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The Split Delivery Vehicle Routing Problem with Time Windows and
Customer Inconvenience Constraints

Nicola Bianchessi∗,a, Michael Drexla,b, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bFaculty of Applied Natural Sciences and Industrial Engineering, Deggendorf Institute of Technology, D-94469 Deggendorf,
Germany.

Abstract

In classical routing problems, each customer is visited exactly once. By contrast, when allowing split deliver-
ies, customers may be served through multiple visits. This potentially results in substantial savings in travel
costs. Even if split deliveries are beneficial to the transport company, several visits may be undesirable on the
customer side: at each visit the customer has to interrupt his primary activities and handle the goods receipt.
The contribution of the present paper consists in a thorough analysis of the possibilities and limitations of
split delivery distribution strategies. To this end, we investigate two different types of measures for limiting
customer inconvenience (a maximum number of visits and the temporal synchronization of deliveries) and
evaluate the impact of these measures on carrier efficiency by means of different objective functions (compris-
ing variable routing costs, costs related to route durations, fixed fleet costs). We consider the vehicle routing
problem with time windows in which split deliveries are allowed (SDVRPTW) and define the corresponding
generalization that takes into account customer inconvenience constraints (SDVRPTW-IC). We design an
extended branch-and-cut algorithm to solve the SDVRPTW-IC and report on experimental results showing
the impact of customer inconvenience constraints. We finally draw useful insights for logistics managers on
the basis of the experimental analysis carried out.

Key words: Split delivery vehicle routing problem, Time windows, Synchronization, Maximum number of visits,
Branch-and-cut

1. Introduction

In classical routing problems concerning the delivery of goods, each customer is visited exactly once. By
contrast, when allowing split deliveries, customers may be served by means of multiple visits. This potentially
results in substantial savings in travel costs and fleet size, as in the split delivery vehicle routing problem
(SDVRP), the relaxation of the vehicle routing problem (VRP) in which split deliveries are possible (see
Archetti and Speranza (2012) and Irnich et al. (2014) for recent surveys on the topic). The option of split
deliveries is clearly beneficial to the transport company. On the customer side, though, several visits cause
inconvenience, as at each visit, the customer has to interrupt his primary activities to handle the goods
receipt.

In the paper at hand, we introduce generalizations of the SDVRP that allow to control the degree of
inconvenience caused by split deliveries and to balance overall distribution costs and customer satisfaction.
This creates a win-win situation for transport companies and their customers. We examine two measures
for limiting customer inconvenience:
(i) Maximum number of visits: this is the obvious and most direct way to limit customer inconvenience.
(ii) Temporal synchronization of deliveries: it is required that all deliveries to the same customer arrive

within a pre-defined time span.

Maximum Number of Visits. When a customer’s demand exceeds the vehicle capacity, this customer is
certainly split, so that the minimum number of visits to any customer is nmin

i = �di/Q� (where di is the
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demand of customer i and Q the vehicle capacity). Archetti et al. (2006b) compare different VRP variants
that result from fixing the number of visits to this minimum. Let VRP+ be the variant in which each
customer i is visited exactly nmin

i times, where for nmin
i > 1 the demand di can be arbitrarily split among

the nmin
i visits. The authors show that, compared to the optimal VRP+ solution, cost savings of 50% are

possible when allowing an arbitrary number of visits, and that this bound is tight. By allowing more than
the minimum number of visits, a large number of intermediate SDVRP variants can be defined, all with the
purpose of controlling the possible customer inconvenience: for each customer i, the number of visits to this
customer can be bounded above by nmax

i ≥ nmin
i . Moreover, one may limit the overall number of visits to

nmax for any nmax ≥
∑

i n
min
i in order to reduce customer inconvenience.

Salazar-González and Santos-Hernández (2015) introduce the split-demand one-commodity pickup-and-
delivery traveling salesman problem (SD1PDTSP), a very general problem that, despite its name, encom-
passes the multi-vehicle SDVRP as well as several other capacitated and uncapacitated routing problems
without time windows as special cases. The authors propose a compact formulation for the SD1PDTSP and
model the requirement of a maximum number of visits in the underlying network, by creating nmax

i vertices
for each customer i.

Temporal Synchronization of Deliveries. In this paper, we introduce synchronized deliveries as an alternative
measure to reduce customer inconvenience. For this purpose, we embed synchronization constraints into a
new split delivery routing problem which guarantees that all split deliveries occurring to a customer must
take place in a time interval of a given maximum duration. As the time dimension is relevant then, we focus
on the split delivery vehicle routing problem with time windows (SDVRPTW), which is the split-delivery
relaxation of the vehicle routing problem with time windows (VRPTW, Desaulniers et al., 2014). The
variant of the SDVRPTW in which synchronization constraints are embedded is denoted by SDVRPTW-S;
it is a special case of the more general SDVRPTW-IC that we formally define in Section 3.

Minimum Delivery Amounts. When trying to minimize customer inconvenience, what counts from the
customer’s point of view is the number of interruptions of his primary activities, in other words, the number
of visits. A third way to reduce the number of interruptions is to require that split deliveries are allowed only
if a minimum fraction of the customer’s demand is delivered at each visit. Gulczynski et al. (2010) consider
a pertinent generalization of the SDVRP. Besides defining a heuristic method for solving the problem, the
authors give bounds for a worst-case SDVRP-MDA scenario. Their results are extended in Xiong et al.
(2013). In the context of routing problems with profits, the idea of allowing to serve a customer by means
of multiple visits only if a minimum fraction of the customer’s demand is served at each visit is further
examined by Wang et al. (2014). We do not consider the option of specifying minimum delivery amounts in
our study, for two reasons. First, minimum delivery amounts are only an indirect way to achieve the primary
goal of limiting the number of visits. It is simpler and more intuitive to set such a number directly. Second,
and even more importantly, a minimum delivery amount does not make sense when the service times at
customers can be assumed to be independent of the amount delivered. Judging from our experience, this
is the case in many (though not all) real-world situations; moreover, it is a common assumption in the
literature on the SDVRPTW as reviewed in the next paragraph.

To our knowledge, the most effective exact algorithms for the solution of the SDVRPTW are the branch-
and-price-and-cut algorithms proposed by Archetti et al. (2011b) and Luo et al. (2016) (which are based
on the work of Desaulniers, 2010), and the branch-and-cut algorithm proposed by Bianchessi and Irnich
(2016). The cited solution approaches are able to solve slightly different subsets of the SDVRPTW benchmark
instances. However, concerning the number of instances solved to optimality, the branch-and-cut algorithm
proposed in (Bianchessi and Irnich, 2016) is superior, solving 5% more instances than the other solution
approaches. In this work, we extend this branch-and-cut algorithm to address the different special cases of
the SDVRPTW-IC.

The contribution of this paper is not only innovative from a methodological point of view. Even more
importantly, we shed light on complex interdependencies between VRPTW, SDVRPTW, and SDVRPTW-
IC special cases. Indeed, straightforward comparisons carry the danger of not taking all relevant effects into
account. The standard SDVRPTW objective is the minimization of the variable routing costs (Desaulniers,
2010). The most important insight gained from our experiments with the SDVRPTW-IC is that an exclusive
comparison on the basis of variable routing costs is insufficient. Overall logistics costs surely depend on
(i) variable routing costs,
(ii) costs related to route durations, and
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(iii) costs of the employed fleet,
and these cost elements should be included in a meaningful study analyzing savings that result from split
deliveries.

To underline this statement, we present, at this early stage, the following brief computational comparison
of VRPTW and SDVRPTW solutions. We used the well-known benchmark set of Solomon (1987), both as
VRPTW and SDVRPTW instances. In order to keep the computational effort manageable, we considered
only the smaller-sized instances constructed with the subsets of the first 25 and 50 customers respectively.
However, as always done for the SDVRPTW, the vehicle capacity Q is varied (Q = 30, 50 and 100) leading to
3 ·2 ·56 = 336 instances (more details are provided in Section 5). With the standard objective of minimizing
the variable routing costs and the branch-and-cut that will be presented in Section 4, we obtained the
results summarized in Table 1. The columns Feas. and Opt. show the number of instances for which a

Table 1: VRPTW and SDVRPTW solutions and comparison

Instances VRPTW SDVRPTW Comparison

n # Feas. Opt. Feas. Opt. # Rout. Costs Durations #Vehicles Dominating
(↓ / =) (↓ / = / ↑) (↓ / =) (Pareto)

25 168 135 135 168 168 135 56/79 10/79/46 8/127 10/135
50 168 112 66 168 95 64 39/25 8/25/31 1/63 8/64

Total 336 247 201 336 263 199 95/104 18/104/77 9/190 18/199

feasible VRPTW solution exists (recall that the capacity Q is lowered compared to Solomon’s definition)
and for which both an optimal VRPTW and an optimal SDVRPTW solution were computed. Only the
instances solved to optimality as VRPTW and as SDVRPTW were considered in the comparison. For these
199 instances, the section Comparison shows the number of instances in which the SDVRPTW solution
improved (↓) the corresponding VRPTW solution w.r.t. variable routing costs (Rout. Costs), route durations
(Durations), called “schedule times” in the work of Solomon (1987), and the number of vehicles employed
(#Vehicles). Recall that the routing costs of the SDVRPTW solution cannot increase but may stay constant
(=). In our experiments, the SDVRPTW solution did never employ more vehicles than the corresponding
VRPTW solution (this is why there are only the two cases ↓ and = in column #Vehicles). Dominating
SDVRPTW solutions (their number is reported as Dominating) are those for which one of the three criteria
is strictly improved while the others are not worse.

