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Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with
Time Windows

Ann-Kathrin Rothenbächer∗,a, Michael Drexla,b, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University, Mainz
D-55099, Germany.

bFaculty of Applied Natural Sciences and Industrial Engineering, Deggendorf Institute of Technology, Deggendorf D-94469,
Germany.

Abstract

In this paper, we present a new branch-and-price-and-cut algorithm to solve the truck-and-trailer routing
problem with time windows (TTRPTW) and two real-world extensions. In all TTRPTW variants, the fleet
consists of one or more trucks that may attach a trailer. Some customers are not accessible with a truck-
and-trailer combination, but can however be serviced by one if the trailer is previously detached and parked
at a suitable location. In the first extension, the planning horizon comprises two days and customers may be
visited either on both days or only once, in which case twice the daily supply must be collected. The second
extension incorporates load transfer times depending on the quantity moved from a truck to its trailer.
The exact branch-and-price-and-cut algorithm for the standard variant and the two new extensions is based
on a set-partitioning formulation in which columns are routes describing the movement of a truck and its
associated trailer. Linear relaxations of this formulation are solved by column generation where new routes
are generated with a dynamic programming labeling algorithm. The effectiveness of this pricing procedure
can be attributed to the adaptation of techniques such as bidirectional labeling, the ng-neighbourhood,
and heuristic pricing using dynamically reduced networks and relaxed dominance. The cutting component
of the branch-and-price-and-cut adds violated subset-row inequalities to strengthen the linear relaxation.
Computational studies show that our algorithm outperforms existing approaches on TTRP and TTRPTW
benchmark instances used in the literature.
Key words: Vehicle Routing, Truck-and-Trailer Routing, Branch-and-Price-and-Cut

1. Introduction

We consider variants of the truck-and-trailer routing problem with time windows (TTRPTW) motivated
by an application in raw milk collection in Bavaria. Vehicles of a dairy need to pick up milk from farms.
Because of usually large distances between dairy and farms and high milk production rates, trucks with
attached trailers are used to increase the total vehicle capacity. However, some farms are not accessible
by truck-and-trailer combinations (henceforth referred to as complete vehicles) because of small yards or
restricted access roads. These customers can though be serviced by a complete vehicle if the trailer is
previously detached and parked at a suitable location. Before going back to the depot, the truck must
return to the parking location of its trailer and recouple it.

Accessibility imposes that customers can be partitioned into truck customers that are only accessible by
trucks without attached trailer, and trailer customers that can be serviced by either a complete vehicle or a
single truck. At trailer customers and at a set of optional transshipment locations, a trailer can be decoupled
from its truck and parked. The truck can then visit truck and/or trailer customers without the trailer. This
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is referred to as a subtour. A truck can terminate a subtour, i.e., return to its parked trailer, at any time.
It can then transfer load to the trailer. After a subtour, the truck can start another one or re-couple the
trailer and pull it away. We assume that collected supply is directly loaded into the trailer if the trailer is
attached and has residual capacity. At truck customers and whenever supply exceeds the trailer’s residual
capacity, supply goes directly into the truck.

Given a vehicle fleet and a set of customers, the task is to find a cost-minimal set of routes to collect the
whole supply of all customers while respecting vehicle capacities, time window constraints, and accessibility
restrictions. The vehicle fleet is heterogeneous, containing several types of trucks and trailers with different
capacities. Trucks can either perform a route alone, or they can pull a single, uniquely assigned trailer,
which can be detached temporarily. Optimization includes deciding whether to use a given truck as a single
vehicle or as the motorized part of a complete vehicle.

An example of the TTRP (for simplicity without time windows and load amounts) with a possible
solution is depicted in Figure 1. The fleet consists of two trucks and two trailers that can be combined as
indicated in the figure. All vehicles are based at a central depot where all routes start and end. There are
four truck and four trailer customers to serve. Additionally, two transshipment locations are offered whose
visit is optional. The depicted solution comprises two routes: the orange tour is performed by truck 1, and
the light blue/purple route, which contains two subtours, is executed by a complete vehicle consisting of
truck 2 and trailer 2. Trailer 1 and transshipment point number 10 are not used.
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Figure 1: Example of the TTRP

The two challenging extensions that we address are of high practical relevance and, to the best of our
knowledge, they have not yet been discussed in the literature. First, an important trend in the dairy business
is two-day collection: many modern farms dispose of sufficient storage capacity to keep their milk for at
least one day before it must be collected. Such customers can then be visited either daily or only every
other day. The decisions to take in the resulting two-day planning problem include the determination of
those customers that are serviced only once by collecting their entire two-day supply, and, if so, on which
day the visit occurs (day 1 or day 2). The problem is perfectly symmetric with respect to the two days. We
exploit this symmetry by applying a tailored column-generation stabilization method, which allows to halve
the number of pricing problems to be solved, at least before day-specific branching is performed.

Second, an aspect up to now neglected in the TTRP literature is that in practice, the time for transferring
load from truck to trailer often depends on the transferred quantity. Notably, this is the case in milk
collection. The literature either assumes an immediate transfer or a fixed positive time independent of the
quantity. Consequently, our second extension is the introduction of a quantity-dependent load transfer time,
which imposes a tradeoff between the duration of a transfer operation and the resulting free capacity in the
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truck. Such a tradeoff heavily complicates the labeling algorithm.
Overall, our contribution is the presentation of effective branch-and-price-and-cut algorithms for the

TTRPTW and the two extensions. For the classical TTRPTW, our new algorithm outperforms alternative
exact approaches from the literature. The success of the new approach can be attributed to a new bidirec-
tional labeling algorithm for the pricing subproblem and the use of the subset-row cuts to strengthen the
linear relaxation of the master problem (see Jepsen et al., 2008).

The remainder of this paper is organized as follows. A review of the relevant literature is provided
in the next section. In Section 3, our branch-and-price-and-cut algorithm is explained with emphasis on
the solution of the pricing subproblem and branching strategy. Section 4 establishes the extension of the
planning horizon from one to two days. Section 5 presents the necessary adaptations when a positive load
transfer time is assumed. Computational results are discussed in Section 6, and conclusions are drawn in
Section 7.

2. Literature Review

Although the consideration of trailers in the literature on vehicle routing problems (VRPs) dates back
several decades, the TTRP has attracted increased attention of the research community only in the last
few years. This is surprising, given the large number of practical applications described in the existing
publications: in addition to the already mentioned raw milk collection, TTRP applications include the
distribution of goods to grocery stores (Semet and Taillard, 1993), of finished dairy products to customers
(Gerdessen, 1996), of compound animal food to farmers (Gerdessen, 1996), postal mail delivery (Bodin and
Levy, 2000), the movement of empty and loaded containers for a logistics company (Tan et al., 2006), and
fuel oil delivery to private households (Drexl, 2011).

The term “truck-and-trailer routing problem” was coined by Chao (2002). Since then, numerous advanced
metaheuristics for different TTRP variants were presented by, e.g., Scheuerer (2006), Villegas et al. (2010,
2011, 2013), Caramia and Guerriero (2010a,b), Lin et al. (2011), Derigs et al. (2013), Pasha et al. (2014), and
Batsyn and Ponomarenko (2014). All of these papers deal with deterministic problem settings. By contrast,
Torres et al. (2015) consider a TTRP with fuzzy constraints, and Mirmohammadsadeghi and Ahmed (2015)
handle stochastic demands. Only Lin et al. (2011) and Derigs et al. (2013) take into account time windows.
The paper by Cuda et al. (2015) contains a detailed overview of the TTRP literature, discussing modeling
aspects and details of solution approaches.

Exact procedures for TTRPs are still scarce. We are aware of only three works on this topic: Belenguer
et al. (2016) propose a branch-and-cut algorithm for a single-vehicle variant of the TTRP without time
windows. On a test bed with 32 random Euclidean instances, the largest instance solved to optimality has
100 customers and 10 transshipment locations. To the best of our knowledge, the only published exact
algorithms tackling a multi-vehicle TTRP are the branch-and-price algorithms by Drexl (2011) and Parragh
and Cordeau (2015). A comparison of these two papers with the present work, concerning the problem
aspects considered and the solution methods used, is shown in Table 1.

3. Branch-and-Price-and-Cut

We start with a partial formalization of the problem and present the path-based formulation of the
TTRPTW in Section 3.1. The path-based formulation is solved with a branch-and-price-and-cut algorithm.
The column-generation subproblem and its resolution by a dynamic-programming labeling algorithm are
discussed in detail in Section 3.2. Section 3.3 describes the branching strategy, Section 3.4 the integration
of subset-row cuts, and Section 3.5 acceleration techniques.

3.1. Path-Based Formulation
Let N be the set of customers, L be the set of truck types, and H be the set of trailer types. The set of

vehicle classes K contains both single trucks and certain combinations of a truck and a trailer and is defined
as a subset of L × (H ∪ {0}). Elements k = (l, 0) represent the single trucks of type l ∈ L. TTRPTW
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Our paper Parragh and Cordeau (2015) Drexl (2011)

Time windows X X X
Heterogeneous fleet X X
Dedicated transshipment locations X X
Two-day planning horizon X
Quantity-dependent load transfer times X

Heuristic and exact labeling algorithm X X X
Bidirectional labeling X
Metaheuristic for pricing X
ng-route relaxation X X
Valid inequalities X
Stabilization X X

Table 1: Comparison of branch-and-price algorithms for different TTRP variants

instances may assume a limited fleet so that the number of available vehicles of type f ∈ L∪H is constrained
by nf . For convenience, we define the vehicle indicator bkf to be 1 if vehicle class k ∈ K uses vehicle type
f ∈ L ∪H, and 0 otherwise.

The path-based formulation is a set-partitioning model with one variable for each possible TTRPTW
route describing the movement of a truck and, if present, its associated trailer. For a vehicle of class k, the
set of all valid routes is Rk. Each route r ∈ Rk has a corresponding decision variable λkr , which equals 1
if the route is chosen, and 0 otherwise. Depending on the type of TTRPTW instance, route costs cr can
include variable routing costs, depending on traveled distance and on whether the truck is moving alone
or towing the trailer, and transshipment costs. Transshipment costs occur whenever trailers are coupled or
decoupled, or load is transferred from truck to trailer. We define arn as the number of times route r visits
customer n.

The path-based model is:

min
∑
k∈K

∑
r∈Rk

crλ
k
r (1a)

s.t.
∑
k∈K

∑
r∈Rk

arnλ
k
r = 1 (πn) ∀ n ∈ N (1b)

∑
k∈K

∑
r∈Rk

bkfλ
k
r ≤ nf (µf ) ∀ f ∈ L ∪H (1c)

λkr ∈ {0, 1} ∀ k ∈ K, r ∈ Rk (1d)

The objective function (1a) aims at minimizing the total transportation costs. Then, the partitioning
constraints (1b) ensure that every customer is visited exactly once. Constraints (1c) guarantee that the fleet
size is not exceeded by the selected routes. Finally, the variable domains are given by (1d).

3.2. Column Generation
Model (1) cannot be solved directly due to the huge number of route variables. Instead we can solve

it with a branch-and-price algorithm which uses a column-generation subproblem, the pricing problem,
to dynamically generate route variables as they are needed (Lübbecke and Desrosiers, 2005). Similar to
many other vehicle-routing problems, the pricing problems of the TTRPTW are instances of a shortest-path
problem with resource constraints (SPPRC) on graphs with negative cost cycles (Irnich and Desaulniers,
2005). For each vehicle class k ∈ K, there is a specific type of SPPRC that has to be solved. Here, the goal
is to find at least one route with negative reduced costs or to prove that no such route exists.

We start with the description of the underlying pricing network in Section 3.2.1. The resources and
their resource extension functions are introduced in Section 3.2.2, while the TTRPTW-specific dominance
is explained in Section 3.2.3. Details concerning bidirectional labeling are discussed in Section 3.2.4.
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3.2.1. Network
The vehicle-class specific pricing network Dk = (V,Ak) for vehicle class k ∈ K is constructed as in (Drexl,

2011) so that each location is associated with one or several vertices. The four types of relevant locations
are the depot, truck customers, trailer customers, and dedicated transshipment locations. The depot is
modeled by a start vertex d+ and a destination vertex d−. Let NL ⊂ N be the set of truck customers
and let NH ⊂ N be the set of trailer customers. Each truck customer is represented by a single vertex
n ∈ NL, while trailer customers are represented by four vertices, i.e., n for the service, d(n) for detaching
the trailer, τ(n) for load transfer, and c(n) for coupling the trailer at the customer’s location. Similarly, let
T be the set of optional transshipment locations. There are three vertices for each transshipment location
t ∈ T , namely, d(t) for detaching the trailer, τ(t) for load transfer, and c(t) for coupling the trailer at the
transshipment location. Since both trailer customers and transshipment locations offer the parking and load
transfer possibility, we define the set of parking locations P = NH∪T . Summarizing, the vertices V comprise
the depots {d+, d−}, vertices NL ∪ NH for service at customers, decoupling vertices D = {d(p) : p ∈ P},
transfer vertices T = {τ(p) : p ∈ P}, and coupling vertices C = {c(p) : p ∈ P}. Table 2(a) lists the vertices
for the network Dk.

