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Dynamic Programming for the Minimum Tour Duration Problem

Christian Tilk∗,a, Stefan Irnicha

aChair of Logistics Management, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The minimum tour duration problem (MTDP) is the variant of the traveling salesman problem with time
windows, which consists of finding a time window-feasible Hamiltonian path minimizing the tour duration.
We present a new effective dynamic programming (DP)-based approach for the MTDP. When solving the
traveling salesman problem with time windows with DP, two independent resources are propagated along
partial paths, one for costs and one for earliest arrival times. For dealing with tour duration minimization, we
provide a new DP formulation with three resources for which effective dominance and bounding procedures
are applicable. This is a non-trivial task because in the MTDP at least two resources depend on each other
in a non-additive and non-linear way. In particular, we define consistent resource extension functions (REF)
so that dominance is straightforward using componentwise comparison for the respective resource vectors.
Moreover, one of the main advantages of the new REF definition is that the DP can be reversed consistently
such that the forward DP or any of its relaxations provides bounds for the backward DP, and vice versa.
Computational test confirm the effectiveness of the proposed approach.

Key words: traveling salesman problem, time windows, tour duration, dynamic programming, state-space
relaxation

1. Introduction

In this paper, we consider a variant of the traveling salesman problem with time windows (TSPTW), in
which the objective is the minimization of the tour duration. There is no consistent naming of this problem
in the literature. We will use the name minimum tour duration problem (MTDP) in the following and start
with its definition. Let G = (V,A) be a digraph with node set V and arc set A. Two distinguished nodes
are given, the start node o ∈ V and the destination node d ∈ V . A Hamiltonian o-d-path is a simple path
which start at o, ends at d, and visits all nodes exactly once. A travel time tij > 0 is associated with each
arc (i, j) ∈ A and a time window [ai, bi] with each node i ∈ V . For any path P = (i0, i1, . . . , ip), a sequence
T = (T0, T1, . . . , Tp) of numbers is called a schedule. A schedule with Tk ∈ [aik , bik ] for all k ∈ {0, 1, . . . , p}
and Tk−1 + tik−1,tk ≤ Tk for all k ∈ {1, . . . , p} is called feasible. A TSPTW tour is a Hamiltonian o-d-path P
for which a feasible schedule exists. We say that Tk is the time when service starts at node ik. Note that
we do not explicitly consider service times because they can be included in the travel times tij . The MTDP
is the problem of finding a TSPTW tour P with a feasible schedule T = (To, . . . , Td) minimizing Td − To.

In contrast, the objective in the TSPTW is minimizing the arc-traversal costs for given arc costs cij for
(i, j) ∈ A. There exists a third problem related to minimizing the completion time Td. We call this problem
minimum completion time problem (MCTP). It is the special case of the MTDP, in which the starting time
To is fixed. TSPTW, MTDP, and MCTP only differ in their objectives, and these objectives are generally
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conflicting (Vidal et al., 2011). Savelsbergh (1992) pointed out that it is important to be able to handle
them.

The contribution of the paper at hand is to present a new effective dynamic-programming (DP) algorithm
for the MTDP. It generalizes the approach presented by Baldacci et al. (2011b), who solve the TSPTW with
a DP-based algorithm. Their algorithm solves all but one instance of the known benchmark sets for the
TSPTW and outperforms all exact methods published in the literature so far. When solving the TSPTW,
two independent resources are propagated along partial paths, one for costs and one for earliest arrival
times. For dealing with tour duration minimization, there exist several possibilities to define and propagate
resources. However, all these alternatives use at least three resources. We will follow ideas presented in
(Irnich, 2008) in order to apply effective dominance and bounding procedures. This is a non-trivial task
because in the MTDP at least two resources depend on each other in a non-additive and non-linear way.
In particular, we define consistent resource extension functions (REFs, see Desaulniers et al., 1998) so that
dominance is straightforward using componentwise ≤ for the respective resource vectors. Moreover, one of
the main advantages of the new REF definition is that the DP can be reversed consistently such that the
forward DP or any of its relaxations provides bounds for the backward DP, and vice versa.

Using relaxations to obtain lower bounds is common practice in routing problems, e.g., using a state-
space relaxation (Christofides et al., 1981). We present two new relaxations for the MTDP with only one
and two resource, respectively, which are attractive due to their low computational complexity. These and
other relaxations can be combined with the ng-tour and ngL-tour relaxation (Baldacci et al., 2011a,b).

To compute tight lower bounds, we use two methods: First, we adapt a penalty method first suggested by
Christofides et al. (1981). Second, we generate the neighborhoods for the ng-tour and ngL-tour relaxations
dynamically. This technique has been successfully applied for solving different routing problems (Roberti and
Mingozzi, 2013; Bode and Irnich, 2013). To the best of our knowledge, we present the first exact algorithm for
the MTDP. We provide computational results with optimal solutions for many known benchmark instances,
which were originally provided for the TSPTW.

This paper is structured as follows. Section 2 briefly surveys exact solution algorithms to the TSPTW,
MTDP, and MCTP. In Section 3, we present our new DP formulation for the MTDP. The computation
of upper bounds with the help of a heuristic is presented in Section 4. Section 5 discusses relaxations,
namely the adapted ng-tour and ngL-tour relaxations and two new relaxations with one and two resources,
respectively. Moreover, a relaxation-based bounding procedure is presented. In order to further improve
the lower bounds, we apply a penalty method in Section 6. Section 7 reports the computational results.
Concluding remarks are given in Section 8.

2. Literature Review

The TSPTW and MCTP are often discussed problems in the literature, but only little attention was
dedicated to the MTDP. Christofides et al. (1981) proposed a method for solving the MCTP based on
state-space relaxation. They reported solutions of instances with up to 50 nodes. Baker (1983) proposed
a branch-and-bound method for the MCTP producing exact solutions for instances with up to 50 nodes.
Langevin et al. (1993) introduced a two-commodity flow formulation for the MCTP and TSPTW and
developed a branch-and-bound algorithm that is able to solve instances with up to 60 nodes. Their model
can easily be adapted to the MTDP.

Several DP approaches were proposed for the TSPTW: Dumas et al. (1995) presented a DP algorithm
and advanced preprocessing procedures to reduce the number of states and state transitions. They computed
solutions of instances with up to 200 nodes, but relatively tight time windows. The DP algorithm of Mingozzi
et al. (1997) is based on another state-space relaxation. They solved the TSPTW with precedences for
instances with up to 120 nodes. Li (2009) solved the TSPTW with a bi-directional resource-bounded label
correcting algorithm. This algorithm is able to solve instances with up to 233 nodes. Recently, Baldacci et al.
(2011b) presented the ng-tour and ngL-tour relaxations for the TSPTW to compute tight lower bounds. To
improve the lower bounds they solve the dual of a problem that seeks a minimum-weight convex combination
of non-necessarily elementary tours with a dual-ascent heuristic. Their computational results are impressive:
All but one instances from several TSPTW benchmark sets are solved to proven optimality.
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Balas and Simonetti (2001) presented a DP model and algorithm for a special case of the TSPTW and
the MCTP, which can also be applied as a heuristic for the general case. Ascheuer et al. (2001) were the
first to develop branch-and-cut algorithms for the TSPTW. They implemented three alternative integer
programming formulations of the TSPTW and solved instances with up to 233 nodes. Dash et al. (2012)
presented an extended formulation of the TSPTW based on partitioning the time windows into buckets. The
LP-relaxation of their formulation provides strong lower bounds, which they exploited in a branch-and-cut
algorithm.

To the best of our knowledge, (Savelsbergh, 1992) is the first paper dealing with the MTDP. Savelsbergh
described edge-exchange improvement methods for the MTDP and the VRPTW with the objective of
minimizing the route duration. The only recent papers dealing with the MTDP are an ant-colony approach
by Favaretto et al. (2006) and a new two-commodity flow formulation by Kara et al. (2013). Favaretto et al.
(2006) call the problem temporal TSPTW and present computational results for the MTDP on benchmark
instances originally proposed for the TSPTW. Kara et al. (2013) solved their model with the MIP solver
CPLEX to optimality for instances with up to 40 nodes.

The problem of minimizing the tour duration also occurs as a subproblem in truck driver scheduling and
routing when the driving time is limited, e.g., by hours-of-service regulations as studied by Goel (2009).
He presented an exact method for scheduling driving periods, breaks, rest periods and handling activities
for a given tour based on a labeling algorithm. Among others, Goel and Vidal (2013) studied similar
problems for regulations of different countries. They presented an algorithm that combines population-
based metaheuristics with a local search that uses forward labeling procedures for checking compliance with
complex hours of service regulations. Prescott-Gagnon et al. (2010) solve a vehicle-routing problem with
time windows and European driver rules. They used a column-generation approach, which utilizes a tabu
search to heuristically solve the subproblem. To check the route feasibility they model all feasibility rules
as resource constraints and develop a label-setting algorithm to perform this check.

3. Dynamic-Programming Formulations

In this section, we present an exact DP formulation for the MTDP. First, we will introduce the REFs
for the forward propagation and the corresponding DP recursion. Second, we will present propagation rules
that limit the number of possible extensions and fathoming rules that eliminate labels which cannot lead to
a feasible or optimal solution. Last, we define consistent REFs for the backward propagation and show how
paths of the forward and the backward formulation can be concatenated. Consistency refers at least to the
following five aspects:

1. Using the same set of resources, the MTDP can either be solved using forward or backward propagation.
Both resulting DP algorithms have identical worst-case complexity.

2. Let P = (o, . . . , i) be a path resulting from forward propagation, and let P bw = (i, . . . , d) be a
path resulting from backward propagation. Moreover, let L = L(P ) and Lbw = Lbw(P bw) be the
corresponding labels that result from forward and backward propagation, respectively. Then, the
concatenation P ⊕ P bw is feasible w.r.t. resource consumption if and only if L ≤ Lbw holds.

3. If P ⊕ P bw is feasible w.r.t. resource consumption, the labels allow the computation of the minimum
tour duration in constant time.

4. The above label comparison enables the bidirectional solution of the MTDP by combined forward and
backward propagation.

5. If an upper bound on the MTDP is known, the above label comparison also enables the use of bounding
techniques: A backward label provides a valid bound for the forward label, and vice versa. Moreover,
any label resulting from a relaxation may be used for bounding instead of a label produced with the
exact DP.
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3.1. Forward Dynamic-Programming Formulation
A forward path P = (o, . . . , i) defines a forward label (k, i, S, T ), where T = (T time, T dur, Thelp) with the

following semantics:

• i ∈ V is the last visited node in P

• S ⊆ V is the set of all nodes visited by the path

• k is the path length, i.e., k = |P | = |S| − 1

• T time is the earliest feasible time, at which the last node i can be visited in the path

• T dur is the minimum tour duration of the path starting at node o, visiting the set S ⊂ V and ending
at node i so that every node is visited within its time window

• Thelp is the negative of the latest possible departure time at node o so that the time window constraints
of every node in the path are satisfied and the tour duration is T dur

While k, i, and S are standard attributes that can describe any partial path, the resource vector T =
(T time, T dur, Thelp) consists of the three actual resources that are specific for the MTDP. Similar to the
description in (Irnich, 2008), we will now define resource windows, the initial label for the path P = (o),
and REFs for forward propagation.

The resource windows are defined for all nodes i ∈ V as:

T timei ∈ [ai, bi] (1a)

T duri ∈ [0, UB],where UB is any bound on the MTDP (tour duration) (1b)

Thelpi ∈ [−bo,∞) (1c)

The earliest possible time a Hamiltonian o-d-path can start is ao and the latest is bo. Therefore, the initial
forward label for P = (o) is defined as (0, o, {o}, To) with To = (T timeo , T duro , Thelpo ) = (ao, 0,−bo). Forward
propagation of a label (k, i, S, Ti) along an arc (i, j) ∈ A, i.e., towards node j produces the new label
(k + 1, j, S ∪ {j}, Tj). Herein, Tj results from the following REFs:

T timej =f timeij ((k, i, S, Ti)):= max{T timei + tij , aj} (2a)

T durj =fdurij ((k, i, S, Ti)) := max{T duri + tij , T
help
i + aj} (2b)

Thelpj =fhelpij ((k, i, S, Ti)) := max{T duri + tij − bj , Thelpi } (2c)

Note that the third resource Thelp has been defined to be negative so that a non-decreasing REF results.
Desaulniers et al. (1998) were among the first who explicitly stressed the high importance of non-decreasing
REFs, i.e., functions where S ≤ T implies f(S) ≤ f(T ). If resources are propagated with non-decreasing
REFs, standard dominance with componentwise ≤-comparison is valid.