Beyond the numbers reported in Table 1, there are some important findings:
(i) For only 7 of the 199 instances, the variable routing costs are reduced by more than 1.5%.
(ii) For the 9 instances for which the number of vehicles decreased, it decreased by 1.
(iii) For 171 instances, the variable routing costs were reduced by less than 0.5%.
Additionally, Figure 1 quantifies, for the 95 instances for which variable routing costs decreased, the rela-
tionship between savings in variable routing costs and deviations of the route durations. To integrate the
third criterion, we distinguish between SDVRPTW solutions that save (at least) one vehicle and all other
solutions. The figures seem to indicate that, in many cases, even a rather small reduction in variable routing
costs leads to a notable increase of the route durations. Recall, however, that such a statement is based on
a limited set of benchmark problems and, more seriously, route durations and required fleet size are just an
outcome of a pure variable routing costs minimization. We draw the following conclusions from the presented
comparison of VRPTW and SDVRPTW:
(i) As the scientific VRP literature has not yet studied the full interdependency between all relevant cost

types, a new SDVRPTW model should consider cost components related to route durations, such
as driver wages, and fleet-related costs in addition to variable routing costs. This provides a more
complete picture of the overall logistics costs and allows managers to better foresee the consequences
of a possible change of the delivery strategy.

(ii) The incorporation of constraints that reduce customer inconvenience creates a variety of VRP models,
for which VRPTW and SDVRPTW are the extreme cases. It is necessary to study these variants with
the aim to better understand the impact of the different inconvenience constraints on the relevant cost
types.

(iii) For the Solomon-based SDVRPTW benchmark set, we have seen that the decrease in routing costs is
only marginal compared to an offered 50% savings discussed in worst-case analyses. It is known that
the savings from split deliveries mainly depend on the demand distribution (Archetti et al., 2006b).
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(a) Instances with n=25 customers
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Figure 1: SDVRPTW vs. VRPTW solutions: relationship between savings in variable routing costs, change
of route durations, and reduction of the number of routes.

Without specific patterns for the customers’ demand realizations, the Solomon-based benchmarks lack
generality. We therefore create a new benchmark set in which groups of instances are characterized by
different demand distributions (see Section 5.1).

The remainder of the paper is organized as follows. In Section 2, we formally define the SDVRPTW and
list some important properties of the problem. A mathematical model for the SDVRPTW-IC is then dis-
cussed in Section 3. In Section 4, we present the branch-and-cut algorithm designed to solve the SDVRPTW-
IC. Based on the experimental results obtained, we present in Section 5 the analysis of the impact of
inconvenience constraints. Final conclusions are drawn in Section 6.

2. The SDVRPTW and Properties of Optimal Solutions

Let us first recall the definition of the SDVRPTW. The problem can be defined on a directed graph G =
(V,A), with vertex set V and arc set A. The vertex set V contains vertices 0 and n+ 1, representing the depot
at the beginning and the end of the planning horizon respectively, and the set N = {1, . . . , n} representing
the n customers. Each customer i ∈ N is associated with a positive demand di that must be delivered
by means of one or more visits within a prescribed time window [ei, li]. Each delivery at customer i must
start within [ei, li], but a vehicle may arrive prior to ei and then wait until ei before starting the delivery.
Moreover, a time window [e0, l0] = [en+1, ln+1] is associated with the depot to model the planning horizon.
Each arc (i, j) ∈ A represents the possibility to move from the location corresponding to vertex i to the
location corresponding to vertex j, and it is associated with a non-negative travel time tij and a non-negative
routing cost cij . In particular, tij includes the service time at i. We assume that the service time is constant
for each visit and independent of the amount delivered. For each pair of vertices i, j ∈ V, i �= j, there exists
an arc (i, j) ∈ A if ei+ tij ≤ lj . We assume that all customer time windows are reduced so that ei ≥ e0+ t0i
and li ≤ ln+1−ti,n+1 holds for all i ∈ N . As is common, the set A includes the arc (0, n+ 1), associated with
zero travel time and routing cost, that allows modeling an idle vehicle, but not the arc (n+ 1, 0). A fleet K
of |K| identical vehicles with a capacity Q is available to serve the customers. The vehicles are initially
located at the depot. A route corresponds to a path from 0 to n+ 1 in G. A route is feasible if the total
demand delivered at the visited customers does not exceed the vehicle capacity and the time windows are
respected. The SDVRPTW consists of determining a set of least-cost feasible routes such that all customer
demands are met.

Given the above definitions and assumptions, and further assuming that the triangle inequality holds
for routing costs and travel times, it is possible to prove that, for any SDVRP(TW) instance that has an
optimal solution, there exists an optimal solution with the following properties:

Property 1. Two routes share at most one split customer (Dror and Trudeau, 1990).
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Property 2. Each arc between two vertices representing customers is traversed at most once (Gendreau
et al., 2006).

Property 3. For each pair of reverse arcs between two customers at most one of them is traversed (De-
saulniers, 2010).

Property 4. All routes are elementary (Desaulniers, 2010).

If, in addition, the vehicle capacity Q and all demands di for i ∈ N are integer, then there exists an
optimal solution to the SDVRPTW fulfilling Properties 1–4 and

Property 5. All delivery quantities are positive integers (Archetti et al., 2006a, 2011a).

These properties are exploited in the branch-and-cut algorithm that we present in Section 4.

3. The SDVRPTW with Customer Inconvenience Constraints

The SDVRPTW-IC is the generalization of the SDVRPTW taking into account upper bounds on the
number of visits, and synchronization constraints for split deliveries occurring to the same customer. More
formally, the following parameters become part of the problem definition:
Maximum number of visits: nmax

i and nmax limit the number of visits to i ∈ N and the overall number
of visits respectively;

Temporal synchronization of deliveries: ∆i limits the length of the time interval in which all deliveries
to i ∈ N must take place.

Moreover, the impact of these customer inconvenience constraints on the following types of distribution
costs is taken into account in the SDVRPTW-IC objective function:
Variable routing costs: These are given for each arc (i, j) ∈ A and are denoted by cij . They may also

include a penalty pi when a customer i ∈ N is visited. In this case,
∑

i∈N nmin
i pi is the unavoidable

penalty.
Costs related to route durations: We denote by γ the time-to-cost ratio that, multiplied by the duration

of a route, yields the duration-related costs.
Fixed vehicle costs: The fixed costs for using a vehicle are denoted by C.

We now describe two important characteristics of SDVRPTW-IC solutions.

Proposition 1. Given an SDVRPTW-IC instance fulfilling the assumptions made in Section 2. If this
instance has an optimal solution, and if both routing costs and travel times satisfy the triangle inequality,
the following two properties hold:
(a) There exists an optimal solution fulfilling Properties 1–4.
(b) If the vehicle capacity Q and all demands di for i ∈ N are integer, then there exists an optimal solution

fulfilling Properties 1–5.

Proof.
(a) The proof of Property 1 is analogous to the one given by Gendreau et al. (2006) for the SDVRPTW,

which, in turn, is based on the one by Dror and Trudeau (1990) for the SDVRP. Properties 2 and 3
follow immediately from Property 1. Given the above assumptions, Property 4 is fulfilled because a
feasible SDVRPTW-IC solution with a non-elementary route that visits a customer more than once
remains feasible with non-increased costs if all but the last visit to this customer are removed.

(b) The proof of this property is analogous to the one given by Archetti et al. (2006a) for the SDVRP.

We remark that, as Gulczynski et al. (2010) have shown, these properties are no longer fulfilled when
minimum delivery amounts are specified.

It is anything but straightforward to develop a practicable and computationally attractive compact
formulation for the SDVRPTW-IC. Bianchessi and Irnich (2016) have analyzed the difficulties of devising
one for the SDVRPTW. Their arguments apply just as well to the SDVRPTW-IC and shall thus be briefly
discussed in the following. First, as customers can be visited by several vehicles, it is impossible to attach
unique resource variables to the vertices, e.g., variables indicating the accumulated customer demand and
the service time. Consequently, formulations using Miller-Tucker-Zemlin types of constraints for the update
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of resource variables (see Miller et al., 1960) are not directly applicable in the split-delivery context. Second,
using a three-index formulation, i.e., variables with vehicle indices, is not practicable either, as the resulting
symmetries make any known branching scheme ineffective. Symmetry-breaking constraints (see, e.g. Fischetti
et al., 1995) can only mitigate the negative effects of symmetry. Third, the formulation proposed by van
Eijl (1995) for the delivery man problem and the one by Maffioli and Sciomachen (1997) for the sequential
ordering problem show that resource variables may be associated with arcs. However, even if we can exploit
Property 2 and associate time variables with arcs between customers, the problem remains that arcs between
depot and customers (or vice versa) may be traversed by more than one vehicle. Hence, no time variables
that uniquely define the vehicle travel times can be associated with these arcs.

Notwithstanding the above objections, we subsequently present a three-index model for the SDVRPTW-
IC fulfilling Properties 2–4. Because of the mentioned weaknesses of such a formulation, however, we do not
try to solve this model directly. Its purpose is solely to give a complete formal description of the SDVRPTW-
IC. Our solution approach to the SDVRPTW-IC is based on a relaxed compact formulation using two-index
variables and is described in the next section. In both models, we do not require Property 1, because this
property cannot well be formulated with linear constraints. Moreover, Property 5 is fulfilled whenever a
basic solution to an instance with integer demands and vehicle capacity is given.