Location Associated vertices Index set

Depot d+, d−

Truck customers n n ∈ NL

Trailer customers n, d(n), τ(n), c(n) n ∈ NH

Transfer locations d(t), τ(t), c(t) t ∈ T

(a) Vertices i ∈ V

Arcs to j ∈
(i, j) NL NH D T C d−

d+ ST X CV
NL X X CV CV ST

from NH X X CV CV CV X
i ∈ D CV CV

T CV CV
C CV CV CV

(b) Arcs (i, j) ∈ Ak depend on the vehicle class k (CV=complete
vehicle only, ST=single truck only, and X=both)

Table 2: Network Dk = (V,Ak).

The type of arcs present in the pricing network depends on the vehicle class k. For single trucks k = (l, 0),
the arc set Ak contains only connections between the customer vertices and from/to the depot. Table 2(b)
depicts these arcs with the symbols ST (single truck only) and X. For complete vehicles k = (l, h) with
h 6= 0, there exist many more possible connections. They are marked in Table 2(b) with the symbols CV
(complete vehicle only) and X.

Decoupling vertices can be reached only with the trailer attached; transfer and coupling vertices can be
reached only if the trailer is waiting at the corresponding location. Decoupling and transfer vertices can be
left only by the truck; coupling vertices can be left only with the trailer attached. In other words, a trailer
parked at a parking location implicitly ‘moves’ from the corresponding decoupling vertex to the transfer
vertex (may be skipped) and from there to the coupling vertex. After parking a trailer at a location and before
attaching it again, the truck may perform an arbitrary number of subtours and visits of the corresponding
transfer vertex. Visiting a transfer or a coupling vertex includes the possibility of load transfer at zero cost
and time. By contrast, when reaching a decoupling vertex, a transfer is not needed, because, as mentioned
in the Introduction, the supply collected since the last visit to a transshipment location is loaded in the
trailer as far as possible. This logic is guaranteed by the network structure and the feasibility checks of the
resource extension functions (REFs) described in the following.

3.2.2. Labeling Algorithm
We start with the description of the cost of a TTRPTW route for a fixed vehicle k = (l, h) ∈ K and

introduce all relevant parameters needed to describe the resources and their consumption. The costs of
an arc (i, j) ∈ Ak consist of driving costs and handling costs occurring when a certain operation (service,
decoupling, transfer, or coupling) is performed at a location. Driving costs can depend on the specific
vehicle class k and on whether the trailer is towed. We incorporate the handling costs associated with the
tail vertex i into the costs of (i, j). Handling costs can be location-specific, e.g., service costs can depend on

5



the supply that a customer provides. In any case, the cost of arc (i, j) ∈ Ak for k = (l, h) can be expressed
as

ckij(δ) = clij + δ · chij ,

where clij are truck-dependent and chij are trailer-dependent costs, and δ ∈ {0, 1} indicates whether trailer
h is actually towed from i to j. Similarly, the time tij consumed by traveling along arc (i, j) comprises the
driving time and the handling time at the vertex i. We assume that tij does not depend on the vehicle k
(but this could easily be modeled, too). While the service time may depend on the customer’s supply, the
coupling, the transfer, and the decoupling operations each consume a fixed time independent of the location.
In Section 5 we will relax the constant-time assumption for load transfer.

For any feasible route r in Dk = (V,Ak) from the start d+ to the destination d−, the sequence of vertices
uniquely determines when and where the trailer is attached to the truck. Hence, we can define an indicator
δHr,ij ∈ {0, 1} being equal to 1 if the trailer h is attached to the truck l when traveling along arc (i, j) ∈ Ak.
Moreover, let the set of customer vertices and arcs covered by r be defined as N(r) and A(r) respectively.
Let (πn) be the dual prices associated with the partitioning constraints (1b) and (µf ) be the dual prices
associated with the fleet-size constraints (1c). Now, the reduced costs of a route r performed by a vehicle
k = (l, h) can be expressed as

c̃kr =
∑

(i,j)∈A(r)

ckij(δHr,ij)−
∑

n∈N(r)

πn −
∑
f∈F

bkfµf =
∑

(i,j)∈A(r)

c̃kij(δHr,ij),

where we define
c̃kij(δ) = ckij(δ)−

{
πn, j ∈ N
0, otherwise −

{
µl + µh, i = d+

0, otherwise .

A TTRPTW route is time-feasible, if service at a visited customer n starts within its service time window
[en, `n]. The time window [ed+ , `d+ ] = [ed− , `d− ] models the planning horizon. It is assumed that all other
vertices v ∈ D ∪ T ∪ C have a non-restrictive time window. This means that trailer customers may have a
restricted service time window, but that their location can be used for parking and transshipment at any
time.

Each customer n ∈ N has a positive supply qn. The capacity of a vehicle k = (l, h) is given by its truck
and its trailer capacity QkL and QkH respectively. Single trucks, i.e., vehicles with h = 0, have QkH = 0. A
TTRPTW route is load-feasible, if at no point neither truck nor trailer carry more collected supply than
their given capacity.

Our labeling approach for the the classical TTRPTW uses six types of resources to ensure feasibility
of the route of a complete vehicle. A partial path r from d+ to a vertex i ∈ V is represented by a label
Ei = (Ecosti , Etimei , EloadLi , EloadHi , EposHi , (Ecustni )n∈N ), where the label components are:
Ecosti : reduced cost of path r;
Etimei : earliest service/operation start time at vertex i;
EloadLi : collected supply loaded into the truck at vertex i;
EloadHi : collected supply loaded into the trailer at vertex i;
EposHi : current position p ∈ P of the trailer if detached from the truck, otherwise ⊥;
Ecustni : number of times that customer n ∈ N is visited along path r. Also set to 1 if customer n is not

visited but is unreachable from r. A customer n is unreachable if EloadLi +EloadHi + qn > QkL +QkH
or Etimei + tin > `n in which case it cannot be part of any feasible extension of path r.

In the initial label at vertex d+, all components are set to 0 except Etimei = ed+ and EposHi = ⊥. The
extension of a label Ei along an arc (i, j) ∈ Ak is performed using the following REFs:

Ecostj = Ecosti + c̃kij(δEposH
i

,⊥) (2a)

Etimej = max{ej , Etimei + tij} (2b)
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EloadLj =


EloadLi + qj , j ∈ N and EposHi 6= ⊥
EloadLi + min{EloadHi + qj −QkH , 0}, j ∈ NH and EposHi = ⊥
EloadLi , j ∈ D ∪ {d−}
EloadLi −min{EloadLi , QkH − EloadHi }, j ∈ T ∪ C

(2c)

EloadHj =


EloadHi , (j ∈ N and EposHi 6= ⊥) or j ∈ D ∪ {d−}
min{EloadHi + qj , Q

k
H}, j ∈ NH and EposHi = ⊥

EloadHi + min{EloadLi , QkH − EloadHi }, j ∈ T ∪ C
(2d)

EposHj =


EposHi , j ∈ N ∪ T
p, j ∈ D where j = d(p), p ∈ P
⊥, j ∈ C ∪ {d−}

(2e)

Ecustnj =
{
Ecustni + 1, j ∈ N and j = n

max{Ecustni , Un(Ej)}, otherwise.
(2f)

We briefly explain the non-trivial parts of the REFs. In (2a), the Kronecker delta δEposH
i

,⊥ indicates whether
the trailer is currently attached, i.e., whether EposHi = ⊥. In (2c) and (2d), we distribute the collected supply
among the truck and the trailer. As the truck can reach customers that the trailer cannot, the best strategy
is to keep the truck as free as possible. Thus, supply is always directly loaded into the trailer whenever
it is attached using the residual capacity of the trailer. Furthermore, at each coupling and transfer point,
as much load as possible is transferred from the truck to the trailer. As mentioned, no load transfer takes
place at decoupling points. In (2e), the decoupling operation is modeled in the second case in which we
record the physical location where the trailer is parked. This is either a trailer customer or a transshipment
location. Conversely, the recoupling operation is modeled in the third case of (2e). Finally, in (2f), the
visited and unreachable customers are updated, where Un(Ej) ∈ {0, 1} indicates whether customer n has
become unreachable either due to the time Etimej or the total load EloadLj + EloadHj .

The label Ej resulting from the extension along arc (i, j) ∈ Ak is feasible if Etimej ≤ `j , EloadLj ≤ QkL,
EloadHj ≤ QkH , Ecustnj ≤ 1 for all n ∈ N , and the trailer position allows the visit of vertex j. The latter is
true if j ∈ NH or one of the following conditions is fulfilled:

EposHi 6= ⊥ for j ∈ NL

EposHi = ⊥ for j ∈ D
EposHi = p for j ∈ T ∪ C with j = t(p) or j = c(p)

The last condition means that transfer and coupling vertices can only be reached if the trailer is not attached
and waiting at this location.

For the routes of single trucks k = (l, 0), the resources EloadHi and EposHi are not needed. The REFs for
cost, time, truck load, and unreachable customers are defined as in the standard vehicle-routing problem
with time windows (VRPTW).

Note that we consider locations of trailer customers as transshipment points without additional con-
straints. Any number of trailers may be parked there. Transfer is possible within and outside the customer’s
service time window. Moreover, parking the trailer and serving the customer are independent so that this
customer may be served by another vehicle or by the vehicle under consideration but at another stop earlier
or later in the route. Parragh and Cordeau (2015), however, require that locations of trailer customers
are only used as parking places if their supply is collected during the stop (called strict parking rule in
the following). For this setting, we introduce an additional binary label component EcollPosHi indicating
whether the trailer is currently parked (in this case, it is at the parking location EposHi ) and the supply of
that customer still needs to be collected. Therefore, the attribute is set to 1 whenever a decoupling vertex
d(n) of a customer n is reached from a vertex v 6= n. Its value is only changed to 0 if the supply vertex
stored in EposHi is visited.
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Initially, EcollPosHd+ is set to 0 and the REF for any arc (i, j) ∈ Ak is

EcollPosHj =


1, j = d(n) ∈ D,n ∈ N, and i 6= n

0, j ∈ N and j = EposHi

EcollPosHi , otherwise
.

For testing the feasibility of the resulting label Ej after the extension along arc (i, j), we must check the
additional condition

EcollPosHi = 0 or j ∈ NH with c(j) = i

whenever the partial path is extended from a coupling vertex i ∈ C.

3.2.3. Dominance
Labeling algorithms use dominance to discard labels that cannot lead to an improved d+-d−-path w.r.t.

another label (or set of labels). A label Ej dominates another label E′j associated to the same vertex j if
all the following conditions are fulfilled:

Eresj ≤ E′j
res

res ∈ {cost, time, loadL, custn(n ∈ N)} (4a)

EloadLj + EloadHj ≤ E′j
loadL + E′j

loadH (4b)

EposHj = E′j
posH (4c)

and

EcollPosHj = E′j
collPosH (4d)

The last condition (4d) is only relevant in the case of the strict parking rule of Parragh and Cordeau (2015).

The above dominance can be strengthened using three additional arguments:

Different Trailer Positions EposHj 6= E′j
posH . Condition (4c) can only be violated at a customer vertex j.

Then, there is no clear preference between having the trailer attached or parked, because in the first case
the truck does not need to return to the parking place, whereas in the second case truck customers can be
approached immediately. Moreover, two labels with different current parking positions of the trailers (with
EposHj , E′j

posH 6= ⊥) are not directly comparable, as no completion of one path is a feasible completion of
the other path.

