

Gutenberg School of Management and Economics

Discussion Paper Series

Branch-and-Cut Algorithms for the

Vehicle Routing Problem with Trailers and
Transshipments

Michael Drexl

September 2012

Discussion paper number 1210

Johannes Gutenberg University Mainz
Gutenberg School of Management and Economics

Jakob-Welder-Weg 9
55128 Mainz

Germany
wiwi.uni-mainz.de

http://www.wiwi.uni-mainz.de/�

Contact details

Michael Drexl

Chair of Logistics Management

Johannes Gutenberg University Mainz

Jakob-Welder-Weg 9

55128 Mainz

Germany

drexl@uni-mainz.de

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

mailto:drexl@uni-mainz.de�
http://wiwi.uni-mainz.de/DP�

Branch-and-Cut Algorithms for the

Vehicle Routing Problem with Trailers and Transshipments

Technical Report LM-2012-04

Michael Drexl
Chair of Logistics Management, Gutenberg School of Management and Economics,

Johannes Gutenberg University, Mainz
and

Fraunhofer Centre for Applied Research on Supply Chain Services SCS, Nuremberg
E-mail: drexl@uni-mainz.de

25th September 2012

Abstract

This paper studies the vehicle routing problem with trailers and transshipments (VRPTT), a
practically relevant, but challenging, generalization of the classical vehicle routing problem.
The paper makes three contributions: (i) Building on a non-trivial network representation,
two mixed-integer programming formulations for the VRPTT are proposed. (ii) Based on
these formulations, five different branch-and-cut algorithms are developed and implemented.
(iii) The computational behaviour of the algorithms is analyzed in an extensive computational
study, using a large number of test instances designed to resemble real-world VRPTTs.
Keywords: Branch-and-cut; Vehicle Routing; Synchronization; Trailer; Transshipment

1 Introduction

The vehicle routing problem with trailers and transshipments (VRPTT) was introduced by
Drexl [11] in the context of raw milk collection at farmyards. It is a generalization of the classical
vehicle routing problem (VRP, Dantzig and Ramser [9], Toth and Vigo [23], Golden et al. [14]).
The version of the VRPTT studied in this paper can be described as follows. There is a set of
customers with a given supply. To collect the supply, a limited fleet of heterogeneous vehicles
(lorries and trailers) stationed at a central depot is available. Besides unequal fixed and variable
costs and capacities, the vehicles differ in that lorries are autonomous and able to move in time
and space on their own, whereas trailers are non-autonomous and can move in time on their
own (that is, wait), but must be pulled by a lorry to move in space. In addition to the depot and
the customer locations, there are so-called transshipment locations (TLs), where trailers can be
parked and where load transfers from lorries to trailers can be performed.
Some customers can only be visited by a lorry without a trailer (a single lorry) and are hence
called lorry customers. The other customers can be visited by a lorry with or without a trailer
and are called trailer customers. There are time windows at the customers as well as at the TLs.
All vehicles start and end their routes at the depot. There is no fixed assignment of a trailer to
a lorry. Any trailer may be pulled, on the whole or on a part of its itinerary, by any compatible
lorry. What is more, any lorry may transfer part or all of its load to any trailer at any TL. The
time a transshipment takes depends on the amount of load transferred. Lorries need not bring
back a trailer, neither one they may have pulled when leaving the depot, nor any other.
The problem is to determine routes for lorries and routes for trailers so that total costs are
minimized, the complete supply of all customers is delivered to the depot, and loading capacities
and time windows are maintained. Moreover, it must be ensured that the routes are synchronized

1

with respect to space, time and load, so that trailers move in space only when accompanied by
compatible lorries and that the vehicles involved in a load transfer operation visit the pertinent
location at the right time and transfer and receive the right amount of load. An example route
plan is depicted in Figure 1.

Depot

Lorry customer

Trailer customer

Transshipment location

Lorry 1

Lorry 2

Lorry 3

Trailer

Figure 1: VRPTT example route plan

In the example, lorry 1 pulls the trailer from the depot to a TL and decouples the trailer there.
Lorry 1 then visits two lorry customers, returns to the trailer, transfers load, leaves the trailer
at the TL and returns to the depot via two lorry and two trailer customers. Lorry 2 starts at
the depot and visits two lorry customers before coupling the trailer, after lorry 1 has performed
its load transfer. Lorry 2 then visits a trailer customer, decouples the trailer at another TL,
performs a load transfer, visits some lorry customers, returns to the trailer, re-couples it and
pulls it back to the depot via a trailer customer. Lorry 3 starts at the depot, visits some lorry
customers, and transfers some load to the trailer while lorry 2 is visiting the three rightmost
lorry customers. After that, lorry 3 returns to the depot via another lorry customer. The two
TLs in the centre of the figure are not used.
The justification for studying the VRPTT is that the problem, apart from being interesting
and challenging in its own right, has numerous direct practical applications and, in addition,
constitutes an archetypal, generic representative of the class of vehicle routing problems with
multiple synchronization constraints (VRPMSs). Contrary to classical VRPs, where a synchron-
ization between vehicles is necessary only with respect to which vehicle visits which customer,
VRPMSs exhibit additional synchronization requirements with regard to spacial, temporal, and
load aspects. This is discussed in more detail in Section 2.
The contribution of the present paper is three-fold: (i) Building on a non-trivial network rep-
resentation, two mixed-integer programming (MIP) formulations for the VRPTT are proposed.
(ii) Based on these formulations, five different branch-and-cut algorithms are developed and
implemented. (iii) The computational behaviour of the algorithms is analyzed in an extensive
computational study, using a large number of test instances designed to resemble real-world
VRPTTs.
The rest of the paper is structured as follows. The next section provides an overview of related
work, including other types of VRPMSs. Section 3 presents a network representation for the
VRPTT as a basis for the two arc-variable based formulations developed in Section 4. Sec-
tion 5 describes the solution approaches that were implemented to solve these formulations, and
Section 6 presents computational experiments performed with the implementations. The final
Section 7 concludes the paper with a research outlook

2 Literature review

The available literature on the VRPTT and related VRPMSs is rather limited. As stated, the
VRPTT was introduced in Drexl [11], where formulations based on arc, path, and so-called
turn variables were developed and a branch-and-cut algorithm for an arc variable formulation

2

was presented. This author is not aware of other papers containing a solution approach for the
VRPTT.
A quite well-studied problem dealing with trailers in vehicle routing is the truck-and-trailer
routing problem (TTRP) (see, for example, Semet and Taillard [22], Chao [4], Scheuerer [21]).
The TTRP is a special case of the VRPTT with a fixed lorry-trailer assignment, that is, each
trailer can be pulled by only one lorry, and only this lorry can transfer load into the trailer. This
makes the problem much easier. In fact, the TTRP is not a VRPMS; there are no synchronization
requirements other than customer covering.
A recent survey of synchronization in vehicle routing is given in Drexl [12]. In this paper, five
different types of synchronization are identified: (i) task synchronization, referring to the decision
which vehicle(s) fulfil(s) which task(s); (ii) operation synchronization, which decides about time
and location of some interaction between vehicles; (iii) movement synchronization, that is, the
decision which vehicles join to move in space; (iv) load synchronization, which determines the
amounts of load to be collected, delivered, or transshipped; and (v) resource synchronization,
which decides about which vehicle(s) use(s) a scarce resource at what time.
The most important classes of VRPMSs identified in this survey are multi-echelon vehicle and
location-routing problems with temporal synchronization of vehicles of different echelons (Crainic
et al. [8]), simultaneous vehicle and driver routing problems (as opposed to integrated vehicle
and crew scheduling problems, where the tasks to perform usually have a given fixed schedule)
(Hollis et al. [15]), and pickup-and-delivery problems with transshipments and simultaneous load
transfers (Cortés et al. [7]).
Works that study problems where different types of autonomous and non-autonomous objects
that may join and separate en route (and not only at a central depot) are used to fulfil tasks
are Bürckert et al. [3], Hollis et al. [15], Cheung et al. [5], Kim et al. [16], and Drexl et al. [13].
All of these papers develop heuristic solution approaches: Bürckert et al. [3] consider a dynamic
pickup-and-delivery problem using lorries, trailers, and swap-body platforms in the context of
long-haul transport and solve their problem with a holonic multi-agent system. Both Hollis
et al. [15] and Drexl et al. [13] solve a simultaneous vehicle and driver routing problem (with
application in postal logistics in Australia and long-haul road transport in Europe respectively)
with two-stage algorithms. Hollis et al. [15] first compute abstract vehicle routes by solving a
rich pickup-and-delivery problem by heuristic column generation. Then, concrete vehicles and
drivers are assigned by taking an integrated vehicle and crew scheduling approach, again done by
solving an MIP by heuristic column generation. Drexl et al. [13] determine routes for concrete
vehicles in the first stage, and then compute routes for drivers, based on the vehicle routes
from the first stage. They use the same large neighbourhood algorithm in both stages. Cheung
et al. [5] also describe a pickup-and-delivery problem, but for short-distance container transport,
using drivers, tractors, and semi-trailers. Their problem is solved by an attribute-decision model.
Finally, Kim et al. [16] develop a simple but very effective heuristic for synchronizing service
teams that are transported by vehicles between task locations: The teams, the vehicles, and the
next tasks are stored in three lists, and in each iteration, a triplet (team, vehicle, task) is selected
from the lists, using a best-fit criterion. Then the lists are updated to reflect the situation when
the selected vehicle transports the selected team to the location of the selected task.
Note that all of these works assume mandatory synchronization of objects. This means that, to
fulfil tasks, it is always required to use all or several object types (vehicles, drivers, equipment). In
the VRPTT, by contrast, using trailers and performing transshipments are optional operations.
This adds an additional degree of freedom to the problem. Moreover, none of the above papers
considers a problem where all five types of synchronization described above are relevant, as is
the case for the VRPTT.

