be defined accordingly for tails. It is assumed throughout that all
considered (di)graphs are (strongly) connected.
For generalized problems on a graph G = (V,L), there are pL groups Lq ( L, q = 1, . . . , pL,
of links, and pV groups Vq ( V , q = 1, . . . , pV , of vertices, whereof at least one element must
be traversed/visited in any feasible solution. Such groups are referred to hereafter as r -groups.
(This term is used to point out that these groups may comprise only a proper subset of links
or arcs and may overlap; terms such as ‘classes’ or ‘clusters’ carry the connotation of forming a
partition of a set, that is, of being exhaustive and disjoint.) The links (vertices) belonging to or
covering an r-group are called r -group links (r -group vertices).
A link/vertex that will be traversed/visited in any optimal solution is called required. For
simplicity of notation, let HEq := HELq , and let TAq := TALq . Without loss of general-
ity, it is assumed that there is at least one head-disjoint r-group, that is, an r-group q̃ with
HEq̃ ∩

⋃
q=1,...,pL,q 6=q̃ HEq = ∅.

Finally, traversing a non-required or a non-r-group arc, or traversing a required or an r-group
arc without servicing it, is referred to as deadheading.

3 An integer programming formulation

The formulation presented in this section is based on a digraph D = (V,A) with pA r-groups
1, . . . , pA of arcs. It assumes that r-group 1 is a head-disjoint r-group of minimal cardinality,
that is, |HE1| ≤ |HEq| for all head-disjoint r-groups q ∈ {1, . . . , pA}. The formulation uses two
types of variables: General integer variables xij , for all (i, j) ∈ A, indicating the number of times
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arc (i, j) is traversed in a solution, and binary variables yi, for all i ∈ V , indicating whether or
not vertex i is visited. The formulation is as follows:

(GDRPP):

minimize
∑

(i,j)∈A

cijxij (1)

subject to ∑
(i,j)∈Aq

xij ≥ 1 ∀ q ∈ {1, . . . , pA} (2)

∑
(h,i)∈A

xhi −
∑

(i,j)∈A

xij = 0 ∀ i ∈ V (3)

xij − (|A|+ 1)yi ≤ 0 ∀ i ∈ V, (i, j) ∈ A (4)∑
(j,k)∈A:j∈S 63k

xjk − yi − yi′ ≥ −1 ∀ i ∈ HE1,TAq 3 i′ ∈ S ⊆ V \ {i}, q ∈ {2, . . . , pA} (5)

xij ∈ Z0
+ ∀ (i, j) ∈ A (6)

yi ∈ {0, 1} ∀ i ∈ V (7)

Constraints (2) ensure that each r-group is covered, constraints (3) guarantee flow conservation,
and constraints (4) establish the connection between the x and the y variables.
A difficulty with generalized ARPs is that not every vertex need be incident to a required link,
because there need not be required links at all: If all r-groups have cardinality greater than one,
it is impossible to tell in advance whether a certain link will be traversed in any optimal solution
or not. If there is no r-group q with

⋂
(i,j)∈Aq

{i, j} 6= ∅, there is not even a required vertex.

This complicates the specification of subtour elimination constraints. Formulation (GDRPP)
uses constraints (5) to eliminate subtours. These constraints require that, for each vertex i in
the head-disjoint r-group HE1 and each vertex i′ that belongs to a subset S of V not containing
i and is the tail of an r-group arc from an r-group other than 1, if both vertices are visited, then
an arc leaving S must be used.
Violated constraints (5) can be separated by computing the maximum flow between all pairs of
vertices i, i′ with HE1 3 i 6= i′ ∈ TAq, q ∈ {2, . . . , pA} in the support graph. For each pair i and i′

where the maximum flow is less than one, the respective constraint (5) can then be checked and
added if it is violated. (This procedure does not work on graphs without head-disjoint r-groups.
If a vertex i is the head of two arcs belonging to different r-groups, the maximum flow from i to
i must be computed, which is impossible with standard max-flow algorithms without modifying
the graph. This is why head-disjoint r-groups were introduced.)