The resources T duri and Thelpi are interdependent. This represents, on the one hand, that when we must
wait at a node j, we can shift the start time to avoid an increase of the tour duration, as long as the schedule
stays feasible. On the other hand, the possible shift can be limited by the difference of the tour duration
and the latest service start bj associated with node j.

We conclude that T timei − T duri is the earliest feasible departure time at node o that avoids unnecessary
waiting. Hence, −Thelpi −T timei +T duri is the possible amount of time that we may shift the earliest possible
departure time in direction bo. In addition −Thelpi + T duri is the latest feasible arrival time at node i when
the path duration is T duri .

Example 1. We consider a path P = (0, 1, 2, 3, 4) with o = 0 and d = 4 and with time windows [aj , bj ] and
travel times tj,j+1 given in the first three columns of the following table:
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Time Travel
Node window time Resources
j [aj , bj ] tj,j+1 T time

j T dur
j Thelp

j

0 [0, 6] 1 0 0 -6
1 [2, 5] 2 2 1 -4
2 [5, 6] 3 5 3 -3
3 [11, 12] 4 11 8 -3
4 [14, 18] – 15 12 -3

The (minimum) tour duration of the path P1 = (o, 1) coincides with the sum of travel times because
waiting can be avoided by starting at any time between 1 and 4. The latest possible departure time is
limited due to b1. The path P2 = (o, 1, 2) limits the latest possible departure time in the same manner as
the path P1. The tour duration of the path P3 = (o, 1, 2, 3) consists of six units of travel time and two units
of waiting time. The waiting time cannot be avoided because starting later than at time To = 3 violates
the due date b2 and the earliest time to arrive at node 3 is a3 = 11. Next, the path P4 = (o, 1, 2, 3, 4) has
the tour duration twelve, which comprises the sum of travel times and two units of waiting time at node 3
before a3. The latest possible departure time of this path is three, which is limited due to b2.

Before we start the actual DP algorithm, we modify the instance to obtain an equivalent one with fewer
arcs, tighter time windows, and a set of precedences. This kind of preprocessing was originally suggested
by Desrosiers et al. (1995). We iterative compute and update two types of values. EAT (i, j) is the earliest
feasible arrival time at node j when coming from node i, and LDT (i, j) is the latest feasible departure time
from node i when going to node j. Furthermore, the time window constraints impose a partial ordering
of the nodes, which we use to identify node precedences: For all j ∈ V the set π(j) is the set of all nodes
i ∈ V that must precede j. The precedences π(j), time windows [ai, bi], times EAT (i, j) and LDT (i, j), and
the (reduced) arc set A mutually affect each other (see Desrosiers et al. (1995) for details). Therefore, the
computation should be iterated until no more modifications are made. Note that preprocessing generally
reduces the possible extensions of labels, that preprocessed instances are sometimes significantly smaller,
and have stronger relaxations so that they are in the end easier to solve.

Algorithm 1: Forward Dynamic Programming Labeling Algorithm
1 SET L0 := {(0, o, {o}, (ao, 0,−bo))}
2 for k = 0, 1, . . . , |V | − 1 do
3 for (k, i, S, Ti) ∈ Lk do
4 for (i, j) ∈ A : j /∈ S, π(j) ⊆ S do
5 SET Tj := fij(Ti)
6 if FeasibilityCheck(Tj) then
7 SET Lj := (k + 1, j, S ∪ {j}, Tj)
8 if BoundingCheck(Lj) then
9 ADD Lj to Lk+1

10 CALL Dominance algorithm for Lk+1

11 FIND a label L∗d = (|V |, d, V, Td) ∈ L|V | with T durd minimal
Result: The path P ∗ represented by label L∗d

The forward DP is described in Algorithm 1. Herein, all labels are grouped according to the length k
of the corresponding path, and Lk denotes this set. In the following, we comment on the components of
Algorithm 1: The forward propagation (Step 4) always creates feasible partial paths. In particular, only
arcs (i, j) ∈ A from the preprocessed instance are allowed, the partial path must be elementary (ensured
by j /∈ S), and must respect all precedences (π(j) ⊆ S). In the feasibility check (Step 6), we first compare
Tj = (T timej , T durj , Thelpj ) against the upper bounds (bj , UB,−ao) given by (1). Moreover, there might not
exist an extension to a feasible TSPTW tour due to resource consumption. We apply the following rule:
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Rule 1. (Feasibility) A label (k, i, S, Ti) cannot lead to a feasible solution if there exists a node j ∈ V \ S
with T timei > LDT (i, j). Hence, such a label can be discarded.

Bounding procedures try to identify those labels, for which any extension to a feasible TSPTW tour will
only create a non-optimal tour. In case of the MTDP, non-optimality refers to the tour duration measured
with the help of the resource T duri . It is obvious that a label (k, i, S, Ti) cannot lead to an optimal solution
if the earliest service time ad at the destination node d minus the label’s latest possible departure time at o
without unnecessary waiting, i.e., −Thelpi is greater than an upper bound. In the following we assume that
an upper bound UB on MTDP is known. Step 8 of Algorithm 1 uses the following rule:

Rule 2. (Bounding) Let UB be an upper bound for the MTDP. A label (k, i, S, Ti) cannot lead to an improved
solution if ad + Thelpi ≥ UB. Hence, it can be discarded.

A dominance algorithm eliminates those labels whose final extension to the destination node d produce
longer tour durations compared to extensions of another label. The dominance algorithm (Step 10) applies
the following rule:

Rule 3. (Domination) Let L = (k, i, S, Ti) and L′ = (k, i, S, T ′i ) be two labels with identical path length k,
set S and last node i. Let P = P (L) and P ′ = P (L′) be the respective paths. If Ti ≤ T ′i (component-by-
component), any feasible extension of P ′ towards d is also a feasible extension of P with non-smaller tour
duration. Hence, L′ can be discarded.

The validity of this dominance rule is a direct consequence of the fact that the REFs are non-decreasing
(see Desaulniers et al., 1998; Irnich and Desaulniers, 2005).

3.2. Backward Dynamic-Programming Formulation
We now define consistent backward resource extensions that allow the reversal of the DP approach so

that a backward DP results. Moreover, the backward DP or any of its relaxations provides bounds for the
forward DP.

Irnich (2008) presented a general framework applicable to classical REFs of the form fij(Ti) = max{aij , Ti+
tij} and REFs of the form fij(Ti, T

′
i ) = (max{aij , Ti + tij , T

′
i + uij},max{a′ij , Ti + t′ij , T

′
i + u′ij}) (the latter

is called REFs with pairwise max-term). Herein, it is assumed that the extension along the arc (i, j) ∈ A
is feasible if fij(T ) and fij(T, T

′) does not exceed bij and (bij , b
′
ij), respectively. Then, the inverse REFs

for REFs with pairwise max-term are f bwij (Tj) = min{bij , Tj − tij} and f bwij (Tj , T
′
j) = (min{bij , Tj − tij , T ′−

t′ij},min{b′ij , Tj − uij , T ′j − u′ij}) (see Theorem 5 in (Irnich, 2008)).
For the MTDP, a backward path (i, .., d) defines a backward label (k, i, S, T bwi ). Herein, k is the length

of the path, i the first visited node (i.e., the last node when propagating backward), S the set of all visited
nodes, and a resource vector T = (T timei , T duri , Thelpi ). It is very important to mention that the semantics of
the backward resources differs from the semantics of the forward resources: First, T timei , the latest feasible
arrival time at node i. Second, T duri is the difference between UB and the minimum tour duration of the
path. Note that we assume that an upper bound for the minimal tour duration of a Hamiltonian path is
known. The assumption is certainly not restrictive because UB = bd − ao is always a valid upper bound.
Moreover, the tour duration T duri − UB does not take the upper bound bi of the time window at node i
into account. Third, Thelpi is the difference of UB and the earliest possible arrival time at node d with tour
duration T duri that satisfies the time window constraints of every node in the path.

We define the initial state sd := (0, d, {d}, Td) with T = (T timed , T durd , Thelpd ) := (bd, UB,UB − ad).
When we propagate a state (k, i, S, T ) backward from node j to node i, i.e., in reverse direction along an
arc (i, j) ∈ A, we add i to S and use the following REFs to update the resource vector Tj :

T timei =f time,bwij (Tj):= min{T timej − tij , bi} (3a)

T duri =fdur,bwij (Tj) := min{T durj − tij , Thelpj − tij + bj} (3b)

Thelpi =fhelp,bwij (Tj) := min{T durj − aj , Thelpj } (3c)
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The resource windows are defined as before by equations (1).
In general, any backward label T duri at the start node i disregards the upper bound bi of the time window

at that node. However, the true resulting tour duration can be computed as max{UB−T duri , UB−Thelpi −bi}.

Example 2. We consider the same example and path P = (0, 1, 2, 3, 4) with time windows [aj , bj ] as in
Example 1. As before the time windows and travel times tj,j+1 are given in the first three columns of
the following table. The forward resources are denoted by S and backward resources by T so that we can
distinguish between the two.

Time Travel Backward True duration Forward
Node window time Resources max

{
UB − T dur

j , Resources

j [aj , bj ] tj,j+1 T time
j T dur

j Thelp
j UB − Thelp

j − bj

}
Stime
j Sdur

j Shelp
j

4 [14,18] - 18 UB ∞ 0 15 12 -3
3 [11,12] 4 12 UB − 4 UB − 14 4 11 8 -3
2 [5, 6] 3 6 UB − 7 UB − 15 9 5 3 -3
1 [2, 5] 2 4 UB − 11 UB − 15 11 2 1 -4
0 [0, 6] 1 3 UB − 12 UB − 15 12 0 0 -6

Note that the computed values are correct for any upper bound UB ≥ 12 on the tour duration.
We discuss the backward labels now: First, the initial backward resource vector (T timej , T durj , Thelpj ) =

(18, UB,∞) results from the upper bound values defined in (1). In the path Q3 = (3, 4) the tour duration
UB − T dur3 = 4 and sum of travel time coincide, and Thelpj = UB − 14 means that the earliest arrival time
at node d = 4 is 14 because the bound b3 = 12 remains disregarded (see explanation of the semantics of
the backward resources given above). The tour duration of the path Q2 = (2, 3, 4) is still 7, i.e., identical
to the sum of the travel times, because also here the respective bound b2 = 6 is not taken in account. The
earliest possible arrival time at node d is UB − Thelp3 = 15. In the path Q1 = (1, 2, 3, 4), two units of
waiting time occur. They cannot be avoided because the earliest possible arrival time at node d is 15 and
the latest possible departure time at node 1 is b2− t23 = 4. The path Q0 = (0, 1, 2, 3, 4) has a tour duration
of UB−T dur0 = 12, which consists of the sum 10 of travel times and two units of waiting time before node 3.
The earliest possible arrival time at node d = 4 is UB − Thelp0 = 15. The table also contains the values for
the forward resource vector Sj = (Stimej , Sdurj , Shelpj ) in the last three columns. They are computed using
forward partial paths as shown in Example 1. At any intermediate node j of the path (0, 1, 2, 3, 4), the
forward label Sj for the forward path (0, . . . , j) and the backward label Tj for the backward path (j, . . . , 4)
fulfill Sj ≤ Tj . In this sense, the definition of forward and backward REFs are consistent.

Next, we present the fathoming rules for the backward DP. This rules are counterparts of Rules 1-3 for
the forward DP. The proofs are straightforward. For the sake of completeness the entire backward dynamic
labeling algorithm is given in the Appendix in Section A.1.

Rule BW 1. (Feasibility) A backward label (k, j, S, Tj) cannot lead to a feasible solution if there exists a
node i ∈ V \ S with T timej < EAT (i, j). Hence, such a label can be discarded.

Rule BW 2. (Bounding) Let UB be an upper bound for the MTDP. A backward label (k, j, S, Tj) cannot
lead to an improved solution if UB − Thelpj − bo ≥ UB. Hence, it can be discarded.

Rule BW 3. (Domination) Let L = (k, j, S, Tj) and L′ = (k, j, S, T ′j) be two backward labels with identical
path length k, set S and first node j. Let P = P (L) and P ′ = P (L′) be the respective backward paths. If
Ti ≥ T ′i (component-by-component), any feasible extension of P ′ towards o is also a feasible extension of P
with non-smaller tour tour duration. Hence, L′ can be discarded.

