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Large Multiple Neighborhood Search for the Clustered Vehicle-Routing
Problem

Timo Hintsch∗,a, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The clustered vehicle-routing problem (CluVRP) is a variant of the classical capacitated vehicle-routing
problem (CVRP) in which customers are partitioned into clusters, and it is assumed that each cluster must
have been served completely before the next cluster is served. This decomposes the problem into three
subproblems, i.e., the assignment of clusters to routes, the routing inside each cluster, and the sequencing
of the clusters in the routes. The second task requires the solution of several Hamiltonian path problems,
one for each possibility to route through the cluster. We pre-compute the Hamiltonian paths for every
pair of customers of each cluster. We present a large multiple neighborhood search (LMNS) which makes
use of multiple cluster destroy and repair operators and a variable-neighborhood descent (VND) for post-
optimization. The VND is based on classical neighborhoods such as relocate, 2-opt, and swap all working
on the cluster level and a generalization of the Balas-Simonetti neighborhood modifying simultaneously the
intra-cluster routings and the sequence of clusters in a route. Computational results with our new approach
compare favorably to existing approaches from the literature.

Key words: Vehicle Routing, Clustered Vehicle Routing, Large Neighborhood Search

1. Introduction

The clustered vehicle-routing problem (CluVRP) generalizes the classical capacitated vehicle-routing prob-
lem (CVRP). The customers in the CluVRP are grouped into disjoint clusters, and the only additional
constraint compared to the CVRP is that all customers of a cluster must be served by the same vehicle in
consecutive visits. It means that if one customer of a cluster is served by a vehicle then all other customers
of the same cluster are served by the same vehicle. Moreover, there is no customer from another cluster
visited in between two customers of the same cluster.

In this paper, we present a new metaheuristic approach for the CluVRP based on the large neighbor-
hood search principle (LNS, Shaw, 1998; Ropke and Pisinger, 2006b). The novelty of our large multiple
neighborhood search (LMNS) approach is the combination of multiple destroy and repair operators in the
LNS together with several neighborhoods in the local search phase. One new neighborhood search operator
generalizes the Balas-Simonetti neighborhood (Balas, 1999; Balas and Simonetti, 2001) originally invented
as an exponentially-sized neighborhood of the asymmetric traveling salesman problem (ATSP). The Balas-
Simonetti neighborhood can be searched for a best-improving neighbor in polynomial time. We exploit the
cluster structure of the CluVRP in several ways: First, high-quality routings through a cluster are pre-
computed as ATSP solutions. An ATSP instance results from an entry-exit combination of a cluster and
high-quality solutions are found with a metaheuristic combining iterated local search (ILS) and variable
neighborhood descent (VND) for ATSPs. Second, the actual LMNS operates on a meta-representation of
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the CluVRP with nodes for the depot and meta-nodes for the different clusters. This allows us to use stan-
dard CVRP neighborhoods, e.g., 2-opt, relocate, and swap to modify the grouping and sequence of clusters.
Moreover, we can determine for a given sequence of clusters a best routing through the clusters efficiently
using a dynamic programming (DP) model. Third, the generalized Balas-Simonetti neighborhood is used
to optimize single routes of a CluVRP solution. The search operator simultaneously decides on the best
permutation of a route’s clusters and the routing through each cluster.

In the literature, the CluVRP is defined as a symmetric vehicle-routing problem and can therefore be
modeled using a complete undirected graph G = (V,E) with nodes V and edges E. The nodes comprise the
set V \{0} = {1, . . . , n} that represents the n customers and the node 0 for the depot, where a homogeneous
fleet of m vehicles is housed. The capacity of a vehicle is denoted by Q. The customers are partitioned into
N clusters V1, V2, . . . , VN−1, VN . For the sake of convenience, we also define the depot cluster as V0 = {0}.
All customer cluster Vh, h ∈ {1, 2, . . . , N}, have a positive demand dh and cardinality λh = |Vh|. All edges
{i, j} ∈ E have associated routing costs cij .

The task is to determine a set of m feasible routes with minimum total routing costs serving each
customer exactly once. A route is feasible if

(i) it starts and ends at the depot 0,
(ii) it respects the clustering, meaning that if customer i ∈ Vh is visited then all other customers in Vh \{i}

are visited directly before or after i without any other intermediate customers, and
(iii) the demand of the visited clusters does not exceed the vehicle capacity.

If all clusters are singletons Vh = {h}, the CluVRP reduces to the CVRP. This also shows that the CluVRP
is NP -hard. For m = 1, the resulting problem is the clustered traveling salesman problem (Chisman, 1975).

The paper is structured as follows. Section 2 reviews heuristic and exact CluVRP approaches from the
literature. In Section 3, we present the overall LMNS algorithm and explain details of its components.
The algorithmic components of the LMNS and their interplay are carefully analyzed in Section 4. Here,
we also compare our computational results with the state-of-the-art metaheuristics for the CluVRP. Final
conclusions are drawn in Section 5.

2. Literature Review

The CluVRP was introduced by Sevaux and Sörensen (2008) in the context of courier companies deliv-
ering parcels to a large number of customers. In this application, the customers are divided into regional
zones, and parcels are sorted into containers according to their postal code. Hence, the regional zones imply
customer clusters.

To the best of our knowledge, the literature describes only two exact approaches for the CluVRP. Pop
et al. (2012) presented two compact formulations, but did not show computational results. Battarra et al.
(2014) developed two exact algorithms and provided results for a set of benchmark instances. Their branch-
and-cut algorithm relies on a preprocessing algorithm that calculates a shortest Hamiltonian path (SHP)
inside every cluster for every pair of nodes belonging to that cluster. It outperforms their branch-and-cut-
and-price algorithm, which is actually a branch-and-bound with combined row-and-column generation (not
based on a formulation with route variables).

Several heuristic approaches have been published. Barthélemy et al. (2010) transformed the problem into
the CVRP by adding a large value M to all inter-cluster edges, and the transformed problem is then solved by
a simulated-annealing algorithm. Defryn and Sörensen (2015) and Expósito-Izquierdo et al. (2016) presented
different two-level approaches with two types of subproblems: The low-level routing problem changes the
sequence of the customers inside each cluster. In contrast, the high-level routing problem only alters the
sequence of the clusters, which imposes a CVRP that uses the clusters as its customers. Defryn and Sörensen
(2015) suggested two variable neighborhood searches, one for each level. Expósito-Izquierdo et al. (2016)
solved the high-level routing problem with the record-to-record travel algorithm of Golden et al. (1998).
For solving the low-level problem, a mixed integer linear programming model, the construction algorithm of
Christofides (1970), and the Lin-Kernighan improvement heuristic (Lin and Kernighan, 1973) are employed
as exact and heuristic techniques.
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A hybrid approach combining a genetic algorithm with a simulated annealing algorithm to calculate all
SHPs inside the clusters was presented by Marc et al. (2015). Vidal et al. (2015) proposed two iterated local
searches and a hybrid genetic algorithm called unified hybrid genetic search (UHGS). UHGS is based on the
work (Vidal et al., 2012) and uses the preprocessing of the SHPs per cluster (as in Battarra et al., 2014)
and a very efficient exploration of large neighborhoods. Vidal et al. (2015) produced solutions of impressive
quality on an older benchmark set and generated some new large-scale CluVRP instances for which they
presented the first results.

3. LMNS for the CluVRP

In this section, we describe the components of our metaheuristic used for solving the CluVRP. We start
with the pre-computation of intra-cluster routes in Section 3.1, followed by the description of the new Balas-
Simonetti neighborhood for clusters described in Section 3.2. Neighborhoods that allow the exchange of
clusters between different routes are presented in Section 3.3. The destroy and repair operator of the LMNS
and the overall algorithm are described in Sections 3.4 and 3.5.

3.1. Intra-Cluster Route Pre-Computation
We pre-compute all intra-cluster routes by heuristically solving one SHP problem for each customer

cluster Vh and each entry-exit combination (eh, fh) ∈ Vh × Vh with eh �= fh. Such a Hamiltonian path
xh(eh, fh) = (eh, . . . , fh) starts at the chosen entry eh, ends at the chosen exit fh, and visits all remaining
nodes of cluster Vh in between. The cost of the computed Hamiltonian path is denoted by ĉehfh . In the
symmetric case,

∑N
h=1

(
λh

2

)
Hamiltonian paths have to be calculated in total. For convenience, we define

ĉehfh = 0 for clusters consisting of a single node, i.e., λh = 1 and hence eh = fh. Moreover, we set ĉehfh = M
using a large number M > 0 if entry and exit are identical (eh = fh), and the cluster consists of more than
one customer (λh > 1).

We transform the SHP into a traveling salesman problem (TSP) defined by all nodes Vh of the cluster.
The induced distance matrix is derived from the cost matrix (cij). The only modification is the addition
of the value −M to the edge {eh, fh} for the entry-exit-combination (eh, fh) under consideration. This
TSP is then solved heuristically using the Balas-Simonetti neighborhood (described in Section 3.1.1) and a
combined ILS/VND (see Section 3.1.2).

3.1.1. Balas-Simonetti Neighborhood
The Balas-Simonetti neighborhood was introduced by Balas (1999), it is in fact a family of ATSP neigh-

borhoods NBS
k for k ≥ 2, each of exponential size that can however be searched efficiently. Balas and

Simonetti (2001) analyzed the performance of NBS
k -based improvement heuristics for the ATSP and the

ATSP with time windows. We use this neighborhood as one component in an ATSP heuristic similar to the
algorithm described in (Irnich, 2008). In addition, we present a generalization of the Balas-Simonetti neigh-
borhood for the CluVRP that permutes clusters and simultaneously chooses optimal entry-exit combinations
for the clusters in Section 3.2.

For describing the elements of the neighborhood NBS
k in the ATSP, we assume that the parameter

k ≥ 2 is given. Let x = (x0, x1, x2, . . . , xn, xn+1) be an ATSP tour or a Hamiltonian path. Each x′ =
(xπ(0), xπ(1), xπ(2), . . . , xπ(n), xπ(n+1)) is a neighbor of x in NBS

k , if the permutation π of {0, 1, . . . , n, n+ 1}
fulfills π(0) = 0, π(n + 1) = n + 1, and the following condition: if i + k ≤ j for a pair of indices i, j ∈
{1, 2, . . . , n}, then π(i) ≤ π(j) must hold. It means that if a node xi that precedes another node xj by at
least k positions in the original tour x, then xi must also precede xj in the neighbor tour x′. In this case,
we write x′ ∈ NBS

k (x).
A best neighbor solution x′ ∈ NBS

k (x) can be determined by solving a shortest-path problem in an
auxiliary graph G∗

k . An example of such an auxiliary graph is shown in Figure 1 for k = 3 and an original
tour x = (x0, x1, . . . , xn, xn+1) with n = 5. The auxiliary graph G∗

k is structured as follows: there are n+ 2

identical stages, each stage has (k+1)2k−2 states denoted by Wi for 0 ≤ i ≤ n+1. Moreover, only states of
consecutive stages i and i+1 are connected via arcs. The number of arcs in G∗

k [Wi ∪Wi+1] does not exceed
3



x0 x1 x2 x3 x4 x5 xn+1

α = 0: s0 sn+1

α = 1:

α = −1:

α = 2:

α = 1:

α = −1:

α = 0:

α = −2:

Figure 1: Auxiliary graph G∗
k for k = 3, current solution x = (x0, x1, x2, x3, x4, x5, xn+1), and neighbor x′ =

(x0, x3, x1, x4, x2, x5, xn+1) ∈ NBS
3 (x) implied by the highlighted s0-sn+1-path

.

k(k+1)2k−2. Stage 1 contains the start state s0 and stage n+1 the sink state sn+1. Every s0-sn+1-path in
G∗

k represents a neighbor x′ of x, and vice versa. The idea of Balas (1999) was that each state s ∈ Wi refers
to a restricted permutation of the nodes around position i. We use a value α(s) to partially characterize
this permutation in the sense that the state s ∈ Wi in stage i determines the permuted node x′

i = xi+α(s)

at position i in the neighbor tour x′. Thus, the number α(s) is an integer strictly between −k and k
associated with state s. If the s0-sn+1-path contains state s at stage i, it means that node xi+α(s) is shifted
from position i + α(s) in the given tour x to position i in the neighbor tour x′. In Figure 1, the neighbor
x′ = (x0, x3, x1, x4, x2, x5, xn+1) ∈ NBS

3 (x0, x1, x2, x3, x4, x5, xn+1) is represented by the highlighted path
depicted by red/bold nodes and arcs.