4 Transformations

In this section, various types of uncapacitated routing problems are considered. They can be
classified along several orthogonal dimensions:
• Type of routing application
– Arc routing
– Vertex routing
– Combined arc and vertex routing
• Graph type

– Undirected
– Directed
– Mixed
– Windy
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• Generalized, clustered, and hierarchical models
• Additional real-world constraints
– Turn penalties
– Street segment sides
– Zigzag service
– Different costs for servicing and deadheading in different directions
– Use of public transport
– Open tours

In the following, formulations such as ‘problem A is transformed into (is modelled as) problem
B’ are used as shortcuts for ‘a graph representing an instance of problem B is created from
a graph representing an instance of problem A’. All of the presented transformations have to
be interpreted as a proof of concept. They just describe one of several possibilities of how
to (polynomially) transform one problem into another. No claim is made as to whether the
presented transformations are the simplest or the most elegant ones.

4.1 Standard arc routing problems

The archetypal arc routing problem is the Chinese postman problem (CPP, Guan [26]), which
seeks a least-cost cycle in a graph, traversing each link at least once. The problem of finding a
least-cost cycle traversing only a specified subset of the links of a graph at least once is called
rural postman problem (RPP, Orloff [37]). Depending on the type of graph, these problems are
referred to as undirected, directed, mixed, or windy CPP/RPP.
For routing problems on graphs containing links that may be traversed in both directions, one
part of the solution consists in determining a direction of traversal for each such link that is to
be used in the solution. This simply means the selection of one out of two alternatives. Hence, it
is common in the literature to represent an edge or a windy link by two variables whose values
indicate the number of traversals of the link in the respective direction, cf. Win [44]. Therefore,
to model the above standard arc routing problems as GDRPPs, all links that can be traversed
in both directions are replaced by two antiparallel arcs with the corresponding traversal costs.
Each such pair of antiparallel arcs corresponding to a required link forms one r-group in the
GDRPP, and each required original arc forms one r-group, too.

4.2 The clustered generalized directed rural postman problem

This problem is encountered in the context of postal delivery: The streets (or street segments,
or street segment sides) of a town are partitioned into (not necessarily connected) ‘delivery
sections’ or ‘service units’ that must be serviced consecutively in an arbitrary order. The use
of streets from different delivery sections for deadheading is allowed. Not all streets necessarily
need be serviced. The problem can be modelled as a GDRPP as follows. First, all undirected,
windy or zigzag links are replaced by appropriate arcs and the appropriate r-groups are created.
Then, all service units are made strongly connected by adding deadheading arcs corresponding
to shortest paths between the respective end vertices in the original graph, so that each vertex
of a service unit can be reached from any other vertex of the service unit. After that, for each
service unit in the original graph, a ‘super-cluster’ containing all r-groups corresponding to links
of the respective service unit is created. Finally, M is added to the costs of each arc connecting
two super-clusters. See Figure 1.
Dror and Langevin [21] considered the clustered DRPP (without the ‘generalized’ component),
transformed it into the GATSP, and solved it exactly by a Lagrangian-based method due to
Noon and Bean [36]. The largest instances they solved had 581 vertices and 770 arcs.
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Figure 1: Clustered generalized DRPP

4.3 Hierarchical postman problems

Several authors consider so-called hierarchical postman problems (HPPs), see, e.g., Ghiani and
Improta [24], Cabral et al. [11]. In HPPs, there are disjoint clusters of links as in the clustered
version just described, and there is a given order (a ‘hierarchy’) in which the clusters have to
be serviced, that is, the sequence of clusters is fixed. This can be modelled as a special case
of a clustered DRPP by adding M to all intercluster arcs for clusters that must be serviced
consecutively, and by adding 2M to all other intercluster arcs.