3

3 A network representation

In contrast to standard vehicle routing problems, for which an adequate network representation
is straightforward, this is not the case for the VRPTT, where the following critical modelling
questions must be addressed:
• How to ensure that a trailer is accompanied by a compatible lorry on an arc, that is, how to

synchronize the movements of vehicles?
• How to synchronize the visiting times of vehicles at transshipment locations?
• How to balance the load transfer amounts of vehicles exchanging load?
A decoupling, transshipment or recoupling operation is defined by (i) the location where the
operation takes place, (ii) the point in time when the operation begins, (iii) the passive vehicle
(trailer), which provides capacity, that is, may receive load, and/or may be decoupled from
or (re)coupled to a lorry, (iv) the active vehicle (lorry), which requests capacity, that is, may
transfer load, and/or may decouple or (re)couple a trailer, and (v) the amount of load transferred
into the passive vehicle, which is zero if only decoupling or recoupling is performed. To answer
the above modelling questions and handle the logic of transshipment operations, a space-time-
vehicle class-operation network D = (V ,A) with an associated set F of vehicles (the fleet), is
proposed.
The fleet F is partitioned into two sets FL] FT of classes of vehicles. FL is the set of lorry
classes, and FT is the set of trailer classes. |F k| denotes the number of vehicles of class k. For all
k ∈ F , qk is the capacity of a vehicle of class k. Henceforth, k is used to denote lorry classes, and
k′ is used to denote trailer classes. For a lorry class k ∈ FL, C(k) is the set of compatible classes
of trailers, that is, the set of classes of trailers that a lorry of class k can pull; for a trailer class
k′ ∈ FT , it is the set of compatible classes of lorries, that is, the set of classes of lorries that can
pull a trailer of class k′. τ l is the load transfer time per unit of load, which is assumed to be the
same for all vehicle classes. It is assumed for simplicity that any lorry can visit any customer,
and that any trailer can visit any trailer customer.
Each vertex in V corresponds to a location in space, an absolute and/or relative period of time,
a type of operation, and a class of passive vehicle. L = {Depot}] LC] LI is the set of relevant
real-world locations. LC = LCL

] LCLT
is the set of customer locations, which is partitioned

into LCL
, the set of lorry customers, and LCLT

, the set of trailer customers. LI is the set of
pure transshipment locations. For each i ∈ V , L(i) ∈ L denotes the location corresponding to
i. si is the supply of vertex i, which is zero for depot and transshipment vertices. For S ⊆ V ,
sS :=

∑
i∈S si. There is one start depot vertex o and one end depot vertex e. For each customer,

there is one customer vertex. Let VC = VCL
] VCLT

be the set of customer vertices, where VCL

is the set of lorry customers, and where VCLT
is the set of trailer customers. Following Chao [4]

and Scheuerer [21], it is assumed that the locations corresponding to trailer customers can also
be used for parking and transshipment operations.
Each vertex i ∈ V has a time window [ai, bi], where 0 ≤ ai ≤ bi ≤ T , and T is the length of the
planning horizon. o and e both have a time window of [0,T]. Usually, in the literature, ai and
bi respectively denote the earliest and latest point in time when the service to be performed at
i can start. In the VRPTT, ai has the same meaning, but, because of the load-dependent load
transfer times, bi denotes the latest point in time when i must be left, that is, the service at
i must be finished no later than bi. To provide a unified treatment, this convention is adopted
also for the depot and customer vertices.
For each combination of physical transshipment location (pure transshipment location or trailer
customer location) and trailer class k′, there are |F k′ | vertex tuples representing the operations
decoupling, transshipment, and recoupling. To be precise, for each transshipment location l
and each trailer class k′, there are |F k′ | tuples vdk′lp, v

t
k′lp, v

r
k′lp, p = 1, . . . , |F k′ |. Vd is the set

of decoupling vertices, Vt is the set of transshipment vertices, and Vr is the set of recoupling
vertices. VI = Vd] Vt] Vr. The idea behind this separation of transshipment locations and
processes is the following: A vertex vdk′lp ∈ Vd can only be reached by a lorry pulling a trailer of

4

the corresponding class k′. The lorry then leaves the vertex singly, the trailer moves on to vtk′lp,

the pertinent transshipment vertex. A vertex vtk′lp ∈ Vt can only be reached and left by a single

lorry and by a trailer of the corresponding class k′, where the latter comes from vdk′lp. A vertex
vrk′lp ∈ Vr can only be reached by a single lorry and by a trailer of the corresponding class, where

the latter comes from the pertinent transshipment vertex vtk′lp, and be left by the lorry pulling
that trailer. At any vertex of a transshipment vertex tuple, that is, also at the decoupling and
the recoupling vertex, a lorry visiting the vertex can transfer load to a trailer.
All vehicles are initially at the start depot vertex o and all vehicles that are used end their
route at the end depot vertex e. Lorries can visit all vertices of D, except for decoupling and
recoupling vertices of incompatible trailers. Trailers can only visit their corresponding trans-
shipment vertices, trailer customers, and, of course, the start and the end depot vertex. F (i),
for all i ∈ VI , is the class of passive vehicle associated with i. For (i, j) ∈ A, FLij and F Tij re-

spectively denote the set of lorry and trailer classes that can traverse (i, j). For all k ∈ F , V k

(Ak) is the set of vertices (arcs) that can be reached (traversed) by vehicles of class k. Moreover,
for S ⊆ V , let Ak(S) := {(i, j) ∈ Ak : i, j ∈ S}, δ−k (S) := {(i, j) ∈ Ak : i /∈ S 3 j}, and
δ+k (S) := {(i, j) ∈ Ak : i ∈ S 63 j}.
The arc set A contains the following elements:

• (o, i) and (i, e) for all customer vertices i ∈ VC

• (o, i) for all decoupling and recoupling vertices i ∈ Vd] Vr

• (i, j) for all customer vertices i, j ∈ VC with i 6= j

• (vdk′lp, j) for all decoupling vertices vdk′lp ∈ Vd and all vertices j ∈ V \ ({o}] Vd)

• (vtk′lp, j) for all transshipment vertices vtk′lp ∈ Vt and all other vertices j ∈ V \ ({o, e}] Vd)

• (vrk′lp, j) for all recoupling vertices vrk′lp ∈ Vr and all other vertices j ∈ V k′
d \ {vdk′lp′ : p′ ≤

p}] VCLT
] {e}

• (i, j) for all i ∈ VCLT
, j ∈ VI

• (i, j) for all i ∈ VCL
, j ∈ Vt] Vr

Figure 2 visualizes the vertex types present in the network and the arc types that can be traversed
by lorry-trailer combinations, single lorries, and single trailers. To keep the figure concise, there
is only one arc for each arc type present in the network. For example, in the subfigure for LTCs,
an arc from the left trailer customer to the right one is depicted to indicate that LTCs can freely
move from any trailer customer to any other trailer customer (unless capacity or time window
restrictions prohibit this). The absence of an arc from the right trailer customer to the left one
in the subfigure does not mean that there is no such arc. The arc from the recoupling to the
decoupling vertex in the subfigure for LTCs exists only if the two transshipment vertex tuples
(TVTs) represent the same trailer class, and if they lie at different locations or the upper TVT
has a higher p value. The indicated arcs to, from, and between transshipment vertices in the
subfigure for single lorries exist between all types of TVTs, that is, those representing the same
or different trailers at the same or different locations. For TVTs representing the same location,
the arcs exist only if the upper TVT has a higher p value.
A cost coefficient ckij indicates the distance-dependent costs of a vehicle of class k ∈ F traversing

arc (i, j) ∈ Ak. For the arcs emanating from the start depot vertex, fixed costs for using a
vehicle of class k are also contained in ckoj . It is assumed that all arc costs and arc travel times
are non-negative. For each arc (i, j) ∈ A, τij is the traversal time, which is assumed to be the
same for all vehicle classes. Moreover, it is assumed that τoi ≤ ai for all i ∈ V \ {o}, and that
bi + τie ≤ T for all i ∈ V \ {e}.