However, label Ej may still dominate E′j if the first vehicle can be transferred into the same trailer status
as the second without violating the dominance constraints (4). To check this, we hypothetically move the
first vehicle in up to three steps: (1) If EposHj 6= ⊥, the first truck must pick up its trailer at location EposHj .
(2) If E′j

posH 6= ⊥, the first truck must park its trailer at location E′j
posH . (3) The first truck must move

back to the current customer j. This creates a detour imposing higher values in the cost and time resources
of Ej , but if the resulting label still fulfills condition (4), label E′j can be discarded. The detour back to
vertex j conflicts with the elementarity constraints. However, if the triangle inequality holds, the above
check is a sufficient condition to show that all extensions of E′j are dominated.

Higher Truck Load EloadLj ≥ E′j
loadL. Fulfilling condition (4b) and at the same time EloadLj > E′j

loadL is
only possible during a subtour, i.e., for EposHj 6= ⊥. Again, label Ej may dominate E′j fulfilling all dominance
conditions except EloadLj ≤ E′j

loadL if the first vehicle could perform a detour to its trailer position in order
to transfer load from truck to trailer. If the resulting label has smaller or equal cost and time resources, it
dominates the second label.
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Different Values indicating Collection at the Trailer Position EcollPosHj < E′j
collPosH . A strengthened dom-

inance rule can be formulated for the case that EcollPosHj = 0 and E′j
collPosH = 1 hold. Both vehicles have

to return to the location of customer n = EposHj , but the first cannot collect the reward πn anymore. The
second, however, needs to serve the customer n, finally imposing higher costs and additional load and service
time. It is also less flexible on the current subtour due to the customer’s service time window [en, `n]. The
modified dominance rule for EcollPosHj = 0 and E′j

collPosH = 1 is:

Eresj ≤ E′j
res

res ∈ {time, loadL} (5a)

Ecostj ≤ E′j
cost − πEposH

j
(5b)

Ecustnj ≤ E′j
custn n ∈ N,n 6= EposHj (5c)

EloadLj + EloadHj ≤ E′j
loadL + E′j

loadH + qEposH
j

(5d)

EposHj = E′j
posH (5e)

3.2.4. Bidirectional Labeling
When solving hard SPPRC instances, the number of labels often increases strongly with the length of

the generated partial paths. Bidirectional labeling has been successfully applied to mitigate this type of
combinatorial explosion. Forward and backward labels are only extended up to a so-called half-way point
that splits the domain of a monotone resource into two intervals, one for the forward and one for the
backward labeling. For the TTRPTW, we use the time resource as the monotone resource and define the
half-way point as the middle thwp = (ed+ + `d−)/2 of the planning horizon. After labeling in both directions
has terminated, compatible forward and backward partial paths are merged into complete d+-d−-paths. For
details we refer to (Righini and Salani, 2006).

As the forward labeling for the TTRPTW is already non-trivial to describe, we would like to avoid giving
a long-winded and complicated description of the backward case. Therefore, we rely on a formal argument
and design the backward labeling algorithm for the TTRPTW completely symmetric to the forward labeling
algorithm. To this end, we define a reversed SPPRC instance in which the underlying network Dk = (V,Ak)
is replaced by the inverse network (V,Bk) with (i, j) ∈ Bk if and only if (j, i) ∈ A, all time windows [ei, `i]
replaced by [−`i,−ei], and all other coefficient are kept. Moreover, start and destination vertices d+ and d−
as well as the role of coupling and decoupling vertices are swapped. We claim that for every feasible route
of the given SPPRC instance, the reversed route is feasible in the reversed SPPRC instance, and vice versa.

Note first that the statement is certainly true for single trucks k = (l, 0) and routes of complete vehi-
cles k = (l, h) that collect less supply than the truck’s capacity. In these cases, the reversed SPPRC is
equivalent to what has been suggested for the VRPTW in (Righini and Salani, 2006) and several subsequent
publications. However, if more supply is collected, our loading policy that transfers as much as possible
from the truck to the trailer is not directly interchangable between forward and backward solutions because
feasible amounts for one direction may be infeasible for the opposite direction. To prove our claim, we argue
similar to Desaulniers et al. (2014) and consider a feasible forward route r = (v0, v1, v2, . . . , vm) for which
the selected supply exceeds the truck’s capacity QkL. One can obviously define transfer quantities in such
a way that the truck arrives fully loaded at the destination. Moreover, let the transfer quantities at the
vertices be (t0, t1, t2, . . . , tm) (with ti = 0 for all non-parking vertices i) and the supply loaded into the truck
at the vertices be (qL0 , qL1 , qL2 , . . . , qLm) (with qLi = 0 for all parking vertices i). Then, the feasibility of the
route implies

QkL ≥
i∑

j=0
qLj −

i−1∑
j=0

tj ≥
i∑

j=0
qLj −

i∑
j=0

tj ≥ 0,

for all i ∈ {0, 1, . . . ,m}, meaning that before (left term) and after (right term) the visit at vertex vi the
current load in the truck is non-negative and does not exceed the truck capacity. The fact that the truck
arrives at d− fully loaded implies QkL =

∑m
j=0 q

L
j −

∑m
j=0 tj . By subtracting this term from the above
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inequalities and multiplying with −1, we get

0 ≤
m∑

j=i+1
qLj −

m∑
j=i

tj ≤
m∑

j=i+1
qLj −

m∑
j=i+1

tj ≤ QkL,

showing that the route with same the transfer quantities (t0, t1, t2, . . . , tm) considered in the reversed direc-
tion is also feasible.

In order to simplify the merge procedure, we restrict ourselves to customer vertices as merge points and
mimic a kind of merge over arcs. First, the restriction to customer vertices is feasible because any useful
route contains at least one customer vertex. The only necessary modification is on the forward half-way test:
it requires that forward labels Ei are extended along arcs (i, j) ∈ Ak up to the first customer vertex j ∈ N
that fulfills Etimej > thwp. Second, we merge forward labels Ei and backward labels E′i associated with the
same vertex i ∈ N . However, it is more convenient to consider the predecessor label E′j = pred(E′i) instead
of the backward label E′i itself (this trick was first described by Tilk et al., 2016). Now, the concatenation
of the forward partial path given by Ei and the backward partial path given by E′i with E′j = pred(E′i) is a
feasible d+-d−-path if and only if

Etimei + tij ≤ −E′j
time (6a)

EloadLi + E′j
loadL ≤ QkL (6b)

EloadLi + EloadHi + E′j
loadL + E′j

loadH ≤ QkL +QkH (6c)

EposHi = E′i
posH (6d)

Ecustni + E′j
custn ≤ 1 ∀ n ∈ N (6e)

EcollPosHi 6= E′j
collPosH

. (6f)

The resulting route has reduced costs Ecosti + c̃ij(δEposH
i

,⊥) +E′j
cost. Note that condition (6a) uses the time

resource E′j
time defined in the reversed SPPRC, which is negative when used in the original context. In (6d),

both trailer-position related resources refer to the merge vertex i. Moreover, condition (6e) is only valid
if in at least one direction the customer-service related resources Ecustni or E′j

custn respectively describe
exactly the subset of customers that are served. If unreachable customers are included in both directions,
condition (6e) is too strict and thus incorrect. Finally, condition (6f) is not applicable if the extended
dominance related to the resource collPosH is used in both forward and backward direction.

3.3. Branching
Let λ̃kr be the values of variables λkr in a solution of the linear relaxation to model (1). Moreover, we

define the flow value x̃kij =
∑
r∈R ar,ij λ̃

k
r for all k ∈ K and (i, j) ∈ Ak, where ar,ij is the number of times

that route r traverses arc (i, j). Let the aggregated flow value of arc (i, j) be x̃ij =
∑
k∈K x̃

k
ij . Note that for

an arc (i, j) with at least one customer vertex as an endpoint the values x̃ij and x̃kij are binary in a feasible
integer solution.

As long as there are fractional values λ̃kr , we apply the following four-level branching scheme. First, we
branch on the overall number of vehicles. Second, we branch on the aggregated flow value for an arc (i, j).
Third, we branch on the vehicle-specific flow value for an arc (i, j). In the two latter cases, we always select
arcs with at least one customer vertex as an endpoint first, since the branching decision can be implemented
by network modifications. If all arcs with fractional value have no customer vertices as endpoints, we branch
on the integer flow value by adding an inequality to the master program.

Note that branching on arcs disables the extended dominance rules including fictional detours. The
existence of forbidden arcs would require a check of all arcs in the detour and even all arcs from the last
visited parking location vertex in this detour to all possible successors.

There can still exist fractional solutions with integer aggregated and vehicle-specific flows after applying
the above branching rules. An example is depicted in Figure 2. Four routes performed with the same
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Figure 2: Example of four fractional paths of same vehicle class despite integral arc flows

vehicle class k ∈ K each with a value λ̃kr of 0.5 impose integer flows on the depicted arcs. The arcs
(d+, d(p)), (c(p), d(p′)), and (c(p′), d−) have a flow of 2, while all others have a flow of 1.

The rule for the fourth level is based on the following property: If for each customer the predecessor and
successor customer (if any) are uniquely determined, a basic solution to the linear relaxation of (1) is integer.
This is true because the predecessors and successors unambiguously define sets of customers served by the
same vehicle. The branching decisions on the third level have already determined the vehicle class k ∈ K
that visits the customer set. All routes with a vehicle of class k serving the same set of customers have the
same coefficients in the constraints of (1). Therefore, in a basic solution to the linear relaxation of (1) only
one of the corresponding route variables can be positive so that one with the lowest cost is selected exactly
once.

The fourth level of branching decisions finally guarantees integer path-variables in (1) without explicitly
branching on the associated variables. If two customer vertices i and j are served consecutively, i before
j, the two are either connected directly via arc (i, j) (handled by the rules above) or with a subpath Q of
length 2 or 3, i.e., Q = (i, v1, j) or Q = (i, v1, v2, j) where v1, v2 ∈ C ∪ T ∪D. We branch on such subpaths
connecting two customers i and j. More precisely, to exclude a subpath Q in the network Dk this subpath is
declared forbidden, and several such decisions are managed effectively by the network modification procedure
of Villeneuve and Desaulniers (2005). To enforce a subpath Q in the network Dk, another type of network
modification can be performed. One must create copies of the intermediate vertices v1 and v2 (if present),
remove all arcs from the forward/backward star of i/j, and connect i with j via the copies. Such branching
on sequences of customers has been applied in different contexts but with similar network modification
procedures in (Desaulniers, 2010) and (Bode and Irnich, 2012).

3.4. Cuts
To strengthen the linear relaxation, we incorporate subset-row (SR) inequalities into model (1) (see

Jepsen et al., 2008). A valid SR inequality is defined on a subset of tasks. For the standard TTRPTW,
tasks are the visits to the customers. For the TTRPTW with two-day planning horizon (see the later
Section 4) tasks are the visits to the customers at a particular day, i.e., pairs of customer and day. We
restrict ourselves to SR inequalities defined on three tasks as proposed by Jepsen et al. (2008) because they
can be separated by straightforward enumeration. Given a set Sf of three tasks, the SR inequality SR(Sf )
is given by ∑

k∈K

∑
r∈Rk

⌊gfr
2

⌋
λkr ≤ 1 (σf ),

where gfr is the number of times route r serves tasks in Sf .
The incorporation of SR inequalities into the master problem complicates the TTRPTW pricing prob-

lems: Let σf ≤ 0 be the dual price of the SR inequality SR(Sf ). Then, σf has to be subtracted from the
reduced costs of a route for every second service to tasks in Sf . In order to keep track of such services, one
additional binary resource ESRf for each inequality SR(Sf ) must be defined. It indicates the parity of the
number of times tasks in Sf are served.

Jepsen et al. (2008) suggested an improved dominance, in which otherwise incomparable labels can be
considered. For two labels Ej and E′j fulfilling the dominance conditions (4), the reduced-cost comparison
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in (4a) has to be replaced by the following generally tighter condition

Ecostj −
∑

f :EjSRf>E′j
SRf

σ(Sf ) ≤ E′j
cost

.

In the merge step of the bidirectional labeling algorithm, the concatenation of the forward partial path
given by Ei and the backward partial path given by E′i with E′j = pred(E′i) has reduced costs of

Ecosti + c̃ij(δEposH
i

,⊥) + E′j
cost −

∑
f :EiSRf+E′

j
SRf=2

σ(Sf ).