3.3. Bidirectional Dynamic Programming
As mentioned before, a bidirectional labeling approach uses forward and backward labels together and

herewith allows the computation of Hamiltonian paths as concatenations of forward and backward paths.
With the above definitions of REFs and labels, feasibility testing and the computation of the objective is
straightforward. The corresponding statements are summarized in the following proposition.
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Proposition 1. Let a feasible forward path P fw = (o, . . . , i) with forward label (k, i, S, Ti) and a feasible
backward path P bw = (i, . . . , d) with backward label (k′, i, S′, T ′i ) be given. Then:

(i) The concatenation path P = P fw ⊕P bw is a feasible Hamiltonian o-d path if and only if k+ k′ = |V |,
S ∩ S′ = {i}, and T ≤ T ′ holds.

(ii) The tour duration of P = P fw ⊕ P bw is given by z = max{T duri − T ′duri , Thelpi − T
′help
i }.

Note that if the tour duration is defined by the term Thelpi −T
′help
i of the maximum, there occurs waiting

time on the path when going forward from node i to i+ 1. The amount of waiting time (when going from
node i to i+1) is defined by the difference of the right and left term of the maximum. In the Example 2, the
concatenation of the corresponding forward and backward labels is always feasible and the minimum tour
duration is always 12. The time window bounds b2 and a3 and the travel time t23 imply that there must be
waiting when going from node 2 to node 3. Hence, the tour duration at node 2 is defined by the right term
of the maximum. There exist several possible strategies to conduct bidirectional labeling, e.g., discussed by
Righini and Salani (2006) and Li (2009).

4. Upper Bounds

For the asymmetric traveling salesman problem (ATSP), Balas (1999) proposed and analyzed a family
of large-scale neighborhoods. Although, the number of neighbor solutions is exponential (in the length of
the tour), the neighborhoods can be searched efficiently by means of very large-scale neighborhood search
(VLSNS). In VLSNS, which is a variant of local search, a best neighbor solution is found by solving another
optimization problem that can be solved in (pseudo-)polynomial time. We briefly summarize the VLSNS for
the so-called Balas-Simonetti neighborhood of the ATSP, before we point out its use in the TSPTW context
originally discussed in (Balas and Simonetti, 2001).

Given an ATSP Hamiltonian path x = (x1, . . . , xn) the neighborhood N k
BS(x), for a given parameter

k ≥ 2, consists of all tours x′ = (xπ(1), . . . , xπ(n)), where π is a permutation of {1, . . . , n} that fulfills the
following conditions: For any two indices i, j ∈ {1, . . . , n} with i + k ≤ j, the inequality π(i) ≤ π(j) holds.
It means that if a node xi precedes a node xj by at least k positions, then xi must also precede xj in the
neighbor solution. Moreover, the nodes x1 and xn are typically kept fixed at positions 1 and n, respectively.

A best neighbor solution x′ ∈ N k
BS(x) can be determined by solving a shortest-path problem in an

auxiliary graph G∗k. Figure 1 shows an example of G∗k for k = 3 and a tour x = (x1, . . . , x7). The auxiliary

Figure 1: Auxiliary Graph G∗k for k = 3 for the Balas-Simonetti Neighborhood N 3
BS(x) of x = (x1, . . . , x7)

graph G∗k is well-structured and consists of n identical stages for a path x of length n− 1. The (k + 1)2k−2

states at stage i are denoted by Vi, and k(k + 1)2k−2 arcs connect the states of consecutive stages Vi and
Vi+1. Stage 1 contains the start state o, and stage n the sink state d. Every o-d-path in G∗k represents
a neighbor solution x′, and vice versa. This property results from the fact that each state s refers to a
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(restricted) permutation of the nodes around position i. In particular, for a given tour x = (x1, . . . , xn) the
state s in stage i determines the permuted node x′i = xi+α(s) at position i in the neighbor tour x′, where
α(s) is an integer number associated with state s.

Since all induced subgraphs G∗k[Vi ∪ Vi+1] are all identical, only one such copy needs to be constructed
beforehand, and only once. Herewith, the auxiliary graph G∗k is represented implicitly. Every neighborhood
search is then a shortest-path computation on this acyclic digraph G∗k requiring O (n ·k22k) time and space.
Nevertheless, the construction of the subgraphs G∗k[Vi ∪ Vi+1] is non-trivial, i.e., the rules that determine
the arc set and the values α(s) for states s ∈ Vi; details can be found in the papers (Balas and Simonetti,
2001; Simonetti and Balas, 1996).

The neighboring tour associated with the path depicted in bold in Figure 1 is x′ =
(x1+0, x2+2, x3−1, x4+1, x5−2, x6+0, x7+0) = (x1, x4, x2, x5, x3, x6, x7). Those states s that refer to posi-
tions i + α(s) < 1 or i + α(s) > n = 7 are states that cannot be reached by any o-d-path; unreachable
states are drawn with dotted lines in Figure 1. In order to ensure that any o-d-path in G∗k has a cost
identical to the cost of the implied neighbor solution x′, one has to label arc (s, s′) ∈ Vi × Vi+1 with cost
cxi+α(s),xi+1+α(s′) . For instance, the first bold arc in Figure 1 is labelled with cost cx1+0,x2+2

= cx1,x4
, the

second has cost cx2+2,x3−1
= cx4,x2

etc.
The auxiliary graph G∗k can now be used to improve a given MTDP solution x by solving a shortest-

path problem with resource constraints (SPPRC, Irnich and Desaulniers, 2005) on G∗k. The initial label
is To = (ao, 0,−b0) associated with the initial state o of G∗k. When propagating resources from a state s
at stage i to another state s′ at stage i + 1, we use the REF fi+α(s),i+1+α(s′) as defined by (2) and check
the resource consumption at node xi+1+α(s′) using the resource bounds (1). Note that it is not necessary
to keep track of the last node, the stage, and visited nodes (in the DP recorded by i, k and S) because the
auxiliary network G∗k ensures by construction that o-d paths are elementary whenever the input tour x was
elementary. If an improving MTDP tour is found, x is replaced by the new tour and the process is iterated.

This is a local search procedure using the neighborhood N k
BS(x). One can start the local search even

with an elementary tour that is not resource feasible. If its neighborhood contains at least one resource
feasible tour, the search can be continued.

5. Relaxations

We now describe DP relaxations for the MTDP, which can be used to compute lower bounds for the
exact DP. We classify the relaxations into two groups: The first group relaxes elementary and the second
relaxes resource feasibility. All presented relaxations can be used in the forward and backward DP in the
same manner as in the exact DPs. Furthermore, a relaxed backward DP provides bounds (leading to another
bounding procedure to be used in Step 8 of Algorithm 1) for the forward DP, and vice versa.

5.1. Relaxing Elementary
The ng-tour relaxations were first introduced by Baldacci et al. (2011a) for the VRP, and the ngL-tour

relaxations were presented for the TSPTW by Baldacci et al. (2011b). Both are families of relaxations
(parameterized) and allow some non-elementary tours. For the MTDP, an ng-tour requires the existence of
a feasible schedule. We adapt the ng-tour relaxation for computing a least-duration ng-tour from o to d of
length n+ 1. Clearly, if the computed tour is elementary it constitutes an optimal solution to the MTDP.

A specific ng-tour relaxation requires the definition of sets Ni ⊆ V with i ∈ Ni, one for each node i ∈ V .
A forward ng-path P = (o, ..., i) is a non-necessary elementary path starting at node o and ending at node
i and all nodes are visited within their time window. P defines a forward ng-label (k, i, Sng, Ti), where k
is the path length and Sng is a (generally proper) subset of the visited nodes. The vector T contains the
same resources as in the exact formulation, and the same resource windows and REFs for the resources are
used as in the exact DP. The key point of this relaxations is the update of the set Sng, which differs from
the set S in the exact formulation: Forward propagation of a label (i, k, Sng, Ti) along an arc (i, j) ∈ A, i.e.,
towards node j, produces the new label (j, k + 1, S′ng, Tj), where Tj = fij(Ti) and S′ng = (Sng ∪ {j}) ∩Nj .
The interpretation is that the new label forgets the visited nodes that are not in the set Nj so that cycles
become possible. For the sake of simplicity, we skip the index ng and write S instead of Sng in the following.
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The propagation criteria and fathoming rules need to be altered also: The label (k, i, S, T ) can be
propagated to a node j, if the arc (i, j) exists, j /∈ S, T timei < LDT (i, j), and k > |π(j)|. The first two
criteria are identical to the exact DP. The third criterion replaces the feasibility Rule 1, which is generally
invalid for ng-tours. The fourth stipulates that at least |π(j)| nodes must precede the node j. Note that we
cannot require π(j) ⊆ S (as in the exact case) because in the ng-tour relaxation all nodes π(j) may have
been visited already even if π(j) 6⊆ S.

Next, we consider the fathoming rules for eliminating labels: An ng-label dominates another ng-label if
it consumes less resources and it has more options to be propagated. For the MTDP, it means:

Rule ng 1. (ng-Domination)
Let L = (k, i, S, T ) and L′ = (k, i, S′, T ′) two ng-labels with identical path length k, S ⊆ S′ and the identical
last node i. Let P = P (L) and P ′ = P (L′) be the respective paths. If Ti ≤ T ′i (component-by-component),
any feasible extension of P ′ towards d is also a feasible extension of P with non-smaller tour duration.
Hence, L′ can be discarded.

Note that Rule 2 for bounding remains applicable as in the exact DP. However, additional bounding
possibilities arise when a weaker relaxation provides bounds for the relaxation under consideration. Related
aspects are discussed in Section 5.4.

The ngL-tour relaxation is a restriction of the ng-tour relaxation. In addition to the requirements for
ng-tours, it guarantees that a specific subset of nodes is visited once and only once in a given order. Such a
sequence of nodes results from the preprocessing phase, e.g., by the determination of a chain of precedences
(v0, v1, v2, . . . , vp) with maximum length p. Moreover, we also determine those nodes Vi ⊂ V , which can be
visited between each two consecutive nodes v` and v`+1 of the chain. Step 4 in Algorithm 1 then loops over
all j ∈ V`, j /∈ S if the partial path defining the label (k, i, S, Ti) has already visited the node v`, but not the
node v`+1. For a more detailed description, we refer to (Baldacci et al., 2011a).

The quality of the lower bound computed by the ng-tour and ngL-tour relaxations strongly depends
on the choice of the sets Ni. Clearly, larger neighborhoods produce tighter lower bounds, but they also
increase the computation time of the relaxed DP. Therefore, we limit the number of neighbors of a node
by a constant ∆. We use two methods to determine promising neighborhoods: The first method simply
fills the neighborhood Ni of node i with the ∆-nearest nodes which are reachable from i and from which i
is reachable. The second method is based on a dynamical augmentation of the ng or ngL neighborhoods,
which was applied for the capacitated arc-routing problem by Bode and Irnich (2013) and for the delivery
man problem by Roberti and Mingozzi (2013). We start with a small or empty neighborhood (Ni)i∈V and
solve the corresponding relaxed DP. If a node i is visited more than once in the optimal ng-tour computed,
we add this node to the neighborhood of all nodes, which occurs in the cycle(s) containing node i. We
formalize this procedure in Algorithm 2.

Algorithm 2: Dynamic Augmentation of ng Neighborhoods
1 for i ∈ V do Set Ni := {i}
2 repeat
3 Solve the relaxed DP with neighborhoods (Ni)i∈V ; let P be the resulting ng-tour
4 Detect all cycles Cj for nodes j ∈ V visited more than once in P
5 Set C := {(j, Cj) : |N`| < ∆ for all ` ∈ Cj}
6 Select a vertex disjoint subset of C′ ⊆ C of cycles
7 for (j, Cj) ∈ C′ and ` ∈ Cj do
8 Set N` := N` ∪ {j}
9 until C = ∅

Result: The neighborhoods (Ni)i∈V
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5.2. Relaxing Resource Feasibility
In this section, we present two new relaxations for the MTDP, the 2res and the 1res relaxation. The

2res relaxation relaxes the resource feasibility of a tour by omitting the resource T timei . A path (o, .., i)
defines a 2res-label (k, i, S, Ti), where the vector Ti only contains the two interdependent resources T duri

and Thelpi . As before, k is the path length, i the last visited node, and S the set of all visited nodes. We
can use the same propagation criteria as in the exact DP (Step 4 of Algorithm 1), but the fathoming rules
must be altered. The feasibility Rule 1 is not applicable because we do not keep track of the resource T timei .
Instead, we use the following weaker feasibility rule:

Rule 2res 1. (2res-Feasibility)
A label (k, i, S, Ti) cannot lead to a feasible solution, if there exists a node j ∈ V \ S with ao + T duri >
LDT (i, j). Hence, such a label can be discarded.