5

o d

Lorry customers

Trailer customers

Decouple

Transshipment vertex tuples

Transfer

Recouple

Network vertices Arc types for lorry-trailer combinations

Arc types for single lorries Arc types for single trailers

Figure 2: Network vertices and arc types

Lorries cannot traverse arcs (vdk′lp, v
t
k′lp) and (vtk′lp, v

r
k′lp). The corresponding trailers of class k′

can traverse these arcs, which, consequently, form the set Ak
′,s. An arc (vdk′lp, v

r
k′lp) models the

possibility that a lorry can wait for a trailer at a transshipment location while another lorry
performs a load transfer. If a lorry currently pulling a trailer k′ wants to transfer load to another
trailer k′′ at a certain location l, the lorry decouples k′ at a decoupling vertex at l, transfers load
to k′′, and re-couples k′.

4 Two arc-variable based formulations

Both subsequent formulations are modifications of a formulation developed in Drexl [11]. For
both formulations, the following three fundamental assumptions are made:

(i) Each lorry customer vertex is visited by exactly one lorry.

(ii) Each trailer customer vertex is visited by exactly one lorry and at most one trailer.

(iii) Each transshipment vertex is reached by at most one lorry and at most one trailer.

These assumptions ensure that there is at most one transshipment operation at each transship-
ment vertex, and that it is clear between which lorry and trailer classes each of these operations
is performed. In this way, the three modelling issues mentioned at the beginning of Section 3
are addressed.
With the network defined as above, that is, with one transshipment vertex between a decoupling
and a recoupling vertex, these assumptions allow at most 3|F k′ | load transfers per trailer class
k′ at each transshipment location. These load transfers can all be made into one and the same
trailer of class k′, if this trailer is pulled from vrk′lp to vdk′l,p+1 for p = 1, . . . , |F k′ | − 1, or into
several or all trailers of class k′.

6

4.1 First formulation

The following variables are used:

• xkij ∈ {0, 1} ∀ k ∈ F , (i, j) ∈ Ak.

xkij =

{
1, a vehicle of class k traverses arc (i, j)
0, otherwise

• lki ∈ R0
+ ∀ k ∈ F , i ∈ V k \ {o}.

The amount of load a vehicle of class k is carrying when reaching vertex i.

• ti ∈ R0
+ ∀ i ∈ V \ {o}.

The unique point in time when vertex i is reached.

The resulting formulation is:

(VRPTT1):∑
k∈F

∑
ckijx

k
ij

(i,j)∈Ak

→ min (1)

subject to∑
k∈FL

∑
xkhi

(h,i)∈Ak

= 1 ∀ i ∈ VC (2a)

∑
x
F (i)
hi

(h,i)∈AF (i)

≤ 1 ∀ i ∈ VI (2b)

∑
k∈FL

∑
xkhi

(h,i)∈Ak

= x
F (i)
ij ∀ i ∈ Vd, (i, j) ∈ AF (i) (2c)

∑
k∈FL

∑
xkhi

(h,i)∈Ak

≤ xF (i)
ij ∀ i ∈ Vt, (i, j) ∈ AF (i) (2d)

∑
k∈FL

∑
xkhi

(h,i)∈Ak

= x
F (i)
h′i ∀ i ∈ Vr, (h′, i) ∈ AF (i) (2e)

xk
′
ij ≤

∑
xkij

k∈C(k′)∩FL
ij

∀ k′ ∈ FT , i ∈ {o}] VCLT
, (i, j) ∈ Ak′ (2f)

x
F (i)
ij =

∑
xkij

k∈C(k′)∩FL
ij

∀ i ∈ Vr, (i, j) ∈ AF (i) (2g)

∑
xkie

(i,e)∈Ak

≤ |F k| ∀ k ∈ F (2h)

∑
xkhi

(h,i)∈Ak

=
∑

xkij
(i,j)∈Ak

∀ k ∈ F , i ∈ V k \ {o, e} (2i)

xkij = 1∧xk′ij = 1⇒ lki + lk
′
i + si ≤ lkj + lk

′
j ∀ i ∈ VCLT

, k ∈ FL, k′ ∈ C(k), (i, j) ∈ Ak ∩Ak′(3a)

xkij′ = 1⇒ l
F (i)
i +

(
lki − lkj′

)
≤ lF (i)

j ∀ i ∈ Vd, k ∈ C(F (i)), (i, j) ∈ AF (i), (i, j′) ∈ Ak (3b)

7

xkij′ = 1⇒ l
F (i)
i +

(
lki − lkj′

)
≤ lF (i)

j ∀ i ∈ Vt, k ∈ FL, (i, j) ∈ AF (i), (i, j′) ∈ Ak, j′ 6= e (3c)

xkij = 1⇒ l
F (i)
i +

(
lki − lkj

)
≤ lF (i)

j ∀ i ∈ Vr, k ∈ C(F (i)), (i, j) ∈ AF (i) ∩Ak, j 6= e (3d)

xkij = 1⇒ lki + si ≤ lkj ∀ k ∈ FL, i ∈ VC , (i, j) ∈ Ak,F Tij = ∅ (3e)

xkij = 1⇒ lki ≤ lkj ∀ k ∈ F , i ∈ VCLT
, (i, j) ∈ Ak,F Tij 6= ∅ (3f)

xkij = 1 ∧
∑

xk
′
ij

k′∈C(k)∩FT
ij

= 0⇒ lki + si ≤ lkj ∀ k ∈ FL, i ∈ VCLT
, (i, j) ∈ Ak,F Tij 6= ∅ (3g)

xkij = 1⇒ lkj ≤ lki ∀ k ∈ FL, i ∈ VI , (i, j) ∈ Ak (3h)

x
F (i)
ij = 1⇒ ti +

(
l
F (i)
j − lF (i)

i

)
τ l ≤ bi ∀ i ∈ Vr, (i, j) ∈ AF (i) (3i)

xkij = 1⇒ ti + siτ
l + τij ≤ tj ∀ k ∈ FL, i ∈ VC , (i, j) ∈ Ak (3j)

xkij = 1⇒ ti +
(
lki − lkj

)
τ l + τij ≤ tj ∀ k ∈ FL, i ∈ VI , (i, j) ∈ Ak (3k)

l
F (i)
i ≤ lF (i)

j ∀ i ∈ Vt, (i, j) ∈ AF (i) (4a)

ti +
(
l
F (i)
j − lF (i)

i

)
τ l + τij ≤ tj ∀ i ∈ Vd] Vt, (i, j) ∈ AF (i) (4b)

xkij ∈ {0, 1} ∀ k ∈ F , (i, j) ∈ Ak (5a)

0 ≤ lki ≤ qk ∀ k ∈ F , i ∈ V k \ {o} (5b)

ai ≤ ti ≤ bi − siτ l ∀ i ∈ V \ {o} (5c)

(1) is the objective function, which minimizes total costs. Constraints (2) are those involving
only flow variables. (2a)–(2g) are the routing synchronization constraints, and (2h)–(2i) are
vehicle-class specific routing constraints. Constraints (3) are logical implications linking routing
and resource variables. (3a)–(3d) are load synchronization constraints, (3e)–(3h) are vehicle-class
specific load update constraints, and (3i)–(3k) are time update constraints. Constraints (4) are
resource update constraints not involving flow variables, and (5) determine the ranges of the
variables.
(2a) are the usual customer covering constraints. (2b) ensure that each transshipment vertex
is visited at most once by a corresponding trailer. (2c)–(2e) make sure that a transshipment
vertex i is only visited by a lorry if the corresponding trailer visits this vertex, and, hence, that
at most one lorry visits a transshipment vertex. Observe that, for i ∈ Vd, the only arc in AF (i)

leaving i is the arc to the subsequent transshipment vertex. Similarly, for i ∈ Vt, the only arc in
AF (i) leaving i is the arc to the subsequent recoupling vertex. (2a)–(2e) imply that each vertex
in V \{o, e} is visited by at most one lorry and one trailer. (2f) and (2g) guarantee that a trailer
k′ is pulled by a compatible lorry if k′ traverses a spacial arc.
For the remaining constraints, note that a lorry that brings a trailer to a decoupling vertex and
then moves on to the depot will not transfer any load at this vertex. Likewise, a lorry that pulls
a trailer from a recoupling vertex to the depot will also not transfer any load. Moreover, a lorry
will never visit a transshipment vertex i ∈ Vt directly before moving to the depot; thus, as stated
above, no arcs (i, e) with i ∈ Vt exist.
For each vehicle class, (2h) limit the number of vehicles reaching the end depot to the number
of vehicles of each class. (2i) are the flow conservation constraints.

