
 

 

 

 

Gutenberg School of Management and Economics 

& Research Unit “Interdisciplinary Public Policy”  

Discussion Paper Series 

 

Multiplicity- and dependency-adjusted p-

values for control of the family-wise error rate 

Jens Stange, Thorsten Dickhaus, Arcadi Navarro, Daniel Schunk 

June 2015 

 

 

Discussion paper number 1505 

 

 

Johannes Gutenberg University Mainz 
Gutenberg School of Management and Economics 

Jakob-Welder-Weg 9 
55128 Mainz 

Germany 
wiwi.uni-mainz.de

http://www.wiwi.uni-mainz.de/


 

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP 

 

 
Contact details  

 

Jens Stange 

Weierstrass Institute for Applied Analysis and Stochastics 

Mohrenstraße 39 

10117 Berlin 

Germany 

 

stange@wias-berlin.de 

 

 

Thorsten Dickhaus  

Institute for Statistics 

University of Bremen 

P. O. Box 330 440 

28344 Bremen 

Germany 

 

dickhaus@uni-bremen.de 

 

Arcadi Navarro 

Institute of Evolutionary Biology, Universitat Pompeu Fabra and 

Institucio Catalana de Recerca i Estudis Avancats (ICREA) and 

Center for Genomic Regulation (CRG) 

Dr. Aiguader 88 

08003 Barcelona 

Spain 

 

arcadi.navarro@upf.edu 

 

Daniel Schunk 

Department of Economics 

Johannes-Gutenberg-Universität Mainz 

Jakob-Welder-Weg 9 

55128 Mainz 

 

daniel.schunk@uni-mainz.de 

 

http://wiwi.uni-mainz.de/DP
mailto:stange@wias-berlin.de
mailto:dickhaus@uni-bremen.de
mailto:arcadi.navarro@upf.edu
mailto:daniel.schunk@uni-mainz.de


Multiplicity- and dependency-adjusted p-values for

control of the family-wise error rate

Jens Stangea, Thorsten Dickhausb, Arcadi Navarroc, Daniel Schunkd

aWeierstrass Institute for Applied Analysis and Stochastics,
Mohrenstraße 39, 10117 Berlin, Germany

bUniversity of Bremen, Institute for Statistics,
P. O. Box 330 440, 28344 Bremen, Germany

cInstitute of Evolutionary Biology, Universitat Pompeu Fabra and
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Abstract

We are concerned with the problem of testing multiple hypotheses simul-
taneously based on the same data and controlling the family-wise error
rate. The multiplicity- and dependency-adjustment method (MADAM) is
proposed which transforms test statistics into multiplicity- and dependency-
adjusted p-values. The MADAM is closely connected with the concept of the
”effective number of tests”, but avoids certain inconveniences of the latter.
For demonstration, we apply the MADAM to data from a genetic associa-
tion study by exploiting computational methods for evaluating multivariate
chi-square distribution functions.
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1. Introduction

Dependency plays a crucial role in virtually all modern applications of
high-dimensional data analysis, at least for two reasons. On the one hand,
data generated with nowadays’ high-throughput measurements typically ex-
hibit strong temporal, spatial, or spatio-temporal dependencies due to the
underlying (neuro-)biological or technological mechanisms. In biology, link-
age disequilibrium for alleles and co-regulation for levels of expression of
genes are two prominent examples. Hence, these dependencies have to be
taken into account in any realistic statistical model for such data. On the
other hand, such dependencies induce an intrinsically low-dimensional struc-
ture in the sample and/or the parameter space, thus facilitating or enabling
valid statistical inference even for moderate sample sizes.