The construction of the subgraphs G∗
k [Wi ∪Wi+1] is nontrivial for general k ≥ 2. Balas and Simonetti

(2001) and Simonetti and Balas (1996) describe the rules that determine the arc set and the values α(s) for
states s ∈ Wi.

A tailored dynamic programming labeling algorithm can be used to solve the shortest s0-sn+1-path
problem in the auxiliary graph G∗

k . Note first that G∗
k is acyclic so that a pulling or reaching-based labeling

algorithm is applicable. Second, all induced subgraphs G∗
k [Wi ∪ Wi+1] for i ∈ {0, 1, . . . , n} are identical.

As a consequence, only one such copy needs to be constructed beforehand, and only once. Herewith, the
auxiliary graph is represented implicitly. Note also that auxiliary graphs for decreasing values of k are
subgraphs. Indeed, for any k ≤ kmax, G∗

k is the subgraph of G∗
kmax induced by the first (k + 1)2k−2 states.

Consequently, only G∗
kmax [Wi∪Wi+1] has to be constructed and stored. Third, states that point to a position

i+ α(s) < 0 or i+ α(s) > n+ 1 are unreachable. Moreover, those states that cannot be reached from s0 or
that cannot reach sn+1 are also unreachable (depicted in gray and dotted in Figure 1). Finally, the structure
of G∗

k does not depend on the current solution x. Only the costs of the arcs of G∗
k depend on x: an arc

(s, s′) ∈ Wi ×Wi+1 receives the cost cxi+α(s),xi+1+α(s′) so that the cost of any s0-sn+1-path is identical with
the cost of the resulting neighbor x′. For example, the first bold arc in Figure 1 has cost cx0+0,x1+2

= cx0,x3
,

the second has cost cx1+2,x2−1 = cx3,x1 , etc.
The DP algorithm to determine a best neighbor solution can be implemented requiring O (nk22k) time

and space. In particular, searching this exponentially sized neighborhood (> (k/e)n−1 neighbors for n >
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k(k + 1), see Gutin et al., 2002, p. 233) requires only linear effort in n, i.e., the length of the ATSP tour.
Furthermore, the DP is exact, i.e., determines an optimal ATSP solution when k ≥ n. We will use this
for small-sized ATSPs/SHPs. However, this is not a viable approach in general because the computational
effort grows exponentially with k.

3.1.2. Overall ATSP Heuristic
We employ a mixed strategy for solving SHPs depending on the size λh of the hth cluster Vh. The

following three parameters have to be chosen: (i) the maximum size λBS of a small cluster; (ii) the parame-
ter kATSP of the Balas-Simonetti neighborhood used for searching large clusters, and (iii) the number ItATSP
of ILS iterations for large clusters.

For clusters of size λh < 4 there is nothing to do. If the cluster is small, i.e., 4 ≤ λh ≤ λBS, we calculate
an exact SHP for all its intra-cluster routes with the Balas-Simonetti neighborhood search. For this purpose,
we set k = λh − 2. Then, for a given entry-exit combination (eh, fh), we construct an arbitrary starting
solution xh(eh, fh) and perform a single search for a best neighbor within NBS

λh−2(xh(eh, fh)). This neighbor
is already an optimal solution to the SHP.

Otherwise, for larger clusters with λh > λBS, we run an ILS-based heuristic (Johnson et al., 2007),
similar to the one described in (Irnich, 2008). First, a starting solution is constructed by the nearest
neighbor heuristic. Second, some classical edge-exchange neighborhoods (we use 2-opt, Or-opt, and double-
bridge, see, e.g., Funke et al., 2005) and the Balas-Simonetti neighborhood with kATSP are combined within
a VND (Hansen and Mladenović, 2001). Note that all three edge-exchange neighborhoods can be searched
efficiently in O (λh

2) time and space (see Glover, 1996). This results in a local optimum w.r.t. all four
neighborhoods. Third, local optima are perturbed by two randomly chosen double-bridge moves. This
creates the new starting solution for the next VND iteration. Overall, we perform ItATSP iterations.

3.2. Balas-Simonetti Neighborhood for Clusters
The goal of this section is the introduction of a generalization of the Balas-Simonetti neighborhood

applicable to a single CluVRP route. As before, the new family of neighborhoods is parametrized by k. For
a fixed k ≥ 1, the neighborhood allows the permutation of clusters in the same way in which nodes can be
permuted in the ATSP neighborhood NBS

k . The new neighborhood is therefore of exponential size w.r.t. the
number of clusters visited in the CluVRP route under consideration. Moreover, the new neighborhood allows
to arbitrarily modify all entry and exit nodes for every visited cluster. This is the part of the neighborhood
definition that is specific for the CluVRP. Already with two options for entry and exit per cluster, there are
exponentially many neighbor routes with an identical sequence of clusters. The new neighborhood combines
both the limited permutation of clusters and the choice of entry-exit combinations. We will show that still
an optimal combination, i.e., a best neighbor route, can be determined efficiently.

We start with the formal description of an arbitrary CluVRP route. Such a route is denoted by σ =
(σ0, σ1, . . . , σp, σp+1) with triplets σi = (ei, V�i , fi) where V�i is the ith visited cluster with index �i. Herein, �
is a mapping from the set {0, 1, . . . , p+1} of positions to the set {0, 1, 2, . . . , N} of cluster indices. Moreover,
ei, fi ∈ V�i are the entry and exit nodes, respectively, for all i ∈ {0, 1, . . . , p + 1}. We assume that every
route starts and ends at the depot requiring �0 = �p+1 = 0 so that the first triplet and the last triplet are
(0, V0, 0). Recall that the depot’s cluster V0 is {0}. The remaining triplets describe the routing through the
customer clusters in the sense that in the ith step the cluster V�i is entered at ei, exited at fi, and all nodes
of the cluster are visited along the pre-computed Hamiltonian ei-fi-path with cost ĉeifi (see Section 3.1).
The cost of such a route σ = (σ0, σ1, . . . , σp, σp+1) is given by

c(σ) =

p∑

i=0

cfi,ei+1
+

p∑

i=1

ĉei,fi . (1)

Next, we describe the elements of the Balas-Simonetti neighborhood for the CluVRP. Let the inte-
ger k ≥ 1 be given and fixed. We define the Balas-Simonetti neighborhood of an CluVRP route σ =
(σ0, σ1, . . . , σp, σp+1) as all routes σ′ = (σ′

0, σ
′
1, . . . , σ

′
p, σ

′
p+1) that fulfill the following conditions:
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V0 V�1 V�2 V�3 V�4 V0

α = 0: s0 sp+1

α = 1:

α = −1:

Figure 2: Auxiliary graph Ĝ∗
k for k = 2, current solution σ = (σ0, σ1, σ2, σ3, σ4, σ5) with σ0 = σ5 =

(0, {0}, 0) and p = 4 customer clusters visited in the sequence V�1 , V�2 , V�3 , V�4 . The neighbor σ′ =
(σ′

0, σ
′
1, σ

′
2, σ

′
3, σ

′
4, σ

′
5) ∈ NBS

2 (σ) implied by the highlighted s0-sp+1-path visits the customer clusters in
the sequence V�2 , V�1 , V�4 , V�3 .

(i) the ith triplet is σ′
i = (e′i, V�π(i)

, f ′
i) with arbitrary e′i, f

′
i ∈ V�π(i)

, where

(ii) π is a permutation of {0, 1, . . . , p, p+1} with π(0) = π(p+1) = 0, and if g+ k ≤ h for a pair of indices
g, h ∈ {1, 2, . . . , p} then π(g) ≤ π(h) must hold.

In this case, we write σ′ ∈ NBS
k (σ). Note that we allow k = 1 here in contrast to the ATSP where k ≥ 2

is required. For the CluVRP, NBS
1 (σ) does not at all permute the clusters but allows to arbitrarily modify

the entry-exit combinations of all visited clusters. Such a neighborhood has been defined in the context
of routing with service mode choice, e.g., the selection of the traversal directions in single- and multiple-
vehicle arc-routing problems (Irnich, 2008; Bode and Irnich, 2012) and vehicle-routing problems with more
general service mode choices (Vidal, 2016). Its has been shown there that optimal choices can be determined
efficiently using DP techniques.

For the general case of k ≥ 1, we show that an optimal combination of cluster permutation and all
entry-exit nodes can be determined by solving again a source-to-sink shortest path problem in an auxiliary
network Ĝ∗

k . We start by defining the structure of this auxiliary network. It has a macroscopic and a
microscopic level, as visualized in Figure 2. The macroscopic level has cluster nodes that represent the
depot and the p clusters. As the depot 0 is also the cluster V0, we do not distinguish between depot and
clusters in the following. The cluster nodes are permuted using the same auxiliary graph G∗

k as in the ATSP
(see Section 3.1.1). Hence, the states s of G∗

k are copies of the clusters V�i and the α-values allow us to refer
to the associated original cluster. In Figure 2 with k = 2, the cluster nodes can only move one position
backward or one position forward or stay at the same position.

At the microscopic level, each cluster V�i is described by all possible triplets (ei, V�i , fi) modeled by a
complete bipartite graph. The first/left partition consists of the entry nodes ei ∈ V�i , while the second/right
partition consists of the exit nodes fi ∈ V�i . Each edge in the bipartite graph refers to a specific triplet, and
vice versa. Hence, the cost of an arc (ei, fi) is defined as the cost ĉei,fi of a Hamiltonian ei-fi-path. Note
that in case of ei = fi and λi > 1 this cost was defined as the large number M making choices with identical
entry and exit unattractive for non-trivial clusters.

Finally, we have to define the cost of the arcs connecting different clusters. Connecting states s of stage i
with states s′ of stage i + 1 is simple. The arc connecting triplet (ei, Vqi , fi) with triplet (ei+1, Vri+1

, fi+1)

receives the cost cfi,ei+1
. Now, each s0-sp+1-path in Ĝ∗

k uniquely corresponds to a neighbor σ′ of σ with
cost c(σ′) as defined in (1).