8

(3a)–(3d) are the load update constraints for both lorries and trailers at trailer customer and
transshipment vertices. (3a) state that the supply of a trailer customer is divided up arbitrarily
between the lorry and the trailer visiting the customer. The next constraints, (3e), are the load
update constraints for the lorries at customer vertices. Constraints (3f) state that, at a trailer
customer vertex, no load transfer is possible. This is a sensible requirement, because, as stated
above, for each trailer customer location, there are also tuples of transshipment vertices for each
trailer class, and movements between vertices corresponding to the same physical location incur
virtually no costs and take virtually no time. Constraints (3g) are for the correct update of the
load variables at trailer customer vertices visited by a single lorry. Constraints (3h) make sure
that no load transfer from a trailer to a lorry (passive to active vehicle) is possible, respectively,
that the amount of load transferred from a lorry to a trailer is non-negative. Without this
constraint, negative load transfer times can result. (3i) make sure that the load transfer at
transshipment vertices is finished by the end of the time window. Note that, because of (3a)–
(3d), it is sufficient to require (3i) for F (i). Moreover, it is sufficient to require (3i) for i ∈ Vr,
since then the time windows will be maintained also for the preceding transshipment vertices.
Constraints (3j) and (3k) are for the timing update for lorries on arcs emanating from customer
vertices and at transshipment vertices respectively.
(4a) make sure that the load of a trailer does not decrease at transshipment intermediate vertices
not visited by a lorry, and (4b) are for the timing update of trailers at their transshipment
vertices. The latter two constraint types are no implications, because these constraints can be
fulfilled also when the arc (i, j) ∈ AF (i) for i ∈ Vd] Vt is not used.
Synchronization constraints. In standard VRPs such as the capacitated VRP (CVRP) or the
VRP with time windows (VRPTW), the customer covering constraints (2a) are the only logically
coupling (linking, joint) ones. In the VRPTT, the close interdependency between the vehicles
must be dealt with by several additional types of logically coupling constraints, namely, (2b)–(2g)
and (3a)–(3d).
‘Inflating’ resource variable values. At the end depot vertex, there is only one load variable, lke ,
for all vehicles of each class k ∈ F . This means that if one vehicle of a class reaches the end
depot fully loaded (according to the variable values), any other vehicle belonging to the same
class does so also, even if this vehicle actually (in reality) carries less load. The constraints allow
to ‘inflate’ load variables, meaning that the load variable of a vehicle class at the vertices on a
tour may be set higher than the real load, while still not exceeding the real vehicle capacity. In
this way, the differences between the values of the load variables along a tour reflect the real
situation, so that the correct synchronization of load transfer amounts and visit times, which
depends on differences in load variable values, remains possible. This technique of inflating the
values of resource variables allows to avoid introducing routing and resource variables for each
vehicle, and, when using variables for vehicle classes instead of individual vehicles, makes the
creation of start and end depot vertices for each vehicle unnecessary.

4.2 Second formulation

The second formulation is based on the same network as the first formulation, and it uses the
same type of binary variables. However, following an idea introduced independently by van Eijl
[24] and Maffioli and Sciomachen [18], it uses different types of continuous resource variables:

• lkij ∈ R0
+ ∀ k ∈ F , (i, j) ∈ Ak.

If the arc (i, j) is used by a vehicle of class k, the amount of load the vehicle is carrying when
leaving vertex i; zero otherwise.

• tij ∈ R0
+ ∀ (i, j) ∈ A.

If the arc (i, j) is used by any vehicle, the unique point in time when vertex i is left ; zero
otherwise.

The resulting formulation is:

9

(VRPTT2):

(1) subject to (2) and

∑
(h,i)∈A

∑(
lkhi + six

k
hi

)
k∈FL

hi

+
∑

lk
′
hi

k′∈FT
hi

 ≤∑
(i,j)∈A

∑ lkij
k∈FL

ij

+
∑

lk
′
ij

k′∈FT
ij

 ∀ i ∈ VCLT
(6a)

∑
(h,i)∈A

∑ lkhi
k∈C(F (i))

+ l
F (i)
hi

 ≤∑
k∈C(F (i))

∑
lkij′

(i,j′)∈Ak

+
∑

l
F (i)
ij

(i,j)∈AF (i)

∀ i ∈ Vd (6b)

∑
k∈FL

∑
lkhi

(h,i)∈Ak

+
∑

l
F (i)
h′i

(h′,i)∈AF (i)

≤
∑
k∈FL

∑
lkij′

(i,j′)∈Ak

+
∑

l
F (i)
ij

(i,j)∈AF (i)

∀ i ∈ Vt (6c)

∑
k∈C(F (i))

∑
lkhi

(h,i)∈Ak

+
∑

l
F (i)
h′i

(h′,i)∈AF (i)

≤
∑
(i,j)∈A

∑ lkij
k∈C(F (i))∩FL

ij

+ l
F (i)
ij

 ∀ i ∈ Vr (6d)

∑
k∈FL

∑(
lkhi + six

k
hi

)
(h,i)∈Ak

≤
∑
k∈FL

∑
lkij

(i,j)∈Ak

∀ i ∈ VCL
(6e)

∑
k′∈FT

∑
lk
′
hi

(h,i)∈Ak′

≤
∑
k′∈FT

∑
lk
′
ij

(i,j)∈Ak′

∀ i ∈ VCLT
(6f)

∑
k∈FL

∑(
lkhi + six

k
hi

)
(h,i)∈Ak

− si
∑
k′∈FT

∑
xk
′
h′i

(h′,i)∈Ak′

≤
∑
k∈FL

∑
lkij

(i,j)∈Ak

∀ i ∈ VCLT
(6g)

∑
k∈FL

∑
lkij

(i,j)∈Ak

≤
∑
k∈FL

∑
lkhi

(h,i)∈Ak

∀ i ∈ VI (6h)

∑
l
F (i)
hi

(h,i)∈AF (i)

≤
∑

l
F (i)
ij

(i,j)∈AF (i)

∀ i ∈ Vt (6i)

∑
(h,i)∈A

thi + τhi
∑

xkhi
k∈FL

hi

+ siτ
l ≤

∑
tij

(i,j)∈A

∀ i ∈ VC (6j)

∑(
thi + τhix

F (i)
hi

)
(h,i)∈AF (i)

+

∑ l
F (i)
ij

(i,j)∈AF (i)

−
∑

l
F (i)
hi

(h,i)∈AF (i)

 τ l ≤
∑

tij
(i,j)∈AF (i)

∀ i ∈ VI (6k)

∑
tij

(i,j)∈AF (i)

=
∑

tij′

(i,j′)∈A\AF (i)

∀ i ∈ Vd (6l)

∑
tij

(i,j)∈AF (i)

− bi

1−
∑
(i,j′)∈A\AF (i)

∑
xkij′

k∈FL
ij′

 ≤∑ tij′

(i,j′)∈A\AF (i)

∀ i ∈ Vt (6m)

∑
(h,i)∈A\AF (i)

thi + τhi
∑

xkhi
k∈FL

hi

10

+

∑
(h,i)∈Ak\AF (i)

∑
lkhi

k∈FL
hi

−
∑
(i,j′)∈Ak\AF (i)

∑
lkij′

k∈FL
ij′

 τ l ≤
∑

tij
(i,j)∈AF (i)

∀ i ∈ Vt (6n)

∑
(h,i)∈A\AF (i)

thi + τhi
∑

xkhi
k∈FL

hi

+

∑
(h,i)∈A

∑
lkhi

k∈FL
hi

−
∑
(i,j)∈A

∑
lkij

k∈FL
ij

 τ l ≤
∑

tij
(i,j)∈A

∀ i ∈ Vr (6o)

xkij ∈ {0, 1} ∀ k ∈ F , (i, j) ∈ Ak (7a)