This rule estimates the tour duration to node j by supposing that its starting time would be the earliest
possible time ao and no time windows would imply waiting. The bounding Rule 2 and the dominance Rule 3
are applicable as in the exact case.

The 1res relaxation relaxes the 2res relaxation. The resource Thelpi is fixed to its smallest possible
value−bo. A path (o, .., i) defines a 1res-label (k, i, S, T duri ), where k is the path length, i the last visited node,
S the set of all visited nodes, and T duri is a lower bound of the path duration. The label propagation considers
only the single resource T duri , so that (2b) reduces to T durj := fdurij ((k, i, S, Ti)) := max{T duri + tij , aj − bo}.
We can apply the same propagation criteria and fathoming rules as for the 2res relaxation.

5.3. Combined Relaxations
The 1res or 2res relaxations can be combined with the ng-tour or ngL-tour relaxations. We can use

the propagation and dominance rules as in the ng-tour relaxation except for the feasibility criterion that is
based on the resource T timei . Instead, we forbid to propagate a combined label (k, i, S, Ti) (with Ti = T duri

or Ti = (T duri , Thelpi )) to a node j if ao +T duri > LDT (i, j). Figure 2 shows the hierarchy of the relaxations,
in which one relaxation stands below another if the latter is a proper relaxation of the first.

MTDP

ngL 2res

ng ngL
.2res

1res

non-elem.
ng

.2res
ngL
.1res

non-elem.
2res

ng
.1res

non-elem.
1res

re
lax

ele
me
nt
ar
ity

relax
resources

Figure 2: Hierarchy of the MTDP Relaxations. Shaded boxes are families of relaxations.

5.4. Relaxation-based Bounding
In this section, we adapt the bounding procedure introduced by Christofides et al. (1981) for the MCTP,

and later applied by Baldacci et al. (2011b) for the TSPTW. As shown in Proposition 1, the concatenation
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of a forward and a backward path, given by a forward and a backward label, can easily be checked regarding
feasibility. The duration of the resulting tour can be computed in constant time.

Instead of concatenating two exact labels, we can concatenate an exact and a label from a relaxation or
even two relaxed labels to obtain a non-necessarily feasible TSPTW tour. Let a forward label (k, i, S, Ti)
be given. The set of backward labels at stage k′ = |V | − k, either exact or from a relaxation, is denoted
by Lbwk′ . The following lower bound on the tour duration of the concatenation is a direct consequence of
Proposition 1:

lbdur(k, i, S, Ti) := min
(k′,i,S′,T ′

i
)∈Lbw

k′
:

k′=|V |−k,S∩S′={i},Ti≤T ′i

max
{
T duri − T ′duri , Thelpi − T ′helpi

}
(4)

Note that the part (i) of Proposition 1 provides the preconditions k + k′ = |V |, S ∩ S′ = {i}, and Ti ≤ T ′i
for forming a feasible TSPTW tour, while part (ii) identifies the term max{T duri − T ′duri , Thelpi − T ′helpi }
providing the tour duration of the concatenation. The following modifications have to be made if the forward
label (k, i, S, Ti) or the backward labels (k′, i, S′, T ′i ) result from a relaxation:

• ng, ngL: S and/or S′ have to be replaced by Sng and/or S′ng.

• 2res: Ti ≤ T ′i has to be replaced by (T duri , Thelpi ) ≤ (T ′
dur
i , T ′

help
i ).

• 1res: Ti ≤ T ′i has to be replaced by T duri ≤ T ′duri and there is no second term in the maximum.

For combined relaxations (see Section 5.3), all of the associated modifications apply. Now we can define a
bounding rule:

Rule 4. (Bounding)
Let UB be an upper bound for the MTDP and lbdur(k, i, S, Ti) be defined as in equation (4). Any label
(k, i, S, Ti) with lbdur(k, i, S, Ti) ≥ UB cannot lead to an improved solution and can be discarded.

The role of forward and backward labels can be swapped, i.e., a single backward label (k′, i, S′, T ′i ) is
given and all compatible forward labels from a relaxation provide the lower bound lbdur(k′, i, S′, T ′i ). We
leave the obvious formulation of the corresponding equation and bounding rule to the reader.

A final remark concerns Algorithm 2 for the dynamic neighborhood augmentation, i.e., for finding ef-
fective neighborhoods (Ni)i∈V for the ng- and ngL-tour relaxations. If we alternate between forward and
backward DP, every time Step 2 of Algorithm 2 is executed, we can use the labels from the last iteration for
bounding in the current iteration. Indeed, if the last iteration was a backward (forward) DP, its labels refer
to a proper relaxation of the current forward (backward) DP. This trick drastically reduces the computation
for the iterated solution of the DPs, see Section 7.

6. Improving Bounds

Also the penalty method was first applied by Christofides et al. (1981) for solving the MCTP and was later
used by Baldacci et al. (2011b) for the TSPTW. Its purpose is to further improve lower bounds resulting
from relaxations that relax elementarity. We will briefly point out specifics of the penalty method when
applied to (combined) ng-tour or ngL-tour relaxation for the MTDP.

Let V ′ = V \ {o, d} and H be the set of all tours generated by a given relaxation. By dk we denote the
minimum duration of the tour k ∈ H and by δik the number of times an ng-tour k ∈ H visits node i ∈ V ′.

The penalty method uses penalties λi associated with each node i ∈ V ′ in order to modify the objective
value of non-elementary tours. For ease of notation, we define λo = λd := 0 and Λ :=

∑
i∈V λi. The objective

of the MTDP is tour duration minimization so that we modify the REFs fdurij and fhelpij by subtracting the
penalty λj . To be consistent, the resource windows defined by (1) need to be redefined as T duro ∈ [0,∞),
T duri ∈ (−∞,∞) for i ∈ V ′, T durd ∈ (−∞, UB−Λ] and Thelpi ∈ (−∞,∞) for i ∈ V \{o}. The resource bounds
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Thelpo ∈ [−bo,∞) remain unchanged. The altered tour duration of any tour k ∈ H is then dk −
∑
i∈V δikλi,

which is a modification by Λ for all elementary tours. For a given penalty vector λ ∈ R|V |, the value

lb(λ) := min
k∈H
{ck −

∑
i∈V

δikλi + Λ}

is a valid lower bound for the MTDP. The following Lagrangian dual problem can be solved to find a tight
lower bound:

(LD) zLD := max{lb(λ) : λ ∈ R|V |}

We use subgradient optimization and column generation to solve problem (LD): The standard subgradient
algorithm, presented as Algorithm 5 in Section A.2 of the Appendix is run for maxiter iterations.

The column-generation algorithm for the TSPTW was suggested by Baldacci et al. (2011b). The linear
relaxation of the master program is the following problem:

min
∑
k∈H

dkyk (5a)

s.t.
∑
k∈H

δikyk = 1 for all i ∈ V ′ (5b)∑
k∈H

yk = 1 (5c)

yk ≥ 0 for all k ∈ H (5d)

Problem (5) provides an identical bound as (LD) and can be solved by column generation (see Desaulniers
et al., 2005; Lübbecke and Desrosiers, 2005) using a restricted master program (RMP), which is the restricted
version of (5) containing only the tours found in the subgradient optimization and the tour producing the
upper bound UB, see Section 4. Let λ′i be the dual price of the constraints (5b) of the RMP and let λ′d be the
dual price to the convexity constraint (5c). Moreover, we define λ′o := 0. The column-generation algorithm
alternates between the LP re-optimization of the RMP and the column-generation pricing problem that adds
additional variables (=columns) to the RMP. The pricing problem asks for a tour with negative reduced cost
(=tour duration) dk−

∑
i∈V δikλ

′
i. This requires the solution of the same (relaxed) DP as in the subgradient

optimization, but with λ replaced by λ′, and Λ replaced by Λ′ :=
∑
i∈V λ

′
i. The same bounding possibilities

as discussed in Section 5.4 remain applicable. This includes the use of the lower bounds lb(k, i, S, Ti) (see
equation (4)), to which Λ′ has to be added at the end. The only crucial point is that REFs and resource
bounds need to be altered as described at the beginning of this section.

7. Computational Results

This section presents the computational results of the DP-based solution approaches for the MTDP. All
computations were performed on a standard PC with an Intel(R) Core(TM) i7-2600 at 3.4 GHz processor
with 16 GB of main memory. Algorithms were coded in C++ and compiled in release mode with MS-
Visual Studio 2010. The callable library of CPLEX 12.5 was used to iteratively re-optimize the RMP in
the column-generation algorithm of Section 7.4. We tested our algorithm on the instances of Potvin and
Bengio (1996), Gendreau et al. (1998), Ohlmann and Thomas (2007), and Ascheuer (1995). The first three
sets can be obtained from http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm. These three
classes feature instances with x-y coordinates. Travel times are first computed as truncated integer Euclidean
distances and then modified to satisfy the triangle inequality. The Potvin+Bengio benchmark set contains
30 instances with up to 46 nodes. The instances of the Gendreau benchmark consist of 120 instances divided
in 24 subgroups of five instances each. The five instances within the same group have an identical number
of nodes (between 21 and 101) and comparable time window widths (ranging from 100 to 200). Since the
Gendreau instances have large variations in size, we divided them into two groups. Gendreau large includes
45 instances with more than 80 nodes, and Gendreau small the 75 smaller instances. The Ohlmann+Thomas
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benchmark extend the Gendreau benchmark regarding an increasing number of nodes (between 150 or 200)
and time windows widths (from 120 to 160).

The Ascheuer benchmark set is available at http://ftp.zib.de/pub/mp-testdata/tsp/atsptw/index.
html and consists of 50 asymmetric TSPTW instances with up to 233 nodes. Travel times are integer and
satisfy the triangle inequality. As in Dash et al. (2012), we divide this class into 32 easy instances and
18 hard instances.

Before we apply our DP algorithms, we preprocess the instances according to Section 3. Note that we
set ad = 0 (earliest service at the destination) before preprocessing so that the tour duration can vary due
to different arrival times at the destination. Furthermore, the Ascheuer instances are originally constrained
by the origin time window [ao, bo] = [0, 0], which we enlarge to [0, 1000].

7.1. Computation of Upper Bounds
Since local search times become longer with increasing values of k for the Balas-Simonetti neighborhoods

N k
BS , we iterate the local search in a variable neighborhood descent (VND) heuristic, where we use the values

with k = 7, 9, 11, and 13. As an initial tour we use the known optimal solutions to the TSPTW or the
MCTP, which can be obtained at http://iridia.ulb.ac.be/~manuel/tsptw-instances. Table 1 shows
the aggregated results over each group of instances. The column improved reports the number of times the
initial solution value has been improved, the column #OPT shows the number of times an optimal solution
was computed (if an optimum is known). The maximum and average GAP is reported in the next two
columns. The last three columns give the minimum, maximum, and average solution time.

The VND improves the objective value of the input tour for nearly all instances except for the benchmark
by Ascheuer, in which the VND improves approximately half of the known solutions. Furthermore, for
instances with a known optimal solution value (computed by us, see Section 7.4), the VND returns an
optimal solution in approximately 80% of the cases. Note that the GAP is calculated only for those instances
for which an optimal solution is known.

GAP [%] Time [s]
Instances improved #OPT max ø min max ø
Potvin+Bengio 27/30 17/28 7.4 1.0 0.1 7.7 1.1
Ascheuer easy 13/32 27/32 0.1 0.1 0.1 2.4 0.5
Ascheuer hard 11/18 17/18 1.1 0.1 0.9 8.3 3.2
Gendreau small 73/75 58/72 12.3 0.5 0.2 6.1 1.8
Gendreau large 44/45 30/32 3.5 0.1 1.3 16.5 6.6
Ohlmann+Thomas 25/25 1/1 0.0 0.0 10.8 105.5 35.9

Overall 193/225 151/183

Table 1: Aggregated Results for Upper Bounds computed with the Balas-Simonetti Neighborhood

7.2. Comparison of the Relaxations
Now we compare the different relaxations introduced in Section 5 regarding their computation times

and lower bounds. In pre-tests we found that the ngL-tour relaxations almost always outperform the
corresponding ng-tour relaxations. Therefore, we limit our study to the 2res, 1res, ngL, ngL.2res, and
ngL.1res relaxations. Recall that the last three relaxations are parameterized with neighborhoods (Ni)i∈V
and a sequence of nodes in precedence. For the comparison, we use a priori generated neighborhoods Ni
with the ∆ = 10 closest neighbors to node i. The next section analyzes the impact of varying sizes and
generation methods of the neighborhoods. The node sequence in precedence is arbitrarily chosen as a longest
path in the precedence graph.