In Figure 2, the given route σ starts at the depot cluster V0, then visits the four clusters in the sequence
V�1 , V�2 , V�3 , V�4 , and returns to the depot cluster V0. The entry-exit combinations of σ are unimportant for
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describing its neighbors. The highlighted s0-sp+1-path is the neighbor solution σ′ that visits the customer
clusters in the sequence V�2 , V�1 , V�4 , V�3 . The first visited cluster V�2 contains only one customer so that
entry and exit are identical to this customer. The second visited cluster V�1 is entered via its second and
exited via its first customer, while for the third visited cluster V�4 it is reverse. The last visited cluster V�3

is entered via its third customer and exited via its second customer.
It is straightforward to generalize the complexity results known for the ATSP. Here, for a given CluVRP

route σ = (σ0, σ1, . . . , σp, σp+1), the DP algorithm to determine a best neighbor solution can be implemented
requiring O (pλ2

maxk
22k) time and space, where λmax = max1≤i≤p λ�i is the size of the largest visited cluster.

In particular, the search effort is linear in the number p of visited clusters and linear in the number of entry-
exit combinations (which is bounded by λ2

max).

3.3. Cluster Neighborhoods and VND
In this section, we present a variant of VND (Hansen and Mladenović, 2001) that combines the single-

route Balas-Simonetti neighborhood of the last section with several neighborhoods that can exchange clusters
between routes. Since in the CluVRP customers of same clusters have to be visited contiguously, all neigh-
borhoods move complete clusters. We can therefore re-use known neighborhoods from the CVRP by letting
them operate on sequences of clusters. The CVRP neighborhoods that we adapt to the CluVRP are the
(subsequence) relocation neighborhood κ-Relocate, the Swap neighborhood, and the 2-opt* neighborhood.

Before we describe these neighborhoods precisely, we formalize two strategies for determining new en-
try/exit combinations after the movement of clusters. In the fixed version, the entry/exit decisions are kept
fixed as given by the current solution. The three neighborhoods can only alter the grouping of the clusters.
In contrast, the flex version allows changing particular entry-exit combinations in the following ways:

Connect When two subroutes σ1 = (. . . , σ1
i−1, σ

1
i ) with σ1

i = (e1i , V
1
�i
, f1

i ) and σ2 = (σ2
j , σ

2
j+1, . . . ) with

σ2
j = (e2j , V

2
�j
, f2

j ) are concatenated, the exit of cluster σ1
i and the entry of cluster σ2

j can be
modified. We minimize the value ĉe1i ,f ′1

i
+ cf ′1

i ,e′2j
+ ĉe′2j ,f2

j
over (f ′1

i , e′2j ) ∈ V 1
�i

× V 2
�j

. Note
that e1i and f2

j are still kept fixed. The resulting subroute is (. . . , σ1
i−1, σ

′1
i , σ′2

j , σ2
j+1, . . . ) with

σ′1
i = (e1i , V

1
�i
, f ′1

i ) and σ′2
j = (e′2j , V

2
�j
, f2

j ).

Insert Inserting a cluster σa = (ea, V�a , fa) into route σ = (. . . , σi, σj , . . . ) between σi and σj is done
by minimizing cfi,e′a + ĉe′a,f ′

a
+ cf ′

a,ej
over (e′a, f

′
a) ∈ V�a × V�a . Note that σi and σj are kept

fixed. The resulting route is σ′ = (. . . , σi, σ
′
a, σj , . . . ) with σ′

a = (e′a, V�a , f
′
a).

Note that the computational effort for minimization is in both cases bounded by O (λ2
max), where λmax is

the size of the largest cluster.
In the following, the relocation, swap, and 2-opt* neighborhoods are considered in both versions, fixed

and flexible. For the brief description of the actual neighborhoods, we notice that no more than two routes
are involved in any operation. We denote these two routes by σ1 = (σ1

0 , σ
1
1 , . . . , σ

1
i−1, σ

1
i , σ

1
i+1, . . . , σ

1
p, σ

1
p+1)

and σ2 = (σ2
0 , σ

2
1 , . . . , σ

2
j−1, σ

2
j , σ

2
j+1, . . . , σ

2
q , σ

2
q+1).

Relocate Neighborhood. The neighborhood N κ-reloc contains all CluVRP solutions that result from the re-
moval of a subsequence of κ consecutive clusters from its current position and the insertion of the subsequence
into another route or the same route at another position.

For κ = 1, the cluster σ1
i is removed from σ1 and inserted after σ2

j into σ2 resulting in the two new
routes σ′1 = (σ1

0 , σ
1
1 , . . . , σ

′1
i−1, σ

′1
i+1, . . . , σ

1
p, σ

1
p+1) and σ′2 = (σ2

0 , σ
2
1 , . . . , σ

2
j−1, σ

2
j , σ

′1
i , σ2

j+1, . . . , σ
2
q , σ

2
q+1).

In the fixed version, all triplets remain unchanged so that σ′1
i−1 = σ1

i−1, σ′1
i+1 = σ1

i+1, and σ′1
i = σ1

i .
In the flex version, the new routes are derived by applying Connect to the subroutes (σ1

0 , σ
1
1 , . . . , σ

1
i−1)

and (σ1
i+1, . . . , σ

1
p, σ

1
p+1) to produce σ′1 and by applying Insert to the subroutes (σ2

0 , σ
2
1 , . . . , σ

2
j−1, σ

2
j ) and

(σ2
j+1, . . . , σ

2
q , σ

2
q+1) and the relocated cluster σ1

i to produce σ′2.
For κ > 1, the order of the κ inserted clusters can change, too (this generates a finite set of permu-

tations, small whenever κ is small). We use 1-Relocate and 2-Relocate, which are considered two different
neighborhoods in the following.
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Swap Neighborhood. The neighborhood N swap contains all CluVRP solutions that result from the swapping
of two clusters either from the same or from two different routes. In the latter case, swapping σ1

i and σ2
j gives

the two new routes σ′1 = (σ1
0 , σ

1
1 , . . . , σ

1
i−1, σ

′2
j , σ1

i+1, . . . , σ
1
p, σ

1
p+1) and σ′2 = (σ2

0 , σ
2
1 , . . . , σ

2
j−1, σ

′1
i , σ2

j+1,

. . . , σ2
q , σ

2
q+1). Depending on the version fixed or flex, either all triplets remain unchanged or Insert is

applied for deriving both σ′1 and σ′2.

2-Opt* Neighborhood. The neighborhood N 2-opt* comprises all CluVRP solutions that result from cutting
two different routes into front part and back part and concatenating each front with the other back part. Cut-
ting after σ1

i and σ2
j , respectively, produces two new routes σ′1 = (σ1

0 , . . . , σ
1
i−1, σ

′1
i , σ′2

j+1, σ
2
j+2 . . . , σ

2
q , σ

2
q+1)

and σ′2 = (σ2
0 , . . . , σ

2
j−1, σ

′2
j , σ′1

i+1, σ
1
i+2 . . . , σ

1
p, σ

1
p+1). In the fixed version, all triplets remain unchanged. In

the flex version, the reconnection is done with the procedure Connect.

Size and Search Complexity. The size of the neighborhoods N κ-reloc (for κ = 1 and 2), N swap, and N 2-opt*

increases quadratically with the overall number N of the clusters. Therefore, the effort to search them is in
the fixed version bounded by O (N2). Since the effort for the procedure Connect and Insert is bounded by
O (λ2

max), the overall search effort is limited by O (N2λ2
max) in the flex version.

fixed version flexible version
Neigborhood (no entry-exit modification) (with entry-exit modification)

Balas-Simonetti NBS
kVND

1, best improvement
1-Relocate N 1-reloc 2, first improvement 5, first improvement
2-Opt* N 2-opt 3, first improvement 6, first improvement
2-Relocate N 2-reloc 4, first improvement 7, first improvement
Swap N swap 4, first improvement 7, first improvement

Table 1: Priorities and pivoting strategy of the nine VND neighborhoods

Our version of VND uses the nine neighborhoods listed in Table 1. In pre-tests we also analyzed different
possible sequences of applying the neighborhoods and different pivoting strategies. Concerning the sequence
of neighborhoods, it is common practice to apply those neighborhoods first that can be searched quickly.
Therefore, we start with the linear (in the route length) neighborhood NBS

kVND
(the choice of a reasonable

parameter kVND is analyzed in detail in Section 4.2), then apply all four neighborhoods in the fixed version
before those using the flex version. Pre-tests also revealed that N 1-reloc should be favored over N 2-opt. In
turn, N 2-opt should be favored over N 2-reloc and N swap. Moreover, we found that it is advantageous to
alternate between the two latter neighborhoods N 2-reloc and N swap. Finally, a first improvement pivoting
strategy was most of the time faster without deteriorating the solution quality for the cluster exchange neigh-
borhoods (note that NBS

kVND
is always searched with a best improvement strategy due to the DP algorithm

using the auxiliary network Ĝ∗
k). Based on these observations, the final design of the VND is summarized

in Algorithm 1. The priorities and pivoting strategies of all nine neighborhoods are given in Table 1.
There are two more findings that helped us to significantly accelerate the VND approach. It is not

necessary to apply the clustered version of the Balas-Simonetti neighborhood to input solutions of the VND.
Therefore, prio is initialized to 1 (see Step 2) so that the first searched neighborhood is the fixed version
of N 1-reloc (cf. Table 1). Second, for reasonably (small) parameters kVND, the neighborhood NBS

kVND
can be

searched quickly. However, we found that almost always a solution once improved with NBS
kVND

cannot be
improved with the same neighborhood directly afterwards. It means that no proper local search with NBS

kVND

is necessary. We therefore apply NBS
kVND

only once (deviating from Algorithm 1) and directly continue with
the fixed version of N 1-reloc.
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Algorithm 1: VND with neighborhood priorities and different pivoting strategies
Input: Initial solution x = (σ1, σ2, . . . , σm),

Set of neighborhoods {N} with priorities prio(N ) and pivoting strategy pivot(N )
1 iter := 0
2 prio := 1
3 repeat
4 prio := prio+ 1
5 nb := number of neighborhoods N with prio(N ) = prio
6 repeat
7 i := iter modulo nb
8 N := the ith neighborhood with prio(N ) = prio
9 Search N with pivoting strategy pivot(N ) for improving neighbors

10 if improving neighbor x′ ∈ N (x) found then
11 x := x′

12 prio := 0

13 until (prio = 0) or (up to nb times)
14 until prio > maxN prio(N )

Output: Local optimum x = (σ1, σ2, . . . , σm) w.r.t. all neighborhoods {N}

3.4. LNS Operators
Large neighborhood search (LNS) was originally introduced by Shaw (1998) for the CVRP. A similar

idea, there called ruin and recreate, can be found in (Schrimpf et al., 2000). Pisinger and Ropke (2010) give
an overview of different LNS approaches and extensions.

The basic approach starts from a given feasible starting solution and repeats destroy and repair steps
until a stopping criterion lets the LNS terminate. Parts of the current solution are destroyed by a destroy
operator. For VRPs, this destroy operator is typically the removal of a subset of the customers from their
routes. The resulting partial solution is then restored again by a repair operator, which is (in VRPs) the
reinsertion of the removed customers into the same or other routes at possibly different positions.