4.4 Turn penalties

There is a considerable amount of literature on ARPs with turn penalties, starting with the paper
by Caldwell [13]. Other important contributions are Wattleworth and Shuldiner [42], Kirby [31],
Kirby and Potts [32], Wyskida and Gupta [46], Bodin and Kursh [6], Bodin and Kursh [7],
McBride [35], Roy and Rousseau [38], Añez et al. [1], Benavent and Soler [4], Bousonville and
Kopfer [9], Clossey et al. [14], Corberán et al. [15], Winter [45], Arkin et al. [2], and Soler
et al. [40]. Some authors develop solution algorithms working directly on the graphs with turn
penalties, others use transformations into arc or vertex routing problems without turn penalties.
A detailed review would go beyond the scope of this paper. One possibility to transform a graph
GTP with turn penalties into a graph G without, which is used for the computational experiments
described in Section 5, works as follows: A graph G is created that contains one arc for each
possible direction of traversal of each link of GTP. These arcs form the set S. Then, additional
non-r-group arcs from the head of each arc (i, j) ∈ S to the tail of each other arc (i′, j′) ∈ S are
inserted if and only if the corresponding turn in GTP is allowed. The costs of these additional
arcs are set to the corresponding turn penalty. An example (adapted from Grünert and Irnich
[25], p. 615) is given in Figure 2.
Other possibilities for transforming a graph with turn penalties into one without are described
in Caldwell [13], Añez et al. [1], and Benavent and Soler [4].

4.5 Street segment sides

Irnich [29] considers several real-world ARP extensions occurring in postal delivery. One of them
is that ‘for delivery by foot or by bicycle, it may be necessary to distinguish between a traversal on
the left-hand side (lhs) or right-hand side (rhs) of a street segment’, which ‘offers the possibility
to favour tours that do not cross main roads too often in order to make the tour faster and safer
for the postman’ (p. 54). This can be modelled in a GDRPP by introducing deadheading arcs
reflecting the different costs for traversing a street segment between two junctions/vertices in
either direction and on either side of the street.
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Figure 2: Transformation of a graph with turn penalties into one without

4.6 Zigzag service

The issue of zigzag service also arises in the context of postal delivery. Imagine a postman who
must deliver mail in a street segment between two road junctions. There are houses on both
sides of the street segment. If there is not too much traffic in the segment, the postman has
several possibilities for servicing it: He may service one side at a time (and not necessarily both
sides contiguously), which means that he must traverse the street segment at least twice, and
he may service both sides simultaneously (in ‘zigzag mode’), which means that he must traverse
the street segment only once. See Figure 3.
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Figure 3: Street with zigzag service option

Thus, zigzag service of a required segment means that it can be serviced by traversing it once
in each direction, by traversing it twice from tail to head, by traversing it twice from head to
tail, or by traversing it once in any direction in ‘zigzag mode’. Figure 4 shows how this can
be modelled by two overlapping r-groups. For a potential zigzag service street segment, two
vertices, eight arcs, and two r-groups are introduced. There are two non-r-group deadheading
arcs, one for each direction, two antiparallel r-group arcs for each street segment side, and two
antiparallel r-group arcs for zigzagging. To service the street segment, the postman must either
use one of the zigzag arcs or two ‘street segment side arcs’, one for each street segment side.
Grouping the arcs in two overlapping r-groups, one for each street segment side, such that the
two zigzag arcs belong to the intersection of the r-groups, yields the desired result. (In Figure 4,
there is only one deadheading arc per direction. If street segment sides are to be distinguished
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also for deadheading as described in Section 4.5, there has to be an additional deadheading arc
in either direction.)
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Figure 4: Modelling of zigzag service in a GDRPP

An alternative approach for considering zigzag service is proposed by Irnich [28].