3.5. Acceleration Techniques
In this section, we sketch some further techniques that we use to accelerate our algorithm. First, we

start the algorithm with a valid lower bound for the number of vehicles necessary to serve all customers
with respect to their supply. This bound is calculated by solving a bin-packing problem with a bin size
equal to the maximal total vehicle capacity Qmax among all vehicle classes. If the run time exceeds one
minute, the trivial lower bound d

∑
n∈N qn/Q

maxe is used. Second, we relax the elementary requirement
and use the ng-neighborhood relaxation presented by Baldacci et al. (2011) in order to accelerate the
solution of the pricing problem. Third, in the first pricing iterations, we solve the pricing problem only for
single-truck vehicle classes as long as new columns are generated. This significantly reduces the number of
time-consuming pricings of routes of complete vehicles. Fourth, the pricing problems for complete vehicles
are solved heuristically until no new columns are found. To this end, the dominance criterion is relaxed by
ignoring conditions (4a) for res = custn, (4c), and (4d). Moreover, we use reduced networks by restricting,
for each vertex, the number of outgoing arcs to both customer vertices and vertices of parking locations,
where those with lower reduced costs are preferred. Fifth and finally, we apply the MIP solver of CPLEX
for a maximum of one minute using the columns generated up to this point in order to increase the chance
of finding good upper bounds. The MIP solver is called after solving the branch-and-bound root node and
when reaching the time limit.

4. Two-Day Planning Horizon

Caused by the nowadays widespread use of larger storage tanks with improved cooling technology, many
modern milk-producing farms no longer need to be visited every day. Instead, a visit every second day
suffices, in which case the accumulated supply of two days must be collected. We model the case of a
two-day planning horizon with two types of customers as follows. The first subset of customers (N every) still
needs a visit every day. The other customers (Noption) can be visited either every day for collection of their
‘normal’, daily supply, or every second day for collection of twice that amount.

We solve the two-day problem by creating two tasks n1, n2 for each customer n ∈ N , representing the
collection of the supply of the first and the second day respectively. The partitioning condition in the master
problem (1b) is replaced by∑

k∈K

∑
r∈Rk

arnθλ
k
r = 1 (πnθ ) ∀ n ∈ N, θ ∈ {1, 2}, (7)

where arnθ indicates that route r covers task nθ.
The distinction between the two types of customers is realized in the pricing networks. For each vehicle

class k ∈ K and each day θ ∈ {1, 2}, there is one network for routes operated on that day. The network
is structured as the network Dk described in Section 3.2.1 and contains depot, decoupling, transfer, and
coupling vertices. In addition, each customer vertex is replaced by one or two task vertices. Precisely,
customers n ∈ N every who need to be visited every day have one vertex nθ for the task of day θ in the
network, while customers n ∈ Noption with service option have two vertices n1 and n2 for both tasks, see

12



Figure 3. Vertices for tasks of the same day are connected as in the standard TTRPTW network Dk.
Moreover, each task vertex representing a customer n ∈ Noption is connected to its corresponding task
vertex of the other day. In addition, each such vertex can be left towards all vertices in the network of day θ
that can be reached from customer n.

i1

i2

j1

(a) Network for collection on the first day θ = 1

i1

i2 j2

(b) Network for collection on the second day θ = 2
Figure 3: Example of the two pricing networks for a customer i ∈ Noption (collection every other day allowed)
and a customer j ∈ N every (must be visited every day)

Symmetry Considerations. A drawback of the two-day modeling and solution approach presented above is
that the number of partitioning constraints (7) of the path-based formulation and the number of column-
generation subproblems that need to be solved is doubled. We now show that the perfect symmetry with
respect to the two planning days can be exploited so that the computational effort is approximately halved
again.

We claim that for solving the linear relaxation of the two-day horizon master program, i.e., (1) with (1b)
replaced by (7), nothing is lost with respect to the strength of the dual bound when partitioning constraints
are aggregated. More precisely, every two constraints (7) for θ ∈ {1, 2} of a customer n ∈ N can be replaced
by aggregated constraints of the form∑

k∈K

∑
r∈Rk

(arn1 + arn2)λkr = 2 ∀ n ∈ N. (8)

The proof relies on the concept of deep dual-optimal inequalities (DDOIs, Ben Amor et al., 2006), origi-
nally introduced in order to stabilize column-generation algorithms: Pairwise aggregation of two constraints
as suggested by (8) is equivalent to imposing constraints

πn1 = πn2 ∀ n ∈ N,

to the dual formulation as shown by Gschwind and Irnich (2016, Proposition 7). This is again equivalent to
the introduction of additional unconstrained variables ηn (=additional columns), one per customer, to the
primal formulation. The new variable ηn has coefficient +1 in the partitioning constraint of the day-one-task
and −1 in the constraint of the day-two-task so that the resulting partitioning constraints become∑

k∈K

∑
r∈Rk

arn1λkr + ηn = 1 ∀ n ∈ N (9a)

∑
k∈K

∑
r∈Rk

arn2λkr − ηn = 1 ∀ n ∈ N. (9b)

Thus, the extended primal formulation has additional variables ηn and the task-partitioning constraints (7)
are replaced by (9). Any feasible solution to the linear relaxation of the extended primal formulation can be
transformed into a feasible solution to the linear relaxation of the original formulation having constraints (7)
with identical costs. The procedure works as follows: Let λ̃kr be a feasible solution to the extended primal
formulation. Regardless of the values of ηn, define for each route r ∈ Rk operated on day θ by vehicle k ∈ K
the corresponding route r′ operated on the other day. Further define λ̂kr = (λ̃kr + λ̃kr′)/2 for all routes r ∈ Rk
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and vehicles k ∈ K, which yields the equivalent feasible solution for formulation (1) with task-partitioning
constraints (7). Now, Proposition 1 in (Gschwind and Irnich, 2016) ensures that under these conditions, the
dual bound of the extended primal formulation and the original formulation coincide.

In summary, the use of the aggregated partitioning constraints (8) accompishes that the number of
constraints is the same as in the one-day problem. Moreover, it induces identical subproblems for both
days θ = 1 and θ = 2, so that only one pricing subproblem, for example for day θ = 1, needs to be solved.
Admittedly, this subproblem is larger than the one-day subproblem. However, a by-product of aggregation
is that the dual variables are stabilized, leading to a generally faster termination of the column-generation
procedure.

Branching and cutting can destroy the perfect symmetry. In order to maintain symmetry as long as
possible, we always add symmetric pairs of SR inequalities. Hence, if SR(Sf ) is added for tasks Sf , the
inequality SR(Sf ′) for the other-day tasks Sf ′ is also added. Both SR(Sf ) and SR(Sf ′) are then aggregated,
leading to a single inequality

∑
k∈K

∑
r∈Rk(bgfr/2c+ bgf ′r/2c)λkr ≤ 2.

While branching on the number of vehicles preserves symmetry, branching on individual arcs of the two
day-specific networks (see Figure 3) requires that the column-generation master program be disaggregated.
We do so by replacing the aggregated constraints (8) with the disaggregated ones (7), and by adding the
other-day route variables λkr′ for all active route variables λkr .

Overnight Return of Trailers. As pointed out by Tricoire (2016), a two-day planning horizon allows further
savings when the requirement that all vehicles return to the depot at the end of each day is relaxed and it
is allowed to park an empty trailer overnight at a transshipment location. It depends on the application
whether this can be done in practice. The consideration of the overnight parking option requires considerable
modifications to our model and the solution approach described in this section. Moreover, we expect the
additional savings to be much smaller than those obtained by switching from a one-day to a two-day horizon,
so we leave this as a topic for further research.

5. Quantity-Dependent Transfer Time

Up to now, the TTRP literature either assumes an immediate transfer of load from truck to trailer or a
fixed positive time independent of the quantity. In reality, however, the time for transferring load from truck
to trailer increases with the transferred quantity. In this section, we discuss the non-trivial modifications that
are needed to exactly model quantity-dependent load transfer times in the column-generation subproblem.
The modified SPPRC in this case must consider the tradeoff between the visit time at parking locations
and the free capacity in the truck. A similar issue arises in the context of ship routing and scheduling
when port visits are time-constrained and the port stay times are influenced by the amount of cargo loaded
or unloaded. Brønmo et al. (2007) and Hennig et al. (2012) study such problems and respectively apply
column generation and branch-and-price. Brønmo et al. solve an LP to determine an optimal schedule
and load quantities for given port visit sequences. Hennig et al. use nested branch-and-price: they solve
the subproblem of determining a time- and load-feasible ship route (port visit sequence) by decomposing
it into a master problem that computes schedules and load patterns and a subproblem for computing ship
routes (a shortest path problem with time windows solved by dynamic programming). However, as far as
we know, we herewith present the first labeling algorithm for this type of tradeoff, i.e., the first that handles
the determination of route, schedule, and load transfer quantity simultaneously.

In the following, let ρ > 0 be the transfer rate for the quantity transferrable from the truck to the trailer
during one time unit. Since usually the technical equipment of the vehicles determines the transfer rate, it
can be assumed independent of the transfer location. Note that with quantity-dependent transfer times, the
strategy to always transfer as much as possible from the truck to the trailer is no longer optimal. If more
load than necessary is transferred, the additional delay may cause a time window of a customer visited later
to be missed. Therefore, the load-time tradeoff needs to be taken into account explicitly.

Figure 4 depicts the route (d+, d(p), 1, τ(p), 2, c(p), d−) vising customers 1 and 2 and the decoupling
vertex d(p), the transfer vertex τ(p), and the coupling vertex c(p) of a parking location p, where load can be
transferred. Below each transshipment and customer vertex, a diagram of truck load vs. time is presented.
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Figure 4: Example for tradeoff propagation with quantity-dependent transfer times

The time axis is marked with EAT representing the earliest arrival time at the vertex (this time can be
before the service time window opens). Moreover, at customers 1 and 2, the time windows [e1, `1] and [e2, `2]
are shown. We discuss the five tradeoff curves (depicted in green) for the vertices d(p), 1, τ(p), 2, and c(p).
Each tradeoff curve displays to which extent a later start of service (starting not earlier than Etimei ) allows
to reduce the load inside the truck (resource EloadLi ). When the decoupling vertex d(p) is reached, no load
has been collected yet. Thus, no transfer possibility arises at the first transshipment point, reflected by
the 0-function. During the first subtour to customer 1, load has to be collected to the truck so that still
no tradeoff is visible. When the truck meets its trailer again at τ(p), the option is to either continue the
tour immediately (with q1 loaded in the truck) or to spend time to transfer load from truck to trailer. The
non-zero slope of the tradeoff curve is −ρ. In our example, we assume that the truck as well as the trailer
each have sufficient capacity to accommodate the complete supply of both customers, q1 + q2. Hence, the
tradeoff curves in the diagrams below τ(p) and below customer 2 indicate that the supply of customer 1
can be partly or completely transferred to the trailer at τ(p). Likewise, the curve in the diagram below c(p)
shows that the entire customer supply can either remain in the truck or be transferred partly or completely.
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loadH

(d) Trailer capacity
limits transferrable load

Figure 5: Special cases for arrival at customer concerning the tradeoff

In general, a non-zero time-load tradeoff can be consumed or reduced. Figure 5 illustrates four cases
when this occurs. All variants depict a possible situation for the visit of a customer with service time window
[e, `], in which lL refers to the load collected to the truck before and q is the supply of the currently visited
customer. First, if a customer is reached before the time window opens, all unavoidable waiting time is used
for transfer, see Figure 5(a). Second, if the available capacity of the truck does not suffice to collect the
complete supply, the surplus must be transferred lowering the disposable amount of load, see Figure 5(b).
Third, if a customer is reached within its service time window then the remaining time limits the transfer
time, see Figure 5(c). Fourth and finally, the available capacity of the trailer limits the transferrable amount,
see Figure 5(d).
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5.1. Time-Load Tradeoff, Resources, and their Propagation
The general form of the time-load tradeoff curve is shown in Figure 6. It can be defined by three param-

eters: the earliest possible starting time of the service at the vertex (Etimei ), the highest possible truck load
at this time (EloadLi ), and the minimal achievable truck load (EloadLi ). The latter two values define two new
resources and replace the resource EloadLi of the case with constant transfer times handled in Section 3.2.2.
Accordingly, new resource extension functions for the resources Etimei , EloadLi , EloadLi , and EloadHi must
be defined whereas the propagation and feasibility checks of all other resources (Ecosti , EposHi , Ecustni , and
EcollPosHi ) are not affected.

time

loadL

Etimei

EloadLi

E
loadL
i

Figure 6: Shape of the tradeoff curve

Let (i, j) ∈ Ak be any arc in the subnetwork of a complete vehicle k ∈ K. We define some auxiliary
values useful for defining the new REFs for propagating the new resources along (i, j). First, the load that
can be transferred in the waiting time (LTWT ) depends on the unavoidable waiting time, which is the
time difference between the earliest arrival time and the start of the time window, and it is also limited by
the maximum potentially transferable load at previous transshipment locations. Hence, this value can be
defined as

RLTWT
ij (Ei) = min{ρ ·max{ej − (Etimei + tij), 0}, EloadLi − EloadLi }.