Both destroy and repair operators often include some randomness. For example, the customer subset
including the decision of its size can vary from one iteration to the next. While Shaw (1998) suggests to
increase the size if no improvement is found for a certain number of iterations, Ropke and Pisinger (2006a)
always choose the size randomly out of a given range. The new solution is accepted as the current solution
depending on an acceptance criterion. Moreover, LNS keeps track of the best found solution.

Different acceptance criteria have been used. While Shaw (1998) only accept improving solutions, Ropke
and Pisinger (2006a,b) use simulated annealing’s Metropolis acceptance criterion. For the pickup and
delivery problem with time windows, Ropke and Pisinger coined the idea of an adaptive LNS (ALNS):
Instead of using only one removal and one repair operator, they use several operators for removal and
repair. Operators are then randomly selected on the basis of weights, which are updated depending on the
success of their corresponding operator in previous iterations.

We describe our LNS as a large multiple neighborhood search (LMNS, Pisinger and Ropke, 2007) because
we use several destroy and repair operators but their weights are kept fixed over the LNS iterations. Since
the detailed analysis in Section 4.1.2 shows that our LMNS is not very sensitive to the modification of
weights, we decided for a simple design without an adaptive weights modification component (in contrast
to ALNS). Specific for our LMNS is also that we improve solutions after the repair step with the help of
the VND described in Section 3.3. Such a post-optimization of solutions with the help of a local search was
also used by Ropke (2009).

Next, we describe the destroy and repair operators in Sections 3.4.1 and 3.4.2 and provide a summary
of the overall algorithm in Section 3.5.
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3.4.1. Destroy Operators
As the cluster neighborhoods of Section 3.3 do, our destroy and repair operators only remove and insert

entire clusters instead of individual customers. After removing a cluster, the exit of the preceding and the
entry of the succeeding cluster are connected without modifying the current entry-exit combinations.

We use the following four different destroy operators:

1. Random destroy removes τN clusters at random (Ropke and Pisinger, 2006a), where the parameter τ
controls the percentage of the clusters to be removed.

2. Related destroy is a variant of the destroy method originally proposed by Shaw (1998). At the be-
ginning, an initial cluster is randomly chosen and removed. Afterwards τN − 1 clusters closest to
the initial cluster are also removed. Again, the parameter τ controls the percentage of clusters to be
removed. We compute the distance between two clusters Vg and Vh as min(i,j)∈Vg×Vh

cij .

3. Worst destroy is described in detail by (Ropke and Pisinger, 2006a) and works as follows: For every
cluster, we calculate the improvement that would occur if the cluster was removed from the current
solution. All clusters are sorted by decreasing improvements in the list L. For τN iterations, the
cluster at position pos = yρ |L| is removed from L, where y ∈ [0, 1) is a uniformly distributed random
number. Also here, the parameter τ describes the percentage of clusters to be removed. The additional
parameter ρ ≥ 1 controls the degree of randomization: The larger the value of ρ, the more likely the
operator chooses clusters at the front of list L, i.e., clusters with a high cost improvement when
removed. Improvement values and the sorted list L are updated in every iteration.

4. Route destroy picks a route at random and removes it.

3.4.2. Repair Operators
To reinsert the removed clusters we implemented the following two repair operators:

1. Nearest repair reinserts all removed clusters according to their distance to the partial solution. De-
pending on the insertion costs the nearest cluster is inserted before or after the closest cluster of the
partial solution. If the closest cluster is the depot, a new route is generated. However, the overall
number of routes is bounded by m.

2. By Best repair clusters are reinserted using a largest-demand-first rule. Insertion costs are calculated
for every feasible position (using procedure Insert) and the current cluster is inserted at its best
position. If the number of routes was reduced by the destroy operator, clusters with largest demand
are used to restore the required number of m routes.

Both operators use the procedure Insert as described in Section 3.3 to execute the move.

3.5. Overall LMNS Algorithm
The pseudo-code of the overall LMNS approach is shown in Algorithm 2. It combines all components

presented in the previous sections. We briefly summarize the steps.
In Step 1, the preprocessing determines the intra-cluster routes for each pair of entry and exit (Sec-

tion 3.1). A starting solution is computed in Step 2 with a regret-based savings algorithm tailored to the
CluVRP. A savings value is calculated for each pair (Vg, Vh) of clusters as

savg,h = c(σ0, σg, σ0) + c(σ0, σh, σ0)− c(σ0, σg, σh, σ0),

where σ0 = (0, V0, 0) is the depot cluster/triplet, and σg = (eg, Vg, fg) and σh = (eh, Vh, fh) are the gth
and hth cluster/triplet. The savings value depends on the choice of entry and exit points eg, eh, fg, and fh,
and we determine cost-minimizing combinations in O (max{λg, λh}2) time by solving a small DP over the
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Algorithm 2: LMNS algorithm
Input: Iterations ItATSP and ItLMNS

Parameters kATSP, kVND, and kLMNS of Balas-Simonetti neighborhoods
Weights (ψrandom, ψrelated, ψworst, ψroute) and (ωnearest, ωbest) of removal and repair
operators
Parameters ε, τmin, τmax, and ρ

1 Preprocessing(ItATSP, kATSP)
2 x := xaccepted := xbest := Regret-based Savings Algorithm()
3 for iter := 1, . . . , ItLMNS do
4 if x is feasible then
5 x := VND(kVND, x)

6 x := Single Improvement with NBS
kLMNS

(x)

7 if c(x) < c(xbest) then
8 xbest := x

9 if AcceptanceCriterion(ε, x, xbest) then
10 xaccepted := x

11 Randomly choose τ ∈ {τmin, . . . , τmax}
12 Randomly choose Opdestroy according to weights (ψrandom, ψrelated, ψworst, ψroute)

13 Randomly choose Oprepair according to weights (ωnearest, ωbest)

14 x := Oprepair(Opdestroy(τ, ρ, xaccepted))

auxiliary network Ĝ∗
k for k = 1. In contrast to the classical savings algorithm, we calculate a regret value

for each cluster Vg as the difference between its best and second best possible saving, i.e.,

regret(g) :=
(
max
h

savg,h

)
−

(
max
h

(2)savg,h

)
,

where max(2) denotes the second largest (possibly identical) value among all feasible savings. As in the
classical savings algorithm, a saving becomes infeasible if either Vg and Vh are already inserted into the
same route or, if in different routes, the demand associated with their routes exceeds the vehicle capacity Q.
The largest regret value regret(g) determines the cluster Vg to be inserted first. Regret values are updated
in every iteration of the savings algorithm.

The main loop of the LMNS comprises the Steps 3–14 and is repeated for ItLMNS iterations. Infeasible
solutions x can result from combined destroy and repair operations performed in Step 14. However, we
accept only feasible solutions as accepted solutions xaccept. In Step 5, feasible solutions are always post-
optimized with the VND algorithm described in Section 3.3. Afterwards, in Step 6, each route σr for
r ∈ {1, 2, . . . ,m} of the current solution x = (σ1, σ2, . . . , σm) is post-optimized with the Balas-Simonetti
neighborhood NBS

kLMNS
. Hence, our clustered version of the Balas-Simonetti neighborhood is applied at two

different places in the LMNS approach, i.e., inside the VND and in a post-optimization step. Note that the
two parameters kVND and kLMNS can differ, and we present a detailed parameter study in Section 4.2 for
finding a reasonable pair (kVND, kLMNS) providing a good computation time to quality tradeoff.

In Steps 7 and 8, the best solution found is updated when necessary. Depending on the acceptance
criterion, the accepted solution is also updated in Steps 9 and 10. Our LMNS acceptance criterion is based
on the record-to-record principle. The current solution x is accepted if c(x) < (1 + ε) c(xbest).

Finally, the percentage of clusters to destroy and the specific destroy and repair operators for the current
LMNS iteration are randomly chosen in Steps 11–13. The current solution is then in Step 14 destroyed and
repaired with the six operators discussed in Section 3.4, creating the starting solution for the next iteration.
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4. Computational Results

All computations are performed on a standard PC equipped with MS Windows 7 running on an In-
tel(R) Core(TM) i7-5930K CPU clocked at 3.5 GHz and with 64 GB RAM of main memory. All algorithms
were coded in C++ and compiled with MS Visual Studio 2010 in release mode.

We test our LMNS algorithm on three different benchmark sets that were also used in previous studies
in the literature. All CluVRP benchmarks were derived from CVRP benchmarks using the cluster generator
described in detail in (Bektaş et al., 2011) and (Fischetti et al., 1997). The cluster generator uses a pa-
rameter θ to specify the desired average number of customers per cluster. Then N = �(n+ 1)/θ� customer
clusters are built.

The first instance set GVRP by Bektaş et al. (2011) comprises the ten smallest CluVRP instances with 100
to 262 nodes and θ = 2 or 3. They are available online at http://www.personal.soton.ac.uk/tb12v07/
gvrp.html. The second instance set Golden was proposed by Battarra et al. (2014) and is based on the
well-known CVRP instances by Golden et al. (1998). It contains eleven groups, each with 20 instances, all
based on identical customer sets denoted by Golden1 to Golden20 but differing in the value of θ ranging
from 5 to 15. The number of nodes in these instances varies between 201 and 484. The third set Li consists
of twelve large-scale instances with 561 to 1 201 nodes. It is based on the CVRP instances of Li et al. (2005).
Vidal et al. (2015) generated them using a value of θ = 5. In all three benchmark sets, the number of
vehicles m is given for each instance. It is not allowed to use less vehicles and our algorithm enforces that
each vehicle serves at least one cluster.

For each instance, LMNS is run ten times each with a different random seed. The solution quality is
measured by the gap (in percent) between the solution value z and the best known solution BKS. It is
calculated as 100 (z − BKS)/BKS. In addition, Gap Avg. is the average gap per instance over ten runs,
while Gap Best is the smallest gap obtained over the ten runs. All computation times T are given in seconds.

4.1. Parameter Study
In the first series of experiments, we determine reasonable values for the parameters of our LMNS

metaheuristic. In both the preprocessing and the actual LMNS, we have to find a good tradeoff between
required computation time and solution quality.

4.1.1. Parameters for Preprocessing
Quality of the preprocessing is crucial because no later step of the LMNS algorithm can revise a possibly

incorrect SHP solution. Hence, we must carefully assess the quality of the preprocessing, which is however
straightforward because Vidal et al. (2015) provide exact solutions to all SHPs.

We systematically try different combinations of λBS, kATSP, and ItATSP. The most important observa-
tions are the following: The limited DP approach for exactly solving small-sized SHPs is only sufficiently
fast when clusters Vh have no more than ten customers. We therefore set λBS = 10. In the combined
ILS/VND for solving ATSPs, we must also calibrate the Balas-Simonetti neighborhood parameter kATSP
and the number ItATSP of ILS iterations. Clearly, the parameter kATSP must be chosen much smaller than
λBS = 10, since multiple VND iterations search over the Balas-Simonetti neighborhood. After testing several
combinations we can state that a good compromise with respect to both time consumption and solution
quality is the combination kATSP = 3 and ItATSP = 50.