4.7 Different costs for servicing and deadheading in different directions

An extension considered by Lacomme et al. [33] is the possibility of two different costs per
link for traversal with and without servicing. For windy graphs, this must be generalized to
four different costs, depending on the direction of traversal and on whether the link is being
serviced or not. This, too, can be modelled within a GDRPP, by introducing two service and
two deadheading antiparallel arcs for each such windy link, where the two service arcs form one
r-group, similar to the procedure for zigzag service.

4.8 Use of public transport

An additional aspect, described in Irnich [29], is the use of public transport: A postman does
not have to use his bicycle or walk to get from the post office to his delivery district, but may
use public transport such as bus, tramway, or underground. This can simply be modelled by
introducing shortcut arcs from/to the vertex corresponding to the post office to/from any other
relevant vertex.

4.9 Open tours

Open tours, that is, tours that do not have to end where they started, have recently been
discussed by several authors in the context of capacitated vehicle routing problems (e.g., Brandão
[10]). Also in postal applications, it is possible that the postman ends his workday immediately
after the last delivery and returns to the post office only on the next day (Irnich [29]). This
can be modelled as follows. First, a fixed starting vertex s (corresponding to the post office) is
specified by creating an r-group that contains all arcs emanating from s. Then, one arc with cost
M is added from each vertex where the tour may end to s, and all these ‘return’ arcs are put
into one r-group. In this way, it is ensured that the post office is visited (left) at the beginning
of the tour, and that exactly one return arc is used.

4.10 The generalized travelling salesman problem

The best-known combinatorial optimization problem is the travelling salesman problem (TSP),
which basically comes in two variants. On undirected graphs, it is called symmetric TSP (STSP);
on directed graphs, it is called asymmetric TSP (ATSP). The generalized travelling salesman
problem (GTSP) is a TSP on a graph whose vertex set is partitioned into disjoint clusters with
the requirement that exactly (or, sometimes, at least) one vertex from each cluster be visited
on any feasible tour.
The transformation (or, rather, interpretation) of a GATSP into (as) a GDRPP is simple:
Each cluster of vertices is replaced by one r-group of arcs containing all arcs emanating from
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(or, equivalently, leading to) one of the vertices in the cluster. An alternative procedure is to
replace each cluster of vertices by an r-group of arcs with costs of zero and with a one-to-one
correspondence between the original vertices and the arcs replacing them, and to set the heads
(tails) of all original arcs leading to (emanating from) an original vertex equal to the tail (head)
of its corresponding newly added arc.
The inverse transformation is also straightforward. Adopting ideas from Laporte [34], a GDRPP
instance can be transformed into a GATSP instance as follows. Each r-group arc is replaced
by a vertex. Vertices vij , vi′j′ corresponding to arcs (i, j), (i′, j′) covering different r-groups are
connected by two antiparallel arcs with costs equal to the costs of a shortest path from j to i′

plus cij , and from j′ to i plus ci′j′ respectively. All r-groups remain logically the same, the only
difference is that they now contain vertices instead of arcs.
Laporte [34] considers transformations of several types of arc routing problems (though not the
GDRPP) into ATSPs by first transforming the ARPs into GATSPs as described in the previous
paragraph and then transforming the GATSPs into ATSPs by a procedure due to Noon and
Bean [36]. Laporte [34] solves to optimality (transformations of) mixed CPPs with up to 440
arcs and 10 edges and mixed RPPs with up to 660 arcs and 5 edges.
When solving the GTSP, it is interesting that existing algorithms (cf. Noon and Bean [36], Dror
and Langevin [21]) assume disjoint clusters. However, already Noon and Bean [36] state that
this means no loss of generality, as a problem with overlapping clusters can be transformed into
a problem with disjoint clusters. This can be done as follows. For each vertex i covering q > 1
r-groups, q−1 duplicates are added to the underlying digraph, so that, in the modified digraph,
there are q vertices corresponding to i. To each of i’s clusters, one of these q vertices is assigned,
and each of these vertices has the same entering and outgoing arcs as i, with the same costs. In
addition, arcs with zero cost are added between each pair of duplicates of i. In this way, when a
duplicate of i is visited, it is always best to visit all other duplicates of i (and thus covering all
clusters originally covered by i) before moving on to another vertex and another cluster.