Here, we focus on the multiple testing context where M > 1 null hypothe-
ses H1, . . . , HM are to be tested simultaneously based on one and the same
data sample x ∈ X . We assume that the considered multiple test procedure ϕ
relies on test statistics T1, . . . , TM which are computed from x and compared
with multiplicity-adjusted rejection thresholds. In prior work (see [6, 12]) it
has been demonstrated that classical multiple testing approaches for control
of the family-wise error rate (FWER) like the Bonferroni or the Šidák cor-
rection can be improved if the distribution of the vector T = (T1, . . . , TM)>

exhibits strong dependencies.1 The possible relaxation of the necessary cor-
rection for multiplicity was described by the concept of the ”effective number
of tests” of order i, M

(i)
eff. for short; see also Section 4.3.3 of [4]. Roughly

speaking, M
(i)
eff. approximates the number of stochastically independent tests

which lead to the same FWER as ϕ. Hence, M
(i)
eff. equals M if all components

T1, . . . , TM are stochastically independent, and it equals one if T1, . . . , TM are
totally dependent in the sense that all of them essentially assess exactly the
same information from the data sample x. Computing M

(i)
eff. for 1 ≤ i ≤ M

requires knowledge of the i-variate (marginal) distributions of T which are
then utilized in (sum- or product-type) probability approximations of order i.

Hence, M
(i)
eff. is typically decreasing in i, because more and more information

about the dependency structure is exploited.2

We may mention here that the term ”effective number of tests” has al-

1The FWER denotes the probability for at least one type I error among the M indi-
vidual tests.

2Mathematical conditions guaranteeing that M
(i)
eff. decreases with i are provided in [6].
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ready been used for a longer time and seems to have its origins in the field
of genetic epidemiology (see the corresponding references in [6]), but the
foundations of this concept have to the best of our knowledge been made
mathematically rigorous in [6] for the first time. Methods for computing

M
(3)
eff. in the genetic epidemiology context have been provided in [12] based

on the theory of multivariate chi-square distributions; see also [5].

Although M
(i)
eff. describes the quantitative effect of the dependencies in

the data x on the FWER behaviour of ϕ in a transparent and straightfor-
ward manner, it has the undesirable property that it depends on the FWER
level α. This is both counter-intuitive (the dependency structure is a feature
only of the data sample x, not of the parameters of some method to analyze
x) and inconvenient in practice, because iterative algorithms are required to

match the probability approximation of order i and α for computing M
(i)
eff. . In

the present work, we therefore introduce the multiplicity- and dependency-
adjustment method of order i, MADAMi for short. The MADAMi transforms
the vector T into a vector of p-values which are adjusted both for multiplicity
and for i-th order dependency. Hence, these p-values are typically larger than
their unadjusted, marginal counterparts, but smaller than the Bonferroni- or
Šidák-corrected marginal p-values. In addition, MADAMi does not require
the specification of α, thus avoiding the undesirable properties of M

(i)
eff. . How-

ever, both methods are closely related by the fact that they exploit the same
probability approximations of order i.

The rest of the work is structured as follows. In Section 2, the MADAM
is introduced and two different variants of it are illustrated. Section 3 shows
how to utilize the MADAM for evaluating genetic association studies, con-
sidering a real-data example from this field. We conclude with a discussion
in Section 4. Tables displaying the numerical results for the considered real-
data example are deferred to Appendix A.

2. Statistical methodology: The MADAM

2.1. Notation and preliminaries

Throughout, we assume a statistical model (X ,F , (Pϑ)ϑ∈Θ). The null
hypotheses H1, . . . , HM are identified with non-empty subsets of the param-
eter space Θ. The intersection hypothesis H0 =

⋂M
j=1Hj is called the global

hypothesis. For a given ϑ ∈ Θ, we will denote the index set of true null
hypotheses in H = {H1, . . . , HM} by I0 ≡ I0(ϑ) = {1 ≤ j ≤ M : ϑ ∈ Hj}.
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A (non-randomized) multiple test is a measurable mapping ϕ = (ϕj)1≤j≤M :
X → {0, 1}M the components of which have the usual interpretation of a
statistical test for Hj versus Kj. The family-wise error rate of a multiple test
ϕ is (for a given ϑ ∈ Θ) defined as

FWERϑ(ϕ) = Pϑ

 ⋃
j∈I0(ϑ)

{ϕj = 1}

 ,

and ϕ is said to (strongly) control the FWER at a pre-specified level α ∈ (0, 1)
if supϑ∈Θ FWERϑ(ϕ) ≤ α.