0 ≤ lkij ≤ qkxkij ∀ k ∈ F , (i, j) ∈ Ak (7b)(
ai + siτ

l
)∑

xkij
k∈FL

ij

≤ tij ≤ bi
∑

xkij
k∈FL

ij

∀ (i, j) ∈ A, i ∈ {o}] VC (7c)

ai
∑

xkij
k∈FL

ij

≤ tij ≤ bi
∑

xkij
k∈FL

ij

∀ i ∈ VI , (i, j) ∈ A \AF (i),s (7d)

aix
F (i)
ij ≤ tij ≤ bixF (i)

ij ∀ i ∈ Vd] Vt, (i, j) ∈ AF (i) (7e)

tie ≤ be − τie ∀ (i, e) ∈ A (7f)

Constraints (6a)–(6i) and (6j)–(6n) are for the update of the load and time variables respectively;
constraints (7) specify the ranges of the variables.
Constraints (6a)–(6h) correspond to (3a)–(3h) in formulation (VRPTT1). Similarly, (6i) corres-
ponds to (4a), and (6j)–(6k) correspond to (3j)–(3k). (6k)–(6o) ensure the correct update of the
timing variables at decoupling, transshipment intermediate, and recoupling vertices respectively.
The corresponding constraint to (3i), which makes sure that the load transfer at transshipment
vertices is finished by the end of the time window, is (7c).
(7b)–(7e) couple the flow and resource variables. These constraints allow to avoid implications
in formulation (VRPTT2).

4.3 Valid inequalities

The following valid inequalities were used in the computational experiments described in the
next section.

Lorry flow cut:∑
k∈FL

∑
xkie

(i,e)∈Ak

≥ nL,min (8)

This inequality requires that the flow of lorries into the end depot be at least equal to the
minimum number of necessary lorries, nL,min. As the total customer supply must be brought to
the depot, the inequality is valid. A lower bound on nL,min can be determined as follows. All
possible lorry-trailer combinations and single lorries are sorted by non-increasing total capacity
and the capacities are summed up until the sum exceeds the total customer supply. For each
summand, nL,min is increased by one. As trailers are usually compatible with more than one
lorry, all lorry-trailer combinations that are no longer possible because the respective lorry or
trailer or both has/have already been used with another lorry or trailer must be deleted during
the summation. A similar cut is possible for trailers, but was not useful in the computational
experiments described below.

11

Connectivity cuts:∑
xki′j′

(i′,j′)∈δ−k (S),i′ 6=j

≥ xkij ∀ k ∈ F ,S ⊆ V k \ {e}, (i, j) ∈ Ak, i ∈ S (9)

These cuts require that, for each vehicle class and for each subset of the vertex set not containing
the end depot vertex, if a vehicle of this class uses an arc (i, j) whose tail is in the subset, there
must be another arc (i′, j′) entering this subset whose tail must not be j. This is implied by the
flow conservation constraints (2h) and (2i).
An exact procedure for the separation of violated connectivity cuts works as follows. For each
xkij > 0, a maximum flow problem from j to e is solved in the support graph where the arc
capacities are equal to the values of the flow variables of vehicle class k, but where vertex i, and,
hence, all arcs incident to i, are deleted. This yields a cut with j on one side and e on the other.
If the value of the maximum flow is less than xkij , a violated connectivity cut has been found.

This procedure is correct, because in any feasible solution, xkij > 0 means xkij = 1, and i is on
the same side as j in any j-e-cut, because each vertex is visited by each vehicle class at most
once. In other words, there is no feasible solution where i is on the unique path of a vehicle of
class k from j to e, if arc (i, j) is used by a vehicle of class k. This means that there must be
a flow of at least xkij from the j side of the cut to the e side of the cut, but this flow must not
pass through i.
Cuts (9) can still be lifted. If one of the incident vertices i, j of an arc (i, j) is a recoupling
vertex, the corresponding decoupling and intermediate vertices cannot be visited any more, and,
hence, any potential cut arc emanating from or leading to such a vertex can be discarded. If i
or j is an intermediate vertex, the same holds for arcs incident to the corresponding decoupling
vertex.

κ-path cuts:
κ-path cuts are well-known valid inequalities for the VRP(TW), cf. Kohl et al. [17]. In the
VRPTW with homogeneous fleet (in particular, without trailers), the idea of κ-path cuts for
κ ≥ 1 is that, for any customer subset S for which at least κ(S) vehicles are necessary to serve
all customers in the subset, at least κ vehicles must visit this subset, and, consequently, the flow
into this subset must be at least κ.

2-path cuts for heterogeneous fleet:
Kohl et al. [17] have very successfully used 2-path cuts in a branch-and-price-and-cut algorithm
for the VRPTW. For vehicle routing problems with heterogeneous fleet as well as for the VRPTT,
2-path cuts can be generalized as follows. For each subset S ⊆ VC , let κk(S) be a lower bound
on the minimal number of routes of vehicles of class k ∈ F necessary to collect the complete
supply of the customers in S when no transshipments are allowed and no vehicle of a different
class is used (that is, when it is assumed that each vehicle class can visit each customer and that
trailers can visit customers without being pulled by a lorry). For example, if there are no time
windows, the bound dsS/qke can be used. Then, the following inequality is valid:∑
{k∈F :κk(S)≥2}

∑
xkij

(i,j)∈δ−k (S)

+ 2
∑
{k∈F :κk(S)=1}

∑
xkij

(i,j)∈δ−k (S)

≥ 2 ∀ S ⊆ VC . (10)

The validity of (10) follows from the customer covering constraints (2a), the load update con-
straints (3a)–(3h), and the vehicle capacity constraints (5b).

κ-path cuts for heterogeneous fleet for general κ ≥ 2:
Setting κ := mink∈F {κk(S)} for all S ⊆ VC , a κ-path cut for general κ ≥ 2 can be written as
follows:∑

k∈F

∑
xkij

(i,j)∈δ−k (S)

≥ κ ∀ S ⊆ VC (11)

12

Note that (10) and (11) require summation over all k ∈ F , that is, over all lorry and trailer
classes, and that (10) as well as (11) are valid for sets S containing an arbitrary number of lorry
and/or trailer customers.

Lifted generalized large multistar cuts:
Yaman [25] has shown that the following cuts are valid for heterogeneous fleet VRPs:∑

k∈F

∑
ξki x

k
ij

(i,j)∈δ−k (S)

≥ sS +
∑
k∈F

∑
sjx

k
ij

(i,j)∈δ+k (S)

∀ S ⊆ VC , (12)

where ξki := min{qk − si, sS + max(i,j)∈δ+k (S){sj}}. Essentially, this type of cut requires that the

remaining capacity of the vehicles visiting customers in S be at least equal to the supply of the
customers in S plus the supply of those customers (if any) visited immediately after leaving S.

Symmetry-breaking cuts:
All trailer routes visiting the same locations in the same order and receiving the same amount
of load at each location are equivalent, irrespective of which tuple of transshipment vertices is
used at a certain location. That is, two otherwise identical trailer routes r1 and r2, where r1
uses the transshipment vertices vdk′lp1 , vtk′lp1 , vrk′lp1 and r2 uses vdk′lp2 , vtk′lp2 , vrk′lp2 , are equivalent
and incur the same costs, irrespective of whether or not p1 = p2, since they describe the same
movements in reality. Such symmetries can be removed by the following cuts:∑

xkhi′

k∈FL

≤
∑

xkhi
k∈FL

∀ i, i′ ∈ Vd,L(i) = L(i′),F (i) = F (i′), p(i) = p(i′)− 1 (13)

These cuts require that a transshipment vertex tuple with order number p is only visited if all
preceding transshipment vertex tuples, that is, those with lower order number, are also visited.
If two trailers k′1 and k′2 of the same class use the same transshipment location l, similar sym-
metries arise: It does not make a difference whether k′1 uses the transshipment vertex tuple with
order number p1 and k′2 uses the tuple with order number p2 or the other way round. To remove
such symmetries, the following cuts can be used in formulation (VRPTT1):

ti ≤ ti′ ∀ i, i′ ∈ Vd,L(i) = L(i′),F (i) = F (i′), p(i) = p(i′)− 1 (14)

These cuts require that the service at the decoupling vertex of a transshipment vertex tuple with
order number p starts not earlier than the service at the decoupling vertex of the transshipment
vertex tuple with order number p − 1. For formulation (VRPTT2), the following cuts can be
used instead of (14):∑

tij − (bi + 1)x
F (i)
ij

(i,j)∈AF (i)

≤
∑

ti′j′ − (bi′ + 1)x
F (i′)
i′j′

(i′,j′)∈AF (i′)

∀ i, i′ ∈ Vd,L(i) = L(i′),F (i) = F (i′), p(i) = p(i′)− 1 (15)

Some remarks on valid inequalities follow. The lorry flow, connectivity, and 2-path cuts were
already used in Drexl [11]. Baldacci et al. [2] propose a lifting for the κ-path cuts of Kohl
et al. [17], but this cannot be used for arc variable formulations. Desaulniers et al. [10] have
introduced generalized κ-path cuts for the VRPTW with homogeneous fleet. Although these
can be generalized to heterogeneous fleet, they were not used in the computational experiments
described below, because the wide time windows in the test instances used essentially made
these cuts equivalent to cuts (11). Ascheuer et al. [1] have introduced, for the asymmetric TSP
with time windows, the so-called infeasible path constraints. These cuts are valid also for the
VRPTT, but are not useful when time windows are non-restrictive. Finally, Pessoa et al. [19]
describe cuts for a heterogeneous fleet VRP, but these are based on a different formulation.