We set a hard time limit of 600 seconds for the computation of the lower bound as well as for the
computation of the exact DP. The relaxation uses a forward DP, while the exact DP is computed backwards
so that the relaxation provides valid bounds according to (4). Table 2 shows the aggregated results for all
relaxations and the different benchmark sets. Column #LB displays the number of times a lower bound
is computed, i.e., the relaxation is solved within the time limit. The next columns show the average and
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maximum GAP between the computed lower bound and the best known solution, followed by the average
and maximum time. Column #SOL gives the number of times the exact DP was solved, and the following
two columns report the average and maximum time for this step. The last two columns show the overall
solution time for each instance on average and the maximum. In order to provide a fair comparison, the
maximum and average gaps and times are taken only over those instances for which bounds were computed
by all relaxations. Similarly, the times for solving the exact DP and the total time include only those
instances solved by all five variants. We briefly summarize the results: The 2res and 1res relaxations need

#LB GAP [%] Time LB [s] #SOL Time exact [s] Time all [s]
Instances Relaxation ø max ø max ø max ø max

2res 18 0.9 5.9 77.2 556.0 18 0.1 1.3 77.2 556.0
Potvin 1res 19 3.6 9.7 23.6 289.7 19 0.1 1.4 23.7 289.7
+Bengio ngL 21 1.7 9.4 13.5 186.2 21 0.5 4.5 14.0 188.7
(n = 30) ngL.2res 30 2.4 13.4 0.2 1.3 21 1.2 15.2 1.4 16.4

ngL.1res 30 6.0 19.1 0.1 0.3 21 2.0 27.4 2.1 27.7
2res 26 0.0 0.4 1.2 22.8 26 0.0 0.0 1.2 22.8

Ascheuer 1res 27 0.9 6.9 1.0 18.3 27 0.3 6.1 1.1 18.3
easy ngL 32 3.1 30.3 0.2 2.4 28 1.9 27.7 2.1 27.8

(n = 32) ngL.2res 32 3.1 30.3 0.1 0.7 28 2.0 28.0 2.1 28.0
ngL.1res 32 4.1 30.3 0.1 0.9 27 7.9 111.6 8.5 111.7
2res 10 0.0 0.1 43.5 248.9 10 0.0 0.0 43.5 248.9

Ascheuer 1res 10 1.1 6.7 34.4 233.6 10 4.2 13.9 38.6 245.0
hard ngL 18 1.0 5.9 7.5 41.0 14 3.1 10.4 10.7 41.4
(n = 18) ngL.2res 18 1.0 6.0 1.3 4.0 13 3.4 12.0 4.8 15.7

ngL.1res 18 1.7 12.5 1.5 4.0 13 3.9 13.1 5.4 15.0
2res 37 0.2 3.4 26.7 335.7 37 0.0 0.2 26.7 335.7

Gendreau 1res 42 2.5 8.6 12.5 239.7 42 0.1 2.4 12.6 242.1
small ngL 67 7.9 21.8 13.0 95.4 52 2.8 95.1 15.7 138.3
(n = 75) ngL.2res 75 8.8 24.9 0.6 2.7 54 2.5 86.7 3.1 89.5

ngL.1res 75 12.8 27.9 0.3 0.9 52 4.2 147.9 4.5 148.9
2res 2 0.0 0.0 317.2 483.1 2 0.0 0.0 317.2 483.1

Gendreau 1res 2 0.0 0.0 243.6 359.7 2 21.8 35.4 265.4 395.1
large ngL 19 0.0 0.0 6.6 12.5 8 66.7 88.3 73.3 89.0
(n = 45) ngL.2res 45 0.0 0.0 1.2 1.8 9 70.1 95.4 71.3 95.9

ngL.1res 45 0.0 0.0 1.4 1.5 7 161.3 223.4 162.7 224.8
Ohlmann ngL.2res 25 4.3 14.7 94.1 369.0 1 0.1 0.1 52.5 52.5
+Thomas ngL.1res 25 4.3 14.7 12.5 23.7 1 0.1 0.1 13.7 13.7
(n = 25)

2res 93 0.3 5.9 37.4 556.0 93 0.0 1.3 37.8 556.0
Overall 1res 100 2.1 9.7 18.7 359.7 100 1.1 35.4 20.0 395.1
(n = 225) ngL 157 4.4 30.3 8.8 186.2 123 3.5 95.1 12.4 188.7

ngL.2res 225 4.9 30.3 0.5 4.0 125 3.7 95.4 4.2 95.9
ngL.1res 225 7.6 30.3 0.4 4.0 120 8.2 223.4 8.7 224.8

Table 2: Aggregated Results for Different Relaxations

much computation time and, therefore, they solve the fewest relaxations. If they are able to compute lower
bounds, however, the exact DP is always solved. In comparison, these two relaxations are too slow and
therefore not beneficial.

The ngL.2res and ngL.1res relaxations are able to solve the relaxations on all problem instances and
need comparably small time to terminate. When using the ngL-tour relaxation, its time is on average
approximately 20 times higher compared to the ngL.2res and ngL.1res relaxations. Moreover, none of the
three relaxations 2res, 1res, and ngL is able to compute a lower bound for the Ohlmann+Thomas instances.
Consequently, rows for these relaxations are omitted in Table 2.

Comparing ngL with ngL.2res, gaps are slightly in favor of the ngL-tour relaxation. However, the exact
DP in combination with the ngL.2res relaxation is able to solve the largest number of instances to optimality,
126 out of 225, which is three more than with the ngL-tour relaxation. Also the overall computation times
(relaxation plus exact DP) are in favor of the ngL.2res relaxation. Therefore, the ngL.2res relaxation seems
to be the best compromise.
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7.3. Comparison of ngL Neighborhood Sizes
Next, we analyze the impact of different neighborhoods (Ni)i∈V for the ngL.2res relaxations. Recall

from Section 5.1 that the neighborhoods can either be generated a priori (static version) or be generated
using Algorithm 2 (dynamic version). We compare the different maximal sizes of the neighborhoods given by
∆ = 8, 10, 12, and 14. Pre-tests have shown that smaller or larger sizes are not beneficial (in a stand-alone
algorithm not using a penalty method) because either the lower bounds are to weak or the computation
times are too large. As in the previous analysis, we set a hard time limit of 600 seconds for the computation
of the relaxation as well as for the exact DP.

GAP [%] Time LB [s] Time Exact [s]
ngL.2res #LB #SOL ø max ø max ø max
with S D S D S D S D S D S D S D S D
Potvin+Bengio instances (n=30)
∆ = 8 30 30 22 22 6.1 5.2 21.9 20.5 0.7 1.9 9.4 10.5 5.7 5.3 96.8 94.5
∆ = 10 30 30 22 22 5.3 4.3 20.0 17.2 1.8 5.9 17.7 42.9 4.7 4.4 81.3 80.9
∆ = 12 30 30 22 22 4.9 3.7 19.6 16.0 4.7 20.9 39.2 127.1 3.9 3.6 66.6 65.3
∆ = 14 30 28 22 22 4.7 3.3 19.6 15.5 26.6 69.4 482.7 496.1 3.1 2.7 50.8 46.8
easy Ascheuer instances (n=32)
∆ = 8 32 32 27 27 3.1 1.6 34.2 15.0 0.1 1.1 0.1 10.6 2.6 0.4 35.4 3.9
∆ = 10 32 32 27 27 2.8 2.5 30.3 25.9 0.1 1.1 0.4 1.7 1.9 0.2 28.2 2.0
∆ = 12 32 32 27 28 2.6 1.9 29.5 21.8 0.2 1.1 1.6 5.0 0.5 0.2 6.3 1.8
∆ = 14 32 32 27 28 1.6 1.1 15.0 9.3 1.1 2.9 10.6 18.1 0.4 0.1 3.9 1.8
hard Ascheuer instances (n=18)
∆ = 8 18 18 13 14 1.4 1.2 7.0 4.9 0.3 2.5 0.7 9.3 2.8 1.6 12.8 8.4
∆ = 10 18 18 13 14 1.3 1.1 6.0 4.9 0.8 7.2 2.0 25.2 2.8 1.5 12.8 8.3
∆ = 12 18 18 13 14 1.2 1.0 5.6 4.9 2.7 21.4 8.3 92.4 2.8 1.5 12.7 8.2
∆ = 14 18 18 13 14 1.1 1.0 4.9 4.9 9.7 91.5 33.0 351.8 2.7 1.4 12.7 8.1
Gendreau small instances (n=75)
∆ = 8 75 75 51 54 10.5 9.2 29.4 27.7 0.7 3.0 4.5 16.6 21.3 13.9 149.8 113.3
∆ = 10 75 75 53 54 9.7 8.1 28.3 27.1 1.6 9.5 8.3 78.0 14.3 12.6 112.4 106.7
∆ = 12 75 75 54 55 8.8 7.2 28.3 27.1 4.0 34.0 24.2 273.5 13.1 10.8 102.2 90.2
∆ = 14 75 74 55 55 8.2 6.5 27.1 25.9 11.9 96.6 88.9 598.0 12.7 10.4 101.9 89.4
Gendreau large instances (n=45)
∆ = 8 45 45 8 9 4.6 4.6 21.8 21.8 2.1 11.6 8.8 42.8 14.4 2.8 58.6 22.7
∆ = 10 45 45 9 9 4.6 4.6 21.8 21.8 5.0 35.2 16.7 136.8 13.0 2.8 54.8 22.6
∆ = 12 45 43 10 10 4.6 4.6 21.8 21.8 14.0 100.5 52.7 327.0 12.5 2.7 54.5 21.8
∆ = 14 45 37 10 10 4.6 4.6 21.8 21.8 38.9 241.8 148.4 596.3 12.3 2.7 54.3 21.3
Ohlmann+Thomas instances (n=25)
∆ = 8 25 23 1 1 0.3 0.3 0.5 0.5 17.4 19.4 21.1 34.6 0.1 0.1 0.1 0.1
∆ = 10 25 16 1 1 0.3 0.3 0.5 0.5 40.7 35.7 52.5 67.1 0.1 0.1 0.1 0.1
∆ = 12 24 8 1 1 0.3 0.3 0.5 0.5 106.5 237.4 125.4 470.1 0.1 0.1 0.1 0.1
∆ = 14 16 2 1 1 0.3 0.3 0.5 0.5 336.1 237.4 345.0 470.1 0.1 0.1 0.1 0.1
Overall (n=225)
∆ = 8 200 200 122 127 4.8 4.1 0.6 27.7 0.6 2.7 9.4 42.8 5.9 3.5 149.8 113.3
∆ = 10 200 200 125 128 4.3 3.5 1.4 27.1 1.4 8.1 17.7 136.8 4.5 3.1 112.4 106.7
∆ = 12 200 198 127 130 4.0 3.0 3.8 27.1 3.8 25.3 52.7 326.9 3.8 2.7 102.2 90.2
∆ = 14 200 189 128 130 3.6 2.7 14.7 25.9 14.7 78.2 482.8 598.0 3.4 2.3 101.9 89.4

Table 3: Aggregated Results comparing different ngL Neighborhoods

Table 3 shows the aggregated results for the different parametrization. Herein, S denotes the static
generation of the neighborhood and D the dynamic augmentation. The first column #LB denotes the
number of times the respective relaxation was solved, followed by the number #SOL of times the exact DP
was solved. The next columns report the average and maximal GAP, the average and maximum time to
compute lower bounds and the average and maximum time to solve the exact DP. As before, to ensure a
fair comparison, the average and maximum gaps refer to those instances that were solved by all methods.
Similarly, the reported times for the exact DP refer to the instances solved to optimality by all variants.

Clearly, a larger ∆ requires more computation time for the relaxation leading to generally smaller gaps
and, in turn, smaller times for the exact DP. The static neighborhood generation needs less time than the
dynamic version because in the latter case more relaxed DPs have to be solved. On the other hand, the

16



dynamic neighborhood augmentation provides smaller gaps, more solutions and better solution times for
the exact DP. For a few instances, the static approach solves the exact DP faster than the dynamic one.
In these cases, the time windows impose a minimum for the lower bound of the MTDP. Since the dynamic
neighborhood augmentation does not necessarily fill all neighborhoods (Ni)i∈V to the maximum size ∆
opposed to the static augmentation, the latter may provide better lower bounds.