Under this general framework, we make the following assumption.

Assumption 1. There exists a parameter value ϑ∗ ∈ H0 such that

∀ϑ ∈ Θ : FWERϑ(ϕ) ≤ FWERϑ∗(ϕ). (1)

Thus we may assume an overall null distribution P := Pϑ∗ , under which all
hypotheses are true, as the worst case with respect to control of the FWER.

2.2. Multiplicity- and dependency-adjusted p-values

We restrict our attention to simultaneous test procedures (STPs) in the
sense of [9]. An STP ϕ is such that ϕj(x) = 1 ⇐⇒ Tj(x) > cα, 1 ≤ j ≤ M ,
x ∈ X , for a given real constant cα which in general depends on the FWER
level α. As in Equation (1) of [5], a valid p-value for the marginal test problem
Hj versus Kj corresponding to such an STP is given by

pideal,j(x) = P
(

max
1≤k≤M

Tk > tj

)
= P

(
M⋃
k=1

{Tk > tj}

)
= 1−P

(
M⋂
k=1

{Tk ≤ tj}

)
,

(2)
where tj = Tj(x) is the actually observed value of the j-th test statistic for
the data sample x. We refer to pideal,j as the ideal p-value, because it takes
the full joint distribution of T into account.

Feasible numerical methods for computing the ideal p-values only exist in
a limited number of special model classes and for limited ranges of the total
number M of tests, except from very time-consuming Monte Carlo approxi-
mations. For example, the R-package mvtnorm computes multivariate t- and
normal probabilities up to dimension 1000, but not for higher dimensions.
Hence, we propose to approximate pideal,j for 1 ≤ j ≤ M conservatively by
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making use of probability bounds. Following Section 4.3 of [4], we refer to
an upper bound of the form

∀c ∈ R : b(i)(P, c) ≥ P

(
M⋃
k=1

{Tk > c}

)
(3)

as a sum-type probability bound of order i (STPBi), if it takes the marginal
distributions of T up to the i-th order into account. Typically, an STPBi is
obtained from a (higher-order) Bonferroni inequality. Analogously, we call a
lower bound of the form

∀c ∈ R : β(i)(P, c) ≤ P

(
M⋂
k=1

{Tk ≤ c}

)
(4)

taking the marginal distributions of T up to the i-th order into account a
product-type probability bound of order i (PTPBi). Based on chain factor-
ization, in [3] the authors considered

β(i)(P, c) = P

(
i⋂

k=1

{Tk ≤ c}

)
M∏

k=i+1

P

(
Tk ≤ c

∣∣∣∣ k−1⋂
`=k−i+1

{T` ≤ c}

)
. (5)

It has to be mentioned that the right-hand side of (5) is not always an
PTPBi, because the inequality in (4) may be violated for special dependency
structures in T. However, in [12] it was demonstrated that β(i)(P, c) from (5)
often yields accurate approximations, even for i = 3, and the authors termed
it a product-type probability approximation of order i (PTPAi).

These considerations lead to the following definition of multiplicity- and
dependency-adjusted p-values.

Definition 1. The MADAMi transforms the values of the test statistics
T1, . . . , TM into one of the following multiplicity- and dependency-adjusted
p-values.

pMADAMi
Σ,j (x) = b(i)(P, tj), (6)

pMADAMi
Π,j (x) = 1− β(i)(P, tj), (7)

for all 1 ≤ j ≤M .
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Obviously, neither pMADAMi
Σ,j nor pMADAMi

Π,j depend on α. In practice,
however, one can reject Hj in favour of Kj if the j-th multiplicity- and
dependency-adjusted p-value does not exceed α. The principle of quantile
transformation entails that, under Assumption 1, this decision rule consti-
tutes an FWER-controlling multiple test procedure.