The following model can be seen as a multi-commodity network flow formulation with additional variables
and constraints, with a commodity for each available vehicle. The formulation uses
(i) binary flow variables xk

ij equal to 1 if vehicle k ∈ K travels along arc (i, j) ∈ A, and 0 otherwise;

(ii) non-negative continuous flow variables T k
i representing the start of service of vehicle k ∈ K when

visiting vertex i ∈ N ;
(iii) non-negative continuous variables δki representing the quantity delivered by vehicle k ∈ K to customer

i ∈ N ;
(iv) continuous variables Ei representing the earliest start of service at customer i ∈ N .

The symbols Γ+(S) and Γ−(S) respectively denote the forward and backward star of S ⊆ N . For
simplicity, we use Γ+(i) and Γ−(i) whenever S = {i}. Moreover, we define A(N) = {(i, j) ∈ A : i ∈ N, j ∈
N}.

The multi-commodity flow formulation for the SDVRPTW-IC is as follows:

min
∑

k∈K


 ∑

(i,j)∈A

cijx
k
ij + γ

(
T k
n+1 − T k

0

)
+ C

∑

i∈N

xk
0i


 (1a)

s.t.
∑

(0,j)∈Γ+(0)

xk
0j =

∑

(i,n+1)∈Γ−(n+1)

xk
i,n+1 = 1 k ∈ K (1b)

∑

(h,i)∈Γ−(i)

xk
hi −

∑

(i,j)∈Γ+(i)

xk
ij = 0 i ∈ N, k ∈ K (1c)

xk
ij(T

k
i + tij − T k

j ) ≤ 0 (i, j) ∈ A, k ∈ K (1d)

ei ≤ T k
i ≤ li i ∈ N, k ∈ K (1e)

∑

k∈K

δki ≥ di i ∈ N (1f)

0 ≤ δki ≤ min{di, Q}
∑

(i,j)∈Γ+(i)

xk
ij i ∈ N, k ∈ K (1g)

∑

i∈N

δki ≤ Q k ∈ K (1h)

xk
ij ∈ {0, 1} (i, j) ∈ A, k ∈ K (1i)

Additional constraints enforcing Properties 2 and 3 are added:

∑

k∈K

xk
ij ≤ 1 (i, j) ∈ A(N) (1j)

∑

k∈K

xk
ij + xk

ji ≤ 1 (i, j), (j, i) ∈ A(N) : i < j (1k)
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Constraints to alleviate customer inconvenience are:

∑

k∈K

∑

(i,j)∈Γ+(i)

xk
ij ≤ nmax

i i ∈ N (1l)

∑

k∈K

∑

i∈N

∑

(i,j)∈Γ+(i)

xk
ij ≤ nmax (1m)

Ei ≤ T k
i ≤ Ei +∆i i ∈ N, k ∈ K (1n)

The objective function (1a) calls for the minimization of the total variable routing costs, the costs related
to route durations, and the fixed costs for employing vehicles. Constraints (1b) and (1c) impose the route
associated with each vehicle to be a 0-(n+ 1)-path. Feasibility regarding time-window constraints and el-
ementarity of the routes is guaranteed by (1d) and (1e). Clearly, constraints (1d) can be linearized by
T k
i + tij − T k

j ≤ Mij(1− xk
ij), where Mij is an arc-specific large constant, e.g., Mij = max{li + tij − ej , 0}.

Constraints (1f) ensure customer demands are met. Constraints (1g) allow a vehicle to deliver only to vis-
ited customers and (1h) are the capacity constraints. The domain of the vehicle flow variables is defined by
constraints (1i). By setting duration-related and fixed costs γ = C = 0, the system (1a)–(1i) is the basic
vehicle-indexed formulation of the SDVRPTW. Desaulniers (2010) strengthens this formulation by adding
tighter bounds on the fleet size, capacity cuts, and 2-path cuts. We explain these cuts later in the context
of our branch-and-cut approach in Section 4.2.

Constraints (1j) and (1k) come from Property 2 and 3 respectively. They are redundant for model (1a)–
(1i), but will turn out helpful in our new compact model.

Constraints (1l)–(1n) reduce or eliminate customer inconvenience caused by deferred and multiple visits.
Constraints (1l) and (1m) limit the maximum number of visits to customers, individually and in total.
Temporal synchronization of visits is guaranteed by constraints (1n), where ∆i = 0 imposes simultaneous
deliveries and ∆i = li − ei allows to spread them arbitrarily in the service time window.

4. A Branch-and-Cut Algorithm

In this section, we extend the branch-and-cut algorithm proposed by Bianchessi and Irnich (2016) to
address the SDVRPTW-IC. The algorithm is based on a compact formulation that in fact constitutes a
relaxation of the problem. This means that some integer solutions to the relaxed formulation are infeasible for
the SDVRPTW-IC. Valid inequalities are used in order to strengthen the relaxed compact formulation and
possibly cut off solutions that are infeasible for the SDVRPTW-IC. However, even with the valid inequalities,
integer solutions to the new compact formulation remain to be tested for feasibility. The positive arc flow
values in any given integer solution to the relaxed formulation induce a subnetwork of the original instance.
As there are only few split customers in a typical solution, such a subnetwork will regularly contain only
few arcs. Hence, all time-window feasible routes on this subnetwork can be enumerated. An extended set-
covering problem is then solved in order to decide on the selection of routes, their schedules, the quantities
to deliver to the visited customers, and, hence, overall feasibility. All solutions proved infeasible are cut off
from the feasible region of the relaxed problem.

In Section 4.1, we define the relaxed compact formulation for the SDVRPTW-IC and show how an optimal
solution to this formulation may not be feasible to the original problem. In Section 4.2, we summarize
the valid inequalities used in order to strengthen the relaxed formulation and cut off solutions that are
infeasible for the SDVRPTW-IC. Finally, in Section 4.3, we present the feasibility-checking procedure and
the feasibility cuts.

4.1. Relaxed Compact Formulation

The relaxed compact formulation for the SDVRPTW-IC is a two-commodity flow formulation with
additional variables and constraints. The first commodity represents the available vehicles and the second
represents the service times imposed by the routes. The formulation uses
(i) integer variables zi indicating the number of times vertex i ∈ N is visited by the vehicles;
(ii) integer flow variables xij indicating the flow of the vehicles along arc (i, j) ∈ A;
(iii) non-negative continuous flow variables Tij indicating the service start time at i ∈ N when a vehicle

travels directly from i to j ∈ N ; moreover, T0i is the sum of the departure times at the depot 0 of
the vehicles traveling along (0, i), and Tin+1 is the sum of the service start times at customer i of the
vehicles traveling along (i, n+ 1);
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(iv) non-negative continuous variables wij indicating the waiting time at j ∈ N when a vehicle travels
directly from i to j for (i, j) ∈ A(N);

(v) non-negative continuous variables Ei representing the earliest service time at customer i ∈ N .
In the remainder, we will refer to Tij and wij as service-time and waiting-time flow variables respectively.

We use the following additional notation. We define Γ+
N (S) = Γ+(S)∩A(N) and Γ−

N (S) = Γ−(S)∩A(N).
Again, we write Γ+

N (i) and Γ−
N (i) for singleton sets S = {i}. Finally, we define KS =

⌈∑
i∈S di/Q

⌉
as the

minimum number of vehicles required to serve customers in set S ⊆ N .
The relaxed two-commodity flow formulation for the SDVRPTW-IC is as follows:

min
∑

(i,j)∈A

cijxij + γ

( ∑

(i,j)∈A

tijxij +
∑

(i,j)∈AN

wij

)
+ C

∑

(0,i)∈Γ+
N (0)

x0i (2a)

s.t.
∑

(h,i)∈Γ−(i)

xhi =
∑

(i,j)∈Γ+(i)

xij = zi i ∈ N (2b)

∑

(0,j)∈Γ+(0)

xij = K (2c)

∑

(i,j)∈Γ+(S)

xij ≥ KS S ⊆ N, |S| ≥ 2 (2d)

∑

(h,i)∈Γ−(i)

(
Thi + thixhi

)
+

∑

(h,i)∈Γ−
N (i)

whi =
∑

(i,j)∈Γ+(i)

Tij i ∈ N (2e)

eixij ≤ Tij ≤ lixij (i, j) ∈ A (2f)

max{0, ej − tij − li}xij ≤ wij ≤ max{0, lj − tij − ei}xij (i, j) ∈ A(N) (2g)

zi ≥ �di/Q� and integer i ∈ N (2h)

xij ∈ {0, 1} (i, j) ∈ A(N) (2i)

xij ≥ 0 and integer (i, j) ∈ A \A(N) (2j)

with customer inconvenience constraints

zi ≤ nmax
i i ∈ N (2k)

∑

i∈N

zi ≤ nmax (2l)

Ei ≤ Tij + li(1− xij) (i, j) ∈ A(N) (2m)

Tij ≤ Ei +∆i (i, j) ∈ A(N) (2n)

The objective function (2a) calls for the minimization of the total costs. Constraints (2b) impose flow
conservation for the vehicle flow variables. (2c) is the fleet size constraint. Constraints (2d) prevent the
generation of paths not connected to the depot. Moreover, as shown by Bianchessi and Irnich (2016), (2d) are
necessary but not sufficient for maintaining capacity constraints. Constraints (2e)–(2g) impose conservation
for the service-time flow, ensure consistency among the Tij , wij , and xij variable values, and partially ensure
time-window prescriptions. Constraints (2h)–(2j) define the domains for the integer variables. Note that the
binary requirement in (2i) results from Property 2.