7.4. Results of the Column-Generation Algorithm and Exact Dynamic Program
In this section, we report results of the column-generation algorithm (see Section 6) and the successive

application of the exact DP. Recall that the column-generation method provides optimal penalties (λ∗i )i∈V .
Both the lower bound LB and the solution help solving the exact DP faster: On the one hand, the solution
of each pricing problem provides a lower bound LB for the MTDP, and this bound may suffice to close the
gap to the upper bound computed with the VND (see Section 4). On the other hand, the solution itself,
i.e., the labels produced by the ngL.2res relaxation can be exploited for bounding using the bounds (4).
We describe the overall approach in Algorithm 3.

Algorithm 3: Overall Algorithm
1 CALL preprocessing // → (A, π(i), σ(j), EATij , LDTij , [ai, bi])
2 CALL VND with Balas-Simonetti neighborhoods // → (UB,P ∗)
3 COMPUTE static ngL.2res neighborhoods (Ni)i∈V of size ∆1 = 3 // → (Ni)
4 CALL subgradient method with maxiter = 10 // → (LB, λ∗i , ngL tours)
5 CALL column-generation algorithm // → (LB, λ∗i )
6 CALL dynamic augmentation of neighborhoods with penalties (λ∗i )i∈V and ∆2 = 14 // → (LB,Ni)
7 while LB < UB do
8 SET B = min{d1.01 · LBe, UB}
9 CALL exact DP with upper bound B; bounding with labels of Step 6 // → (UB,P ∗ or failed)

10 if DP failed then SET LB = B + 1

Result: optimal MTDP tour P ∗ with minimum tour duration UB

The results of the last two subsections suggest the ngL.2res relaxation to be used in the subgradient and
the column-generation algorithms as well as the dynamic augmentation of the neighborhoods (Steps 4, 5,
and 6). Pre-tests have shown that with small-sized neighborhoods Ni a significantly higher number of
column-generation iterations is possible. Herewith, lower bounds generally improve more due to good
penalties compared to larger-sized neighborhoods. We have obtained the best results with a neighborhood
size of ∆1 = 3 (Step 3). To improve the bounds of this relaxed DP, we augment the neighborhood dynamically
(Algorithm 2 called in Step 6) after good penalties are found up to a neighborhood size of ∆2 = 14.

Furthermore, preliminary tests revealed that the running time of the exact DP is strongly impacted by
the quality of the upper bound UB: A relatively weak upper bound causes that bounding procedures almost
always to fail so that the DP algorithm will not terminate (or terminate with an ‘out of memory’ message)
due to an enormous set of labels that has to be generated and stored. Therefore, it is computationally
advantageous to try tentative upper bounds B whenever the gap UB − LB is relatively large. The loop
(Steps 8–10), iteratively tries to increase the tentative upper bounds B, where the gap between B and LB
never exceeds 1% (plus 1). When the exact DP is called with a tight upper bound, more labels can be
bounded and the computation time is reduced. If a tentative bound is too small, the DP will fail in the
sense that no ngL.2res tour is computed. In this case, however, one knows that the tentative upper bound
is in fact a lower bound (Step 10). We set a hard time limit of one hour for the computation of the lower
bounds by the column-generation algorithm as well as for the dynamic neighborhood augmentation and the
computation of the exact DP.

For the ease of presentation, Algorithm 3 does not detail all possible termination points. Indeed, if any
of the relaxed DPs terminates with a solution that is an elementary tour with a feasible schedule, this tour
constitutes an optimal solution to the MTDP. Therefore, we perform this kind of check in Steps 4, 5, and 6.
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Moreover, if the rounded up value of any lower bound equals UB (computed by the subgradient or column-
generation algorithm or Algorithm 2), the tour that has produced UB is optimal. Hence, Algorithm 3 is
stopped whenever this happens for a valid upper bound UB (not for tentative upper bounds B).

Tables 4–6 show the results of Algorithm 3 aggregated over each instance group. Results for the
Ohlmann+Thomas instances are left out, since Algorithm 3 did not solve additional instances compared
to Section 7.3. In each table, n denotes the number of remaining instances to be solved. In turn, #SOL
denotes the number of instances solved to optimality. The average and maximum gap as well as the average
and maximum solution time are reported for each of the Steps 5, 6, and 9 of Algorithm 3.

Table 4 shows the results of Algorithm 3 up to Step 5. The column-generation penalty method is able to
solve 108 of the 200 instances. Results for the remaining 92 instances are then presented in Table 5, where
additionally the dynamic neighborhood augmentation procedure (Algorithm 2) is applied making use of the
best penalties (λ∗i )i∈V computed before. Another 25 instances are now solved so that for the remaining
67 instances the exact DP algorithm is invoked (Steps 8–10). The results of these final computations are
summarized in Table 6. Another 46 instances are solved by the exact DP. In summary, the overall algorithm
is able to solve 179 out of 200 instances.

GAP [%] Time [s]
Instances n #SOL ø max ø max
Potvin+Bengio 30 8 2.9 15.1 120.4 1943.3
Ascheuer easy 32 20 0.1 0.4 3.6 70.6
Ascheuer hard 18 16 0.1 0.4 137.4 625.5
Gendreau small 75 41 0.8 7.1 283.4 3308.1
Gendreau large 45 23 0.5 4.6 1921.0 3600.0

Overall 200 108 0.9 15.1 582.5 3600.0

Table 4: Aggregated Results of the Overall Algorithm for all Instances

We now highlight some of the results visible in the tables: For the column-generation algorithm, the
average GAP over all instances is smaller than one percent and the average solution time is smaller than
ten minutes. The neighborhood augmentation procedure further reduces the average GAP of the remaining
instances by 0.4 percent. Notably, computation times of this step are generally smaller than those for the
column-generation method. Recall that alternating between forward and backward DP using bounds from
the preceding iteration is possible for the neighborhood augmentation, but not for the column-generation
algorithm due to the iterative modification of penalties in this case.

Moreover, the computation times of the neighborhood augmentation algorithm strongly depend on the
size of the instance: For the large instances from the Gendreau large group (comprising 81 and 101 nodes)
much more computation time is needed than for the other groups.

Column Generation Dyn. ng neighb. augment.
GAP [%] Time [s] GAP [%] Time [s]

Instances n ø max ø max #SOL ø max ø max
Potvin+Bengio 22 3.9 15.1 136.8 1943.3 4 3.5 15.1 17.9 100.7
Ascheuer easy 12 0.1 0.4 1.2 3.5 2 0.1 0.4 0.2 0.7
Ascheuer hard 2 0.2 0.4 313.8 598.6 1 0.1 0.4 68.9 135.8
Gendreau small 34 1.6 7.1 310.3 3308.1 16 0.9 7.1 60.5 573.9
Gendreau large 22 0.9 4.6 2553.3 3600.0 2 0.8 4.6 872.8 2934.9

Overall 92 1.8 15.1 764.9 3600.0 25 1.4 15.1 236.9 2934.9

Table 5: Aggregated Results of the Overall Algorithm for Instances not solved by Step 5

Finally, detailed results for every instance showing bounds, gaps, and computation times of the different
solution procedures included in Algorithm 3 are listed in Section B of the Appendix. An interesting detail
in these results is that for only three instances the solution time of the exact DP exceeds four minutes. We
can conclude that either an instance can be solved fast by the exact DP, or the solution time may easily
exceed one hour.
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Column Generation Dyn. ng neighb. augment. Exact DP
GAP [%] Time [s] GAP [%] Time [s] Time [s]

Instances n ø max ø max ø max ø max #SOL ø max
Potvin+Bengio 18 4.7 15.1 166.0 1943.3 4.3 14.0 21.8 100.7 15 110.1 1283.6
Ascheuer easy 10 0.1 0.3 1.2 3.5 0.1 0.4 0.2 0.7 10 0.1 0.1
Ascheuer hard 1 0.4 0.4 29.0 29.0 0.1 0.1 1.9 1.9 1 0.3 0.3
Gendreau small 18 2.0 7.1 512.9 3308.1 1.7 5.5 111.1 573.9 15 221.8 3108.7
Gendreau large 20 1.0 4.6 2448.4 3600.0 0.8 4.3 904.1 2934.9 5 92.0 458.2

Overall 67 2.1 15.1 913.9 3600.0 1.9 14.0 305.6 2934.9 46 118.3 3108.7

Table 6: Aggregated Results of the Overall Algorithm for Instances not solved by Steps 5 and 6

During the time we designed the overall algorithm, we tested various other setups and parameters.
Furthermore, we also did some longer computational tests. As a result, we were able to compute five more
optimal solutions to the MTDP instances. The tables in Section B of the Appendix indicate these optimal
solutions with the symbol †.

8. Conclusions

In this paper, we address the minimum tour duration problem (MTDP), which is a variant of the TSPTW
with the objective of minimizing the time between the departure at the start and the arrival at the desti-
nation. The MTDP is a fundamental problem when routing vehicles whose movements are constrained by
time windows.

We have presented algorithmic components for a DP-based approach tailored to the MTDP such as
relaxed and exact forward and backward DPs, a VND, a dynamic ng neighborhood augmentation procedure,
and a penalty method based on subgradient and column-generation algorithms. There exists a plethora of
possible algorithmic designs to combine and parameterize these components. Our findings are the following:

First, for bounding purposes, a combined ngL.2res relaxation provides an excellent tradeoff between
strength of the resulting bounds and the computational effort. While ngL-based relaxations gradually
allow some non-elementary tours, the 2res relaxation disregards the time window constraints, but keeps the
computation of the tour duration exact. No pure relaxation exclusively relaxing elementarity constraints or
resource constraints was found competitive with ngL.2res.

Second, a penalty algorithm which penalizes those routes that are non-elementary (and therefore also not
Hamiltonian) is often more effective than enlarging the ng neighborhoods which specify the actual ngL-tour
relaxation. For this reason, we decided for our approach that the column-generation method precedes the
neighborhood augmentation procedure.

Third, with optimized penalties and carefully dynamically augmented ng neighborhoods, excellent lower
bounds on the MTDP can be achieved. Our computational analyses show that these lower bounds often
suffice to either close the gap or to make the exact DP solution relatively easy.

Fourth, upper bounds produced with the Balas-Simonetti neighborhood-based VND are generally tight
(below 1% on average). However, since the exact DP is very sensible regarding the quality of the presented
upper bound, it seems computationally advantageous to provide very tight tentative upper bounds for the
exact DP. In case that the bound was wrongly chosen, i.e., too small, a repeated solution of exact DPs with
increased tight upper bounds is most of the time faster than solving a single exact DP with a low-quality
upper bound.

Summarizing the presented computational results, the proposed DP-based approach can solve 90% of
the instances with up to 125 nodes from the standard benchmark sets to proven optimality. Of course, time
window constraints certainly have a significant impact on the practical hardness of an instance. Therefore,
we cannot make this observation a general statement even if some benchmark instances have relative wide
time windows. One must keep in mind that the TSPTW is already a (practically) very hard combinatorial
problem. For example, the Ascheuer benchmark set contained several open instances for more than a decade
before it was completely solved by the work of Baldacci et al. (2011b). Due to the more involved REFs and
resource constraints, the MTDP is certainly an even harder combinatorial problem.
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We see one main contribution of the paper at hand in the consistent way that resources and REFs are
defined for both forward and backward DP including relaxations. This consistency (see Section 3) is the
theoretic background for the later algorithm design. As a result, the overall algorithm solves 183 out of 200
instances from the three benchmark sets Potvin+Bengio, Ascheuer, and Gendreau to optimality.
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A. Algorithms

A.1. Backward Dynamic Programming Algorithm
Algorithm 4 is the backward DP labeling algorithm. Herein, the set σ(i) is the set of all nodes j ∈ V

that must succeed i.

Algorithm 4: Backward Dynamic Programming Labeling Algorithm
1 SET Lbw0 := {(0, d, {d}, (bd, UB,∞))}
2 for k = 0, 1, . . . , |V | − 1 do
3 for (k, j, S, Tj) ∈ Lbwk do
4 for (i, j) ∈ A : i /∈ S, σ(i) ⊆ S do
5 SET Ti := f bwij (Tj)

6 if FeasibilityCheck(Ti) then
7 SET Li := (k + 1, i, S ∪ {i}, Ti)
8 if BoundingCheck(Li) then
9 ADD Li to Lbwk+1

10 CALL Dominance algorithm for Lbwk+1

11 FIND a label L∗o = (|V |, o, V, To) ∈ Lbw|V | with T
dur
o maximal

Result: The path P ∗ represented by label L∗o

A.2. Subgradient Optimization Algorithm
Algorithm 5 is the (standard) subgradient algorithm for the resolution of the Lagrangian-dual problem

(LD) (see Section 6).