3. An application to genetic data

3.1. Testing genetic association

In genetic association studies, a (potentially very large) number M of
genetic markers are simultaneously tested for associations with a given phe-
notype. In the case that the markers are bi-allelic, they lead to diploid geno-
types with three possible realizations per genomic position (locus). Typically,
single nucleotide polymorphisms (SNPs) are considered in this context. If,
in addition, the phenotype is binary (e. g., a disease indicator), many (2× 3)
contingency tables have to be evaluated simultaneously. This is a multiple
test problem. Here, for illustration, we consider chromosome-wise multiplic-
ity, meaning that the chromosomes are treated as independent units and the
methods from Section 2 are applied to each of the 22 autosomes separately
(sex chromosomes require a different statistical methodology).

In the sequel, we denote by MC , C ∈ {1, . . . , 22}, the different numbers
of tests (considered loci) for chromosome C. For each 1 ≤ j ≤ MC , an
association test based on the contingency table data x(j) (see Table 1) is
carried out. In the terminology of Section 2, we thus consider for all 1 ≤ j ≤
MC the null hypothesis

Hj = {There is no association between the phenotype and locus j}.

Notice that all quantities in Table 1 depend on the locus j, except for the
row sums n1. and n2.. This corresponds to the setup of a case-control study
design; see [6], [8], and Chapter 9 of [4] for further details.

The null hypothesis Hj can be tested with Pearson’s χ2-test for indepen-
dence (cf., e. g., Section 3.2.1 of [1]), employing the test statistic Tj, given
by

Tj(x) = n
2∑
r=1

2∑
c=0

(x
(j)
rc − nr.n(j)

.c /n)2

nr.n
(j)
.c

, (8)

where x = (x(1), . . . , x(MC))> denotes the entire data sample.
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Genotype A
(j)
1 A

(j)
1 A

(j)
1 A

(j)
2 A

(j)
2 A

(j)
2

∑
Cases x

(j)
10 x

(j)
11 x

(j)
12 n1.

Controls x
(j)
20 x

(j)
21 x

(j)
22 n2.∑

n
(j)
.0 n

(j)
.1 n

(j)
.2 n

Table 1: Genotype-phenotype counts at locus j aggregated in a (2× 3)-contingency table.

In the case of SNPs, the alleles A
(j)
1 , A

(j)
2 are one of the nucleobases adenine (A), cytosine

(C), guanine (G), or thymine (T). Cases correspond to the phenotypic value 1, while
controls exhibit the phenotypic value 0.

If Hj is true, Tj is marginally asymptotically (with n tending to infinity)
χ2-distributed with two degrees of freedom. Notice, however, that there
exist strong dependencies among the Tj, at least in blocks of markers which
are in linkage disequilibrium (LD). Since LD can be regarded as external
structural information (cf. [7]), the multivariate methods from Section 2 are
a promising approach and typically more powerful than simple Bonferroni-
or Šidák-corrections.

3.2. The MADAM for genetic association studies

For an approximation of pMADAMi
Π,j (x) from (7) for i < MC , information

about the i-variate (marginal) distributions of T = (T1, . . . , TMC
)> is re-

quired. Due to multivariate central limit theorems (see Section 4 in [6]), it
suffices to consider the correlation (i. e., LD) matrix ΣC of the MC markers.
This LD matrix can either be obtained from publicly available databases or
can be estimated from the actual study data. For computational convenience,
we propose to replace ΣC by one of the following schemes.

a) Block thresholding: Submatrices of size (b× b) along the diagonal are
kept, while all other entries are set to 0. This leads to the approxima-
tion

Σ̃C =


R1 0 · · · 0
0 R2 · · · 0
...

. . .
...