Constraints (2k)–(2n) are the customer inconvenience constraints. (2k) explicitly specify an upper bound
on the number of visits at each customer, and (2l) enforce a limit on the overall number of deliveries
performed. (2m) and (2n) are the synchronization constraints which guarantee that all visits to a customer i
are performed within the time interval ∆i.

An optimal solution to (2) may not be feasible for the SDVRPTW-IC. Bianchessi and Irnich (2016)
discuss examples showing that an optimal solution to the relaxed formulation for the SDVRPTW can
violate the capacity or time-window constraints. Those examples apply also to the SDVRPTW-IC. Consider
the following

Example 1. The instance depicted in Figure 2 shows that an integer solution to (2) can violate synchro-
nization constraints even though it is feasible w.r.t. capacity and time-window constraints. In this instance,
the depicted arcs have costs and travel times equal to 1, while all other arcs (not shown) have costs and
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travel times equal to 2. The demands di and the time windows [ei, li] of the n = 5 customers are presented
close to each customer i ∈ {1, 2, . . . , 5}. The depot time window is assumed to be non-constraining, i.e.,
[e0, l0] = [en+1, ln+1] = [0, 10]. The capacity of the vehicles is Q = 10. The depicted arcs have a flow of 1 and
form the unique optimal solution to the relaxed model (2). In fact, two fully loaded vehicles are required to
serve the 5 customers and, due to the given customer demands, one of the customers must receive split de-
liveries. Therefore, the solution consists of two routes, for a total of 8 arcs. Selecting any set of arcs different
from those depicted would increase the cost of the solution. As far as time-window prescriptions, demands,
and vehicle capacity are concerned, this optimal solution can be converted into a feasible SDVRPTW-IC
solution, e.g., using the two routes (0, 1, 3, 4, n + 1) and (0, 2, 3, 5, n + 1). In the first route, the values of
the service-time flow variables Tij with i = 3 or j = 3 are uniquely defined: T13 = 4 and T34 = 5. In the
second route, different values are possible for the Tij variables. In particular, when customers are served as
early as possible, then T23 = 1 and T35 = 2. If customers are served as late at possible, then T23 = 2 and
T35 = 3. If ∆3 ≥ 2, then the corresponding SDVRPTW-IC solution with the as-late-as-possible schedule for
the second route is feasible with regard to synchronization constraints (service times at customer 3 are then
5 and 3 and thus differ by not more than ∆3). However, if ∆3 = 1, then customer 3 cannot be served by
routes (0, 1, 3, 4, n + 1) and (0, 1, 3, 5, n + 1) in such a way that synchronization constraints are satisfied in
a feasible SDVRPTW-IC solution. Nevertheless, the assignments T01 = 3, T13 = 4, T34 = 4, T46 = 5 and
T02 = 0, T23 = 1, T35 = 3, T56 = 4 to the service-time flow variables are feasible for model (2).

3

[e3, l3] = [2, 5]

d3 = 5

0 6

1

[e1, l1] = [4, 5]

d1 = 3

2

[e2, l2] = [1, 3]

d2 = 4

4

[e4, l4] = [3, 6]

d4 = 4

5

[e5, l5] = [3, 4]

d5 = 4

Figure 2: Optimal solution to formulation (2) that is infeasible for the SDVRPTW-IC w.r.t. synchronization
constraints.

The above example has shown that the relaxed model (2) contains infeasible integer solutions w.r.t. the
synchronization constraints of SDVRPTW-IC. When the minimization of the route durations becomes part
of the objective, i.e., for γ > 0, model (2) also contains integer solutions that are feasible w.r.t. routing
but infeasible w.r.t. scheduling. In this case, the solution represented by values of the routing variables xij

can be converted into a feasible SDVRPTW-IC solution. However, such a feasible SDVRPTW-IC solution
requires a different schedule than what the Tij variable values indicate. In consequence, model (2) evaluates
the solution given by the xij variables with a too small objective value, computed with an infeasible set of
associated Tij variable values.

Example 2. An example for such a relaxed solution is presented in Figure 3. Here, the only feasible
SDVRPTW-IC solution comprises the routes (0, 1, 3, 4, n + 1) and (0, 2, 3, 5, n + 1). Due to duration mini-
mization, the values T01 = 4, T13 = 5, T34 = 6, T46 = 8, and w34 = 1 of the service-time flow and waiting
time variables in the first route are unique. For the second route, different sets of values can instead be
assigned to the service-time flow and waiting time variables: When customers are served as early as possible,
then T02 = 0, T23 = 1, T35 = 2, and T56 = 3. In contrast, when customers are served as late at possible,
then T02 = 2, T23 = 3, T35 = 4, and T56 = 5. With both schedules, the second vehicle never waits along
the second route. Hence, the overall waiting time is unique and given by w34 = 1. In contrast, the values
T01 = 4, T13 = 5, T34 = 7, T46 = 8, w34 = 0 and T02 = 1, T23 = 2, T35 = 2, T56 = 3 of the service-time flow
and waiting variables are feasible for the relaxed model (2). Here, no waiting seems to be necessary. The
objective (2a) of the relaxed model underestimates the true SDVRPTW-IC costs for the feasible x-values by
γ > 0.

Note that model (2) can be reformulated without making use of the waiting time flow variables. Objective
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3

[e3, l3] = [2, 9]

d3 = 5

0 6

1

[e1, l1] = [4, 5]

d1 = 3

2

[e2, l2] = [1, 3]

d2 = 4

4

[e4, l4] = [8, 10]

d4 = 4

5

[e5, l5] = [3, 5]

d5 = 4

Figure 3: Optimal solution to formulation (2) in which the arc flow variables represent a set of feasible
SDVRPTW-IC routes. The objective (2a) however underestimates the true route durations and costs, be-
cause optimal values for the service-time and waiting flow variables in (2) are infeasible for the routes.

(2a) and constraints (2e) and(2g) need to be replaced. The relaxed formulation becomes:

min
∑

(i,j)∈A

cijxij + γ
∑

(i,j)∈A

tijxij + γ
∑

i∈N

( ∑

(i,j)∈Γ+(i)

Tij −
∑

(h,i)∈Γ−(i)

(
Thi + thixhi

))
+ C

∑

(0,i)∈Γ+
N (0)

x0i (3a)

∑

(h,i)∈Γ−(i)

(
Thi + thixhi

)
≤

∑

(i,j)∈Γ+(i)

Tij i ∈ N (3b)

∑

(h,i)∈Γ−
N (i)

wLB
hi xhi ≤

∑

(i,j)∈Γ+(i)

Tij −
∑

(h,i)∈Γ−(i)

(
Thi + thixhi

)
≤ wUB

hi xhi i ∈ N (3c)

(2b)–(2d), (2f), (2h)–(2n) (3d)

where wLB
hi = max{0, ei − thi − lh} and wUB

hi = max{0, li − thi − eh}. As (3c) are the aggregate form of
(2g), the arising formulation is slightly weaker than (2). However, the new formulation (3) has O(n2) fewer
variables and constraints, and preliminary experiments showed this is beneficial from the computational
point of view. Our branch-and-cut algorithm is therefore based on (3).

4.2. Valid Inequalities

In classical branch-and-cut algorithms, valid inequalities are used to strengthen the formulation of the
problem addressed. Since (3) is a relaxed formulation, in our algorithm valid inequalities are also used to
cut off integer solutions to (3) that are infeasible for the SDVRPTW-IC.
We consider the same classes of valid inequalities as Bianchessi and Irnich (2016):
• Inequalities

xij + xji ≤ 1 (i, j), (j, i) ∈ A(N) : i < j, (4)

which can be imposed due to Property 3.
• Capacity cuts (2d) as stated in the previous section.
• 2-path cuts, introduced by Kohl et al. (1999):

∑

(i,j)∈Γ+(S)

xij ≥ 2, (5)

which apply whenever a subset S ⊆ N of the customers cannot be served with a single vehicle.
• Connectivity cuts of the form

∑

(i,j)∈Γ+(S)

xij ≥ zu S ⊆ N, |S| ≥ 2, u ∈ S. (6)

They prove useful even though already the capacity cuts ensure that any subset of customers is connected
to the depot.
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• Infeasible-path constraints and path-matching constraints, introduced by Bianchessi and Irnich (2016).
These are two new classes of valid inequalities for the SDVRPTW. The former are an adaptation to the
SDVRPTW of the cuts bearing the same name and introduced by Ascheuer et al. (2000, 2001). The latter
are a generalization of the former involving several partial paths starting or ending at a specified customer
vertex. It is straightforward to prove that both types of cuts are also valid for the SDVRPTW-IC. Their
derivation, though, is very involved and laborious and requires extensive additional notation, so that the
reader is referred to the original reference for details on their definition and separation. Note, however, that
by exploiting Property 5, a superset of valid infeasible-path and path-matching constraints can be defined,
because this property imposes a minimum delivery amount of 1 for each visit. Bianchessi and Irnich (2016)
state inequalities with closed-form expressions covering the cases with and without Property 5.

Inequalities (4) are added to the formulation right from the start, whereas the other cuts are dynamically
separated in the course of the algorithm. We apply the same separation strategies as Bianchessi and Irnich
(2016).