4.11 The generalized directed general routing problem

The general routing problem (GRP), which was introduced by Orloff [37], constitutes the connec-
tion between postman and travelling salesman problems. It is usually described for undirected
graphs, but the directed version of the problem can be described as follows. Given a digraph, a
specified subset of its arcs and a specified subset of its vertices, the problem is to find a least-cost
cycle traversing/visiting each arc/vertex of the respective subsets at least once. The extension of
this problem corresponding to the GDRPP is the generalized directed general routing problem
(GDGRP).
The GDGRP contains, as special cases, the symmetric and the asymmetric travelling salesman
problem as well as their ‘generalized’ versions, and also the windy general routing problem
examined in Corberán et al. [16]. The transformation of a GDGRP into a GDRPP works as
described for the GATSP. If at least one element of a subset S of V ]A is to be visited/traversed,
this can be modelled by adding all arcs (i, j) with i ∈ S ∩ V to S.
Blais and Laporte [5] solve the undirected, directed, and mixed GRP (not the generalized GRP)
by transformations into GATSP, ATSP, and undirected, directed, and mixed RPP. The trans-
formations into GATSP and ATSP work as described in Section 4.1. In addition, for each required
vertex in the GRP, there is a corresponding vertex in the GATSP and the ATSP. The trans-
formation of an undirected, directed, or mixed GRP into a corresponding RPP consists simply
in replacing each required vertex by a corresponding link with costs of zero, as described in
Section 4.10. Blais and Laporte [5] solve to optimality directed GRPs with up to 4,000 required
vertices and 3,000 required arcs, undirected GRPs with up to 90 required vertices and 10 re-
quired edges or 10 required vertices and 90 required edges, and mixed GRPs with up to 110
required vertices, 200 required arcs and 25 required edges.

8



4.12 Complexity results

After the detailed description of the transformations, some remarks on the difficulty of the con-
sidered problems are appropriate, since the interest of transformations from one problem type
into another is, in general, limited to NP-hard problems. With the exception of the undirec-
ted and directed CPP, for which Edmonds and Johnson [22] give polynomial algorithms, all
considered arc routing problems are NP-hard (Dror [19]). All considered vertex routing and
rural postman problems are even NP-hard in the strong sense. The former is shown in Johnson
and Papadimitriou [30], the latter is easily seen by reducing the STSP to the undirected RPP
(URPP): A graph of an STSP instance is polynomially transformed into a graph of a URPP
instance by creating a duplicate of each vertex and connecting each original vertex with its
duplicate by an edge with costs of zero. The additional edges are required; all original edges are
non-required. Moreover, Corberán et al. [15] prove that postman problems with turn penalties
are NP-hard in the strong sense. Consequently, the GDRPP itself is strongly NP-hard as well.

5 Computational experiments

Given the simplicity of transforming GDRPPs and GTSPs into one another, and considering
that no heuristic solution procedure for the GDRPP, other than the coarse heuristic described
in Drexl [18], has been proposed up to now, it is reasonable to try to use existing heuristics for
the GTSP (of which there are several; see, for example, Snyder and Daskin [39], Bontoux et al.
[8], Cacchiani et al. [12]) to solve GDRPPs. To this end, the memetic algorithm presented by
Gutin and Karapetyan [27] (henceforth abbreviated by ‘GK’) is used in this paper. Contrary to
most other approaches, it can be directly applied to the asymmetric GTSP, the computational
behaviour compares favourably with other procedures and can be considered state of the art, and
its authors have kindly made it available over the Internet (http://www.sfu.ca/~dkarapet).
The algorithm consists of the following four steps. First, an initial generation of solutions is
created by means of a semirandom construction heuristic. Second, each of the first generation of
solutions is brought to a local optimum by local search, and duplicate solutions are eliminated.
Third, a next generation is produced, using reproduction, crossover, and mutation operators.
Fourth, the next generation is again locally optimized by local search. Steps two to four are
iterated until no improved solution is found in several subsequent generations. Six different local
search procedures are used.
Drexl [18] has created a set of 420 test instances. Three types of instances were created. Each
type consists of several classes differing with respect to the number of vertices, arcs, and r-
groups. The first type consists of random GDRPP instances. The characteristics of the created
instance classes are shown in Table 1.