0 · · · 0 RB

 , where B = MC/b. (9)
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Since the inequality

P

(
MC⋂
i=1

{Ti ≤ x}

)
≥ P

(
b⋂
i=1

{Ti ≤ x}

)
P

(
2b⋂

i=b+1

{Ti ≤ x}

)
· · ·P

 Bb⋂
(B−1)b+1

{Ti ≤ x}


(10)

holds true for all x ≥ 0 due to the extended Gaussian correlation
inequality proven in [11], the approximation

1−
B∏
`=1

P

 `b⋂
i=(`−1)b+1

{Ti ≤ tj}

 ≥ pideal,j (11)

yields a valid p-value. The final approximation p̃MADAMi
Π,j (x) of pMADAMi

Π,j (x)
is obtained by applying (5) to every of the B factors in (11).

b) Neighbourhood thresholding: For every marker j, only one submatrix
Rj of dimension (b× b) belonging to the b−1 loci adjacent to j is kept,
while all other correlations are set to 0. This leads to the approximated
LD matrices

Σ̂C,j =


Ib 0 · · · 0
...

. . .
...

0 · · · Rj · · · 0
...

. . .
...

0 · · · Ib

 , j = 1, . . . ,MC , (12)

where Ib denotes the identity matrix in dimension (b × b). Again this
approximation induces a valid p-value, because

pideal,j ≤ 1−
j−b/2∏
i=1

P(Ti ≤ tj) P

 j+b/2⋂
i=j−b/2+1

{Ti ≤ tj}

 MC∏
i=j+b/2+1

P(Ti ≤ tj)

= 1− P

 j+b/2⋂
i=j−b/2+1

{Ti ≤ tj}

Fχ2
2
(tj)

MC−b. (13)

The final approximation p̂MADAMi
Π,j (x) of pMADAMi

Π,j (x) is obtained by ap-
plying (5) to the probability expression in (13).

8



Obviously, the p-value p̃MADAMi
Π,j (x) yields a closer approximation of pideal,j

than p̂MADAMi
Π,j (x), because more information is kept. On the other hand, for

every j one has to apply (5) B times in order to compute p̃MADAMi
Π,j (x), while

one single application of (5) suffices to compute p̂MADAMi
Π,j (x).

Remark 1. The MADAM1 is equal to the Šidák-correction which is typi-
cally used in case of stochastically independent test statistics. Thus, for both
approximation schemes a) and b) from above it holds

p̃MADAM1
Π,j (x) = p̂MADAM1

Π,j (x) = pŠ,j(x) := 1− Fχ2
2
(tj)

MC .

3.3. Data analysis
For a numerical demonstration, we consider here a study comprising geno-

type data of n = 2,729 individuals. The number of markers under consider-
ation varies between the chromosomes, ranging from M1 = 58,528 SNPs on
chromosome 1 to M22 = 9,563 SNPs on chromosome 22. In this study, most
markers are found on the second chromosome with M2 = 61,103. Further,
for each individual six different behavioural phenotypes were assessed in the
study. The data are stored in PLINK-formatted files (see [10]). Therefore,
the first steps of data analysis were performed with the open-source software
PLINK. For instance, with PLINK the pairwise correlations between markers
were estimated. To this end, the definition of genotypic correlations as in
[13] or Chapter 10 in [14] was used. Further computations were then per-
formed with MATLAB, e. g., computation of the test statistics Tj. For the
computation of the p-value approximations p̃MADAM3

Π,j (x) and p̂MADAM3
Π,j (x), we

employed MATLAB routines for the evaluation of two- and three-dimensional
χ2-distribution functions, which were developed in [12]. For the results re-
ported in Appendix A we set the block size to b = 100 for scheme a), and
we used block sizes b = 100 and b = 200 in scheme b). In certain cases, it
may be possible that the dependency in the data extends beyond this block
size. This would then lead to a slightly conservative multiple test procedure,
meaning that the FWER level α is not exhausted. Every table in Appendix
A contains the results for one of the six phenotypes. These tables illustrate
the gain in power which is possible by applying the MADAM3, compared
with a univariate Šidák-correction.