Second, in order to serve the following customer j, there may be some load that must be transferred to the
trailer before (NLTB). This amount is

RNLTBij (Ei) = max{EloadLi + qj −QkL, 0}.

Third, the minimal load that has to remain in the truck (MinLL) is restricted by the trailer’s capacity and
the time window of the current vertex i, i.e.,

RMinLL
ij (Ei) = max{0, EloadLi − (QkH − EloadHi ), EloadLi − ρ · (`i − Etimei )}.

The REFs for extending a label Ei along an arc (i, j) primarily depend on the type of the head vertex j.
Therefore, we present the REFs by distinguishing the following three cases:
(1) the arrival at a customer without the trailer,
(2) the arrival at a customer with the trailer attached, and
(3) the arrival at a coupling, transfer, decoupling, or the depot vertex d−.
For convenience, we also present all REFs for the inclusion of quantity-dependent transfer times in the
standard form, i.e., grouped by resources, in the Appendix, Section I.

Arrival at Customer without Trailer. All load has to be collected to the truck, but sometimes the truck load
can (LTWT ) or must (NLTB) be reduced.

Etimej = max{ej , Etimei + tij +RNLTBij (Ei)/ρ}

EloadLj = EloadLi + qj −max{RNLTBij (Ei), RLTWT
ij (Ei)}
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EloadHj = EloadHi + max{RNLTBij (Ei), RLTWT
ij (Ei)}

E
loadL
j = max{EloadLi + qj , R

MinLL
ij (Ei)}

The label Ej resulting from the extension along arc (i, j) ∈ Ak is feasible if Etimej ≤ `j , EloadHj ≤ QkH , and
RNLTBij ≤ EloadLi −EloadLi holds in addition to the conditions for the remaining resources (see Section 3.2.2).

Arrival at Customer with Trailer attached. The supply is collected as much as possible directly to the trailer
to keep the truck flexible.

Etimej = max{ej , Etimei + tij}

EloadLj = EloadLi −min{RLTWT
ij (Ei), QkH − EloadHi − qj}

EloadHj = EloadHi + qj + min{RLTWT
ij (Ei), QkH − EloadHi − qj}

E
loadL
j = max{EloadLi + max{EloadHi + qj −QkH , 0}, RMinLL

ij (Ei)}

Similarly to the first case, the label Ej is feasible w.r.t. these resources if Etimej ≤ `j and the minimal truck
load does not exceed the truck capacity, i.e., EloadLj ≤ QkL.

Arrival at Coupling, Transfer, Decoupling, or Depot. No change in the loads is realized, only the potential
transfer is limited by the free capacity in the trailer.

Etimej = Etimei + tij

EloadLj = EloadLi

EloadHj = EloadHi

E
loadL
j = RMinLL

ij (Ei)

The only feasibility condition for these resources is Etimej ≤ `j when arriving at the depot j = d−.

5.2. Dominance
The original dominance has to be extended to model the tradeoff correctly. A label Ej is better than

another label E′j belonging to the same vertex j, if the dominance criteria (4) concerning the unchanged
resources are fulfilled and if furthermore the tradeoff curve of Ej lies completely left below the curve of E′j .
This means that, at every feasible service start time of label E′j , the truck load of Ej is less than or equal
to the truck load of E′j . Because the slope of the decreasing part of all tradeoff curves is equal, this can be
expressed by requiring a smaller or equal truck load of label Ej at the starting time of E′j and a not greater
minimal truck load in addition to the not greater time. So Ej dominates E′j , if the following conditions
hold:

(4a) with res ∈ {cost, time, custn(n ∈ N)}, (4c), (4d)

EloadLj + EloadHj ≤ E′j
loadL + E′j

loadH

EloadLj − ρ · (E′j
time − Etimej ) ≤ E′j

loadL

E
loadL
j ≤ E′j

loadL

5.3. Bidirectional Labeling
As described in Section 3.2.4, backward propagation can be done on a reversed network. The merging

conditions need to be adapted slightly to consider the time-load tradeoff. The total vehicle capacity limits the
sum of the maximal truck loads and the trailer loads. The combined truck load has to respect the capacity
but can use the transfer potentials from both partial paths. The time difference between the forward
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and the backward label can be used for transfer, but is restricted by the sum of the transfer potentials
(loadL− loadL). Thus, a forward label Ei can be concatenated with a backward label E′i whose predecessor
is given by E′j = pred(E′i), if and only if the following conditions are respected:

(6a), (6d)–(6f)

EloadLi + EloadHi + E′j
loadL + E′j

loadH ≤ QkL +QkH

EloadLi + E′j
loadL −min{ρ · (E′j

time − tij − Etimei ), EloadLi − EloadLi + E′j
loadL − E′j

loadL} ≤ QkL

6. Computational Study

The algorithms were implemented in C++ and use the LP and MIP solver of CPLEX 12.6.0. All
computations were performed in single thread mode on a PC with an Intel Core i7-4790K CPU clocked at
3.60 GHz, with 8 GB RAM, running Windows 7 Enterprise. Apart from the single-thread mode, default
settings were used for the CPLEX MIP solver. All tests were run with a CPU time limit of one hour.

6.1. Instances
To evaluate the performance of our algorithm, we used two different test sets.
The first instance set was developed by Drexl (2011). The instances are structured so as to resemble the

situation of raw milk collection in Bavaria, Germany. Each instance has the same number n of truck cus-
tomers, trailer customers, and dedicated transshipment locations, with n ∈ {6, . . . , 10, 25}. In the following,
these instances are denoted by “TTRP_n”. Remark that the number of vertices equals 2 + 8n, as described
in Section 3.2.1. For each value of n, there are 30 different instances. The vehicle fleet is heterogeneous,
with two different truck types that can both be coupled with a suitable trailer, leading to four vehicle classes
altogether. Costs are incurred for the covered distance, with additional costs for a coupled trailer. The
customers have no time windows, but a maximal tour duration is given.

The second instance set was created by Parragh and Cordeau (2015) from the Solomon instances
(Solomon, 1987) by identifying truck customers as described by Lin et al. (2011): customers were sorted
by increasing distance from their nearest neighbor, and from each instance, three new instances were de-
rived by taking the first 25%, 50%, and 75% of customers as truck customers and the remaining ones as
trailer customers. These instances are henceforth referred to by “OriginalName_n_p”, with n indicating
the number of customers (25, 50, 100) and p standing for the rounded percentage of truck customers (25, 50,
75). The number of vertices equals 2 + pn+ 4(1− p)n. Besides, a trailer capacity was added, so that there
are two vehicle classes, one representing a complete vehicle and one a truck without a trailer. As known,
the Solomon instances have time windows, and costs and times are proportional to the Euclidean distance
between locations, independent of whether or not a trailer is attached. Note that we rounded up the times
to one decimal place. In these instances, there are no dedicated transshipment locations. As mentioned,
Parragh and Cordeau (2015) require that trailer customer locations be used as parking places only if their
supply is collected during the stop. Thus, we also respect this strict parking rule for these instances.

6.2. Results
Preliminary tests showed that the influence of a reduced network, a maximal number of columns to

add per pricing iteration, and the size of the ng-neighborhood (ng-size) can be significant. We found that
the best results concerning the thinned-out network were obtained by keeping, for each customer, only
the arcs leading to the 7 most promising neighbors (those with lowest reduced costs) and to the 5 nearest
transshipment locations. Also the depot was connected only to these 12 best neighbors. The maximal
number of columns to add per pricing iteration was chosen dependent on the instance size: it was best to
add at most six times the number of vertices. The best ng-size for the TTRP-instances was 6, whereas
the modified Solomon instances could be solved better with an ng-size of 8. We limited the overall number
of subset-row cuts to 120 and generated a maximum of 10 cuts simultaneously. We required a minimum
violation of 0.1 and stopped the separation after the third level of the branch-and-bound tree. We report
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all computation times in seconds. Moreover, we define the relative optimality gap between the best found
upper bound ub and the best found lower bound lb as (ub− lb)/ub · 100 %.

In the following, we present aggregated results for the two instance sets. More detailed results, including
the individual objective function values, can be found in the Appendix, Section II. Note that, unfortunately,
the extended dominance rules described in Section 3.2.3 did not consistently reduce solution times; for
several instances, the stronger dominance was offset by the increased computing time for the dominance
check. For this reason, all presented results were obtained without the extended dominance tests.

The aggregated results for the TTRP instances are depicted in Table 3. Only ten of the TTRP instances
with n between 6 and 10 could not be solved to optimality within one hour. Compared to the results of
Drexl (2011), 36 new optimal solutions were found. The high number of instances solved in the extended
root node by incorporating the subset-row cuts demonstrates the effectiveness of these inequalities. The
highest remaining optimality gap overall was less than 5%, and the largest instance that could be solved to
optimality had 76 locations, i.e., 202 vertices.

Instance set # instances solved to optimality ∅ CPU time ∅ gap

Total Root w/o cuts Root with cuts

TTRP_6 30/30 6 29 1.5 0.00
TTRP_7 30/30 6 28 36.7 0.00
TTRP_8 29/30 4 27 182.4 0.02
TTRP_9 27/30 3 25 392.5 0.05
TTRP_10 24/30 2 20 842.4 0.20
TTRP_25 1/30 0 1 3559.5 1.51

Total 141/180 21 130 835.8 0.29

Table 3: Aggregated results for TTRP instances

The aggregated results for the Solomon-based instances with 25 customers are presented in Table 4. All
in all, only 2 of these 168 Solomon-based instances could not be solved to optimality within one hour of CPU
time. As expected, a higher percentage of truck customers simplifies the problem, because fewer parking
possibilities exist. Also for the Solomon-based instances, the subset-row inequalities had a large influence
on the results. In the Appendix, Section II, in Tables 8 and 9, we also show our results for the 50- and
100-customer Solomon-based instances presented by Parragh and Cordeau (2015). Compared to the results
of Parragh and Cordeau (2015), an optimal solution was found for 35 additional instances.

Running the Solomon-based instances for a two-day planning horizon yielded the results shown in Table 5.
We assumed that every second customer was allowed to be visited every other day. A comparison of the
effectiveness of the root stabilization described in Section 4 leads to a surprising result. Despite a much
smaller root solution time when incorporating the stabilization methods, the total solution time was not
reduced consistently, and even some significantly larger optimality gaps occurred. The reason is that many
optimal solutions can be found already in the extended root node (with the SR cuts). In the case of root
stabilization, the former integral solution is split evenly between both days, so that a potential integrality
is mostly destroyed. Overall, nearly 70% of the two-day instances could be solved to optimality within
one hour of CPU time, although the number of tasks is twice as high as for the one-day planning horizon.
Moreover, it is remarkable that more than 14% of the costs can be saved by serving a part of the customers
only every other day.

Results concerning the quantity-dependent transfer times were obtained with the Solomon-based in-
stances, as the ones of Drexl (2011) have no time windows and are thus not influenced by non-constant
transfer times. We assumed a transfer rate of one unit per second, i.e., ρ = 1. The computational results
are summarized in Table 6. In the instance sets R1, R2, and RC2, all optimal solutions matched those
for constant transfer times. This is simply because in both versions, all routes of optimal solutions are
performed by single trucks. In the C1, C2, and RC1 instance groups, however, several optimal solutions
differed from those for constant transfer times and had higher costs. Nevertheless, it is clear that the im-
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Instance set # instances solved to optimality ∅ CPU time ∅ gap

Total Root w/o cuts Root with cuts

C1_25_25 9/9 8 9 48.3 0
C1_25_50 9/9 3 9 43.2 0
C1_25_75 9/9 0 8 351.7 0

C2_25_25 7/8 0 8 846.9 0.10
C2_25_50 8/8 0 8 602.5 0
C2_25_75 8/8 0 8 335.6 0

R1_25_25 12/12 5 11 1.4 0
R1_25_50 12/12 5 12 0.5 0
R1_25_75 12/12 5 12 0.2 0

R2_25_25 10/11 1 10 531.3 0.00
R2_25_50 11/11 1 11 301.2 0
R2_25_75 11/11 1 11 52.4 0

RC1_25_25 8/8 7 8 3.1 0
RC1_25_50 8/8 7 8 1.4 0
RC1_25_75 8/8 7 8 0.5 0

RC2_25_25 8/8 8 8 339.3 0
RC2_25_50 8/8 8 8 227.9 0
RC2_25_75 8/8 8 8 37.0 0

Total 166/168 74 164 195.8 0.01

Table 4: Aggregated results for Solomon-based instances

pact of quantity-dependent transfer times is limited if the time windows are not tight and if the amount
collected during all subtours barely exceeds the truck capacity. Finally, it is noteworthy that, despite the
more complicated resource extension functions, the number of solved instances and the solution times are
nearly as good as those for constant transfer times.