We summarize what criteria we studied to find the combination kATSP = 3 and ItATSP = 50. Over all
instances, the preprocessing must consider 1 074 423 entry-exit combinations coming from 11 468 clusters.
Among these, the ILS metaheuristic considers 827 814 SHPs for entry-exit combinations imposed by 2 483
clusters with eleven or more customers. ILS fails to find an optimum in 2.6% of the cases, i.e., in 21 478 SHPs.
Non-optimal solutions occur for 11.7 % of the clusters, where the smallest cluster contains 14 customers.
In these more difficult clusters, on average 3.8% of the SHPs are not solved to optimality. However, for
18 clusters and 118 SHPs, we identify better SHP solutions than the ones written into the instance files
kindly sent to us by Battarra (2015).

The overall quality of our preprocessing could clearly be increased by choosing larger values for kATSP = 3
and ItATSP = 50. However, the subsequent experiments (a posteriori) confirm the above decision: A

12

http://www.personal.soton.ac.uk/tb12v07/gvrp.html
http://www.personal.soton.ac.uk/tb12v07/gvrp.html


suboptimal SHP is chosen only once in the best CluVRP solutions (computed in Section 4.3). However, all
entry-exit combinations are correct. If instead the exact SHP solution of Battarra et al. (2014) were chosen,
the improvement is one unit of cost. It is certainly much more effective to invest additional time into the
actual LMNS instead of intensifying the preprocessing.

4.1.2. Parameter for LMNS
The LMNS metaheuristic uses several parameters that have to be defined. To find a good parameter

set, we follow a strategy similar to the one used by Ropke and Pisinger (2006a). We start with a basic
setting found during pre-tests. Pre-tests have revealed that for the parameters (ε, τmin, τmax, ρ) the values
(0.005, 10, 40, 10) make sense, i.e., the record-to-record acceptance criterion uses the factor (1+ε) = 1.005 to
compare with the currently best found solution, between τmin = 10 and τmax = 40 percentage of the clusters
are destroyed, and the randomization exponent ρ is chosen as 10 in the worst removal operator.

First, we determine the (non-adaptive) weights for the destroy and repair operators. Here, we find that
the chosen setup with four different destroy and two repair operators is not very sensitive with respect
to the choice of the weights. Therefore, we apply the two repair operators with identical probabilities
(ωnearest, ωbest) = (0.5, 0.5). For the four destroy operators, the only important finding is that the route
removal operator does not need to be applied as often as the other three operators. Hence, we chose
(ψrandom, ψrelated, ψworst, ψroute) = (0.3, 0.3, 0.3, 0.1) for the weights.

Second, we test the usefulness of each and every operator: We find that using only one destroy and one
repair operator (eight possible setups) is clearly outperformed by the combination of all operators. Moreover,
for each single operator we test whether it is redundant. Here, we keep all other five operators and their
weights in the same ratio as given above. For example, without the random removal operator, the other
removal operators receive weights (ψrelated, ψworst, ψroute) = (0.3, 0.3, 0.1)/0.7.

w/o destroy operator w/o repair operator All

Random Related Worst Route Nearest Best Operators

Time T 46 44 42 45 40 49 45
Gap Best [%] 0.032 0.032 0.035 0.035 0.039 0.047 0.025
# BKS 213 208 214 213 205 201 217

Table 2: Comparison of LMNS using different destroy and repair operators

Accordingly, Table 2 shows the results of disabling a single operator in comparison to the version (called
All Operators) that uses all six operators. These tests are performed with ItLMNS = 5000 and the combina-
tion (kVND, kLMNS) = (3, 3) (see the next section for a study on reasonable (kVND, kLMNS) combinations).
Computation times T are very similar in all seven settings (between 42 and 49 seconds per CluVRP instance
on average). Using all operators leads to a LMNS that computes 217 best known solutions and at the same
time the lowest overall Gap Best of 0.025%. The six other variants compute between 201 and 214 best
known solutions (BKS) with an average gap of at least 0.032%. This is a clear indication that all operators
contribute to the quality of LMNS. Hence, we use all six operators with the weights given above for the
remaining experiments.

4.2. Usefulness of the Balas-Simonetti Neighborhood
In this section, we analyze the generalized version of the Balas-Simonetti neighborhood (see Section 3.2)

that is a fundamental component of our LMNS metaheuristic. Recall that it is applied at two different places,
i.e., inside the VND as one of the neighborhoods and as a post-optimization procedure. The corresponding
pair of parameters is (kVND, kLMNS). We set kVND = 0 and kLMNS = 0, respectively, to indicate that the
Balas-Simonetti neighborhood is not used in the VND and/or for post-optimization.

We test combinations (kVND, kLMNS) ∈ {0, 1, 3, 5, 7}×{0, 1, 3, 5, 7}. Each so defined LMNS metaheuristic
is run for ItLMNS = 5000 iterations. Figure 3 shows the results for all 242 CluVRP instances, comparing
the average computation time T and the gap (best out of ten runs). All Pareto-optimal combinations are
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Figure 3: Comparison of LMNS with different combinations (kVND, kLMNS). Green triangles � indicate
Pareto-optimal combinations, dominated combinations are indicated as red circles ◦.
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marked by green triangles, all other by red circles. The combination (0, 0) that does not at all make use of the
Balas-Simonetti neighborhood in the LMNS iterations is clearly outperformed by many other configurations.
In general, increasing kVND and/or kLMNS tends to improve the average solution quality at the cost of longer
average computation times. However, there are also counterexamples such as the two combinations (0, 7)
and (5, 7) where a larger neighborhood leads to an inferior solution quality and smaller computation times.
The combination (5, 7) is clearly an outlier, since a rather weak solution with a gap of 2.89 % for one instance
of the GVRP benchmark is computed. When comparing combinations with small values kVND, kLMNS = 0, 1,
and 3, the computational effort increases only very moderately with kLMNS tending to produce significantly
better results.

Overall, the two Pareto-optimal combinations (3, 3) and (5, 0) balance computation time and solution
quality very well. We use both settings with (kVND, kLMNS) = (3, 3) and (5, 0) in the remainder.

4.3. Comparison to Result of Vidal et al. (2015)
This section provides a comparison of the LMNS and the UHGS approach by Vidal et al. (2015). When

analyzing Tables 2 and 4 and Tables A2–A4 from the article Vidal et al. (2015), we detected some incon-
sistencies in the printed values. We informed the authors and Battarra and Vidal (2017) kindly confirmed
that some entries in their tables are swapped/shifted between rows. An erratum is in preparation. In the
following, we compare with the true values computed with the UHGS, sent to us by Battarra and Vidal
(2017).

We run our LMNS using both settings (kVND, kLMNS) = (3, 3) and (kVND, kLMNS) = (5, 0) for ItLMNS =
5000 and 50 000 iterations, respectively. In addition, setting (3, 3) is tested with 100 000 iterations and
setting (5, 0) with 75 000 iterations, finally leading to computation times comparable to what was reported for
UHGS. For simplicity, the LMNS settings are denoted by LMNSkVND,kLMNS

ItLMNS
in the following, e.g., LMNS3,3

5 000

if LMNS with setting (kVND, kLMNS) = (3, 3) is run for ItLMNS = 5000 iterations. Tables 3 and 4 summarize
aggregated results grouped by setting and instance set. Herein, T is the total computation time in seconds
and Tp the time spent with preprocessing, which does not depend on the setting.

LMNS UHGS

ItLMNS = 5000 ItLMNS = 50 000 ItLMNS = 100 000 (Vidal et al., 2015)

Gap Gap # Gap Gap # Gap Gap # Gap Gap #
Set Tp T Best Avg. BKS T Best Avg. BKS T Best Avg. BKS Tp T Best Avg. BKS

GVRP 0.1 11 0.08 0.57 7 109 0.05 0.22 8 218 0.03 0.16 9 9.4 61 0.08 0.22 8
Golden 8.2 35 0.01 0.05 209 270 0.01 0.02 214 533 0.01 0.02 214 802.4 856 0.01 0.03 213
Li 5.3 264 0.20 0.40 1 2508 0.06 0.20 2 5072 0.04 0.16 3 314.7 660 0.02 0.16 10

Total 7.7 45 0.03 0.09 217 374 0.01 0.04 224 745 0.01 0.03 226 745.5 814 0.01 0.04 231

Table 3: Aggregated results for (kVND, kLMNS) = (3, 3) and all benchmark sets (10 GVRP instances with the
number n of customers ranging from 100 to 261 and an average number θ of nodes per cluster between 2
and 3, 220 Golden instances with n between 200 to 483 and θ between 5 and 15, and 12 Li instances with
n between 560 to 1200 and θ = 5).

LMNS UHGS

ItLMNS = 5000 ItLMNS = 50 000 ItLMNS = 75 000 (Vidal et al., 2015)

Gap Gap # Gap Gap # Gap Gap # Gap Gap #
Set Tp T Best Avg. BKS T Best Avg. BKS T Best Avg. BKS Tp T Best Avg. BKS

GVRP 0.1 17 0.06 0.55 9 157 0.03 0.25 9 235 0.03 0.14 9 9.4 61 0.08 0.22 8
Golden 8.2 49 0.01 0.04 208 410 0.01 0.02 214 611 0.01 0.02 214 802.4 856 0.01 0.03 213
Li 5.3 347 0.13 0.37 1 3137 0.06 0.19 4 4836 0.05 0.17 4 314.7 660 0.02 0.16 10

Total 7.7 63 0.02 0.07 218 535 0.01 0.04 227 805 0.01 0.03 227 745.5 814 0.01 0.04 231

Table 4: Aggregated results for (kVND, kLMNS) = (5, 0) and all benchmark sets.
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Comparing computation times, LMNS3,3
5 000 is faster than LMNS5,0

5 000 (45 vs. 63 seconds on average), but
results in larger gaps (e.g. 0.03 % vs. 0.02 % for ‘best of 10 runs’) and finds one BKS less. Increasing the
number of iterations ItLMNS in both cases reduces the gap to 0.01 % (Gap Best) and 0.03 % (Gap Avg.)
but increases average computation times to 745 and 805 seconds, respectively. Over the test set comprising
242 instances, 226 BKS are found by LMNS3,3

100 000 and 227 BKS by LMNS5,0
75 000, which is less than the 231

BKS found by UHGS. However, the average gap produced by UHGS is worse (0.04%) and its computational
effort is higher (814 seconds on average). While our better bounds result from innovative LMNS components
such as the generalized Balas-Simonetti neighborhood (see previous section), the key factor leading to the
reduced computation times is our heuristic preprocessing.

We now analyze the instance sets separately: the small-sized GVRP instances are solved by LMNS5,0
5 000

with Gap Best = 0.06 % in 17 seconds, which compares favorably to UHGS with a gap of 0.08% running for
61 seconds on average. Furthermore, we find nine of ten BKS including one new BKS, while UHGS finds
eight. Compared to LMNS5,0

5 000, the setting LMNS3,3
5 000 performs slightly worse. In both cases, the average

and best gap of LMNS can be reduced to values below those of UHGS (0.22 % and 0.08 %) by increasing
the number of iterations: For example, LMNS5,0

75 000 gives an average gap of 0.14 % and Gap Best is reduced
down to 0.03%. However, our average computation times are then larger than those of UHGS.