4.3. Feasibility Checking

Recall that every time a feasible integer solution to the relaxed formulation (3) is found, a procedure
must check whether the solution is also feasible to the SDVRPTW-IC. If not, a feasibility cut must be
inserted to cut off this solution from the feasible region of the relaxed problem.

The checking procedure we use is based on the one proposed by Bianchessi and Irnich (2016) and works
as follows. Let s̄ = (x̄, z̄, T̄, Ē) be an integer solution to the relaxed formulation (3), possibly augmented by
branching and cutting constraints. Let Z̄ = c�x̄ denote the costs of the solution.

For V̄ = V we define a residual network H(V̄, x̄) = (V̄, Ā), with Ā = {(i, j) ∈ A : x̄ij ≥ 1} ∪ {(0, j) :
j ∈ N̄} ∪ {(i, n + 1) : i ∈ N̄}. Furthermore, let S̄ = {i ∈ N̄ : z̄i ≥ 2} be the set of customers receiving
split deliveries in solution s̄ (split customers). For the non-split customers i ∈ N̄ \ S̄, we know that the
delivery quantity is identical to di independently of the route serving the customer. Moreover, if Property 5
holds, the minimum delivery amount to split customers is equal to 1. According to these minimum delivery
amounts, we define R̄ as the set of all elementary 0-(n+1)-paths (routes) in H(V̄, x̄) satisfying time-window
and vehicle capacity constraints. We generate R̄ by exploring H(V̄, x̄) in a depth-first way.

An instance of the SDVRPTW-IC, defined on the basis of V̄ and x̄ imposing the route set R̄, can be
modeled by a path-based formulation. Some additional notation is required. Let N̄(r) ⊆ N̄ be the subset of
customers visited by route r ∈ R̄ using the definition N̄ = V̄ \ {0, n+1}. We distinguish between routes R̄s

visiting a single customer, i.e., routes of the form (0, i, n+ 1) for i ∈ N , and routes R̄m visiting more than
one customer. Obviously, R̄ = R̄m ∪ R̄s and R̄m ∩ R̄s = ∅.

The schedule of a route needs to be feasible regarding time-window and synchronization constraints. In
order to guarantee a feasible schedule for the route r ∈ R̄, it suffices to impose constraints on the visit times
at the vertices i ∈ V time

r , where V time
r is the set (N̄(r)∩ S̄)∪{0, n+ 1}. We define the relation P time

r so that
(i, j) ∈ P time

r if and only if i, j ∈ V time
r and i is visited before j in route r with no other vertex of V time

r in
between.

Extended Set-Covering Model. The path-based formulation for the SDVRPTW-IC, defined relatively to V̄
and x̄, uses then
(i) non-negative integer and binary variables λr indicating the number of vehicles assigned to route r ∈ R̄s

and R̄m respectively,
(ii) non-negative continuous variables δri indicating the quantity delivered to customer i ∈ N̄(r) ∩ S̄ by

route r ∈ R̄,
(iii) non-negative continuous variables T r

i representing the service time at customer i ∈ N̄(r) ∩ S̄, the
departure time at the depot i = 0, and the arrival time at the depot i = n+ 1 for route r ∈ R̄m,

and it reads as follows:

Z̄R̄ =min γ
∑

r∈R̄m

(
T r
n+1 − T r

0

)
+ γ

∑

r∈R̄s:
r=(0,i,n+1)

(t0i + ti,n+1)λ
r +

∑

r∈R̄

(cr + C)λr (7a)

s.t. γ
∑

r∈R̄m

(
T r
n+1 − T r

0

)
+ γ

∑

r∈R̄s:
r=(0,i,n+1)

(t0i + ti,n+1)λ
r +

∑

r∈R̄

(cr + C)λr ≤ Z̄∗ (7b)

∑

r∈R̄:i∈N̄(r)

δri ≥ di i ∈ S̄ (7c)
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∑

r∈R̄:i∈N̄(r)

λr
i ≥ 1 i ∈ N̄ \ S̄ (7d)

∑

i∈S̄∩N̄(r)

δri +
∑

i∈(N̄\S̄)∩N̄(r)

diλ
r
i ≤ Qλr r ∈ R̄ (7e)

eriλ
r ≤ T r

i ≤ lri λ
r r ∈ R̄m, i ∈ V time

r (7f)

T r
i + trijλ

r ≤ T r
j r ∈ R̄m, (i, j) ∈ P time

r (7g)
∑

r∈R̄

(brij + brji)λ
r ≤ 1 (i, j), (j, i) ∈ Ā(N̄), i < j (7h)

∑

r∈R̄

λr ≤ K (7i)

δri ≥ 0 r ∈ R̄, i ∈ N̄(r) ∩ S̄ (7j)

λr ∈ {0, 1} r ∈ R̄m (7k)

λr ≥ 0 and integer r ∈ R̄s (7l)

with customer inconvenience constraints

∑

r∈R̄

∑

(i,j)∈Γ+(i)

brijλ
r ≤ nmax

i i ∈ N (7m)

∑

r∈R̄

∑

(i,j)∈A:i∈N

brijλ
r ≤ nmax (7n)

Ei ≤ T r
i + li(1− λr) r ∈ R̄m, i ∈ N̄(r) ∩ S̄ (7o)

T r
i ≤ Ei +∆i r ∈ R̄m, i ∈ N̄(r) ∩ S̄ (7p)

where cr are the variable routing costs of route r ∈ R̄, Z̄∗ is the upper bound to the SDVRPTW-IC stored
in the branch-and-cut algorithm, trij is the time required to travel (without waiting) from i to j along route

r, if i, j ∈ N̄(r) ∩ S̄ and i precedes j, and brij is a binary arc indicator equal to 1 if arc (i, j) ∈ Ā(N̄) is used

in route r ∈ R̄, 0 otherwise.
The objective function (7a) minimizes the costs of all routes in use. If model (7) is infeasible, we set

Z̄R̄ = ∞. Constraints (7b) impose an upper bound on the objective value Z̄R̄. Constraints (7c) and (7d)
ensure that customer demands are met. Vehicle capacity constraints are imposed by (7e). Constraints (7f)
and (7g) define the values of the service time variables associated with split customers. Property 3 implies
constraints (7h). Constraint (7i) guarantees that the fleet size is respected. Finally, constraints (7j)–(7l)
define the domains of the δri and λr variables.

Concerning customer inconvenience constraints , (7m) and (7n) limit the maximum number of visits to
customers, individually and in total, and (7o) and (7p) impose synchronization of visits.

Note that constraints (7b)–(7l) do not impose that each arc (i, j) ∈ Ā be traversed exactly x̄ij times by the
selected routes. Moreover, Āmay include arcs in Γ+(0)∪Γ−(n+ 1) that are not used in solution s̄. Alternative
SDVRPTW-IC solutions are thus possible, and improving solutions are found whenever Z̄R̄ < Z̄. In addition,
customer visits with zero deliveries are possible in (7), i.e., λr > 0 but δri = 0 for some i ∈ N̄(r) ∩ S̄. Due
to the validity of the triangle inequality and because waiting is allowed at no cost, improving (or at least
not worse) alternative feasible solutions can be derived by removing customers with a delivery quantity of 0
from the routes in a solution to (7). Thus, we apply a greedy postprocessing procedure in order to identify
high-quality solutions as early as possible in the course of the branch-and-cut. For the sake of exposition,
we assume that Z̄R̄ is updated to the value of such an improving solution whenever one is detected.

If Z̄R̄ ≤ Z̄, then also Z̄ ≤ Z̄∗ holds, and a feasible integer solution to the SDVRPTW-IC has been found.
In case Z̄R̄ < Z̄, the solution is a new best one, so that the best known solution value can be updated by
Z̄∗ := Z̄R̄ and the branch-and-bound node can be terminated.

If Z̄R̄ > Z̄, the current integer solution s̄ is infeasible, and a feasibility cut must be added (see below).
Moreover, the resulting branch-and-bound node must be examined further. It is worth noting that the upper
bound Z̄∗ can however be updated by Z̄∗ := Z̄R̄ if Z̄R̄ < Z̄∗ holds.

Feasibility Cuts. The definitions of valid feasibility cuts and the procedures to identify them are different
depending on whether service-time flow variables Tij occur in the objective (i.e., γ > 0 in (3a)) or not
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(γ = 0). The case of γ = 0 is identical to what is described in (Bianchessi and Irnich, 2016) so that can
sketch it only briefly. The case of γ > 0 requires a special treatment that we describe afterwards.

If γ = 0, feasibility cuts are generated as follows. Integer solutions s̄ to (3) often partition the set of
customers into several weakly connected components. Defining C as the index set of these components, let
N̄ c, for each c ∈ C, be the vertex set of the cth weakly connected component of H(V, x̄)(N), i.e., of the
vertex-induced subgraph of H(V, x̄) induced by the customers N . Smaller SDVRPTW-IC instances can now
be defined by V̄ c = N̄ c ∪ {0, n+ 1}.

For each c ∈ C, we define x̄c
ij = x̄ij if (i, j) ∈ V̄ c × V̄ c, and 0 otherwise. Then, we build H(V̄ c, x̄c) =

(V̄ c, Āc), generate the routes R̄ over H(V̄ c, x̄c), and solve the resulting formulation (7). Note that, in order
to speed up the solution process, here we define Āc = {(i, j) ∈ A∩ (V̄ c× V̄ c) : x̄ij ≥ 1} and impose in (7) to
use each arc (i, j) ∈ V̄ c× V̄ c exactly x̄c

ij times (the additional constraints are of the form
∑

r∈R̄ brijλ
r = x̄c

ij).