7. Conclusion

In this paper, we have studied the truck-and-trailer routing problem with time windows and two new
extensions: the consideration of a two-day planning horizon where it is allowed to visit some customers
only every other day, and the inclusion of a quantity-dependent time consumption for the transfer of load
from a truck to its trailer. All variants were tackled by effective branch-and-price-and-cut algorithms, using
subset-row inequalities to strengthen the lower bound of the linear relaxation. The two-day planning horizon
leads to undesirable symmetries. To deal with these, we proposed a constraint-aggregation and stabilization
procedure based on the concept of deep dual-optimal inequalities. Quantity-dependent load transfer times
cause a tradeoff between the time needed for the transfer operation and the truck capacity gained. This
requires additional resources and more complicated resource extension functions in the labeling algorithm
for solving the pricing problems.

Computational experiments were performed with established TTRPTW benchmark instances. The re-
sults compare very favorably with those known from the literature; many instances could be solved to
optimality for the first time.

Further research can be done regarding algorithmic as well as problem aspects. As for algorithmics, for
the two-day planning horizon, an improved transition from the symmetric to the asymmetric treatment of
the problem might reduce the run times significantly. To this end, it would be necessary to devise a more
sophisticated procedure for finding suitable subsets of the first-day columns to copy to the second day.
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With stabilization Without stabilization

# optimal ∅ CPU time # optimal ∅ CPU time

Instance
set

Total Root
with
cuts

Total Root
with
cuts

Total Root
with
cuts

Total Root
with
cuts

∅ cost
savings

in %
C1_25 15/27 9 1695.6 137.5 15/27 14 1763.7 368.2 4.01
C2_25 10/24 7 2192.3 744.5 10/24 8 2282.7 1138.3 10.88
R1_25 29/36 2 1044.2 5.6 27/36 13 1175.6 19.3 17.46
R2_25 23/33 18 1537.9 912.9 21/33 15 1640.5 1047.0 22.13
RC1_25 20/24 18 609.2 8.9 21/24 21 480.3 31.0 14.56
RC2_25 18/24 18 916.1 776.1 18/24 18 917.0 849.6 14.76

Total 115/168 72 1329.4 421.1 112/168 89 1383.3 557.4 14.48

Table 5: Aggregated results for Solomon-based instances with two-day planning horizon

Instance set # optimal ∅ CPU time ∅ gap # changed
solutions

∅ cost increase
in %

C1_25 26/27 199.4 0.00 5 0.65
C2_25 23/24 749.3 0.07 1 0.04
R1_25 36/36 1.0 0 0 0
R2_25 32/33 297.6 0.01 0 0
RC1_25 24/24 6.8 0 22 6.35
RC2_25 24/24 249.1 0 0 0

Total 165/168 234.3 0.01 28 1.02

Table 6: Aggregated results for Solomon-based instances with quantity-dependent transfer times

From a modeling point of view, the next big step would be to abandon the fixed assignment of trailers
to trucks. Especially if the service at customers takes a significant amount of time, it may be useful to
leave a trailer at a customer for loading, continue the tour with the truck only, and recouple the trailer
later with the same or a different compatible truck. This complicates the problem considerably, because a
synchronization between all vehicles becomes necessary and the pricing problems for the different vehicles
become interdependent.
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Appendix

I. Resource Extension Functions for Quantity-Dependent Load Transfer Times

In this section, we present the complete set of REFs for quantity-dependent load transfer
times (see Section 5) grouped by resource.

Ecostj = Ecosti + c̃kij(δEposH
i

,⊥)

Etimej =
{

max{ej , Etimei + tij +RNLTBij (Ei)/ρ}, j ∈ N and EposHi 6= ⊥
max{ej , Etimei + tij}, otherwise.

EloadLj =


EloadLi + qj −max

{
RNLTBij (Ei), RLTWT

ij (Ei)
}
, j ∈ N and EposHi 6= ⊥

EloadLi −min{RLTWT
ij (Ei), QkH − EloadHi − qj}, j ∈ NH and EposHi = ⊥

EloadLi , j ∈ D ∪ T ∪ C ∪ d−

E
loadL
j =


max{EloadLi + qj , R

MinLL
ij (Ei)}, j ∈ N and EposHi 6= ⊥

max{EloadLi + max{EloadHi + qj −QkH , 0}, RMinLL
ij (Ei)}, j ∈ NH and EposHi = ⊥

RMinLL
ij (Ei), j ∈ D ∪ T ∪ C ∪ d−

EloadHj =


EloadHi + max{RNLTBij (Ei), RLTWT

ij (Ei)}, j ∈ N and EposHi 6= ⊥
EloadHi + qj + min{RLTWT

ij (Ei), QkH − EloadHi − qj}, j ∈ NH and EposHi = ⊥
EloadHi , j ∈ D ∪ T ∪ C ∪ d−

EposHj =


EposHi , j ∈ N ∪ T
p, j ∈ D where j = d(p), p ∈ P
⊥, j ∈ C ∪ {d−}

Ecustnj =
{
Ecustni + 1, j ∈ N and j = n

max{Ecustni , Un(Ej)}, otherwise.

II. Detailed Computational Results

Table 7 shows a comparison of the performance of the different labeling directions in the
pricing problem. For the monodirectional forward, the monodirectional backward and the bidi-
rectional labeling the number of instances solved to optimality, the average CPU time in seconds,
the average relative gap between best upper and best lower bound, and the number of generated
labels per instance group in 106 are given. As expected, the bidirectional labeling could reduce
the runtime by about 40% compared to the monodirectional labeling.

Forward Backward Bidirectional

Instance
set

Opt. Time Gap #Lab. Opt. Time Gap #Lab. Opt. Time Gap #Lab.

C1_25 26/27 301.7 0.03 11.70 26/27 462.2 0.05 16.23 27 147.8 0 8.10
C2_25 21/24 937.5 0.20 24.67 20/24 1134.3 0.27 29.87 23 595.0 0.05 20.05
R1_25 36/36 1.0 0 0.46 36/36 1.6 0 0.54 36 0.7 0 0.36
R2_25 32/33 446.9 0.08 16.39 32/33 408.0 0.00 15.58 32 295.0 0,00 11.98
RC1_25 24/24 2.5 0 1.06 24/24 8.6 0 1.67 24 1.7 0 0.88
RC2_25 24/24 292.6 0 6.18 24/24 137.4 0 5.60 24 201.4 0 5.08

Total 163/168 312.6 0.05 9.76 162/168 337.7 0.05 11.09 166/168 195.9 0.01 7.45

Table 7: Comparison of labeling strategies for Solomon-based instances with 25 customers

The following tables show detailed computational results for the Solomon-based instances as
well as for the TTRP instances with varying number of customers and additional transshipment
locations. All columns have the same headers and inform about the tested instance, the lower
bound, the upper bound, the resulting optimality gap, the solution time in seconds (with T.L.
indicating the time limit of 1 hour), the number of added subset-row inequalities, the number of
branch-and-bound nodes and the number of generated routes. Instances that could be solved to
optimality for the first time are printed in bold.
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Instance LB UB Gap Time #cuts #nodes #columns

C101_50_25 396.02 396.02 0 3.1 0 1 2,198
C101_50_50 426.08 426.08 0 3.6 20 1 2,347
C101_50_75 453.39 453.39 0 4.4 60 1 2,053
C201_50_25 391.97 391.97 0 145.8 20 1 20,891
C201_50_50 403.69 406.30 0.24 T.L. 110 1 20,315
C201_50_75 403.39 406.42 0.48 T.L. 110 2 27,505
R101_50_25 1046.70 1046.70 0 0.1 0 1 595
R101_50_50 1046.70 1046.70 0 0.1 0 1 525
R101_50_75 1046.70 1046.70 0 0 0 1 626
R201_50_25 794.34 794.34 0 16.3 10 1 4,882
R201_50_50 794.34 794.34 0 1.7 0 1 5,778
R201_50_75 794.34 794.34 0 0.6 0 1 4,718
RC101_50_25 945.68 959.38 1.43 T.L. 120 82 104,339
RC101_50_50 959.92 959.92 0 22.7 120 5 4,936
RC101_50_75 976.20 976.20 0 6.2 110 1 1,843
RC201_50_25 686.31 686.31 0 17.7 0 1 5,628
RC201_50_50 686.31 686.31 0 3.1 0 1 4,816
RC201_50_75 686.31 686.31 0 0.7 0 1 4,657

Table 8: Detailed results for Solomon-based instances with 50 customers

Instance LB UB Gap Time #cuts #nodes #columns

C101_100_25 899.75 899.75 0 80.7 20 1 7,646
C101_100_50 986.41 1003.86 1.74 T.L. 120 1 91,990
C101_100_75 1042.04 1043.28 0.12 T.L. 120 1 75,380
C201_100_25 662.46 695.51 1.34 T.L. 20 1 65,535
C201_100_50 692.67 719.04 3.67 T.L. 60 1 66,124
C201_100_75 704.40 737.08 0.90 T.L. 120 2 41,711
R101_100_25 1644.64 1644.64 0 28.9 23 1 11,048
R101_100_50 1644.64 1644.64 0 2.7 13 1 4,278
R101_100_75 1644.64 1644.64 0 1.3 14 1 3,055
R201_100_25 1146.69 1161.48 0.16 T.L. 50 1 53,157
R201_100_50 1147.65 1247.81 0.01 T.L. 120 1 61,870
R201_100_75 1147.80 1147.80 0 687 120 1 54,211
RC101_100_25 1653.93 1653.93 0 1337.9 120 82 48,098
RC101_100_50 1706.56 1734.14 1.59 T.L. 120 5 141,283
RC101_100_75 1770.71 1788.68 1.00 T.L. 120 1 88,300
RC201_100_25 1258.73 1290.68 0.93 T.L. 30 1 44,097
RC201_100_50 1264.60 1265.56 0.08 T.L. 120 1 91,870
RC201_100_75 1265.56 1265.56 0 581.3 120 1 42,941

Table 9: Detailed results for Solomon-based instances with 100 customers
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Instance LB UB Gap Time #cuts #nodes #columns