4. Discussion

We have demonstrated how to apply sum- and product-type approxima-
tions of joint probabilities for the computation of multiplicity- and dependency-
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adjusted p-values for control of the FWER. As these p-values incorporate
parts of the correlation structure in the data, this leads to a better exhaus-
tion of the nominal significance level, and thus to a more powerful multiple
test procedure than common generic methods, which are typically conser-
vative (not exhausting the FWER level α). Compared to previous work on
effective numbers of tests, the main advantage of the MADAM is that it can
be applied without relying on a pre-specified value of α, which also facilitates
the computations (no iterative algorithms are necessary).

Since the methodology of effective numbers of tests has its origins in the
field of genetic epidemiology and is to our knowledge mainly applied there,
we illustrated the MADAM on such type of data. The p-values displayed in
Tables A.1 to A.6 are adjusted for chromosome-wise multiplicity and block
dependency. In some genetic association studies, however, one is interested
in the genome-wide association test problem. In this context, one has to
deal with very large values of M ∼ 105 or M ∼ 106, and FWER control
is considered a too conservative criterion, even if multivariate methods are
applied. Instead, for problems with such massive multiplicity, control of the
false discovery rate (FDR, cf. [2]) has become a standard criterion. The de-
velopment of multivariate methods controlling the FDR constitutes a vivid
field of modern mathematical statistics. How to apply the MADAM in the
context of FDR control is an interesting and challenging direction for future
research. In this, bounds or approximations for expectations of ratios of
dependent random variables are needed. A hybrid two-stage approach for
the analysis of whole-genome or genome-wide association studies was recom-
mended in [8] (see also the references in this article for earlier developments).
In the first (screening) step of such a two-stage analysis, all M markers are
tested for association employing a non-stringent type I error measure like the
FDR in order to identify candidate SNPs. In the second (validation) step,
these candidate SNPs are then tested on an independent data sample. In
this confirmatory step the FWER is the appropriate type I error measure,
and the MADAM can be applied on the reduced set of candidate markers
which typically has an order of magnitude of 103, as considered in Section 3.
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Appendix A. Tables

In Tables A.1 to A.6 the results for the most significant SNPs for each
of the six phenotypes are displayed. Hereby, ”Id” denotes the rs-identifier of
the SNP, C is the corresponding chromosome with number of SNPs equal to
MC , T refers to the value of the chi-square test statistic, and ploc denotes the
marginal unadjusted p-value.
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Id C MC T ploc

rs17009384 3 50864 25.068 3.6023632e-06
rs41368544 6 46044 24.242 5.4446072e-06
rs17076797 6 46044 23.920 6.3963029e-06
rs2683561 10 40184 23.906 6.4411680e-06
rs730242 16 22704 23.082 9.7226976e-06
rs1322990 9 35148 22.782 1.1298956e-05
rs6940980 6 46044 22.571 1.2554344e-05
rs9320543 6 46044 22.525 1.2844489e-05
rs4129267 1 58528 22.282 1.4507236e-05
rs9488718 6 46044 22.237 1.4832580e-05

Id pŠ,j p̂MADAM3
Π,j (b = 100) p̂MADAM3

Π,j (b = 200) p̃MADAM3
Π,j

rs17009384 0.1674241 0.1673261 0.1672423 0.1169289
rs41368544 0.2217381 0.2216367 0.2214924 0.1569391
rs17076797 0.2551052 0.2549915 0.2548290 0.1816032
rs2683561 0.2280479 0.2279864 0.2278656 0.1611671
rs730242 0.1980790 0.1978343 0.1976757 0.1431898
rs1322990 0.3277587 0.3276230 0.3274678 0.2378089
rs6940980 0.4390120 0.4388389 0.4386177 0.3243108
rs9320543 0.4464568 0.4462961 0.4460599 0.3303719
rs4129267 0.5721941 0.5719520 0.5717569 0.4296207
rs9488718 0.4948785 0.4947035 0.4944592 0.3704433