13

5 Solution approaches

Formulation (VRPTT1), the ‘original’ formulation, contains a lot of logical constraints (implic-
ations). To deal with these, the following five solution approaches were implemented in C++,
using Visual C++ 2010 and IBM Ilog Cplex Concert Technology, version 12.2:
(i) Formulation (VRPTT1), linearizing the implications using tailored Big-M values, taking

into account the vehicle capacities and the length of the planning horizon.
(ii) Formulation (VRPTT2), thereby avoiding logical constraints altogether.
(iii) Formulation (VRPTT1), employing a Cplex feature that allows entering implications dir-

ectly as such and letting the solver automatically handle them. How this is done exactly,
though, is not documented.

(iv) Formulation (VRPTT1), applying the combinatorial Benders’ cuts introduced by Codato
and Fischetti [6] and successfully used by Cortés et al. [7]. The basic idea of this approach
is to decompose the problem into a master problem containing only the x variables and
the constraints involving only these variables, and a subproblem containing only the con-
tinuous variables and all constraints not involving x variables. Then, after solving the LP
relaxation of the master problem, all implications activated by x variables that are one
or zero in the solution of the LP relaxation are added to the subproblem. If the subprob-
lem, which has no objective function, is feasible, then evidently the x variables solution to
the master problem is feasible and optimal for the complete problem. Otherwise, at least
one of the integer x variables must change its value. This is enforced by identifying an
inclusion-minimal infeasible subset (by means of a built-in Cplex function) of the subprob-
lem constraints and adding the constraint∑

(1− xkij)
kij∈S1

+
∑
kij∈S0

xkij ≥ 1 (16)

to the master, where the set S1 (S0) contains those variables that activate a constraint
when they take value one (zero) and do take this value in the current LP solution.

(v) Formulation (VRPTT1), using deferred consideration of logical constraints. This works as
follows. At the root node of the branch-and-bound tree, the LP relaxation of a relaxed
problem is solved, where all implications are ignored. Then, at each subsequent node, it
is checked for which x variables the lower bound is greater than zero. All such variables
will have value one in each integer feasible solution (if any) at the subtree rooted at this
node. Similarly, it is checked which x variables have an upper bound of less than one. All
such variables will have value zero in each integer feasible solution at the subtree rooted
at this node. Then, instead of having linearized constraints containing Big-M or adding
combinatorial Benders’ cuts, only the right hand sides of the activated implications, that
is, the respective linear constraints to the right of ‘⇒’ in (3), are added as locally valid
constraints to the LP at the respective node.

All approaches use the cuts described in Section 4.3. For formulation (VRPTT2), cuts (15)
are used instead of (14). The lorry flow cut as well as both types of symmetry-breaking cuts
are directly added to the formulation as static cuts. The connectivity cuts are dynamically
separated in the course of the algorithm. As for the κ-path and multistar cuts, it turned out
that all instances that could be solved with or without them are small enough to allow complete
enumeration of all cuts ex ante. Therefore, all cuts (11) and (12) are also added as static cuts.
As branching strategy, the following four-stage strategy outperformed the default best-bound
single variable branching strategy provided by Cplex for approaches (i), (ii), and (iv).
(i) Branch on the sum of all arc variables leaving the start depot vertex.
(ii) Branch on the sum of all lorry class arc variables leaving the start depot vertex.
(iii) Branch on the sum of all trailer class arc variables leaving the start depot vertex.
(iv) Use the default Cplex branching strategy.
For approaches (iii) and (v), the Cplex default branching performed better. Strong branching
was used in all cases.

14

6 Computational experiments

In this section, the results of an extensive computational study with the approaches described
in the previous section are presented.

6.1 Test instances

Drexl [11] has created a set of VRPTT test instances structured to resemble the situation in
raw milk collection. These use two lorry and two trailer classes as specified in Table 1.

Capacity Fixed costs Costs per km Compatible trailer classes

Lorry class 1 10,000 180 0.65 1, 2

Lorry class 2 15,000 200 0.70 1

Trailer class 1 10,000 20 0.04

Trailer class 2 15,000 25 0.04

Table 1: Fleet data

The customer and transshipment locations are randomly selected on a 100× 100 km grid with
the depot located in the centre. The resulting Euclidean distances between each pair of vertices
are multiplied by a distance factor of 1.3. The customer supplies are chosen randomly from
[1,000; 10,000]. As load transfer time, two minutes per 1,000 units of supply are assumed.
The length of the planning horizon is 12 hours (1,320 minutes). All customers and transship-
ment locations have a time window of [0; 1,320]. Such non-restrictive time windows represent
the situation in raw milk collection where only very few customers or transshipment locations
actually have time windows.
The test instances were created with enough vehicles of each class such that the complete supply
could be collected with either only lorries of class 1 and trailers of class 2 or only lorries of class 2
and trailers of class 1.
With these parameters, a set of so-called x y z instances was created, where 2 ≤ x ≤ 20 stands
for the number of customers, 2 ≤ y ≤ 20 for the number of potential transshipment locations,
and 4 ≤ z ≤ 24 for the number of vehicles. It is always x = y, and there are always x/2 lorry
customers and x/2 trailer customers. y/2 potential transshipment locations correspond to the
trailer customer locations, and y/2 are pure transshipment locations. For each of the four vehicle
classes, there are z/4 vehicles. This means that an x y z instance has 1+x+3·

∑
k′∈FT

|F k′ |·y+1
vertices: one for the start depot, x for the customers, three for each trailer at each of the y
potential transshipment locations to represent decoupling, transfer, and recoupling, and one for
the end depot. Table 2 shows details on instance sizes.

Instance No. of Vertices Arcs Variables Constraints Cuts
class instances Binary Continuous Symmetry- κ-path Multistar

(VRPTT1) (VRPTT2) (VRPTT1) (VRPTT2) breaking 1 / 2 (avg.)

2 2 4 30 16 126 222 62 348 619 634 0 / 0 0 0

4 4 4 20 30 484 856 114 1,340 2,384 2,176 0 / 0 2 10

4 4 8 10 54 1,516 2,600 202 4,116 7,408 6,344 8 / 8 7 10

6 6 4 7 44 1,074 1,902 166 2,976 5,299 4,630 0 / 0 13 56

6 6 8 23 80 3,390 5,826 298 9,216 16,597 13,822 12 / 12 37 56

8 8 8 19 106 6,008 10,336 394 16,344 29,444 24,172 16 / 16 188 246

Table 2: Instance sizes

6.2 Algorithm setup and system parameters

Some remarks on the setup of the algorithms are appropriate. In approach (iv), combinatorial
Benders’ cuts can either be separated only when the LP solution is integer or also when some
variables are fractional. Moreover, it is possible to add the cuts as global or local ones, and
either only one or several violated cuts can be added in each iteration. Tests showed that the

15

best setup is to separate cuts also when there are fractional variables, and to add one violated
cut per iteration as a global one. Similarly, in approach (v), it is possible to check for newly fixed
variables either only when the LP solution is integer in the x variables or after each solution
of the LP relaxation. Here, tests showed that the former variant is slightly but consistently
better. In all approaches, connectivity cuts are added only if the violation is at least 0.3. In each
iteration, all connectivity cuts that reach this violation threshold are added. Tests with adding
only one violated connectivity cut per vehicle class and iteration yielded a worse performance.
The maximum flow problems for the separation of the connectivity cuts are solved with the
Edmonds-Karp algorithm provided by the Boost Graph library (boost.org).
The results presented subsequently were obtained on a computer with a 2.80 GHz CPU and
16 GB of main memory for instance classes 2 2 4–6 6 8, and on a machine with a 2.83 GHz
CPU and 8 GB of main memory for instance class 8 8 8, both running Win XP Sp 2, 64-bit. A
CPU time limit of 10,800 seconds was set.