C101_25_25 205.21 205.21 0 0.1 0 1 714
C101_25_50 219.58 219.58 0 0.3 10 1 896
C101_25_75 235.18 235.18 0 0.4 50 1 815
C102_25_25 203.68 203.68 0 8.3 0 1 2,624
C102_25_50 218.34 218.34 0 3.2 10 1 1,755
C102_25_75 235.18 235.18 0 33.4 88 1 1,660
C103_25_25 203.68 203.68 0 28.8 0 1 2,477
C103_25_50 215.88 215.88 0 24.1 20 1 2,234
C103_25_75 235.18 235.18 0 120.8 77 1 2,506
C104_25_25 200.39 200.39 0 392.2 10 1 3,361
C104_25_50 212.89 212.89 0 356.5 20 1 4,026
C104_25_75 232.71 232.71 0 2,995.0 91 5 6,290
C105_25_25 204.92 204.92 0 0.2 0 1 977
C105_25_50 218.95 218.95 0 0.4 10 1 931
C105_25_75 235.18 235.18 0 0.9 70 1 795
C106_25_25 205.21 205.21 0 0.1 0 1 761
C106_25_50 219.58 219.58 0 0.4 10 1 1,042
C106_25_75 235.18 235.18 0 0.6 55 1 759
C107_25_25 204.92 204.92 0 0.5 0 1 684
C107_25_50 208.94 208.94 0 0.3 0 1 688
C107_25_75 227.08 227.08 0 0.6 40 1 738
C108_25_25 204.92 204.92 0 1.3 0 1 1,415
C108_25_50 208.94 208.94 0 0.7 0 1 925
C108_25_75 227.08 227.08 0 2.3 40 1 1,521
C109_25_25 204.31 204.31 0 3.6 0 1 1,624
C109_25_50 208.33 208.33 0 3.3 0 1 1,755
C109_25_75 227.08 227.08 0 11.2 50 1 2,133
C201_25_25 223.07 223.07 0 4.4 30 1 3,643
C201_25_50 223.07 223.07 0 1.5 30 1 2,423
C201_25_75 227.29 227.29 0 15.6 80 1 3,602
C202_25_25 220.52 220.52 0 84.1 30 1 6,076
C202_25_50 220.52 220.52 0 15.6 30 1 4,987
C202_25_75 220.52 220.52 0 4.2 30 1 4,344
C203_25_25 220.52 220.52 0 962.5 50 1 7,440
C203_25_50 220.52 220.52 0 109.7 40 1 7,096
C203_25_75 220.52 220.52 0 32.6 50 1 7,325
C204_25_25 217.38 217.38 0 1,347.2 10 1 11,579
C204_25_50 218.16 218.16 0 706.4 20 1 10,014
C204_25_75 220.32 220.32 0 645.6 60 1 9,130
C205_25_25 223.07 223.07 0 16.1 30 1 4,712
C205_25_50 223.07 223.07 0 5.5 30 1 5,329
C205_25_75 225.66 225.66 0 5.5 60 1 3,793
C206_25_25 223.07 223.07 0 26.2 30 1 5,437
C206_25_50 223.07 223.07 0 10.0 30 1 4,677
C206_25_75 225.66 225.66 0 10.0 60 1 4,895
C207_25_25 222.94 225.45 1.11 T.L. 50 1 9,860
C207_25_50 222.87 222.87 0 3599.9 50 1 7,797
C207_25_75 225.45 225.45 0 1,903.6 70 1 5,321
C208_25_25 222.90 222.90 0 683.4 40 1 7,162
C208_25_50 222.90 222.90 0 369.0 40 1 6,808
C208_25_75 225.49 225.49 0 67.3 70 1 5,046

Table 10: Detailed results for Solomon-based instances C
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Instance LB UB Gap Time #cuts #nodes #columns

R101_25_25 618.33 618.33 0 0.0 0 1 134
R101_25_50 618.33 618.33 0 0.0 0 1 134
R101_25_75 618.33 618.33 0 0.0 0 1 129
R102_25_25 548.11 548.11 0 0.1 7 1 506
R102_25_50 548.11 548.11 0 0.1 7 1 506
R102_25_75 548.11 548.11 0 0.0 9 1 513
R103_25_25 455.70 455.70 0 0.2 0 1 733
R103_25_50 455.70 455.70 0 0.1 0 1 642
R103_25_75 455.70 455.70 0 0.0 0 1 541
R104_25_25 417.96 417.96 0 0.7 0 1 1,022
R104_25_50 417.96 417.96 0 0.2 0 1 809
R104_25_75 417.96 417.96 0 0.1 0 1 825
R105_25_25 531.54 531.54 0 0.0 0 1 247
R105_25_50 531.54 531.54 0 0.0 0 1 247
R105_25_75 531.54 531.54 0 0.0 0 1 237
R106_25_25 466.48 466.48 0 0.3 10 1 682
R106_25_50 466.48 466.48 0 0.1 10 1 595
R106_25_75 466.48 466.48 0 0.0 10 1 507
R107_25_25 429.20 429.20 0 1.5 20 1 780
R107_25_50 429.20 429.20 0 0.5 20 1 772
R107_25_75 429.20 429.20 0 0.2 10 1 676
R108_25_25 404.28 404.28 0 3.8 20 1 994
R108_25_50 404.28 404.28 0 2.0 30 1 1,126
R108_25_75 404.28 404.28 0 0.4 20 1 1,208
R109_25_25 442.63 442.63 0 0.0 0 1 490
R109_25_50 442.63 442.63 0 0.0 0 1 490
R109_25_75 442.63 442.63 0 0.0 0 1 451
R110_25_25 445.18 445.18 0 2.7 24 7 4,020
R110_25_50 445.18 445.18 0 0.3 20 1 509
R110_25_75 445.18 445.18 0 0.1 20 1 509
R111_25_25 429.70 429.70 0 0.6 10 1 1,051
R111_25_50 429.70 429.70 0 0.3 10 1 852
R111_25_75 429.70 429.70 0 0.1 10 1 744
R112_25_25 402.85 402.85 0 7.2 40 1 956
R112_25_50 402.85 402.85 0 2.8 40 1 932
R112_25_75 402.85 402.85 0 1.2 40 1 719

Table 11: Detailed results for Solomon-based instances R1
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Instance LB UB Gap Time #cuts #nodes #columns

R201_25_25 464.38 464.38 0 0.3 9 1 968
R201_25_50 464.38 464.38 0 0.1 9 1 817
R201_25_75 464.38 464.38 0 0.1 9 1 817
R202_25_25 411.49 411.49 0 1.1 0 1 4,557
R202_25_50 411.49 411.49 0 0.7 0 1 4,339
R202_25_75 411.49 411.49 0 0.2 0 1 3,202
R203_25_25 392.33 392.33 0 27.6 10 1 6,646
R203_25_50 392.33 392.33 0 7.4 10 1 4,579
R203_25_75 392.33 392.33 0 2.7 10 1 3,878
R204_25_25 355.89 355.89 0 1,133.3 40 1 7,529
R204_25_50 355.89 355.89 0 1,348.9 80 1 8,153
R204_25_75 355.89 355.89 0 69.0 70 1 7,338
R205_25_25 394.06 394.06 0 2.2 10 1 3,454
R205_25_50 394.06 394.06 0 0.8 10 1 2,920
R205_25_75 394.06 394.06 0 0.5 10 1 2,813
R206_25_25 375.48 375.48 0 32.0 10 1 6,468
R206_25_50 375.48 375.48 0 6.3 10 1 7,001
R206_25_75 375.48 375.48 0 1.6 10 1 5,141
R207_25_25 362.64 362.64 0 259.4 10 1 10,796
R207_25_50 362.64 362.64 0 92.7 10 1 7,781
R207_25_75 362.64 362.64 0 32.8 10 1 7,724
R208_25_25 329.33 329.33 0 658.3 10 1 11,670
R208_25_50 329.33 329.33 0 230.4 10 1 12,023
R208_25_75 329.33 329.33 0 39.4 10 1 9,973
R209_25_25 371.56 371.56 0 67.1 60 1 6,042
R209_25_50 371.56 371.56 0 14.4 50 1 5,990
R209_25_75 371.56 371.56 0 4.8 50 1 4,458
R210_25_25 405.48 405.48 0 16.9 10 1 6,808
R210_25_50 405.48 405.48 0 5.9 10 1 5,540
R210_25_75 405.48 405.48 0 2.4 10 1 4,730
R211_25_25 351.75 351.91 0.04 T.L. 30 1 8,561
R211_25_50 351.91 351.91 0 1,605.6 50 1 8,862
R211_25_75 351.91 351.91 0 422.9 60 1 7,067

Table 12: Detailed results for Solomon-based instances R2
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Instance LB UB Gap Time #cuts #nodes #columns

RC101_25_25 473.54 473.54 0 0.7 46 1 621
RC101_25_50 478.73 478.73 0 0.4 40 1 686
RC101_25_75 487.76 487.76 0 0.3 50 1 632
RC102_25_25 363.86 363.86 0 0.8 0 1 1,078
RC102_25_50 369.68 369.68 0 0.5 0 1 1,300
RC102_25_75 391.38 391.38 0 0.1 0 1 847
RC103_25_25 346.51 346.51 0 1.6 0 1 1,474
RC103_25_50 354.13 354.13 0 0.7 0 1 1,500
RC103_25_75 373.28 373.28 0 0.2 0 1 1,013
RC104_25_25 320.61 320.61 0 6.2 0 1 1,860
RC104_25_50 342.02 342.02 0 2.4 0 3 1,461
RC104_25_75 361.07 361.07 0 0.6 0 1 800
RC105_25_25 412.56 412.56 0 0.2 0 1 475
RC105_25_50 419.72 419.72 0 0.2 0 1 798
RC105_25_75 434.35 434.35 0 0.1 0 1 608
RC106_25_25 355.32 355.32 0 0.3 0 1 618
RC106_25_50 361.25 361.25 0 0.2 0 1 608
RC106_25_75 388.71 388.71 0 0.1 0 1 691
RC107_25_25 318.46 318.46 0 2.2 0 1 1,335
RC107_25_50 333.23 333.23 0 1.2 0 1 1,395
RC107_25_75 345.55 345.55 0 0.5 0 1 1,091
RC108_25_25 314.64 314.64 0 13.0 0 1 2,898
RC108_25_50 331.25 331.25 0 5.9 0 1 2,101
RC108_25_75 345.55 345.55 0 2.1 0 1 1,494
RC201_25_25 361.24 361.24 0 0.1 0 1 745
RC201_25_50 361.24 361.24 0 0.1 0 1 745
RC201_25_75 361.24 361.24 0 0.0 0 1 745
RC202_25_25 338.82 338.82 0 0.9 0 1 1,273
RC202_25_50 338.82 338.82 0 0.4 0 1 1,273
RC202_25_75 338.82 338.82 0 0.1 0 1 1,273
RC203_25_25 327.69 327.69 0 19.9 0 1 2,230
RC203_25_50 327.69 327.69 0 2.7 0 1 2,170
RC203_25_75 327.69 327.69 0 1.0 0 1 2,235
RC204_25_25 300.24 300.24 0 66.7 0 1 7,560
RC204_25_50 300.24 300.24 0 38.0 0 1 10,317
RC204_25_75 300.24 300.24 0 15.0 0 1 9,491
RC205_25_25 338.93 338.93 0 2.4 0 1 2,371
RC205_25_50 338.93 338.93 0 1.2 0 1 1,852
RC205_25_75 338.93 338.93 0 0.2 0 1 1,496
RC206_25_25 325.10 325.10 0 1.1 0 1 2,049
RC206_25_50 325.10 325.10 0 0.4 0 1 2,709
RC206_25_75 325.10 325.10 0 0.2 0 1 2,285
RC207_25_25 298.95 298.95 0 7.7 0 1 7,442
RC207_25_50 298.95 298.95 0 2.2 0 1 2,640
RC207_25_75 298.95 298.95 0 0.6 0 1 1,858
RC208_25_25 269.57 269.57 0 2,615.1 0 1 10,601
RC208_25_50 269.57 269.57 0 1,778.4 0 1 11,410
RC208_25_75 269.57 269.57 0 278.6 0 1 9,518

Table 13: Detailed results for Solomon-based instances RC
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Instance LB UB Gap Time #cuts #nodes #columns