Considering the Golden instances, LMNS clearly outperforms UHGS. The same Gap Best (0.01 %) is
achieved in significantly shorter computation time, e.g., 35 seconds for LMNS3,3

5 000 compared to 856 seconds
for UHGS. LMNS3,3

5 000 finds one BKS more than LMNS5,0
5 000, but produces larger average gaps (0.05 % and

0.04 % compared to 0.03 %). An increased number of iterations leads to 214 BKS and Gap Avg. = 0.02 %,
independent from the LMNS settings, which is slightly better than 213 BKS and an average gap of 0.03 %
for UHGS. LMNS times remain below those of UHGS on average.

For the Li instances, LMNS3,3
5 000 consumes 264 seconds and LMNS5,0

5 000 347 seconds on average, which is
faster than UHGS (660 seconds), but our gaps and the number of BKS found by LMNS are inferior. All
LMNS gaps can be improved by increasing the number of iterations. However, we do not reach the excellent
Gap Best of 0.02 % of UHGS, even with LMNS3,3

100 000 where the computational effort is high. On the positive
side, both LMNS settings generate one new BKS for the Li benchmark. In addition, one further new BKS
is found during experimentation with another setting (see detailed results in the Appendix).

LMNS UHGS

ItLMNS = 5000 ItLMNS = 50 000 ItLMNS = 100 000 (Vidal et al., 2015)

Gap Gap # Gap Gap # Gap Gap # Gap Gap #
θ Tp T Best Avg. BKS T Best Avg. BKS T Best Avg. BKS Tp T Best Avg. BKS

5 0.5 47 0.04 0.10 16 463 0.00 0.04 19 926 0.00 0.04 19 66.1 158 0.03 0.08 16
6 1.2 39 0.06 0.12 17 371 0.05 0.08 19 744 0.05 0.07 19 94.3 168 0.06 0.11 17
7 1.6 33 0.00 0.06 20 317 0.00 0.00 20 636 0.00 0.00 20 113.6 183 0.00 0.04 20
8 3.0 32 0.00 0.02 19 288 0.00 0.01 19 577 0.00 0.01 19 204.7 259 0.00 0.02 20
9 4.4 30 0.00 0.01 20 264 0.00 0.00 20 525 0.00 0.00 20 264.1 315 0.00 0.01 20
10 6.0 30 0.03 0.06 19 240 0.03 0.04 19 478 0.03 0.03 19 511.0 561 0.00 0.02 20
11 7.6 29 0.01 0.03 19 221 0.01 0.03 19 436 0.01 0.03 19 357.7 403 0.00 0.01 20
12 9.8 30 0.01 0.04 19 212 0.01 0.01 19 415 0.01 0.01 19 974.2 1017 0.00 0.01 20
13 13.5 32 0.00 0.06 20 199 0.00 0.05 20 387 0.00 0.05 20 867.1 907 0.00 0.00 20
14 18.2 36 0.00 0.02 20 197 0.00 0.01 20 378 0.00 0.01 20 2283.6 2321 0.00 0.00 20
15 24.4 41 0.00 0.00 20 194 0.00 0.00 20 366 0.00 0.00 20 3090.4 3127 0.00 0.00 20

Total 8.2 35 0.01 0.05 209 270 0.01 0.02 214 533 0.01 0.02 214 802.4 856 0.01 0.03 213

Table 5: Aggregated results for (kVND, kLMNS) = (3, 3) and the Golden instances grouped by average cluster
size; each group comprises 20 instances.

The Golden instances are grouped by the average cluster size θ (ranging from five to 15) into eleven
groups with 20 instances each. We present detailed results for each group in Tables 5 and 6. Here, the
computation times for the preprocessing Tp are strongly increasing with the average size of the clusters. In
turn, the number N of clusters decreases and this reduces the actual LMNS computation time. For the
small number of 5 000 iterations, both effects almost balance the overall computation time T over different
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LMNS UHGS

ItLMNS = 5000 ItLMNS = 50 000 ItLMNS = 75 000 (Vidal et al., 2015)

Gap Gap # Gap Gap # Gap Gap # Gap Gap #
θ Tp T Best Avg. BKS T Best Avg. BKS T Best Avg. BKS Tp T Best Avg. BKS

5 0.5 70 0.04 0.09 15 670 0.03 0.04 18 1009 0.02 0.04 18 66.1 158 0.03 0.08 16
6 1.2 58 0.05 0.09 18 553 0.05 0.06 19 833 0.05 0.06 19 94.3 168 0.06 0.11 17
7 1.6 52 0.00 0.05 19 490 0.00 0.00 20 737 0.00 0.00 20 113.6 183 0.00 0.04 20
8 3.0 48 0.00 0.02 19 446 0.00 0.01 19 665 0.00 0.01 19 204.7 259 0.00 0.02 20
9 4.4 45 0.00 0.00 20 409 0.00 0.00 20 609 0.00 0.00 20 264.1 315 0.00 0.01 20
10 6.0 43 0.01 0.05 19 375 0.00 0.02 20 563 0.00 0.02 20 511.0 561 0.00 0.02 20
11 7.6 42 0.01 0.03 19 347 0.01 0.03 19 514 0.01 0.03 19 357.7 403 0.00 0.01 20
12 9.8 43 0.01 0.02 19 333 0.01 0.01 19 494 0.01 0.01 19 974.2 1017 0.00 0.01 20
13 13.5 44 0.00 0.03 20 310 0.00 0.02 20 458 0.00 0.01 20 867.1 907 0.00 0.00 20
14 18.2 46 0.00 0.01 20 295 0.00 0.01 20 429 0.00 0.00 20 2283.6 2321 0.00 0.00 20
15 24.4 51 0.00 0.00 20 285 0.00 0.00 20 415 0.00 0.00 20 3090.4 3127 0.00 0.00 20

Total 8.2 49 0.01 0.04 208 410 0.01 0.02 214 611 0.01 0.02 214 802.4 856 0.01 0.03 213

Table 6: Aggregated results for (kVND, kLMNS) = (5, 0) and the Golden instances grouped by average cluster
size; each group comprises 20 instances.

θ-values, while for more iterations the LMNS iterations primarily impact the overall time T .
For instances with small average cluster size (θ ≤ 6), LMNS3,3

5 000 produces slightly worse results but in
shorter computation time compared to UHGS. For the example of θ = 5, LMNS3,3

5 000 has a Gap Best of
0.04 % (47 seconds) compared to UHGS with a gap of 0.03 % (158 seconds). When accepting longer com-
putation times, LMNS3,3

50 000 reduces Gap Best to 0.00% (463 seconds). Both LMNS3,3
50 000 and LMNS3,3

100 000

outperform UHGS w.r.t. the gaps and the number of BKS produced. Similar results can be achieved for
setting (kVND, kLMNS) = (5, 0).

In general, if the cluster size θ is increased, LMNS tends to produce better results. Starting from θ = 5
and 6 using LMNS5,0

5 000, we achieve a Gap Best not exceeding 0.05%. For θ ≥ 7, Gap Best values not larger
than 0.01% result, and for θ ≥ 13 all BKS are found. The latter result holds also for LMNS3,3

5 000. Similarly,
the average gap improves with the cluster size and both LMNS settings are able to find at least 19 BKS for
θ ≥ 7 even with only 5 000 LMNS iterations. In comparison, also UHGS is able to find all BKS for θ ≥ 7,
however its time consumption raises drastically for large clusters.

Overall, the comparison of LMNS and UHGS can be summarized as follows: First, LMNS produces
slightly better CluVRP results in shorter computation times for instances with up to n = 483 customers.
Second, although UHGS produces some smaller gaps on the large-scale instances (n ≥ 560), LMNS is able
to compute two new BKS for the benchmark set Li (and three in total). Third, for larger average cluster
sizes (θ ≥ 13), the same high-quality results obtained with UHGS can be computed with LMNS with less
effort.

5. Conclusions

In this paper, we proposed a new metaheuristic for the CluVRP. Our new LMNS approach can be classi-
fied as a LNS that uses multiple destroy and repair operators together with a VND-based local improvement
procedure. An ILS-based preprocessing phase first computes all intra-cluster routes for every possible entry-
exit combination. Then, for the actual LNS, we adapted four destroy and two repair operators to the case
of the removal of clusters from and their subsequent insertion into CluVRP routes. Moreover, cluster neigh-
borhoods that exchange clusters between routes in a classical manner similar to edge-exchange methods
for CVRP have been implemented. A fundamental component that we developed is a new neighborhood
specifically tailored to the CluVRP, i.e., a generalization of the Balas-Simonetti neighborhood that is able to
simultaneously decide on the permutation of the clusters in each route as well as the entry-exit combinations.
We have shown that although the generalized Balas-Simonetti neighborhood comprises exponentially many
possible routes, it can be searched efficiently with an effort that grows only linearly with the number of
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clusters and linearly with the number of entry-exit combinations. Computational experiments have proven
that the generalized Balas-Simonetti neighborhood is complementary to the cluster neighborhoods. This
complementarity allows the detection of CluVRP solutions with a better quality in relatively shorter time
than without the Balas-Simonetti neighborhood.

Although based on several components, the overall LMNS is clearly structured and only a few parameters
had to be tuned in parameter studies. We have shown that none of the LNS destroy and repair operators
is dispensable in the sense that when LMNS was run without one of the operators, the quality of solutions
deteriorates. Weights that control the random selection of operators were chosen in a straightforward
manner, since we found that the LMNS is not really sensitive w.r.t. these choices. The comparison with the
exact algorithm of Battarra et al. (2014) reveals that, out of 230 instances, LMNS improved the solutions in
seven cases (when the exact algorithm was prematurely terminated after 3 600 seconds) and computed 217
identical solutions. We also compared two versions of the LMNS against the UHGS metaheuristic of Vidal
et al. (2015) that constitutes the state of the art for the CluVRP w.r.t. solution quality and computation
times. The LMNS is competitive with the UHGS: Over all 242 benchmark instances, average computation
times and gaps are in favor of LMNS compared to UHGS because setups with up to 50 000 LMNS iterations
produce the same average gap of only 0.04% and best gap of 0.01 %, but consume less computation time.
Conversely, with more LMNS iterations, we arrived at similar computation times as UHGS but a smaller
average gap of 0.03% (identical best gap 0.01%). Finally, three new best solutions were found with the
LMNS.
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Appendix

This appendix is supposed to become online supplementary material.

I. Detailed Results

Tables 7–12 provide detailed results for each instance. Columns BKS and First found by
show the best known solution and pointers to the literature (or our LMNS) where this solu-
tion was found first. Columns in the section LMNS show the best solution out of ten runs
(Best), the average solution over ten runs (Avg.), the time consumption for the preprocessing
Tp, and the average total time over ten runs T . All LMNS runs were performed with the setting
(kVND, kLMNS, ItLMNS) = (3, 3, 100 000).