6.3 Evaluation of the valid inequalities

Table 3 reports the average relative increase in the root lower bound for formulations (VRPTT1)
and (VRPTT2) when the different classes of valid inequalities are used. As can be seen, the
root lower bounds of formulation (VRPTT2) are significantly higher than those of (VRPTT1).
Moreover, the table shows that the lorry flow cut is very important: It cuts off fractional solutions
where lorries are used only partially, and the resulting better consideration of the fixed costs
raises the lower bounds considerably.

Formulation: (VRPTT1) (VRPTT2) (VRPTT2)

Average relative
increase compared to: (VRPTT1), no cuts (VRPTT1), no cuts (VRPTT2), no cuts

No cuts n.a. 320.3 % n.a.

Only lorry flow cut 403.2 % 480.0 % 36.8 %

Only connectivity cuts 67.8 % 336.4 % 3.3 %

Only κ-path cuts 7.6 % 322.2 % 0.4 %

Only multistar cuts 17.7 % 321.8 % 0.3 %

Table 3: Comparison of root lower bounds (instances 4 4 4–8 8 8)

6.4 Comparison of the different solution approaches

Table 4 presents the computational results obtained with the different approaches and the de-
scribed settings. Columns ‘Optimal’ and ‘Feasible’ respectively indicate the percentage of in-
stances that could be solved optimally and for which a feasible solution could be computed
within 10,800 seconds. Column ‘Gap’ specifies the average relative gap between the upper and
the lower bound, UB and LB respectively, upon termination of the optimization, for those in-
stances for which a feasible solution could be computed, as (UB−LB)/LB. Column ‘CPU time’
indicates the average running time over all instances of a class, whether or not a feasible solu-
tion could be found. Column ‘None better’ reports the percentage of instances that no approach
solved better. No approach solves an instance i better than a certain approach A if either A
solves i to optimality and no other approach that also solves i optimally is faster, or if no ap-
proach finds the optimal solution within the time limit and no approach finds a better feasible
solution than A. Column ‘Best’ indicates the percentage of instances that were solved best with
the respective approach. An approach A is best in solving an instance i if A finds the optimal
solution faster than any other approach, or if it finds a better solution than any other approach.
To account for measuring inaccuracies, computation times in seconds were rounded to integer
multiples of 10 seconds when computing the values in columns ‘None better’ and ‘Best’. Finally,
column ‘No. B & B nodes’ gives the average number of nodes in the branch-and-bound tree
upon termination of the optimization, irrespective of the solution status.

16

Approach Instance Optimal Feasible Gap CPU time None better Best No. B & B
class [%] [%] [%] [secs.] [%] [%] nodes

(i): (VRPTT1), linearizing the implications 2 2 4 100.0 100.0 0.0 0.3 100.0 0.0 4

using tailored Big-M values 4 4 4 100.0 100.0 0.0 20.3 25.0 0.0 228

4 4 8 90.0 100.0 1.0 1,405.4 0.0 0.0 2,662

6 6 4 100.0 100.0 0.0 523.7 0.0 0.0 1,421

6 6 8 30.4 100.0 4.8 8,551.8 26.1 4.3 3,747

8 8 8 0.0 89.5 40.6 10,800.1 5.3 5.3 1,221

Overall 67.0 98.2 7.6 3,853.5 38.5 1.8 1,382

(ii): (VRPTT2), avoiding logical constraints 2 2 4 100.0 100.0 0.0 0.9 100.0 0.0 5

altogether 4 4 4 100.0 100.0 0.0 17.4 15.0 0.0 90

4 4 8 100.0 100.0 0.0 124.8 50.0 50.0 121

6 6 4 100.0 100.0 0.0 566.5 0.0 0.0 588

6 6 8 13.0 100.0 7.0 9,811.4 65.2 30.4 1,429

8 8 8 0.0 89.5 21.5 10,800.1 26.3 26.3 574

Overall 64.2 98.2 4.9 4,004.1 53.2 15.6 468

(iii): (VRPTT1), employing a Cplex feature 2 2 4 100.0 100.0 0.0 2.9 86.7 0.0 400

that allows entering implications directly 4 4 4 60.0 100.0 14.8 4,832.6 5.0 0.0 28,682

4 4 8 50.0 50.0 0.0 7,118.5 0.0 0.0 28,302

6 6 4 – – – – – – –

6 6 8 – – – – – – –

8 8 8 – – – – – – –

Overall 43.1 50.5 5.4 2,798.7 24.8 0.0 14,478

(iv): (VRPTT1), applying the combinatorial 2 2 4 100.0 100.0 0.0 0.3 100.0 0.0 5

Benders’ cuts 4 4 4 100.0 100.0 0.0 8.2 85.0 5.0 170

4 4 8 90.0 100.0 2.2 1,197.4 10.0 0.0 1,595

6 6 4 100.0 100.0 0.0 197.7 57.1 42.9 1,137

6 6 8 34.8 100.0 4.7 7,530.2 34.8 8.7 6,570

8 8 8 0.0 89.5 22.6 10,800.1 10.5 10.5 2,060

Overall 67.9 98.2 4.8 3,595.6 56.9 7.3 1,997

(v): (VRPTT1), using deferred consideration 2 2 4 100.0 100.0 0.0 0.2 100.0 0.0 44

of logical constraints 4 4 4 100.0 100.0 0.0 5.9 95.0 10.0 1,435

4 4 8 90.0 100.0 1.7 1,226.9 50.0 40.0 23,742

6 6 4 100.0 100.0 0.0 154.3 57.1 42.9 10,192

6 6 8 34.8 100.0 4.7 7,598.3 52.2 30.4 91,686

8 8 8 5.3 73.7 26.8 10,496.7 15.8 15.8 10,642

Overall 68.8 95.4 4.8 3,556.6 67.0 17.4 24,310

Table 4: Computational results

The following observations can be made in Table 4:
• Overall, there is no approach that outperforms all others with respect to every criterion.

However, approach (v) performs best in four out of seven criteria, and, for one additional
criterion, there is no better one.
• Approach (iii) clearly performs worst. Instance classes 6 6 4–8 8 8 were not even tried with this

approach. It seems that the automatic handling of implications built into Cplex is inadequate
for the problem structure at hand.
• Although formulation (VRPTT2) has a significantly stronger LP relaxation than formulation

(VRPTT1), approach (ii) solves fewer instances to optimality than approach (i), and it requires
slightly more computation time on average. Apparently, the solution of the LP relaxations
takes longer.
• Approach (v) solves the highest number of instances to optimality, 75 out of 109, which

corresponds to 68.8 %. It is the only approach to solve an instance of class 8 8 8 to optimality.
However, it fails to find a feasible solution for five instances, which is worse than approaches
(i), (ii), and (iv). There is one particularly hard instance in class 4 4 8, which gets solved
optimally only by approach (ii).
• The overall optimality gap is comparatively high for approach (i). In particular, though feasible

solutions are found for all but two instances of class 8 8 8, the gap for this class is almost
twice as high as for the other approaches.

17

• With respect to computation time, approaches (iv) and (v) are, on average, faster than the
other approaches, although the speed-up obtained by these decompositions is less than expec-
ted.
• For more than two thirds of all instances, no approach was better than approach (v), according

to the above definition of ‘better’. Moreover, approach (v) performed best on more than 17 %
of all instances.
• The number of branch-and-bound nodes is smallest for approach (ii), but apparently, the LP

relaxation takes considerably longer to solve. Approach (v) creates by far the highest number
of branch-and-bound nodes, but even the largest tree, which has some 500,000 nodes, fits
easily into main memory.

As mentioned, the largest instance that could be solved to optimality belongs to class 8 8 8,
that is, it has eight customers, eight transshipment locations, and eight vehicles. Due to the long
computation times for the instances of this class, larger instances were not tackled. However,
note that, as can be seen in Table 2, an 8 8 8 instance has more than 10,000 binary variables. In
this respect, it corresponds to a CVRP instance with 100 customers (assuming a two-index arc
variable formulation), which is quite large. The results also compare well with those obtained
by Cortés et al. [7], who studied a pickup-and-delivery problem with transfer option (see Sec-
tion 2), and who solved to optimality instances with at most six pickup-and-delivery requests,
one transshipment location, and two vehicles.