Table A.1: Results for the first phenotype.
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Id C MC T ploc

rs3769489 2 61103 27.292 1.1847522e-06
rs6993816 8 40827 26.289 1.9557600e-06
rs2376823 8 40827 26.173 2.0734337e-06
rs17019407 3 50864 25.240 3.3052476e-06
rs9310805 3 50864 25.209 3.3561351e-06
rs7530457 1 58528 25.007 3.7128416e-06
rs3754801 2 61103 24.150 5.6995712e-06
rs1528989 7 39982 23.699 7.1416379e-06
rs3754802 2 61103 23.614 7.4540591e-06
rs1528992 7 39982 23.535 7.7533459e-06

Id pŠ,j p̂MADAM3
Π,j (b = 100) p̂MADAM3

Π,j (b = 200) p̃MADAM3
Π,j

rs3769489 0.0698338 0.0698100 0.0697732 0.0477690
rs6993816 0.0767432 0.0766966 0.0766562 0.0527880
rs2376823 0.0811682 0.0811173 0.0810779 0.0558606
rs17019407 0.1547462 0.1546838 0.1545886 0.1078663
rs9310805 0.1569312 0.1568707 0.1567687 0.1094256
rs7530457 0.1953160 0.1951931 0.1950919 0.1346670
rs3754801 0.2940860 0.2939937 0.2938540 0.2085338
rs1528989 0.2483902 0.2482458 0.2481095 0.1775373
rs3754802 0.3658483 0.3657439 0.3655750 0.2632018
rs1528992 0.2665497 0.2663758 0.2662585 0.1911207

Table A.2: Results for the second phenotype.

14



Id C MC T ploc

rs16872525 7 39982 25.753 2.5571790e-06
rs7628096 3 50864 22.707 1.1728766e-05
rs13000805 2 61103 22.659 1.2015884e-05
rs11216411 11 37115 22.330 1.4158464e-05
rs12794686 11 37115 22.263 1.4645703e-05
rs3757142 6 46044 22.220 1.4964335e-05
rs3757146 6 46044 22.220 1.4964335e-05
rs3757148 6 46044 22.220 1.4964335e-05
rs11683516 2 61103 22.060 1.6204048e-05

rs17731 10 40184 21.804 1.8422075e-05

Id pŠ,j p̂MADAM3
Π,j (b = 100) p̂MADAM3

Π,j (b = 200) p̃MADAM3
Π,j

rs16872525 0.0971883 0.0971335 0.0970476 0.0678973
rs7628096 0.4493057 0.4491249 0.4489139 0.3313491
rs13000805 0.5201161 0.5199587 0.5197999 0.3880328
rs11216411 0.4087375 0.4084143 0.4080645 0.2957558
rs12794686 0.4193338 0.4190808 0.4188688 0.3041531
rs3757142 0.4979336 0.4977042 0.4974477 0.3730113
rs3757146 0.4979336 0.4977117 0.4974542 0.3730113
rs3757148 0.4979336 0.4977055 0.4974467 0.3730113
rs11683516 0.6284694 0.6282879 0.6281430 0.4836979

rs17731 0.5230194 0.5228212 0.5225375 0.3933791

Table A.3: Results for the third phenotype.
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Id C MC T ploc

rs4683625 3 50864 27.487 1.0745823e-06
rs13317804 3 50864 26.880 1.4560467e-06
rs9831276 3 50864 23.632 7.3854128e-06
rs4447734 3 50864 23.438 8.1376285e-06
rs11660040 18 21992 22.719 1.1657151e-05
rs7537401 1 58528 22.651 1.2062033e-05
rs11071658 15 21535 22.441 1.3395667e-05
rs7565497 2 61103 21.256 2.4232394e-05
rs6127200 20 19075 20.975 2.7878889e-05
rs6752766 2 61103 20.537 3.4712161e-05