Moreover, we set Z̄∗ in (7b) to Z̄c := c�x̄c.
If (7) is infeasible, we add the following feasibility cut defined w.r.t. the cth weakly connected compo-

nent N̄ c ∑

(i,j)∈Âc

xij ≥ 1, (8)

where the arc set Âc defining the left-hand side is

Âc = {(i, j) ∈ A ∩ (V̄ c × V̄ c) : x̄ij = 0} ∪ Γ+
N (N̄ c) ∪ Γ−

N (N̄ c).

The cut (8) imposes that either the set of active vehicle flow variables associated with the internal arcs of
component c must be different from the ones positive in the solution s̄ or the component c itself must change.
The inequality is globally valid. Thus, whenever s̄ has been proved to be infeasible for the SDVRPTW-IC, it
can be cut off by imposing to change the current solution for at least one connected component of H(V, x̄).
It happens regularly that lifted feasibility cuts for several components can be added at the same time.

If γ > 0, i.e., if the objective contains costs related to route durations, the checking procedure outlined
above is not directly applicable, as it may erroneously prevent a component N̄ c from being part of a
solution. This is caused by the combined effect of the following: (i) the solution of the relaxed model (3) may
underestimate the costs of a component (see Example 2 and Figure 3) and (ii) the feasibility cuts (8) are
defined just in terms of the xij variables, which are associated with the variable routing costs only. Thus,
if γ > 0, (7b) must be removed from (7) when checking the feasibility of a component. Then, a component
can be proved to be infeasible due to the violation of vehicle capacity, time-window, or synchronization
constraints, so that a feasibility cut (8) can be added for this component. The remaining inconvenience
constraints are always satisfied, because we impose the additional constraints

∑
r∈R̄ brijλ

r = x̄c
ij for all

(i, j) ∈ Āc when checking the feasibility of a component. If none of the components is infeasible, the
feasibility cut for checking the whole solution has to be added to the model, i.e., the feasibility cut defined
for the arc set Âc = {(i, j) ∈ A : x̄ij = 0}.

5. Experimental Results

The branch-and-cut algorithm was implemented in C++ using CPLEX 12.6.0.1 with Concert Technology,
and compiled in release mode with MS Visual C++ 2013. The experiments were performed on a 64-bit
Windows 10 PC equipped with an Intel Xeon processor E5-1650v3 clocked at 3.50 GHz and with 64 GB
of RAM, by allowing a single thread for each run. CPLEX’s built-in cuts were used in all experiments.
To improve numerical stability, we set IloCplex::NumericalEmphasis = CPX ON and IloCplex::EpGap

equal to 1.0e-5 for fixed vehicle costs C = 0 and to 1.0e-9 for C = 1,000,000 respectively. Finally, we set
IloCplex::ParallelMode = 1 in order to force CPLEX to always use deterministic algorithms. CPLEX’s
default values were kept for all remaining parameters.

5.1. Instances

In Section 1, we found that the standard benchmark for SDVRPTW which is based on the benchmark of
Solomon (1987) lacks generality because instances do not exhibit different demand distributions. The demand
distribution however strongly impacts the average savings resulting from allowing split deliveries. Therefore,
we created 560 new test instances, again derived from the well-known VRPTW instances by Solomon (1987).
Recall that the Solomon instance set comprises 56 instances, each of which contains 100 customers located
in a 100× 100 square. The set is divided into 6 classes termed R1, R2, C1, C2, RC1, and RC2, where “R”
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stands for “random”, “C” for “clustered”, and “RC” for “random and clustered”, thus denoting the manner
in which the customers are located in the square. The “2” instances have less constraining time windows
and larger vehicle capacities than the “1” instances, so that longer routes are possible. Costs and travel
times between customers are set to the Euclidean distance, customer demands are integer, and the vehicles
are assumed to be homogeneous. Each class contains between 8 and 12 instances.

For the new instances, the vehicle capacity Q is set to 100. We consider five scenarios with regard to the
customer demands:

D1 : [10; 70] D2 : [10; 50] D3 : [30; 70] D4 : [30; 50] D5 : [50; 70]

In each of the five scenarios [a, b], the demand di of customers i ∈ N is drawn from a discrete uniform
distribution in [ a

100Q, b
100Q]. As in the original Solomon benchmark, all instances of a class (e.g., R1) share

the identical demand realization in a scenario.
From each instance, we derived 25- and 50-customer instances by considering only the first 25 and

50 customers respectively. Hence, we obtained 56 · 5 · 2 = 560 instances, available at http://logistik.

bwl.uni-mainz.de/benchmarks.php. We partitioned the instances into groups by Solomon class, demand
scenario, and number of customers. For example, “C1D2N25” refers to the 25-customer instances created
from Solomon class C1 with demands in [10; 50].

According to the usual convention, we computed travel times and variable routing costs with one decimal
place and truncation. Then, as the triangle inequality is assumed to hold for both times and costs, at
preprocessing time we apply the Floyd-Warshall algorithm to times and costs independently. Hence, the
new instances allow us to require all Properties 1–5 for optimal solutions.

5.2. Results

We considered the eight distribution policies described in Table 2. The extreme policies are those leading
to the VRPTW (no splitting at all) and the SDVRPTW (arbitrary splits allowed), while the introduction
of the inconvenience measures creates variants of the SDVRPTW-IC.

Table 2: The different distribution policies considered in the computational experiments

Policy Meaning

VRPTW Standard VRP with time windows.

SDVRPTW Split delivery VRP with time windows.

S∆, for ∆ = 0 SDVRPTW with temporal synchronization of deliveries/visits. ∆ = 0 is exact
temporal synchronization.

NVν, for ν = 2, 3 SDVRPTW with at most ν visits per customer, i.e., nmax
i = ν for all customers

i ∈ N .

TNVx,
for x = 25, 50, 75

SDVRPTW with a limit on the total number of visits, nmax. For an instance
with n customers and ξ visits in the optimal SDVRPTW solution, nmax =
n+ � x

100 · (ξ − n)�.
Example: For an instance with n = 50 for which the optimal SDVRPTW
solution visits ten customers twice and no customer more than twice, ξ = 60,
and for x = 25, nmax = 53.

The VRPTW served as baseline against which the other distribution policies were compared. We consider
synchronization and limiting the number of visits as alternative measures for controlling inconvenience and
therefore analyzed them separately; mixing them makes no sense in our opinion.

We performed three sets of experiments using different objectives (henceforth referred to as Objective I,
II, and III), as defined in Table 3.

In the first set, we used the minimization of total variable routing costs. We analyzed the structure of
the different solutions comparing the objective function values and the impact of the distribution policies
on route durations and on the number of routes. In the second set, we included the costs related to route
durations into the objective, and in the third set, we chose a hierarchical objective of minimizing the number
of vehicles first (by setting very high fixed vehicle costs) and minimizing the sum of variable routing costs
and costs related to route durations second. An instance was used for the analyses only when it had been
solved to optimality for all policies (except NV3, as only very few instances had more than three visits in
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Table 3: The different objective functions used in the computational experiments

Objective function components

Objective Variable Costs related to Fixed
function routing costs route durations vehicle costs

I yes no no
II yes yes: γ = 1 no
III yes yes: γ = 1 yes: C = 1,000,000

Table 4: Effect of the different objective functions on solution structure of SDVRPTW compared to VRPTW

Average of

Objective/
Policy

Number of
visits per
customer

Percent-
age of split
customers

Number of
visits per

split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

Objective I
SDVRPTW 1.10 9.84 2.00 20.95 29.44

NV2 1.10 9.98 2.00 21.37 28.37
S0 1.10 9.86 2.00 100.00 0.00

TNV25 1.03 3.06 2.00 22.09 24.11
TNV50 1.06 5.53 2.02 21.88 30.60
TNV75 1.08 7.84 2.00 21.35 28.17

Objective II
SDVRPTW 1.03 2.99 2.01 10.00 13.76

NV2 1.03 2.99 2.00 10.74 14.21
S0 1.02 2.40 2.01 100.00 0.00

TNV25 1.01 0.89 2.00 15.38 8.95
TNV50 1.02 1.65 2.00 10.98 12.86
TNV75 1.02 2.37 2.00 10.00 12.85

Objective III
SDVRPTW 1.04 3.72 2.01 19.17 17.18

NV2 1.04 3.72 2.00 11.39 19.25
S0 1.03 3.10 2.01 100.00 0.00

TNV25 1.01 1.13 2.00 15.15 8.92
TNV50 1.03 2.56 2.00 18.33 17.71
TNV75 1.03 3.20 2.00 15.00 17.32

the optimal SDVRPTW solution) and all objective functions. This was the case for 115 instances, 109 of
which had 25 customers.

The results are summarized in Tables 4 and 5. Table 4 contains structural information about the effect of
allowing split deliveries according to the different objective functions. It displays several KPIs that quantify
how the optimal solutions of the policies with splits differ from those of the respective VRPTW. The last
column deserves some explanation. If, for example, a customer with a time window of [10, 20] is visited
twice, at time points 13 and 16, then the “timespan between the first and the last delivery in relation to
time window width” is (16− 13)/(20− 10) = 0.3 = 30%. Note that the values in this column are based on
the original time windows (as these would be given by the customers), not on the ones reduced according
to the minimum arrival time from the depot and the maximum departure time to reach the depot.