7 Research outlook

Several enhancements and extensions to the models and algorithms presented in this paper are
possible. From an algorithmic point of view, the following research avenues can be identified:
Better lower bounds. The computational experiments have shown that for many instances, the
weak lower bounds prevent a (faster) solution. To improve these bounds, a detailed study of
valid inequalities for the VRPTT, that is, for a time-constrained VRP with heterogeneous fleet,
transshipment possibilities and split collection between lorries and trailers, would be interesting.
In particular, problem-specific infeasible path cuts could be helpful.
Column generation. Another way to obtain better lower bounds is to use a path formulation
and apply column generation. However, doing so is a highly involved project for the VRPTT,
because the resulting pricing problems become very difficult and cannot be solved by standard
dynamic programming algorithms. It is beyond the scope of this paper to go into details on this
issue; the reader is referred to Drexl [11].
Reduced number of arc variables. Rieck and Zimmermann [20] have presented a method to re-
duce the number of binary variables for heterogeneous fleet VRPs. Their approach requires
introducing even more implications and complicates the modelling of compatibility constraints.
Nevertheless, since the number of binary variables strongly influences the computational diffi-
culty of a problem, considering the method also for the VRPTT may be worthwhile.
Heuristics. Solving real-world instances of VRPs to optimality is still impossible. This is of
course also true for the VRPTT. Therefore, a heuristic procedure for the VRPTT is needed, but
still missing. However, the close interdependency between the vehicles and the fact that load
transfers are optional considerably complicate the use of classical local or large neighbourhood
search methods.
There are also several interesting model extensions to the VRPTT version presented in this
paper:
Increase the number of allowed load transfers. This can easily be done by inserting a sequence
vt,1k′lp, v

t,2
k′lp, . . . , v

t,nt

k′lp of nt transshipment vertices between each pair of decoupling and recoupling

vertices and linking them via arcs (vdk′lp, v
t,1
k′lp), (vt,1k′lp, v

t,2
k′lp), . . . , (vt,nt

k′lp, v
r
k′lp) that can only be

traversed by a single trailer of class k′.
Allow load transfers from trailers to trailers and from lorries and trailers to lorries. To this end, it
is sufficient to introduce transshipment vertex tuples also for lorries. To represent a load transfer

18

in the network, for example, from a trailer k′ to a lorry k1 at location l, the trailer decouples the
lorry currently pulling it, say, k2, at the decoupling vertex of one of the transshipment vertex
tuples of k2’s class at location l, moves to a transshipment intermediate vertex of k1’s class, and
recouples k2.
Consider support vehicles. A third potential extension is the introduction of support vehicles,
lorries as well as trailers. These cannot visit customers, but serve as mobile depots into which
the other vehicles, which may be called task vehicles, can transfer load. This is sensible, for
example, when visiting a customer requires costly technical equipment, so that support vehicles
are much cheaper to operate, or when small task vehicles are needed to visit customers due to
lack of manoeuvring space, and large support vehicles can be used to transport the customer
supply to the depot. The consideration of support vehicles is particularly easy: It is sufficient to
simply create no support vehicle flow variables for arcs leading to or emanating from customer
vertices.
These extensions are practically relevant and very easy to accommodate in the network as well
as in the formulations presented above. When doing so, however, the size of both the network
and the formulations quickly becomes intractable. Techniques that allow to contain this size
have yet to be developed.
Summing up, it can be said that the VRPTT is a challenging and practically relevant problem
that needs and deserves further study. Research on the VRPTT will also be helpful to obtain
insights for the solution of other types of VRPs with multiple synchronization constraints.

Acknowledgement. This research was funded by the Deutsche Forschungsgemeinschaft (DFG)
under grant no. IR 122/5-1.

References

[1] Ascheuer N, Fischetti M, Grötschel M (2000):
A Polyhedral Study of the Asymmetric Traveling Salesman Problem with Time Windows
Networks 36: 69–79

[2] Baldacci R, Mingozzi A, Roberti R (2012):
Recent Exact Algorithms for Solving the Vehicle Routing Problem under Capacity and Time Window
Constraints
European Journal of Operational Research 218: 1–6

[3] Bürckert H, Fischer K, Vierke G (2000):
Holonic Transport Scheduling with TELETRUCK
Applied Artificial Intelligence 14: 697–725

[4] Chao I (2002):
A Tabu Search Method for the Truck and Trailer Routing Problem
Computers & Operations Research 29: 33–51

[5] Cheung R, Shi N, Powell W, Simão H (2008):
An Attribute-Decision Model for Cross-Border Drayage Problem
Transportation Research Part E 44: 217–234

[6] Codato G, Fischetti M (2006):
Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming
Operations Research 54: 756–766

[7] Cortés C, Matamala M, Contardo C (2010):
The Pickup and Delivery Problem with Transfers: Formulation and a Branch-and-Cut Solution
Method
European Journal of Operational Research 200: 711–724

19

[8] Crainic T, Ricciardi N, Storchi G (2009):
Models for Evaluating and Planning City Logistics Systems
Transportation Science 43: 432–454

[9] Dantzig G, Ramser J (1959):
The Truck Dispatching Problem
Management Science 6: 80–91

[10] Desaulniers G, Lessard F, Hadjar A (2008):
Tabu Search, Partial Elementarity, and Generalized k-Path Inequalities for the Vehicle Routing Prob-
lem with Time Windows
Transportation Science 42: 387–404

[11] Drexl M (2007):
On Some Generalized Routing Problems
PhD Thesis, Faculty of Business and Economics, RWTH Aachen University
URL http://darwin.bth.rwth-aachen.de/opus3/volltexte/2007/2091/pdf/Drexl Michael.pdf

[12] Drexl M (2012):
Synchronization in Vehicle Routing—A Survey of VRPs with Multiple Synchronization Constraints
Transportation Science 46: 297–316

[13] Drexl M, Rieck J, Sigl T, Berning B (2011):
Simultaneous Vehicle and Crew Routing and Scheduling for Partial and Full Load Long-Distance
Road Transport
Technical Report 1112, Gutenberg School of Management and Economics, Johannes Gutenberg
University Mainz

[14] Golden B, Raghavan S, Wasil E (eds) (2008):
The Vehicle Routing Problem: Latest Advances and New Challenges
Operations Research/Computer Science Interfaces Series 43
Springer, Berlin

[15] Hollis B, Forbes M, Douglas B (2006):
Vehicle Routing and Crew Scheduling for Metropolitan Mail Distribution at Australia Post
European Journal of Operational Research 173: 133–150

[16] Kim B, Koo J, Park J (2010):
The Combined Manpower-Vehicle Routing Problem for Multi-Staged Services
Expert Systems with Applications 37: 8424–8431

[17] Kohl N, Desrosiers J, Madsen O, Solomon M, Soumis F (1999):
2-Path Cuts for the Vehicle Routing Problem with Time Windows
Transportation Science 33: 101–116

[18] Maffioli F, Sciomachen A (1997):
A Mixed-Integer Model for Solving Ordering Problems with Side Constraints
Annals of Operations Research 69: 277–297

[19] Pessoa A, Uchoa E, Poggi de Aragão M (2009):
A Robust Branch-Cut-and-Price Algorithm for the Heterogeneous Fleet Vehicle Routing Problem
Networks 54: 167–177

[20] Rieck J, Zimmermann J (2010):
A New Mixed Integer Linear Model for a Rich Vehicle Routing Problem with Docking Constraints
Annals of Operations Research 181: 337–358

[21] Scheuerer S (2006):
A Tabu Search Heuristic for the Truck and Trailer Routing Problem
Computers & Operations Research 33: 894–909

20

[22] Semet F, Taillard E (1993):
Solving Real-Life Vehicle Routing Problems Efficiently Using Tabu Search
Annals of Operations Research 41: 469–488

[23] Toth P, Vigo D (eds) (2002):
The Vehicle Routing Problem
SIAM Monographs on Discrete Mathematics and Applications, Philadelphia

[24] van Eijl C (1995):
A Polyhedral Approach to the Delivery Man Problem
Technical Report 95-19, Department of Mathematics and Computer Science, Eindhoven University
of Technology

[25] Yaman H (2006):
Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem
Mathematical Programming 106: 365–390

21

	Titelseite 1210
	Gutenberg School of Management and Economics
	Discussion Paper Series
	Branch-and-Cut Algorithms for the
	Michael Drexl
	Discussion paper number 1210
	Johannes Gutenberg University Mainz
	Contact details
	Michael Drexl
	All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

	Drexl2012BranchAndCutAlgorithmsForTheVehicleRoutingProblemWithTrailersAndTransshipments