Algorithm 5: Standard Subgradient Optimization Algorithm
1 SET t := 0, LB := 0, λ∗l = λ0l := 0 ∀l ∈ V
2 for t < maxiter do
3 CALL DP Algorithm 1 with selected relaxation, modified REFs and penalties (λtl)l∈V
4 FIND a label L∗d = (|V |, d, V, Td) ∈ L|V | with T durd minimal
5 if T durd +

∑
j∈V

λtj > LB then

6 SET LB := T durd +
∑
j∈V

λtj , λ∗ := λ

7 COMPUTE ng-tour k and coefficients (δlk)l∈V corresponding to label L∗d
8 for j ∈ V do

9 SET λt+1
j :=

(
λtj −

(
LB − 1.2

(
LB +

∑
l∈V

δlkλ
t
l

)))
· (2− 2δjk) /

(∑
l∈V

(2− 2δlk)
2

)
Result: Lower Bound LB and best computed penalties (λ∗l )l∈V
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B. Detailed Computational Results

This section reports, for all instances individually, the results produced with Algorithm 3. For each
instance group a separate table is presented resulting in nine different tables (Tables 7–15). Herein, |V |
denotes the number of nodes of the instance and UB BS the upper bound computed with the VND (see
Section 4). These are followed by columns LB, GAP and computation Time for the column-generation
algorithm (Step 5). The same information is shown for the dynamic augmentation of the neighborhoods
(Step 6). The last two columns denote the computation time of the exact DP (Step 9) and the optimal
solution value, if it is known. Otherwise, an interval [LB,UB] for the optimum is given. (Note that the lower
bound LB shown for the open instances may differ from the lower bound resulting from the neighborhood
augmentation, since the exact DP improves lower bounds every time Step 10 is reached.) The symbol ‘†’
indicates that an optimal solution was computed by another setup during pre-tests. An entry ‘−’ in a
column means that invoking this part of the algorithm was not necessary, while ‘TL’ denotes that the time
limit of 3600 seconds in this part of the algorithm was reached.

Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
rc_201.1.txt 20 50352 50352.0 0.0 0.1 − − − − 50352
rc_201.2.txt 26 75633 75633.0 0.0 0.0 − − − − 75633
rc_201.3.txt 32 81605 81605.0 0.0 0.3 − − − − 81605
rc_201.4.txt 26 81207 80999.0 0.3 0.1 81207.0 0.0 0.1 − 81207
rc_202.1.txt 33 78820 75720.2 1.9 15.8 76324.0 1.2 1.3 0.2 77215
rc_202.2.txt 14 31504 31504.0 0.0 0.2 − − − − 31504
rc_202.3.txt 29 89203 87057.5 0.0 1.1 87069.0 0.0 0.3 − 87069
rc_202.4.txt 28 79446 77899.0 1.9 9.2 77899.0 1.9 0.1 0.2 79446
rc_203.1.txt 19 45340 45066.3 0.6 0.3 45340.0 0.0 0.1 − 45340
rc_203.2.txt 33 80942 80637.5 0.2 96.8 80637.5 0.2 1.8 0.2 80798
rc_203.3.txt 37 88733 84702.1 3.1 273.0 84883.7 2.9 100.7 6.7 87403
rc_203.4.txt 15 31841 31841.0 0.0 0.0 − − − − 31841
rc_204.1.txt 46 89889 87687.1 0.4 1943.3 87687.1 0.4 64.3 126.8 88069
rc_204.2.txt 33 67462 65038.4 3.1 196.3 65060.3 3.1 8.6 TL 67120†
rc_204.3.txt 24 45495 43919.0 3.5 59.3 43919.0 3.5 1.1 0.2 45495
rc_205.1.txt 14 37549 37549.0 0.0 0.0 − − − − 37549
rc_205.2.txt 27 79495 74189.0 5.9 0.1 74189.0 5.9 0.2 0.1 78869
rc_205.3.txt 35 82764 82738.1 0.0 20.2 82764.0 0.0 0.3 − 82764
rc_205.4.txt 28 78937 77051.0 2.4 0.2 77051.0 2.4 0.1 0.1 78937
rc_206.1.txt 4 11784 11784.0 0.0 0.0 − − − − 11784
rc_206.2.txt 37 84349 79950.7 5.2 10.4 80949.0 4.0 1.2 0.4 84349
rc_206.3.txt 25 57723 57035.2 1.2 1.8 57565.0 0.3 0.2 0.1 57723
rc_206.4.txt 38 84770 80242.3 4.3 8.5 81334.5 3.0 12.2 0.2 83830
rc_207.1.txt 34 77056 72627.0 0.9 36.2 72627.0 0.9 0.2 0.1 73260
rc_207.2.txt 31 70347 62736.4 10.5 6.3 63298.0 9.7 8.7 1283.6 70116
rc_207.3.txt 33 73286 63113.3 7.5 22.3 63372.4 7.1 64.9 225.2 68230
rc_207.4.txt 6 11961 11961.0 0.0 0.0 − − − − 11961
rc_208.1.txt 38 79904 68981.0 13.7 247.4 68981.0 13.7 0.3 TL [73432,79904]
rc_208.2.txt 29 55478 51350.2 3.8 7.9 51656.0 3.2 41.9 8.1 53369
rc_208.3.txt 36 67902 57625.1 15.1 54.1 58407.4 14.0 84.2 TL [61302,67902]

Table 7: Detailed Results of the Column-Generation Method for the Potvin+Bengio Instances
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Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
rbg010a.tw 11 2975 2975.0 0.0 0.0 − − − − 2975
rbg016a.tw 17 2465 2457.1 0.3 0.0 2465.0 0.0 0.1 − 2465
rbg016b.tw 17 1304 1299.0 0.4 0.2 1299.0 0.4 0.0 0.1 1304
rbg017.2.tw 16 1351 1351.0 0.0 0.1 − − − − 1351
rbg017.tw 16 1756 1756.0 0.0 0.0 − − − − 1756
rbg017a.tw 18 4296 4296.0 0.0 0.1 − − − − 4296
rbg019a.tw 20 2448 2448.0 0.0 0.0 − − − − 2448
rbg019b.tw 20 2975 2975.0 0.0 0.1 − − − − 2975
rbg019c.tw 20 4536 4526.0 0.2 0.4 4526.0 0.2 0.1 0.1 4536
rbg019d.tw 20 2917 2917.0 0.0 0.0 − − − − 2917
rbg020a.tw 21 4689 4689.0 0.0 0.0 − − − − 4689
rbg021.2.tw 20 4528 4526.0 0.0 0.4 4526.0 0.0 0.2 0.1 4528
rbg021.3.tw 20 4528 4519.6 0.2 0.5 4520.0 0.2 0.2 0.1 4528
rbg021.4.tw 20 4525 4516.0 0.2 0.8 4516.0 0.2 0.0 0.1 4525
rbg021.5.tw 20 4516 4510.0 0.1 0.8 4510.0 0.1 0.1 0.1 4516
rbg021.6.tw 20 4489 4483.5 0.0 2.2 − − − − 4484
rbg021.7.tw 20 4481 4479.0 0.0 2.8 4479.0 0.0 0.3 0.1 4479
rbg021.8.tw 20 4481 4478.0 0.0 2.2 4478.0 0.0 0.6 − 4478
rbg021.9.tw 20 4481 4478.0 0.0 2.2 4478.0 0.0 0.7 0.1 4478
rbg021.tw 20 4536 4526.0 0.2 0.4 4526.0 0.2 0.1 0.1 4536
rbg027a.tw 28 5093 5088.7 0.1 3.5 5090.0 0.1 0.5 0.1 5093
rbg031a.tw 32 2953 2953.0 0.0 1.0 − − − − 2953
rbg033a.tw 34 3157 3157.0 0.0 1.3 − − − − 3157
rbg034a.tw 35 2714 2714.0 0.0 0.5 − − − − 2714
rbg035a.2.tw 36 2715 2715.0 0.0 5.0 − − − − 2715
rbg035a.tw 36 2874 2874.0 0.0 2.6 − − − − 2874
rbg038a.tw 39 5115 5115.0 0.0 1.4 − − − − 5115
rbg040a.tw 41 5079 5079.0 0.0 0.1 − − − − 5079
rbg050a.tw 51 11450 11450.0 0.0 10.5 − − − − 11450
rbg055a.tw 56 6367 6367.0 0.0 4.5 − − − − 6367
rbg067a.tw 68 9736 9736.0 0.0 0.3 − − − − 9736
rbg125a.tw 126 13652 13652.0 0.0 70.6 − − − − 13652

Table 8: Detailed Results of the Column-Generation Method for the Ascheuer easy Instances

Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
rbg041a.tw 42 3245 3245.0 0.0 4.7 − − − − 3245
rbg042a.tw 43 2962 2949.8 0.4 29.0 2959.0 0.1 1.9 0.3 2962
rbg048a.tw 49 9793 9793.0 0.0 2.6 − − − − 9793
rbg049a.tw 50 12657 12657.0 0.0 1.0 − − − − 12657
rbg050b.tw 51 11357 11357.0 0.0 53.7 − − − − 11357
rbg050c.tw 51 10431 10431.0 0.0 76.9 − − − − 10431
rbg086a.tw 87 16299 16299.0 0.0 0.2 − − − − 16299
rbg092a.tw 93 11924 11924.0 0.0 1.0 − − − − 11924
rbg132.2.tw 131 17524 17524.0 0.0 9.0 − − − − 17524
rbg132.tw 131 17929 17929.0 0.0 0.8 − − − − 17929
rbg152.3.tw 151 16455 16455.0 0.0 74.8 − − − − 16455
rbg152.tw 151 17019 17019.0 0.0 72.5 − − − − 17019
rbg172a.tw 173 17221 17213.5 0.0 598.6 17220.1 0.0 135.8 − 17221
rbg193.2.tw 192 20401 20401.0 0.0 44.2 − − − − 20401
rbg193.tw 192 20869 20868.8 0.0 625.5 − − − − 20869
rbg201a.tw 202 20818 20818.0 0.0 306.7 − − − − 20818
rbg233.2.tw 232 25143 25143.0 0.0 39.5 − − − − 25143
rbg233.tw 232 25691 25691.0 0.0 531.9 − − − − 25691

Table 9: Detailed Results of the Column-Generation Method for the Ascheuer hard Instances
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Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
n20w120.001.txt 21 296 295.3 0.2 0.1 − − − − 296
n20w120.002.txt 21 220 217.3 1.2 0.4 220.0 0.0 0.1 − 220
n20w120.003.txt 21 303 303.0 0.0 0.0 − − − − 303
n20w120.004.txt 21 312 308.0 1.3 0.5 308.0 1.3 0.1 0.1 312
n20w120.005.txt 21 277 274.3 1.0 0.8 276.6 0.1 0.1 − 277
n20w140.001.txt 21 188 187.3 0.4 0.2 − − − − 188
n20w140.002.txt 21 280 277.0 1.1 0.1 − − − − 280
n20w140.003.txt 21 252 251.3 0.3 0.8 − − − − 252
n20w140.004.txt 21 280 275.5 1.6 0.4 280.0 0.0 0.1 − 280
n20w140.005.txt 21 231 230.3 0.3 0.5 − − − − 231
n20w160.001.txt 21 284 283.0 0.4 0.7 284.0 0.0 0.1 − 284
n20w160.002.txt 21 205 204.7 0.1 0.1 − − − − 205
n20w160.003.txt 21 277 275.7 0.5 0.2 277.0 0.0 0.0 − 277
n20w160.004.txt 21 222 222.0 0.0 0.3 − − − − 222
n20w160.005.txt 21 284 283.2 0.3 0.8 − − − − 284
n20w180.001.txt 21 303 285.0 5.9 0.9 302.5 0.2 0.2 − 303
n20w180.002.txt 21 319 302.6 1.4 0.7 307.0 0.0 0.2 − 307
n20w180.003.txt 21 273 270.0 1.1 0.3 270.0 1.1 0.1 0.1 273
n20w180.004.txt 21 234 232.0 0.9 0.9 234.0 0.0 0.1 − 234
n20w180.005.txt 21 207 199.6 0.7 1.3 201.0 0.0 0.1 − 201
n20w200.001.txt 21 233 230.5 1.1 0.7 232.0 0.4 0.1 0.1 233
n20w200.002.txt 21 211 209.0 0.9 1.6 209.0 0.9 0.0 0.1 211
n20w200.003.txt 21 271 254.8 2.8 0.7 262.0 0.0 0.2 − 262
n20w200.004.txt 21 320 279.7 7.1 0.7 285.0 5.3 0.8 0.1 301
n20w200.005.txt 21 229 226.0 0.4 0.5 − − − − 227

Table 10: Detailed Results of the Column-Generation Method for the Gendreau 20 Instances

Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
n40w120.001.txt 41 446 431.0 3.4 63.1 431.0 3.4 0.2 0.2 446
n40w120.002.txt 41 514 509.4 0.9 42.3 513.1 0.2 6.1 − 514
n40w120.003.txt 41 420 412.3 1.1 51.8 416.0 0.2 9.8 0.3 417
n40w120.004.txt 41 347 343.8 0.9 16.9 346.8 0.0 1.6 − 347
n40w120.005.txt 41 418 417.3 0.2 9.1 − − − − 418
n40w140.001.txt 41 402 401.0 0.2 18.5 − − − − 402
n40w140.002.txt 41 401 401.0 0.0 2.6 − − − − 401
n40w140.003.txt 41 429 428.0 0.2 42.8 − − − − 429
n40w140.004.txt 41 400 399.1 0.2 76.8 − − − − 400
n40w140.005.txt 41 390 389.1 0.2 41.6 − − − − 390
n40w160.001.txt 41 418 418.0 0.0 18.0 − − − − 418
n40w160.002.txt 41 388 383.7 1.1 63.5 388.0 0.0 2.9 − 388
n40w160.003.txt 41 368 367.2 0.2 15.8 − − − − 368
n40w160.004.txt 41 361 356.3 0.2 252.5 357.0 0.0 14.3 − 357
n40w160.005.txt 41 316 315.1 0.3 213.5 − − − − 316
n40w180.001.txt 41 399 388.8 1.3 125.8 389.8 1.1 138.2 11.6 394
n40w180.002.txt 41 379 378.1 0.2 38.4 − − − − 379
n40w180.003.txt 41 346 345.5 0.1 45.6 − − − − 346
n40w180.004.txt 41 378 369.0 0.3 71.0 − − − − 370
n40w180.005.txt 41 363 362.0 0.3 301.3 − − − − 363
n40w200.001.txt 41 345 339.0 0.0 537.4 339.0 0.0 11.9 − 339
n40w200.002.txt 41 343 337.2 1.4 222.3 337.2 1.4 49.7 0.2 342
n40w200.003.txt 41 391 342.2 1.7 77.4 344.8 0.9 135.9 5.0 348
n40w200.004.txt 41 377 368.3 0.5 33.8 369.3 0.2 25.4 120.9 370
n40w200.005.txt 41 350 347.0 0.9 77.1 347.0 0.9 269.7 TL [347,350]

Table 11: Detailed Results of the Column-Generation Method for the Gendreau 40 Instances
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Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
n60w120.001.txt 61 484 483.0 0.2 268.9 483.0 0.2 36.9 55.0 484
n60w120.002.txt 61 553 552.1 0.2 265.2 − − − − 553
n60w120.003.txt 61 488 488.0 0.0 2.1 − − − − 488
n60w120.004.txt 61 556 556.0 0.0 186.8 − − − − 556
n60w120.005.txt 61 549 548.2 0.1 526.4 − − − − 549
n60w140.001.txt 61 560 560.0 0.0 175.5 − − − − 560
n60w140.002.txt 61 597 594.1 0.5 230.1 595.3 0.3 26.4 8.7 597
n60w140.003.txt 61 567 567.0 0.0 266.1 − − − − 567
n60w140.004.txt 61 567 566.0 0.2 510.3 − − − − 567
n60w140.005.txt 61 501 497.0 0.0 310.0 497.0 0.0 42.7 16.1 497
n60w160.001.txt 61 614 614.0 0.0 671.5 − − − − 614
n60w160.002.txt 61 614 614.0 0.0 13.7 − − − − 614
n60w160.003.txt 61 507 507.0 0.0 851.4 − − − − 507
n60w160.004.txt 61 505 504.0 0.2 633.2 − − − − 505
n60w160.005.txt 61 561 560.3 0.1 698.9 − − − − 561
n60w180.001.txt 61 488 487.7 0.1 172.5 − − − − 488
n60w180.002.txt 61 503 501.5 0.3 398.5 502.0 0.2 19.1 − 503
n60w180.003.txt 61 526 525.1 0.2 282.1 − − − − 526
n60w180.004.txt 61 577 577.0 0.0 207.1 − − − − 577
n60w180.005.txt 61 486 466.0 4.1 1818.0 466.0 4.1 425.1 TL [466,486]
n60w200.001.txt 61 465 446.5 3.8 2642.4 451.1 2.8 264.8 3108.7 464
n60w200.002.txt 61 504 503.1 0.2 545.4 − − − − 504
n60w200.003.txt 61 525 494.5 5.8 3308.1 496.2 5.5 573.9 TL [497,525]
n60w200.004.txt 61 512 511.1 0.2 1740.1 − − − − 512
n60w200.005.txt 61 545 545.0 0.0 1771.4 − − − − 545

Table 12: Detailed Results of the Column-Generation Method for the Gendreau 60 Instances

Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
n80w100.001.txt 81 664 660.2 0.4 919.5 661.5 0.2 183.7 458.2 663
n80w100.002.txt 81 707 683.0 0.0 415.6 683.0 0.0 113.5 0.9 683
n80w100.003.txt 81 717 717.0 0.0 11.0 − − − − 717
n80w100.004.txt 81 753 753.0 0.0 3.5 − − − − 753
n80w100.005.txt 81 664 661.5 0.4 181.6 661.5 0.4 167.7 0.3 664
n80w120.001.txt 81 620 620.0 0.0 910.5 − − − − 620
n80w120.002.txt 81 695 695.0 0.0 16.1 − − − − 695
n80w120.003.txt 81 622 621.0 0.2 2999.2 − − − − 622
n80w120.004.txt 81 591 590.1 0.2 2331.0 − − − − 591
n80w120.005.txt 81 690 689.0 0.1 2332.5 − − − − 690
n80w140.001.txt 81 635 635.0 0.0 838.8 − − − − 635
n80w140.002.txt 81 591 588.0 0.5 588.5 588.0 0.5 525.3 TL [588,591]
n80w140.003.txt 81 617 612.7 0.7 TL 614.4 0.4 857.2 TL [615,617]
n80w140.004.txt 81 561 549.0 2.1 TL 549.0 2.1 81.8 TL [549,561]
n80w140.005.txt 81 687 685.0 0.3 638.0 685.0 0.3 80.6 0.3 687
n80w160.001.txt 81 564 561.7 0.4 TL 563.1 0.2 1090.0 − 564
n80w160.002.txt 81 609 601.5 1.2 TL 602.0 1.1 2400.0 TL [603,609]
n80w160.003.txt 81 638 628.2 1.5 TL 630.0 1.2 1380.0 TL [633,638]
n80w160.004.txt 81 596 596.0 0.0 2033.0 − − − − 596
n80w160.005.txt 81 584 573.7 1.8 1689.5 573.7 1.8 295.5 TL [583,584]
n80w180.001.txt 81 617 610.2 0.5 TL 610.7 0.4 631.9 TL 613†
n80w180.002.txt 81 570 555.7 2.5 TL 559.5 1.8 2529.1 TL [564,570]
n80w180.003.txt 81 623 623.0 0.0 3553.7 − − − − 623
n80w180.004.txt 81 592 592.0 0.0 2641.0 − − − − 592
n80w180.005.txt 81 571 568.3 0.5 TL 569.4 0.3 1115.5 TL [570,571]
n80w200.001.txt 81 584 557.3 4.6 TL 558.8 4.3 2934.9 TL [559,584]
n80w200.002.txt 81 550 545.4 0.8 TL 548.5 0.3 1541.3 TL [549,550]
n80w200.003.txt 81 617 617.0 0.0 74.6 − − − − 617
n80w200.004.txt 81 611 606.1 0.8 TL 608.3 0.4 1625.8 TL 611†
n80w200.005.txt 81 564 561.0 0.5 1707.6 561.0 0.5 522.6 0.3 564

Table 13: Detailed Results of the Column-Generation Method for the Gendreau 80 Instances
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Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
n100w120.001.txt 101 825 825.0 0.0 783.9 − − − − 825
n100w120.002.txt 101 846 843.0 0.4 853.2 843.0 0.4 386.6 TL [843,846]
n100w120.003.txt 101 852 852.0 0.0 41.9 − − − − 852
n100w120.004.txt 101 868 868.0 0.0 923.0 − − − − 868
n100w120.005.txt 101 806 806.0 0.0 545.1 − − − − 806
n100w140.001.txt 101 956 956.0 0.0 42.9 − − − − 956
n100w140.002.txt 101 949 948.0 0.1 2306.6 948.0 0.1 415.0 TL [948,949]
n100w140.003.txt 101 783 783.0 0.0 3114.7 − − − − 783
n100w140.004.txt 101 791 791.0 0.0 39.6 − − − − 791
n100w140.005.txt 101 733 731.0 0.3 TL 731.0 0.3 293.3 TL 733†
n100w160.001.txt 101 802 802.0 0.0 2928.1 − − − − 802
n100w160.002.txt 101 731 729.8 0.2 TL 730.1 0.1 29.7 − 731
n100w160.003.txt 101 882 882.0 0.0 52.7 − − − − 882
n100w160.004.txt 101 751 751.0 0.0 2711.1 − − − − 751
n100w160.005.txt 101 855 855.0 0.0 1344.2 − − − − 855

Table 14: Detailed Results of the Column-Generation Method for the Gendreau 100 Instances

Column Generation Dyn. ng neighb. augment. Exact DP
Instance |V | UB BS LB GAP [%] Time [s] LB GAP [%] Time [s] Time [s] OPT
n150w120.001.txt 151 9200 9098.0 1.1 TL 9098.0 1.1 860.5 TL [9098,9200]
n150w120.002.txt 151 8692 8670.0 0.3 TL 8670.0 0.3 1381.3 TL [8681,8692]
n150w120.003.txt 151 8611 8477.0 1.6 TL 8477.0 1.6 TL TL [8598,8611]
n150w120.004.txt 151 8759 8648.0 1.3 TL 8648.0 1.3 1379.9 TL [8751,8759]
n150w120.005.txt 151 8555 8509.0 0.5 TL 8509.0 0.5 991.4 TL [8509,8555]
n150w140.001.txt 151 9560 9560.0 0.0 729.1 9560.0 0.0 3.3 − 9.560
n150w140.002.txt 151 9811 9596.0 2.2 TL 9596.0 2.2 TL TL [9722,9811]
n150w140.003.txt 151 7915 7860.0 0.7 TL 7860.0 0.7 TL TL [7860,7915]
n150w140.004.txt 151 8494 8210.0 3.3 TL 8210.0 3.3 TL TL [8210,8494]
n150w140.005.txt 151 8712 8448.0 3.0 TL 8448.0 3.0 2834.2 TL [8568,8712]
n150w160.001.txt 151 9062 8953.0 1.2 TL 8953.0 1.2 TL TL [8953,9062]
n150w160.002.txt 151 8905 8023.0 9.9 TL 8023.0 9.9 TL TL [8023,8905]
n150w160.003.txt 151 8886 8827.0 0.7 TL 8827.0 0.7 1283.5 TL [8827,8886]
n150w160.004.txt 151 8632 8404.0 2.6 TL 8404.0 2.6 TL TL [8539,8632]
n150w160.005.txt 151 8669 8530.0 1.6 TL 8530.0 1.6 TL TL [8530,8669]
n200w120.001.txt 201 10454 10360.0 0.9 TL 10360.0 0.9 TL TL [10410,10454]
n200w120.002.txt 201 10225 10150.0 0.7 TL 10150.0 0.7 1224.9 TL 10225†
n200w120.003.txt 201 10810 10734.0 0.7 TL 10734.0 0.7 1720.9 TL [10777,10810]
n200w120.004.txt 201 10177 10146.0 0.3 TL 10146.0 0.3 917.5 TL [10146,10177]
n200w120.005.txt 201 10385 10195.0 1.8 TL 10195.0 1.8 1344.1 TL [10197,10385]
n200w140.001.txt 201 10893 10813.0 0.7 TL 10813.0 0.7 TL TL [10813,10893]
n200w140.002.txt 201 10398 10078.0 3.1 TL 10078.0 3.1 2986.3 TL [10284,10398]
n200w140.003.txt 201 10404 10290.0 1.1 TL 10290.0 1.1 TL TL [10290,10404]
n200w140.004.txt 201 10518 10416.0 1.0 TL 10416.0 1.0 1051.3 TL [10416,10518]
n200w140.005.txt 201 10743 10652.0 0.8 TL 10652.0 0.8 TL TL [10692,10743]

Table 15: Detailed Results of the Column-Generation Method for the Ohlmann+Thomas Instances
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