Table 5 provides information on the benefits of split deliveries. The table shows the minimum, average,
and maximum relative savings in % and the number of instances with savings of more than 3% for the
different objective functions, each compared to the VRPTW policy with the respective objective. Note: It
turned out that there are only very few instances with more than two visits to any customer, so the results
for policy NV3 are omitted from the analyses.

5.2.1. Comparison of VRPTW and SDVRPTW

Looking at Table 4, one can see that the percentage of split customers depends strongly on the objective
function. This also holds for the percentage of split customers for which the deliveries are fully synchronized
automatically, i.e., for which all deliveries occur at the same time without requiring this by a constraint.
Both values are by far highest for Objective I, i.e., when only variable routing costs are taken into account.
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Table 5: Relative savings obtained with the different objective functions for SDVRPTW compared to
VRPTW

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Objective/

Policy

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and
costs related to
route durations

Objective I

SDVRPTW 0.00/2.55/8.87/47 0.00/2.25/13.33/30 0.00/2.55/8.87/47 –81.47/–7.91/16.99/8 –70.56/–5.87/15.84/8

NV2 0.00/2.55/8.87/47 0.00/2.25/13.33/30 0.00/2.55/8.87/47 –81.47/–7.92/18.46/9 –70.56/–5.87/17.19/9

S0 0.00/2.50/8.87/42 0.00/2.25/13.33/30 0.00/2.50/8.87/42 –402.52/–54.36/2.31/0 –332.27/–40.32/2.39/0

TNV25 0.00/1.30/5.49/16 –10.00/0.00/10.00/11 0.00/1.30/5.49/16 –46.82/–3.42/27.69/13 –38.40/–2.65/25.14/11

TNV50 0.00/2.15/8.19/25 0.00/2.11/13.33/28 0.00/2.15/8.19/25 –42.10/–4.81/34.26/12 –35.64/–3.62/24.15/10

TNV75 0.00/2.42/8.45/40 0.00/2.19/13.33/29 0.00/2.42/8.45/40 –56.30/–6.46/34.26/12 –47.81/–4.82/24.15/11

Objective II

SDVRPTW 0.00/0.47/2.07/0 0.00/1.17/18.18/15 –1.15/1.03/4.86/21 –2.34/0.06/2.01/0 0.00/0.47/2.07/0

NV2 0.00/0.47/2.07/0 0.00/1.17/18.18/15 –1.15/1.02/4.86/21 –2.34/0.06/2.01/0 0.00/0.47/2.07/0

S0 0.00/0.40/2.06/0 –10.00/1.00/18.18/15 0.00/0.91/4.86/17 –2.85/0.03/1.72/0 0.00/0.40/2.06/0

TNV25 0.00/0.21/1.71/0 –10.00/–0.28/10.00/4 0.00/0.37/2.82/0 –0.97/0.09/1.31/0 0.00/0.21/1.71/0

TNV50 0.00/0.32/2.01/0 –10.00/0.43/10.00/8 –1.15/0.60/3.14/1 –1.66/0.11/2.01/0 0.00/0.32/2.01/0

TNV75 0.00/0.41/2.01/0 –10.00/0.76/18.18/12 –1.15/0.84/4.86/9 –2.34/0.10/2.01/0 0.00/0.41/2.01/0

Objective III

SDVRPTW 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.43/12.71/37 –2.51/1.77/40.57/15 –2.50/2.15/36.72/17

NV2 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.43/12.71/37 –2.51/1.78/40.57/15 –2.50/2.15/36.72/17

S0 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.31/12.71/34 –3.39/1.69/40.17/15 –3.03/2.04/36.41/16

TNV25 0.00/0.08/9.07/1 0.00/0.08/9.09/1 –4.15/0.76/12.30/8 –2.41/0.74/37.93/8 –3.11/0.83/34.43/8

TNV50 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –4.15/2.01/13.72/19 –2.41/1.65/39.08/15 –3.11/1.89/35.61/16

TNV75 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.29/13.72/26 –2.51/1.77/39.08/15 –2.50/2.08/35.61/17

Table 5 shows that for Objective I, i.e., the minimization of variable routing costs, considerable savings
in the objective value and in the number of routes are realized, averaging to 2.6 and 2.3% respectively, with
reductions of more than 3% for 47 and 30 instances out of 115. Route durations, however, show a large
average increase of 7.9%. What is more, the volatility of the route duration changes is high, ranging from a
duration reduction of 17.0% to an increase of as much as 81.5%. As a side effect, assuming γ = 1 as for the
other objectives, the sum of variable routing costs and costs related to route durations increases on average
by about 5.9%. In particular, increases occur also when the number of vehicles is not reduced.

The picture changes for Objective II, i.e., when variable routing costs and costs related to route durations
are minimized simultaneously. Then, the average savings in the objective function as well as in the number
of routes, although still non-negligible, are much lower than for Objective I, and there is no instance with an
objective reduction of more than 3%. This indicates that split deliveries pay off less when variable routing
as well as duration-related costs are considered compared to the situation where only variable routing costs
matter. Route durations and variable routing costs are hardly affected, and their volatility is small, with
percentage savings ranging in [−2.3, 2.0] and [−1.2, 4.9] respectively.

For Objective III, i.e., the hierarchical objective of minimizing first the number of routes and then the
sum of variable routing costs and costs related to route durations, we observe that there is only a marginal
reduction in the number of routes. For the second objective function component, however, substantial savings
are obtained, of 2.15% on average, and with a maximum of 36.7%. (Note that increases in the second objective
function component occurred, but only when the number of vehicles was reduced.) The volatilities of the
changes for variable routing costs and route durations are relevant and even higher than those found for
Objective I. However, percentage savings ranges are now unbalanced towards positive values. For 17 out of
115 instances, the value of at least one of the two objective function components was reduced by at least
3%. In conclusion, it can be said that splitting pays off for Objective III, and more so than for Objective II.

5.2.2. Comparison of the Distribution Policies for the Reduction of Inconvenience

Having established the usefulness of split deliveries empirically, we evaluate in this section the different
measures for reducing inconvenience that may result from splitting.

Table 4 shows that the relative values of the structural KPIs within one objective function are similar
for all three of them: (i) The percentage of split customers is lower when there is a limit on the total number
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of visits. (ii) The percentage of fully synchronized visits and the average time span between the first and
the last delivery per split customer in relation to the time window width are similar for all policies without
explicit synchronization. In particular, the latter value is rather high, which may be regarded a considerable
inconvenience for customers.

Looking at Table 5, the most striking observations are: (i) A limit on the overall number of visits
yields, in general, smaller objective function reductions than the other measures. (ii) The NV-2 values
for all columns are almost the same as for the corresponding SDVRPTW. (iii) Most notably, when costs
related to route durations are ignored in the objective function, their increase is drastic for the synchronized
SDVRPTW, with an average of 54.4% and a maximum of 402.5%. However, when costs related to route
durations are taken into account, the duration differences between the SDVRPTW and the S0 policies are
minimal. (iv) Objective function values of the SDVRPTW and the S0 policies differ only slightly for all
three objectives.

As a limit on the number of individual visits does not improve the quality of service to the customers,
synchronization, i.e. the S0 distribution policy, can be seen as the best measure to mitigate the customer
inconvenience, leading to a win-win situation for carriers and customers.

5.2.3. In-Depth Analysis of Objective II

Objective II is important because it is the one that balances the two most critical and conflicting cost
components: it simultaneously minimizes variable routing costs and costs related to route durations. In order
to further validate and extend the findings stated in Sections 5.2.1 and 5.2.2, we carried out an in-depth
analysis of Objective II.

Limiting the scope to Objective II, 205 instances were solved to optimality with all policies, including
18 instances with 50 customers. We obtained identical optimal SDVRPTW and VRPTW solutions for 112
of these 205 instances (identical w.r.t. to the objective function value and the number of vehicles used).
In Figure 4, we display, for the remaining 93 instances and the different distribution policies, the savings
achieved in total costs and number of vehicles. Information is grouped by demand scenario.

Even if cost savings are on average smaller than for Objective I as stated in Section 5.2.1, allowing split
deliveries for Objective II is still a worthwhile alternative. Indeed, the magnitude of the savings very much
depends on the demand distribution. Figure 4(c) reveals that, for many instances, substantial savings can
be achieved, in particular in demand scenario D3.

As for the comparison of the distribution policies, the difference between NV2 and SDVRPTW is
marginal:
• NV2 achieves the same cost savings as SDVRPTW in all but two cases.
• The number of vehicles used is identical for NV2 and SDVRPTW.
• NV2 is as inconvenient for customers as SDVRPTW; it reduces the number of visits only in rare cases.
Regarding cost savings w.r.t. VRPTW, the difference in savings achieved between NV2 and S0 is greater
than 0.5% (1%) in only 13 (2) out of 205 cases, with a maximum of 1.26%. Then, comparing the optimal
solutions, we found that
• in 9 out of 205 cases, S0 uses 1 vehicle more than for NV2;
• in 22 (1) out of 205 cases, TNV75 uses 1 (2) vehicle(s) more than NV2;
• in 31 (11, 1) out of 205 cases, TNV50 uses 1 (2, 3) vehicle(s) more than NV2;
• in 43 (18, 1) out of 205 cases, TNV25 uses 1 (2, 5) vehicle(s) more than NV2.
Thus, as observed in Section 5.2.2, synchronization with policy S0 is, w.r.t. total costs, the third best option
after SDVRPTW and NV2. Nevertheless, S0 is superior to SDVRPTW and NV2 in reducing customer
inconvenience, because in the former all visits to a customer occur at the same time.