TTRP_6_0 163,874 163,874 0 1.1 16 1 1,004
TTRP_6_1 143,909 143,909 0 1.0 10 1 1,152
TTRP_6_2 145,645 145,645 0 0.4 0 1 999
TTRP_6_3 197,850 197,850 0 0.3 9 1 619
TTRP_6_4 178,383 178,383 0 0.2 10 1 568
TTRP_6_5 142,888 142,888 0 1.8 15 1 1,190
TTRP_6_6 145,040 145,040 0 1.5 10 1 1,235
TTRP_6_7 148,384 148,384 0 1.2 10 1 1,094
TTRP_6_8 173,353 173,353 0 1.4 20 1 644
TTRP_6_9 147,385 147,385 0 1.2 20 1 1,056
TTRP_6_10 157,903 157,903 0 0.5 3 1 857
TTRP_6_11 152,266 152,266 0 1.5 25 1 975
TTRP_6_12 163,427 163,427 0 3.4 30 1 1,016
TTRP_6_13 143,010 143,010 0 0.6 10 1 1,537
TTRP_6_14 164,496 164,496 0 1.7 10 1 949
TTRP_6_15 155,263 155,263 0 1.1 10 1 938
TTRP_6_16 165,577 165,577 0 0.7 0 1 837
TTRP_6_17 173,967 173,967 0 0.2 0 1 840
TTRP_6_18 149,120 149,120 0 2.2 19 1 870
TTRP_6_19 136,069 136,069 0 1.5 17 1 867
TTRP_6_20 113,710 113,710 0 1.2 0 1 1,655
TTRP_6_21 154,589 154,589 0 0.5 10 1 1,012
TTRP_6_22 157,212 157,212 0 1.0 10 1 867
TTRP_6_23 152,416 152,416 0 0.5 0 1 1,077
TTRP_6_24 157,880 157,880 0 2.6 10 1 1,212
TTRP_6_25 150,638 150,638 0 0.8 0 1 ,903
TTRP_6_26 173,962 173,962 0 0.7 10 1 770
TTRP_6_27 171,155 171,155 0 0.7 9 1 973
TTRP_6_28 178,840 178,840 0 2.7 20 1 1,000
TTRP_6_29 165,292 165,292 0 9.6 28 3 1,607
TTRP_7_0 177,536 177,536 0 2.3 20 1 1,230
TTRP_7_1 167,016 167,016 0 5.3 20 1 1,241
TTRP_7_2 189,518 189,518 0 0.4 10 1 759
TTRP_7_3 198,714 198,714 0 0.6 20 1 1,209
TTRP_7_4 187,852 187,852 0 1.4 10 1 616
TTRP_7_5 178,057 178,057 0 1.1 19 1 1,285
TTRP_7_6 171,881 171,881 0 70.7 56 3 2,332
TTRP_7_7 197,741 197,741 0 0.8 10 1 1,333
TTRP_7_8 192,178 192,178 0 1.8 10 1 982
TTRP_7_9 189,818 189,818 0 1.1 8 1 1,252
TTRP_7_10 188,080 188,080 0 0.7 0 1 1,222
TTRP_7_11 183,926 183,926 0 0.9 10 1 931
TTRP_7_12 163,727 163,727 0 2.2 10 1 1,284
TTRP_7_13 181,886 181,886 0 0.6 0 1 859
TTRP_7_14 187,342 187,342 0 1.4 10 1 1,288
TTRP_7_15 192,112 192,112 0 0.3 0 1 930
TTRP_7_16 193,950 193,950 0 3.2 21 1 1,123
TTRP_7_17 172,506 172,506 0 0.7 0 1 811
TTRP_7_18 191,093 191,093 0 991.1 36 3 8,059
TTRP_7_19 190,032 190,032 0 1.4 20 1 1,106
TTRP_7_20 179,299 179,299 0 2.4 20 1 1,893
TTRP_7_21 186,217 186,217 0 0.7 10 1 1,195
TTRP_7_22 202,932 202,932 0 1.0 18 1 1,124
TTRP_7_23 186,509 186,509 0 0.7 10 1 995
TTRP_7_24 191,921 191,921 0 0.3 0 1 718
TTRP_7_25 191,909 191,909 0 3.7 18 1 1,180
TTRP_7_26 200,460 200,460 0 0.5 10 1 1,071
TTRP_7_27 188,632 188,632 0 0.2 0 1 821
TTRP_7_28 173,434 173,434 0 1.7 10 1 1,721
TTRP_7_29 159,213 159,213 0 1.6 10 1 1,440

Table 14: Detailed results for TTRP instances size 6 and 7
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Instance LB UB Gap Time #cuts #nodes #columns

TTRP_8_0 204,862 204,862 0 3.5 10 1 2,494
TTRP_8_1 195,854 195,854 0 23.0 51 1 1,700
TTRP_8_2 191,907 191,907 0 8.8 30 1 2,448
TTRP_8_3 203,350 203,350 0 2.3 10 1 1,555
TTRP_8_4 194,293 194,293 0 2.4 24 1 1,583
TTRP_8_5 201,960 201,960 0 223.7 50 15 6,239
TTRP_8_6 205,829 205,829 0 7.1 20 1 1,399
TTRP_8_7 204,158 204,158 0 4.2 24 1 2,055
TTRP_8_8 193,122 193,122 0 2.8 10 1 2,495
TTRP_8_9 194,797 194,797 0 1.8 0 1 1,584
TTRP_8_10 163,595 163,595 0 25.3 30 1 2,909
TTRP_8_11 201,075 201,075 0 7.5 30 1 2,451
TTRP_8_12 185,829 185,829 0 36.3 48 1 2,475
TTRP_8_13 231,992 231,992 0 1,377.0 24 2 085 2,014,384
TTRP_8_14 227,510 227,510 0 3.6 29 1 1,337
TTRP_8_15 188,023 189,025 0.53 T.L. 32 978 2,039,139
TTRP_8_16 168,893 168,893 0 32.5 20 1 2,760
TTRP_8_17 220,641 220,641 0 2.7 22 1 1,185
TTRP_8_18 186,792 186,792 0 1.4 0 1 1,775
TTRP_8_19 203,236 203,236 0 1.6 0 1 2,588
TTRP_8_20 179,462 179,462 0 3.3 20 1 1,225
TTRP_8_21 208,664 208,664 0 28.7 38 1 1,631
TTRP_8_22 228,495 228,495 0 2.3 35 1 2,245
TTRP_8_23 210,647 210,647 0 12.1 18 1 2,873
TTRP_8_24 181,086 181,086 0 2.2 9 1 1,639
TTRP_8_25 185,788 185,788 0 1.5 10 1 1,660
TTRP_8_26 166,093 166,093 0 27.2 20 1 2,378
TTRP_8_27 195,398 195,398 0 1.9 0 1 988
TTRP_8_28 204,747 204,747 0 23.6 30 1 2,155
TTRP_8_29 191,064 191,064 0 1.3 10 1 1,647

TTRP_9_0 220,184 220,184 0 11.7 14 1 3,731
TTRP_9_1 192,652 192,652 0 41.7 30 1 2,162
TTRP_9_2 220,404 220,404 0 1.6 10 1 2,350
TTRP_9_3 195,389 197,215 0.93 T.L. 68 12 5,958
TTRP_9_4 207,619 207,619 0 6.6 10 1 3,019
TTRP_9_5 207,447 208,450 0.48 T.L. 87 22 13,701
TTRP_9_6 237,694 237,694 0 5.2 30 1 1,734
TTRP_9_7 229,948 229,948 0 57.3 52 1 1,654
TTRP_9_8 212,826 212,826 0 19.8 20 1 2,151
TTRP_9_9 234,673 234,673 0 1.6 10 1 1,873
TTRP_9_10 189,741 189,741 0 9.8 28 1 2,088
TTRP_9_11 190,269 190,269 0 2.9 0 1 2,240
TTRP_9_12 198,115 198,115 0 35.0 50 1 3,200
TTRP_9_13 199,631 199,631 0 3.7 0 1 2,753
TTRP_9_14 208,587 208,587 0 16.9 20 1 2,805
TTRP_9_15 199,285 199,285 0 8.6 20 1 3,539
TTRP_9_16 212,885 212,885 0 3.1 10 1 2,398
TTRP_9_17 208,499 208,499 0 21.3 30 1 3,348
TTRP_9_18 237,788 237,788 0 0.9 9 1 1,368
TTRP_9_19 214,741 214,741 0 118.0 30 1 2,783
TTRP_9_20 217,954 217,954 0 124.3 45 1 3,593
TTRP_9_21 220,973 220,973 0 10.0 20 1 2,641
TTRP_9_22 199,360 199,360 0 239.5 34 7 14,725
TTRP_9_23 265,177 265,177 0 1.0 0 1 2,123
TTRP_9_24 198,701 198,825 0.06 T.L. 70 68 128,880
TTRP_9_25 189,096 189,096 0 11.1 20 1 3,041
TTRP_9_26 239,434 239,434 0 3.5 10 1 2,300
TTRP_9_27 236,151 236,151 0 4.4 20 1 1,577
TTRP_9_28 179,036 179,036 0 51.2 20 1 4,271
TTRP_9_29 214,870 214,870 0 153.7 42 3 3,048

Table 15: Detailed results for TTRP instances size 8 and 9
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Instance LB UB Gap Time #cuts #nodes #columns

TTRP_10_0 250,815 250,815 0 254.5 63 3 2,893
TTRP_10_1 262,139 262,139 0 36.0 30 1 3,197
TTRP_10_2 237,509 237,509 0 37.8 36 1 2,840
TTRP_10_3 244,731 244,731 0 15.6 20 1 2,907
TTRP_10_4 266,077 266,077 0 9.7 30 1 2,480
TTRP_10_5 243,870 243,870 0 4.5 10 1 2,209
TTRP_10_6 247,492 249,605 0.85 T.L. 74 81 151,803
TTRP_10_7 231,129 231,568 0.19 T.L. 48 46 114,560
TTRP_10_8 217,021 217,021 0 11.1 20 1 3,299
TTRP_10_9 248,862 248,862 0 80.4 53 3 2,662
TTRP_10_10 262,310 262,310 0 135.8 42 3 4,644
TTRP_10_11 221,083 221,645 0.25 T.L. 66 136 316,716
TTRP_10_12 246,323 246,323 0 10.1 23 1 2,595
TTRP_10_13 261,842 261,842 0 5.4 10 1 3,916
TTRP_10_14 245,973 245,973 0 5.4 18 1 2,037
TTRP_10_15 213,753 213,753 0 51.2 0 1 4,565
TTRP_10_16 207,860 207,860 0 151.8 57 1 4,395
TTRP_10_17 209,614 210,253 0.3 T.L. 64 8 13,114
TTRP_10_18 216,106 219,933 1.74 T.L. 81 12 18,806
TTRP_10_19 207,686 207,686 0 17.1 10 1 3,727
TTRP_10_20 228,717 228,717 0 17.3 30 1 2,568
TTRP_10_21 205,494 205,494 0 57.4 10 1 5,312
TTRP_10_22 224,851 230,687 2.53 T.L. 57 1 9,499
TTRP_10_23 241,509 241,509 0 4.6 0 1 2,580
TTRP_10_24 221,766 221,766 0 202.4 40 1 6,756
TTRP_10_25 233,261 233,261 0 3.0 10 1 2,195
TTRP_10_26 238,139 238,139 0 27.7 30 1 3,456
TTRP_10_27 249,677 249,677 0 19.7 30 1 2,297
TTRP_10_28 209,008 209,008 0 2,006.1 51 3 7,833
TTRP_10_29 238,367 238,367 0 66.6 34 1 4,509
TTRP_25_0 492,306 498,259 1.19 T.L. 40 1 16,571
TTRP_25_1 484,775 487,918 0.64 T.L. 50 1 12,321
TTRP_25_2 510,294 520,253 1.91 T.L. 40 1 14,279
TTRP_25_3 523,059 524,886 0.35 T.L. 90 1 9,785
TTRP_25_4 548,321 550,491 0.39 T.L. 70 1 11,622
TTRP_25_5 533,485 559,913 4.72 T.L. 70 1 13,430
TTRP_25_6 544,724 548,438 0.68 T.L. 70 1 14,840
TTRP_25_7 534,811 534,811 0 2,291.9 60 1 11,583
TTRP_25_8 511,184 511,508 0.06 T.L. 60 1 11,061
TTRP_25_9 556,671 560,022 0.6 T.L. 50 1 13,569
TTRP_25_10 532,491 546,649 2.59 T.L. 40 1 14,853
TTRP_25_11 489,122 503,341 2.82 T.L. 40 1 13,766
TTRP_25_12 543,077 548,557 1 T.L. 113 1 9,673
TTRP_25_13 526,345 544,599 3.35 T.L. 30 1 11,882
TTRP_25_14 518,128 528,855 2.03 T.L. 50 1 14,155
TTRP_25_15 546,404 550,604 0.76 T.L. 70 1 12,882
TTRP_25_16 518,744 519,920 0.23 T.L. 50 1 12,336
TTRP_25_17 478,372 496,769 3.7 T.L. 20 1 14,174
TTRP_25_18 533,444 533,471 0.01 T.L. 60 1 12,144
TTRP_25_19 506,870 523,373 3.15 T.L. 50 1 13,181
TTRP_25_20 506,401 507,249 0.17 T.L. 80 1 11,259
TTRP_25_21 482,849 490,077 1.47 T.L. 40 1 14,300
TTRP_25_22 493,621 495,046 0.29 T.L. 70 1 14,914
TTRP_25_23 575,009 578,268 0.56 T.L. 80 6 22,709
TTRP_25_24 518,835 543,377 4.52 T.L. 40 1 13,769
TTRP_25_25 538,252 542,546 0.79 T.L. 80 1 15,357
TTRP_25_26 516,290 537,281 3.91 T.L. 40 1 14,175
TTRP_25_27 528,238 536,408 1.52 T.L. 60 1 13,041
TTRP_25_28 511,719 518,385 1.29 T.L. 50 1 12,054
TTRP_25_29 538,870 541,306 0.45 T.L. 100 1 12,048

Table 16: Detailed results for TTRP instances size 10 and 25
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