No. of created No. of vertices No. of arcs No. of r-groups Max. % r-group arcs Max. % r-groups
instances covering one r-group covered by one arc

10 50 500 10 2 20

10 50 500 15 2 20

10 50 500 20 2 10

30 50 500 25 2 10

30 50 500 50 2 5

30 100 1,000 100 1 4

Table 1: Characteristics of created random GDRPP instances

For all classes, n instances with disjoint and n instances with not necessarily disjoint r-groups
were created, where n is the value in the first column of Table 1. The entries in the last two
columns refer only to the instances with not necessarily disjoint r-groups. The instances with
10, 15, and 20 r-groups were created by deleting 15, 10 and 5 r-groups from the instances with
25 r-groups. All instances had 50 % r-group arcs. The arc costs were selected randomly from
[1; 100].
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The second instance type consists of transformed windy rural postman problems with turn
penalties (WRPPTP). Three classes were created: 10 vertices and 40 links, 20 vertices and 80
links, and 30 vertices and 120 links. For each class, 30 instances were created. Each instance
had 50 % required links. 50 % of the links were symmetric edges, and 25 % of the links were
arcs. The link costs were selected randomly from [1; 100], and the turn penalties were selected
randomly from [0; 100]. 3 % of the turns were forbidden.
The third type consists of windy rural postman problems with zigzag service (WRPPZZ) with
different costs for servicing and deadheading in different directions. Three classes of WRPPZZ
instances were created: 30 vertices and 100 links, 40 vertices and 150 links, and 50 vertices and
200 links. For each type, 30 instances were created. Each instance had 50 % required links.
50 % of the links were symmetric edges, 25 % of the links were arcs, and 25 % of the links
were zigzag links. The deadheading costs were selected randomly from [1; 100]. The costs for
one-sided service were computed by multiplying the deadheading costs by a random factor of
between 1 and 2. The costs for zigzag service were computed by summing up the costs for the
two one-sided services of the respective link in the respective direction and by multiplying the
sum by a random factor of between 1 and 2.
To solve the instances with the GK heuristic, they were transformed into GATSPs with disjoint
clusters as described in Section 4.10. To assess the quality of the solutions obtained with the
GK heuristic, the instances were solved as integer programs (IPs) in formulation (1)–(7), which
was implemented in C++ using IBM Ilog Cplex Concert technology (http://www.cplex.com),
V 11.0, in single thread mode and with strong branching. Most instances could be solved to
optimality within a few seconds. All but two instances could be solved to optimality within
90 minutes of CPU time. The remaining two instances could be solved in less than 30 minutes
after specifying the best known solution of the GK heuristic as upper bound. Both GK and IP
were run on a laptop computer with a 2.16 GHz processor and 2 GB of main memory under
Win XP SP 2, 32-bit.
The following Table 2 presents the instance sizes in formulation (1)–(7), that is, the columns
‘No. vertices’, ‘No. arcs’, ‘No. constraints’, and ‘No. r-Groups’ refer to the respective values in
the representation of the instances as GDRPPs in formulation (1)–(7). The numbers in these
columns are slightly higher than what might be expected looking at formulation (1)–(7) and
Table 1. This is due to the addition of a head-disjoint r-group, which was automatically added
to all instances without prior checking whether or not an instance contains such an r-group
already. It must be noted that the largest asymmetric GTSP benchmark instance solved in the
literature (as cited in Gutin and Karapetyan [27]) contains only 89 clusters, so that the largest
random GDRPP and the WRPPZZ instances considered in this paper can be considered very
large in this respect.