Id pŠ,j p̂MADAM3
Π,j (b = 100) p̂MADAM3

Π,j (b = 200) p̃MADAM3
Π,j

rs4683625 0.0531907 0.0531663 0.0531312 0.0365894
rs13317804 0.0713844 0.0713546 0.0713059 0.0491987
rs9831276 0.3131594 0.3130476 0.3128598 0.2243635
rs4447734 0.3389422 0.3388155 0.3386058 0.2440722
rs11660040 0.2261410 0.2258627 0.2255321 0.1599944
rs7537401 0.5063709 0.5061836 0.5059677 0.3733004
rs11071658 0.2505964 0.2503414 0.2501048 0.1805887
rs7565497 0.7725193 0.7723564 0.7721810 0.6269534
rs6127200 0.4124519 0.4117301 0.4110675 0.3040814
rs6752766 0.8800948 0.8799602 0.8798123 0.7556091

Table A.4: Results for the fourth phenotype.
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Id C MC T ploc

rs10829295 10 40184 30.995 1.8604455e-07
rs7083092 10 40184 30.995 1.8604455e-07
rs893218 17 16934 29.958 3.1235982e-07
rs7213761 17 16934 29.958 3.1235982e-07
rs7069754 10 40184 29.131 4.7240208e-07
rs4575326 12 35701 26.763 1.5436871e-06
rs4678160 3 50864 26.633 1.6471182e-06
rs5766192 22 9563 25.687 2.6430735e-06
rs1252069 1 58528 24.759 4.2044287e-06
rs7799805 7 39982 24.347 5.1647975e-06

Id pŠ,j p̂MADAM3
Π,j (b = 100) p̂MADAM3

Π,j (b = 200) p̃MADAM3
Π,j

rs10829295 0.0074481 0.0074409 0.0074329 0.0051403
rs7083092 0.0074481 0.0074413 0.0074334 0.0051403
rs893218 0.0052755 0.0052678 0.0052592 0.0037344
rs7213761 0.0052755 0.0052679 0.0052589 0.0037344
rs7069754 0.0188040 0.0187855 0.0187669 0.0129383
rs4575326 0.0536201 0.0535933 0.0535609 0.0375648
rs4678160 0.0803656 0.0803373 0.0802975 0.0554468
rs5766192 0.0249590 0.0249108 0.0248544 0.0181650
rs1252069 0.2181382 0.2180146 0.2179217 0.1510069
rs7799805 0.1865733 0.1864735 0.1863761 0.1320074

Table A.5: Results for the fifth phenotype.
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Id C MC T ploc

rs17053752 6 46044 32.771 7.6527821e-08
rs9397537 6 46044 30.069 2.9559073e-07
rs6685470 1 58528 29.366 4.1996667e-07
rs2240291 7 39982 29.284 4.3767486e-07
rs12349952 9 35148 29.197 4.5704580e-07
rs10978953 9 35148 29.188 4.5917396e-07
rs17168107 7 39982 28.979 5.0968202e-07
rs9384020 6 46044 28.703 5.8516935e-07
rs10973251 9 35148 28.336 7.0293605e-07
rs16945357 16 22704 27.453 1.0929746e-06

Id pŠ,j p̂MADAM3
Π,j (b = 100) p̂MADAM3

Π,j (b = 200) p̃MADAM3
Π,j

rs17053752 0.0035174 0.0035152 0.0035136 0.0024504
rs9397537 0.0135180 0.0135073 0.0134978 0.0093328
rs6685470 0.0242802 0.0242713 0.0242584 0.0163655
rs2240291 0.0173469 0.0173338 0.0173231 0.0120415
rs12349952 0.0159359 0.0159100 0.0158855 0.0110753
rs10978953 0.0160095 0.0159834 0.0159589 0.0111263
rs17168107 0.0201719 0.0201573 0.0201438 0.0140009
rs9384020 0.0265838 0.0265626 0.0265445 0.0183368
rs10973251 0.0244041 0.0243886 0.0243655 0.0169556
rs16945357 0.0245096 0.0244535 0.0244100 0.0173930

Table A.6: Results for the sixth phenotype.
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