Instance n N m BKS First found by LMNS

Best Avg. Tp T

G 261 131 12 3693 Vidal et al. (2015) 3693 3712.1 0.1 281
C 100 51 5 642 Battarra et al. (2014) 642 642 0.1 83
C 120 61 4 807 Battarra et al. (2014) 807 807 0.1 215
C 150 76 6 816 Battarra et al. (2014) 816 816 0.1 211
C 199 100 8 955 Vidal et al. (2015)* 958 965 0.1 132

G 261 88 9 3281 LMNS** 3281 3283.4 0.1 473
C 100 34 4 607 Battarra et al. (2014) 607 607 0.1 100
C 120 41 3 691 Battarra et al. (2014) 691 691 0.1 158
C 150 51 4 804 Battarra et al. (2014) 804 804 0.1 181
C 199 67 6 908 Battarra et al. (2014) 908 908 0.1 347

Table 7: Detailed results for GVRP instances; * found by one of their ILS approaches, not by
UHGS; ** found with LMNS and the setting (kVND, kLMNS, ItLMNS) = (3, 3, 50 000) (also with
several other settings).

Instance n N m BKS First found by LMNS

Best Avg. Tp T

Li 560 113 39 27962 Vidal et al. (2015) 27962 27962 2.9 2663
Li 600 121 62 29051 Vidal et al. (2015) 29059 29078.2 2.6 3269
Li 640 129 10 21243 Vidal et al. (2015) 21243 21268.1 6.2 1827
Li 720 145 11 24486 Vidal et al. (2015) 24488 24516.1 6.8 2394
Li 760 153 78 35166 Vidal et al. (2015) 35173 35200.9 5.4 5230
Li 800 161 11 27238 Vidal et al. (2015) 27251 27293.9 5.0 3490
Li 840 169 86 37859 Vidal et al. (2015) 37863 37889.1 4.8 5943
Li 880 177 11 30483 Vidal et al. (2015) 30483 30551 8.9 4453
Li 960 193 11 32656 Vidal et al. (2015) 32668 32784.5 3.5 6118
Li 1040 209 11 35885 Vidal et al. (2015) 35915 35954.4 5.7 6345
Li 1120 225 11 38652 LMNS* 38706 38719.7 6.2 8190
Li 1200 241 11 41388 LMNS** 41431 41485.9 5.2 10946

Table 8: Detailed results for Li instances; * found with LMNS during experimentation; ** found
with LMNS and the setting (kVND, kLMNS, ItLMNS) = (1, 1, 5 000).
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Instance n N m BKS First found by LMNS

Best Avg. Tp T

Golden1 240 17 4 4831 Battarra et al. (2014) 4831 4831 15.7 173
Golden1 240 18 4 4847 Battarra et al. (2014) 4847 4847 4.3 183
Golden1 240 19 4 4872 Battarra et al. (2014) 4872 4872 4.3 187
Golden1 240 21 4 4889 Battarra et al. (2014) 4889 4889 3.9 198
Golden1 240 22 4 4908 Battarra et al. (2014) 4908 4908 3.6 209
Golden1 240 25 4 4899 Battarra et al. (2014) 4899 4899 3.9 225
Golden1 240 27 4 4934 Battarra et al. (2014) 4934 4934 2.2 244
Golden1 240 31 4 5050 Battarra et al. (2014) 5050 5050 1.2 277
Golden1 240 35 4 5102 Battarra et al. (2014) 5102 5102 0.6 326
Golden1 240 41 4 5097 Battarra et al. (2014) 5097 5097 0.4 354
Golden1 240 49 4 5000 Battarra et al. (2014) 5000 5000 0.3 447

Golden2 320 22 4 7716 Battarra et al. (2014) 7716 7716 19.4 325
Golden2 320 23 4 7693 Battarra et al. (2014) 7693 7693 19.4 334
Golden2 320 25 4 7668 Battarra et al. (2014) 7668 7668 19.1 347
Golden2 320 27 4 7638 Battarra et al. (2014) 7638 7638 10.4 360
Golden2 320 30 4 7617 Battarra et al. (2014) 7617 7617 4.3 373
Golden2 320 33 4 7640 Battarra et al. (2014) 7640 7640 2.7 408
Golden2 320 36 4 7643 Battarra et al. (2014) 7643 7643 2.4 431
Golden2 320 41 4 7738 Battarra et al. (2014) 7738 7738 2.1 482
Golden2 320 46 4 7861 Battarra et al. (2014) 7861 7861 1.1 545
Golden2 320 54 4 7920 Battarra et al. (2014) 7920 7920 1.2 641
Golden2 320 65 4 7892 Battarra et al. (2014) 7892 7893.6 1.0 812

Golden3 400 27 4 10540 Battarra et al. (2014) 10540 10540 91.5 581
Golden3 400 29 4 10504 Battarra et al. (2014) 10504 10504 36.6 598
Golden3 400 31 4 10486 Battarra et al. (2014) 10486 10486 12.8 606
Golden3 400 34 4 10465 Battarra et al. (2014) 10465 10465 12.3 614
Golden3 400 37 4 10482 Battarra et al. (2014) 10482 10482 12.5 662
Golden3 400 41 4 10501 Battarra et al. (2014) 10501 10501 11.1 710
Golden3 400 45 4 10485 Battarra et al. (2014) 10485 10485 7.9 786
Golden3 400 51 4 10583 Battarra et al. (2014) 10583 10583 3.2 853
Golden3 400 58 4 10776 Battarra et al. (2014) 10776 10776 1.8 925
Golden3 400 67 4 10797 Battarra et al. (2014) 10797 10797 1.7 1142
Golden3 400 81 4 10614 Battarra et al. (2014) 10614 10614 1.7 1440

Golden4 480 33 4 13598 Battarra et al. (2014) 13598 13598 56.7 746
Golden4 480 35 4 13643 Battarra et al. (2014) 13643 13643 55.4 765
Golden4 480 37 4 13520 Battarra et al. (2014) 13520 13520 25.8 767
Golden4 480 41 4 13460 Battarra et al. (2014) 13460 13460 24.4 843
Golden4 480 44 4 13568 Battarra et al. (2014) 13568 13568 24.1 880
Golden4 480 49 4 13758 Battarra et al. (2014) 13758 13758 23.9 953
Golden4 480 54 4 13760 Battarra et al. (2014) 13760 13760 22.8 1007
Golden4 480 61 4 13791 Battarra et al. (2014) 13791 13791 22.8 1141
Golden4 480 69 4 13966 Battarra et al. (2014) 13966 13966.6 5.7 1261
Golden4 480 81 4 13975 Battarra et al. (2014) 13975 13975 2.6 1470
Golden4 480 97 4 13775 Battarra et al. (2014) 13775 13779 1.7 1883

Golden5 200 14 4 7622 Battarra et al. (2014) 7622 7622 18.1 100
Golden5 200 15 3 7424 Battarra et al. (2014) 7424 7424 16.8 95
Golden5 200 16 3 7491 Battarra et al. (2014) 7491 7491 16.5 105
Golden5 200 17 3 7434 Battarra et al. (2014) 7434 7434 15.0 94
Golden5 200 19 4 7576 Battarra et al. (2014) 7576 7576 6.2 105
Golden5 200 21 4 7596 Battarra et al. (2014) 7596 7596 4.4 117
Golden5 200 23 4 7643 Battarra et al. (2014) 7643 7643 4.6 147
Golden5 200 26 4 7560 Battarra et al. (2014) 7560 7560 4.4 164
Golden5 200 29 4 7410 Battarra et al. (2014) 7410 7410 4.3 157
Golden5 200 34 4 7429 Battarra et al. (2014) 7429 7429 3.1 195
Golden5 200 41 4 7241 Battarra et al. (2014) 7241 7241 0.4 280

Table 9: Detailed results for the Golden instances 1-5
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Instance n N m BKS First found by LMNS

Best Avg. Tp T

Golden6 280 19 3 8624 Battarra et al. (2014) 8624 8624 58.0 228
Golden6 280 21 3 8628 Battarra et al. (2014) 8628 8628 48.6 229
Golden6 280 22 3 8646 Battarra et al. (2014) 8646 8646 29.2 223
Golden6 280 24 4 8853 Battarra et al. (2014) 8853 8853 18.0 251
Golden6 280 26 4 8910 Battarra et al. (2014) 8910 8910 18.0 270
Golden6 280 29 4 8936 Battarra et al. (2014) 8936 8936 5.7 358
Golden6 280 32 4 8891 Battarra et al. (2014) 8891 8891 3.8 381
Golden6 280 36 4 8969 Battarra et al. (2014) 8969 8969 3.7 374
Golden6 280 41 4 9028 Battarra et al. (2014) 9028 9028 3.8 423
Golden6 280 47 4 8923 Battarra et al. (2014) 8923 8923 3.6 495
Golden6 280 57 4 9028 Battarra et al. (2014) 9028 9028 1.0 644

Golden7 360 25 3 9904 Battarra et al. (2014) 9904 9904 56.8 409
Golden7 360 26 3 9888 Battarra et al. (2014) 9888 9888 39.8 413
Golden7 360 28 3 9917 Battarra et al. (2014) 9917 9917 38.4 409
Golden7 360 31 4 10021 Battarra et al. (2014) 10021 10021 28.5 492
Golden7 360 33 4 10029 Battarra et al. (2014) 10029 10029 21.3 508
Golden7 360 37 4 10131 Battarra et al. (2014) 10131 10131 20.7 551
Golden7 360 41 4 10052 Battarra et al. (2014) 10052 10052 20.7 661
Golden7 360 46 4 10080 Battarra et al. (2014) 10080 10080 6.8 701
Golden7 360 52 4 10095 Battarra et al. (2014) 10095 10095 1.2 768
Golden7 360 61 4 10096 Battarra et al. (2014) 10096 10096 1.1 858
Golden7 360 73 4 10014 Battarra et al. (2014) 10014 10014 1.2 1139

Golden8 440 30 4 10866 Battarra et al. (2014) 10866 10866 31.0 599
Golden8 440 32 4 10831 Battarra et al. (2014) 10831 10831 31.2 638
Golden8 440 34 4 10847 Battarra et al. (2014) 10847 10847 31.1 664
Golden8 440 37 4 10859 Battarra et al. (2014) 10859 10859 27.4 678
Golden8 440 41 4 10934 Battarra et al. (2014) 10934 10934 27.0 700
Golden8 440 45 4 10960 Battarra et al. (2014) 10960 10960 26.4 769
Golden8 440 49 4 11042 Battarra et al. (2014) 11042 11042 5.9 826
Golden8 440 56 4 11194 Battarra et al. (2014) 11194 11194.3 2.9 997
Golden8 440 63 4 11252 Battarra et al. (2014) 11252 11252 2.8 993
Golden8 440 74 4 11321 Battarra et al. (2014) 11321 11321 2.8 1249
Golden8 440 89 4 11209 Battarra et al. (2014) 11209 11209.4 1.5 1652

Golden9 255 18 4 300 Battarra et al. (2014) 300 300 4.4 185
Golden9 255 19 4 299 Battarra et al. (2014) 299 299 3.9 171
Golden9 255 20 4 296 Battarra et al. (2014) 296 296 3.2 203
Golden9 255 22 4 290 Battarra et al. (2014) 290 290 2.4 210
Golden9 255 24 4 290 Battarra et al. (2014) 290 290 1.9 222
Golden9 255 26 4 288 Battarra et al. (2014) 288 288 1.3 232
Golden9 255 29 4 292 Battarra et al. (2014) 292 292 0.8 256
Golden9 255 32 4 297 Battarra et al. (2014) 297 297 0.7 272
Golden9 255 37 4 294 Battarra et al. (2014) 294 294 0.6 317
Golden9 255 43 4 295 Battarra et al. (2014) 295 295.6 0.4 367
Golden9 255 52 4 296 Battarra et al. (2014) 296 296.9 0.1 432