Instance type No. instances No. vertices No. arcs No. constraints No. r-Groups Disjoint
(yi vars.) (xij vars.) (without SECs (5)) (average) r-groups?

Random 50 500 10 n 10 58 516 585 11 n

Random 50 500 10 y 10 55 510 576 11 y

Random 50 500 15 n 10 58 516 589 16 n

Random 50 500 15 y 10 55 510 580 16 y

Random 50 500 20 n 10 58 515 594 21 n

Random 50 500 20 y 10 54 508 584 21 y

Random 50 500 25 n 30 58 515 599 26 n

Random 50 500 25 y 30 54 509 589 26 y

Random 50 500 50 n 30 52 503 606 51 n

Random 50 500 50 y 30 51 502 605 51 y

Random 100 1000 100 n 30 101 1,002 1,205 101 n

Random 100 1000 100 y 30 100 1,002 1,204 101 y

WRPPTP 10 40 30 142 586 748 20 n

WRPPTP 20 80 30 282 1,197 1,522 43 n

WRPPTP 30 120 30 420 1,776 2,256 60 n

(continued on next page)

10



Instance type No. instances No. vertices No. arcs No. constraints No. r-Groups Disjoint
(yi vars.) (xij vars.) (without SECs (5)) (average) r-groups?

WRPPZZ 30 100 30 31 371 500 98 n

WRPPZZ 40 150 30 41 559 749 149 n

WRPPZZ 50 200 30 51 736 983 196 n

Overall average 107 735 910 68

Table 2: Instance sizes in formulation (1)–(7)

The computational results are shown in the subsequent Table 3. For the GK heuristic, three
runs were performed for each instance, because the algorithm contains a random component;
the IP solver was run only once. For the second, third, and fourth column, each row indicates the
minimum, average, and maximum values over all instances (and all runs) of the respective type.
The values in the column ‘GK relative gap to optimum’ are computed as (OFGK−OFopt)/OFopt,
where OFGK is the minimum, average, and maximal objective function value of the GK heuristic
over all three runs, and OFopt is the optimal objective function value. The column ‘GK solved
to optimality’ indicates the percentage of instances of each type for which an optimal solution
was found in at least one of the three runs.

Instance type Running time IP Running time GK GK relative gap GK solved to
[CPU seconds] [CPU seconds] to optimum [%] optimality [%]

(min. / avg. / max.) (min. / avg. / max.) (min. / avg. / max.)

Random 50 500 10 n 0.1 / 1.1 / 4.1 0.3 / 0.3 / 0.4 0.0 / 0.0 / 0.0 100.0

Random 50 500 10 y 0.0 / 1.3 / 6.5 0.2 / 0.2 / 0.3 0.0 / 0.0 / 0.4 100.0

Random 50 500 15 n 0.0 / 20.6 / 136.4 0.5 / 0.7 / 0.9 0.0 / 0.0 / 0.0 100.0

Random 50 500 15 y 0.1 / 0.8 / 3.3 0.3 / 0.5 / 0.6 0.0 / 0.3 / 2.9 90.0

Random 50 500 20 n 0.1 / 6.0 / 48.9 1.0 / 1.2 / 1.5 0.0 / 0.4 / 4.6 90.0

Random 50 500 20 y 0.0 / 1.1 / 4.7 0.6 / 0.8 / 1.2 0.0 / 0.6 / 2.9 80.0

Random 50 500 25 n 0.0 / 9.1 / 124.1 1.3 / 2.0 / 4.5 0.0 / 1.0 / 5.5 70.0

Random 50 500 25 y 0.0 / 2.7 / 44.4 0.8 / 1.4 / 3.5 0.0 / 0.7 / 4.9 70.0

Random 50 500 50 n 0.0 / 0.4 / 1.6 1.7 / 3.0 / 6.8 0.0 / 1.3 / 4.3 20.0

Random 50 500 50 y 0.0 / 0.4 / 1.5 1.5 / 2.8 / 7.1 0.0 / 1.2 / 3.7 23.3

Random 100 1000 100 n 0.1 / 4.9 / 29.5 16.7 / 43.8 / 129,7 0.2 / 3.5 / 8.8 0.0

Random 100 1000 100 y 1.0 / 6.9 / 30.0 13.5 / 34.4 / 123.5 0.7 / 3.0 / 6.1 0.0

WRPPTP 10 40 0.0 / 2.1 / 18.7 0.0 / 0.1 / 0.4 0.0 / 0.1 / 2.2 93.3

WRPPTP 20 80 0.1 / 48.4 / 384.6 0.5 / 1.8 / 5.1 0.0 / 0.7 / 4.1 53.3

WRPPTP 30 120 1.4 / 716.2 / 6,071.4 2.0 / 7.0 / 22.3 0.0 / 1.5 / 3.1 13.3

WRPPZZ 30 100 0.0 / 0.0 / 0.1 4.6 / 19.9 / 67.0 0.0 / 0.3 / 1.0 36.7

WRPPZZ 40 150 0.0 / 3.6 / 105.1 39.4 / 109.1 / 353.1 0.0 / 0.5 / 1.8 6.7

WRPPZZ 50 200 0.0 / 0.1 / 0.6 118.7 / 402.5 / 1,491.6 0.0 / 0.6 / 1.4 0.0

Overall 0.0 / 57.5 / 6,071.4 0.0 / 44.9 / 1,491.6 0.0 / 1.1 / 8.8 41.0

Table 3: Computational results

The following observations can be made in Table 3:
• The solution quality of the heuristic is very good for all instances; the average deviation from

the optimal solution is only 1.1 %.
• The instances with overlapping r-groups are more difficult (take longer) to solve with the

heuristic than those with disjoint r-groups. For the exact algorithm, the situation is similar,
but not so pronounced. With respect to solution quality, the comparison between the instances
with overlapping and those with disjoint r-groups is undetermined.
• The running time of the exact algorithm depends strongly on the number of arcs (which

determines the number of variables and constraints), whereas the running time of the heuristic
depends on the number of r-groups.
• The exact algorithm has a high variation in computation time also for instances of the same

type; running times are much less predictable than for the heuristic.
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Irnich [29] reports that mail delivery districts (to be served by one postman) for urban areas in
Germany range in size from 19 to 100 delivery street segments with between 0 and 39 zigzag
segments. This means that the largest test instances of each type reflect the average size of such
a district. Hence, a viable solution approach for many different types of uncapacitated real-world
single-postman problems is to model them as GDRPPs and then transform them into GATSPs.

6 Conclusion

It has been demonstrated that the generalized directed rural postman problem provides a flexible
and generic modelling approach for a broad range of single-vehicle routing problems. The com-
putational experiments show that GDRPPs of realistic size can be solved quickly and with high
solution quality by a transformation into a generalized asymmetric travelling salesman problem.
The memetic algorithm developed by Gutin and Karapetyan [27] for the GATSP is very robust
with respect to instance structure and computes close-to-optimal solutions for a wide variety of
problems.
The presented IP formulation already works quite well for instances with not too many vertices
and arcs, and the time needed for its exact solution by a standard branch-and-cut solver is
rather insensitive to the number of r-groups. Therefore, an interesting topic for further study is
to improve this formulation by finding strong valid inequalities to tighten its LP relaxation. Fur-
thermore, since mail delivery problems larger than those used in the computational experiments
will most probably require more than one postman, future research could extend the models and
algorithms presented in this paper to generalized versions of capacitated arc routing problems.
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