Golden10 323 22 4 367 Battarra et al. (2014) 367 367 6.6 234
Golden10 323 24 4 361 Battarra et al. (2014) 361 361 3.7 232
Golden10 323 25 4 359 Battarra et al. (2014) 359 360.2 3.2 249
Golden10 323 27 4 361 Battarra et al. (2014) 361 361 3.0 274
Golden10 323 30 4 367 Battarra et al. (2014) 368 368 2.5 290
Golden10 323 33 4 373 Battarra et al. (2014) 375 375 1.8 302
Golden10 323 36 4 385 Battarra et al. (2014) 385 385.3 1.2 314
Golden10 323 41 4 400 Battarra et al. (2014) 400 400 0.5 330
Golden10 323 47 4 398 Battarra et al. (2014) 398 398 0.5 366
Golden10 323 54 4 393 Battarra et al. (2014) 393 393.4 0.4 418
Golden10 323 65 4 387 Battarra et al. (2014) 387 387.6 0.3 504

Table 10: Detailed results for the Golden instances 6-10.
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Instance n N m BKS First found by LMNS

Best Avg. Tp T

Golden11 399 27 5 457 Battarra et al. (2014) 457 457 5.4 452
Golden11 399 29 5 455 Battarra et al. (2014) 455 455 5.0 472
Golden11 399 31 5 455 Battarra et al. (2014) 455 455 4.2 467
Golden11 399 34 5 455 Battarra et al. (2014) 455 455 3.0 547
Golden11 399 37 5 459 Battarra et al. (2014) 459 459 2.4 553
Golden11 399 40 5 461 Battarra et al. (2014) 461 461 1.3 586
Golden11 399 45 5 462 Battarra et al. (2014) 462 462 1.1 658
Golden11 399 50 5 458 Battarra et al. (2014) 458 458 1.0 674
Golden11 399 58 5 456 Battarra et al. (2014) 456 456 0.8 734
Golden11 399 67 5 454 Battarra et al. (2014) 454 454 0.5 896
Golden11 399 80 5 451 Battarra et al. (2014) 451 451 0.2 1028

Golden12 483 33 5 535 Battarra et al. (2014) 535 535 5.4 595
Golden12 483 35 5 537 Battarra et al. (2014) 537 538.2 5.0 619
Golden12 483 38 5 535 Battarra et al. (2014) 535 538.6 3.7 652
Golden12 483 41 5 537 Battarra et al. (2014) 537 537 2.5 682
Golden12 483 44 5 535 Battarra et al. (2014) 535 536.4 2.4 715
Golden12 483 49 5 533 Battarra et al. (2014) 533 533.4 2.3 810
Golden12 483 54 5 535 Battarra et al. (2014) 535 535 1.9 859
Golden12 483 61 5 535 Vidal et al. (2015) 535 535 1.4 932
Golden12 483 70 5 533 Vidal et al. (2015) 533 533 1.2 1042
Golden12 483 81 5 535 Vidal et al. (2015) 535 535.2 0.5 1163
Golden12 483 97 5 544 Vidal et al. (2015) 544 544 0.1 1432

Golden13 252 17 4 552 Battarra et al. (2014) 552 552 3.2 158
Golden13 252 19 4 549 Battarra et al. (2014) 549 549 2.1 186
Golden13 252 20 4 548 Battarra et al. (2014) 548 548 2.0 209
Golden13 252 22 4 548 Battarra et al. (2014) 548 548 1.7 224
Golden13 252 23 4 548 Battarra et al. (2014) 548 548 1.6 231
Golden13 252 26 4 542 Battarra et al. (2014) 542 542 1.1 250
Golden13 252 29 4 540 Battarra et al. (2014) 540 540 0.7 292
Golden13 252 32 4 543 Battarra et al. (2014) 543 543 0.6 289
Golden13 252 37 4 545 Battarra et al. (2014) 545 545 0.3 297
Golden13 252 43 4 553 Battarra et al. (2014) 553 553 0.1 381
Golden13 252 51 4 560 Battarra et al. (2014) 560 560 0.1 449

Golden14 320 22 4 692 Battarra et al. (2014) 692 692 4.9 267
Golden14 320 23 4 688 Battarra et al. (2014) 688 688 3.7 266
Golden14 320 25 4 678 Battarra et al. (2014) 678 678 2.9 255
Golden14 320 27 4 676 Battarra et al. (2014) 676 676 2.3 275
Golden14 320 30 4 678 Battarra et al. (2014) 678 678 1.7 313
Golden14 320 33 4 682 Battarra et al. (2014) 682 682 1.6 349
Golden14 320 36 4 687 Battarra et al. (2014) 687 687 0.8 345
Golden14 320 41 4 690 Battarra et al. (2014) 690 690 0.5 414
Golden14 320 46 4 694 Battarra et al. (2014) 694 694 0.3 453
Golden14 320 54 4 699 Battarra et al. (2014) 699 699 0.1 509
Golden14 320 65 4 703 Battarra et al. (2014) 703 703 0.1 655

Golden15 396 27 4 842 Battarra et al. (2014) 842 842 5.3 359
Golden15 396 29 4 843 Battarra et al. (2014) 843 843 4.5 385
Golden15 396 31 4 837 Battarra et al. (2014) 837 837 3.3 379
Golden15 396 34 4 838 Battarra et al. (2014) 838 838 2.3 404
Golden15 396 37 4 845 Battarra et al. (2014) 845 845 1.8 397
Golden15 396 40 4 849 Battarra et al. (2014) 849 849 1.3 465
Golden15 396 45 5 853 Battarra et al. (2014) 853 853 0.9 518
Golden15 396 50 5 851 Battarra et al. (2014) 851 851 0.7 562
Golden15 396 57 5 850 Battarra et al. (2014) 850 850 0.5 638
Golden15 396 67 5 855 Battarra et al. (2014) 855 855.6 0.1 688
Golden15 396 80 5 857 Battarra et al. (2014) 857 857.6 0.1 920

Table 11: Detailed results for the Golden instances 11-15
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Instance n N m BKS First found by LMNS

Best Avg. Tp T

Golden16 480 33 5 1030 Battarra et al. (2014) 1030 1030 6.7 656
Golden16 480 35 5 1028 Battarra et al. (2014) 1028 1028 5.0 661
Golden16 480 37 5 1028 Battarra et al. (2014) 1028 1028 3.7 704
Golden16 480 41 5 1032 Battarra et al. (2014) 1032 1032 2.6 759
Golden16 480 44 5 1028 Battarra et al. (2014) 1028 1028 2.0 756
Golden16 480 49 5 1031 Battarra et al. (2014) 1031 1031 1.4 822
Golden16 480 54 5 1022 Battarra et al. (2014) 1022 1022 1.3 914
Golden16 480 61 5 1013 Battarra et al. (2014) 1014 1014 1.0 1046
Golden16 480 69 5 1012 Battarra et al. (2014) 1012 1012 0.8 1203
Golden16 480 81 5 1018 Battarra et al. (2014) 1018 1018 0.3 1376
Golden16 480 97 5 1018 Battarra et al. (2014) 1019 1019.6 0.1 1594

Golden17 240 17 3 418 Battarra et al. (2014) 418 418 6.9 196
Golden17 240 18 3 419 Battarra et al. (2014) 419 419 5.9 215
Golden17 240 19 3 422 Battarra et al. (2014) 422 422 4.8 213
Golden17 240 21 3 425 Battarra et al. (2014) 425 425 4.1 220
Golden17 240 22 3 424 Battarra et al. (2014) 424 424 3.9 215
Golden17 240 25 3 418 Battarra et al. (2014) 418 418 1.8 250
Golden17 240 27 3 414 Battarra et al. (2014) 414 414 1.3 250
Golden17 240 31 4 421 Battarra et al. (2014) 421 421 0.5 308
Golden17 240 35 4 417 Battarra et al. (2014) 417 417 0.2 322
Golden17 240 41 4 412 Battarra et al. (2014) 412 412 0.1 400
Golden17 240 49 4 414 Battarra et al. (2014) 414 414 0.1 473

Golden18 300 21 4 592 Battarra et al. (2014) 592 592 14.7 231
Golden18 300 22 4 594 Battarra et al. (2014) 594 594 14.1 245
Golden18 300 24 4 592 Battarra et al. (2014) 592 592 14.4 253
Golden18 300 26 4 590 Battarra et al. (2014) 590 590 6.4 303
Golden18 300 28 4 577 Battarra et al. (2014) 577 577 3.1 364
Golden18 300 31 4 578 Battarra et al. (2014) 578 578 2.2 365
Golden18 300 34 4 582 Battarra et al. (2014) 582 582 1.5 383
Golden18 300 38 4 586 Battarra et al. (2014) 586 586 1.1 407
Golden18 300 43 4 594 Battarra et al. (2014) 594 594 0.5 427
Golden18 300 51 4 601 Battarra et al. (2014) 601 601 0.1 521
Golden18 300 61 4 599 Battarra et al. (2014) 599 599 0.1 659

Golden19 360 25 10 925 Battarra et al. (2014) 925 925 35.6 352
Golden19 360 26 10 924 Battarra et al. (2014) 924 924 29.4 365
Golden19 360 28 4 808 Battarra et al. (2014) 808 808 21.2 327
Golden19 360 31 4 811 Battarra et al. (2014) 812 812 9.9 391
Golden19 360 33 4 797 Battarra et al. (2014) 797 797 4.5 426
Golden19 360 37 5 799 Battarra et al. (2014) 799 799 1.9 490
Golden19 360 41 5 789 Battarra et al. (2014) 789 789 1.1 592
Golden19 360 46 5 788 Battarra et al. (2014) 788 788 1.0 625
Golden19 360 52 5 800 Battarra et al. (2014) 800 800 0.9 691
Golden19 360 61 5 807 Battarra et al. (2014) 807 807 0.6 769
Golden19 360 73 5 810 Battarra et al. (2014) 810 810 0.4 953

Golden20 420 29 11 1220 Battarra et al. (2014) 1220 1220 43.1 477
Golden20 420 31 12 1232 Battarra et al. (2014) 1232 1232 28.3 488
Golden20 420 33 12 1208 Battarra et al. (2014) 1208 1208 25.9 514
Golden20 420 36 5 1059 Battarra et al. (2014) 1059 1059 15.0 485
Golden20 420 39 5 1052 Battarra et al. (2014) 1052 1052 7.8 523
Golden20 420 43 5 1052 Battarra et al. (2014) 1052 1052 4.5 543
Golden20 420 47 5 1053 Battarra et al. (2014) 1053 1053 4.5 646
Golden20 420 53 5 1058 Battarra et al. (2014) 1058 1058 4.4 689
Golden20 420 61 5 1058 Battarra et al. (2014) 1058 1058 4.3 828
Golden20 420 71 5 1049 Battarra et al. (2014) 1059 1059 3.7 984
Golden20 420 85 5 1049 Battarra et al. (2014) 1049 1049 0.7 1119

Table 12: Detailed results for the Golden instances 16-20
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