5.2.4. Results grouped by Demand Scenario and Solomon Class

The Appendix provides further details on the aggregated results presented in Tables 4 and 5. In Section A
of the Appendix, results are grouped by demand scenario. Accordingly, Tables 6–11 show the effects of the
different objective functions on the solution structure of the various SDVRPTW policies compared to the
VRPTW, and Tables 9–11 indicate the relative savings obtained with the different objective functions. In
Section B of the Appendix, results are grouped by Solomon class. Tables 12–14 and Tables 15–17 show the
respective results in this case.
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6. Conclusions

In the present paper, we have investigated the possibilities and limitations of split deliveries with the
aim of creating a win-win situation for carriers and customers in goods distribution systems. It is clear that,
for the customer, it is most convenient to have only one delivery per request. However, for the carrier, split
deliveries offer more degrees of freedom in routing and hence a higher a higher optimization potential, i.e.,
more opportunities for cost reduction. A good trade-off between customer inconvenience and cost savings
needs to be found. We focused our analysis on the vehicle routing problem with time windows in which
split deliveries are allowed (SDVRPTW), and considered different distribution policies that either limit the
number of visits to customers (individually and in total) or ensure temporally synchronized deliveries to
the same customer. We evaluated the impact of these measures on carrier efficiency by means of different
objective functions, each of which takes into consideration a specific combination of variable routing costs,
costs related to route durations, and fixed fleet costs. The combination of these three cost components has
not been considered in the literature before. We have highlighted the need to take all of them into account
to provide a more complete picture of the overall logistics costs.

Based on several analyses of computational studies with a large set of instances and demand scenarios,
we can make the following final recommendations to logistics managers:
• In general, split deliveries pay off; they should be considered independent of the objective.
• When variable routing costs and costs related to route durations are relevant, split deliveries are less
beneficial than for other objectives, but still an alternative worth considering.

• A limit on the number of visits to individual customers is not an effective measure to mitigate customer in-
convenience resulting from split deliveries, as it hardly changes the number of visits w.r.t. the SDVRPTW,
i.e., it does not improve the quality of service to the customers.

• According to the average percentage of split customers, a moderate limit on the total number of visits
seems to be a valid measure to reduce customer inconvenience.

• Nevertheless, the synchronization of visits allows in general to find better results. Visit synchronization,
if properly implemented in practice, causes only very minor increases in any of the three components of
logistics costs and therefore appears to be the most sensible and useful distribution policy.

Acknowledgement. This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under
grants no. IR 122/5-2 and DR 963/2-1.
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Appendix

A. Results grouped by Demand Scenario

The 115 instances solved to optimality with the three objective functions are divided between the different
demand scenarios as follows:

D1 42
D2 51
D3 14
D4 8
D5 0

This means that scenario D5 (the one having the highest average customer demand in relation to vehicle
capacity) is clearly the hardest to solve, and scenarios D3 and D4 are still considerably more difficult than
D1 and D2.

The subsequent Tables 6–11 provide further details on the aggregated results given in Tables 4 and 5:
Tables 6–8 show the effects of the different objective functions on the solution structure of the different
SDVRPTW policies compared to the VRPTW, and Tables 9–11 indicate the relative savings obtained with
the different objective functions. For obvious reasons, scenario D5 is omitted from the tables.

The following observations can be made in Tables 6–11:
• The number of visits and the percentage of split customers is highest for scenarios D3 and D4. This is to
be expected, as these scenarios have a higher ratio of customer demand to vehicle capacity.

• For Objective I, the number of customers with deliveries fully synchronized is by far highest for scenario D4.
For Objectives II and III, this value is, in general, highest for scenario D3 (note, however, that there are
no split customers at all for scenario D4 instances with Objective II).

• For Objectives I and III, the timespan between the first and last delivery in relation to the time window
width is highest for scenario D3. For Objective II, there is no discernible pattern.

• Savings are generally highest for scenario D3.
This suggests that scenario D3, i.e., a demand pattern where the average demand of a customer is between
30 and 70% of the vehicle capacity, is particularly promising for split delivery distribution strategies.
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Table 6: Effect of Objective I on solution structure of SDVRPTW compared to VRPTW, grouped by demand
scenario

Average of

Policy/
Demand
scenario

Number of
visits per
customer

Percentage
of split

customers

Number of
visits per

split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

SDVRPTW
D1 1.10 9.95 2.00 22.22 25.26
D2 1.06 6.00 2.00 7.71 30.77
D3 1.21 21.43 2.00 29.44 41.78
D4 1.14 13.50 2.00 65.63 21.25

Avg. 1.10 9.84 2.00 20.95 29.44
NV2

D1 1.10 9.95 2.00 22.62 23.76
D2 1.06 6.31 2.00 8.75 29.56
D3 1.21 21.43 2.00 28.42 41.66
D4 1.14 13.50 2.00 65.63 21.73

Avg. 1.10 9.98 2.00 21.37 28.37
S0

D1 1.10 9.95 2.00 100.00 0.00
D2 1.06 6.04 2.00 100.00 0.00
D3 1.21 21.43 2.00 100.00 0.00
D4 1.14 13.50 2.00 100.00 0.00

Avg. 1.10 9.86 2.00 100.00 0.00
TNV25

D1 1.04 3.67 2.00 10.26 31.38
D2 1.02 1.76 2.00 28.00 10.66
D3 1.05 5.43 2.00 14.29 57.93
D4 1.04 4.00 2.00 75.00 12.57

Avg. 1.03 3.06 2.00 22.09 24.11
TNV50

D1 1.05 5.19 2.00 16.67 34.44
D2 1.04 3.88 2.00 16.25 26.03
D3 1.12 11.14 2.14 30.36 42.98
D4 1.08 8.00 2.00 62.50 17.87

Avg. 1.06 5.53 2.02 21.88 30.60
TNV75

D1 1.09 8.76 2.00 22.02 25.88
D2 1.05 4.59 2.00 12.08 27.20
D3 1.16 16.00 2.00 17.50 46.12
D4 1.10 9.50 2.00 70.83 14.95

Avg. 1.08 7.84 2.00 21.35 28.17
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Table 7: Effect of Objective II on solution structure of SDVRPTW compared to VRPTW, grouped by
demand scenario

Average of

Policy/
Demand
scenario

Number of
visits per
customer

Percentage
of split

customers

Number of
visits per

split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

SDVRPTW
D1 1.04 3.90 2.00 13.16 17.21
D2 1.03 2.51 2.00 5.00 12.26
D3 1.04 3.71 2.08 16.67 16.73
D4 1.00 0.00 n.a. n.a. n.a.

Avg. 1.03 2.99 2.01 10.00 13.76
NV2

D1 1.04 3.90 2.00 13.16 16.25
D2 1.03 2.51 2.00 5.00 13.88
D3 1.04 3.71 2.00 22.22 17.44
D4 1.00 0.00 n.a. n.a. n.a.

Avg. 1.03 2.99 2.00 10.74 14.21
S0

D1 1.03 2.95 2.00 100.00 0.00
D2 1.02 2.04 2.00 100.00 0.00
D3 1.04 3.43 2.08 100.00 0.00
D4 1.00 0.00 n.a. n.a. n.a.

Avg. 1.02 2.40 2.01 100.00 0.00
TNV25

D1 1.01 1.10 2.00 16.67 10.07
D2 1.01 0.94 2.00 8.33 10.40
D3 1.01 0.57 2.00 50.00 5.41
D4 1.00 0.00 n.a. n.a. n.a.

Avg. 1.01 0.89 2.00 15.38 8.95
TNV50

D1 1.02 2.24 2.00 18.42 13.90
D2 1.02 1.57 2.00 5.00 15.81
D3 1.01 1.14 2.00 0.00 6.39
D4 1.00 0.00 n.a. n.a. n.a.

Avg. 1.02 1.65 2.00 10.98 12.86
TNV75

D1 1.02 2.29 2.00 13.16 15.45
D2 1.03 2.51 2.00 5.00 12.18
D3 1.03 3.43 2.00 16.67 14.87
D4 1.00 0.00 n.a. n.a. n.a.

Avg. 1.02 2.37 2.00 10.00 12.85
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Table 8: Effect of Objective III on solution structure of SDVRPTW compared to VRPTW, grouped by
demand scenario

Average of

Policy/
Demand
scenario

Number of
visits per
customer

Percentage
of split

customers

Number of
visits per

split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

SDVRPTW
D1 1.05 4.57 2.00 18.12 19.69
D2 1.03 2.67 2.00 9.09 12.24
D3 1.07 6.29 2.04 37.18 30.86
D4 1.02 1.50 2.00 25.00 11.63

Avg. 1.04 3.72 2.01 19.17 17.18
NV2

D1 1.05 4.57 2.00 15.22 20.73
D2 1.03 2.67 2.00 6.82 11.82
D3 1.06 6.29 2.00 14.10 42.66
D4 1.02 1.50 2.00 0.00 17.88

Avg. 1.04 3.72 2.00 11.39 19.25
S0

D1 1.04 3.52 2.00 100.00 0.00
D2 1.02 2.20 2.00 100.00 0.00
D3 1.06 6.00 2.04 100.00 0.00
D4 1.02 1.50 2.00 100.00 0.00

Avg. 1.03 3.10 2.01 100.00 0.00
TNV25

D1 1.01 1.19 2.00 15.38 6.95
D2 1.01 0.94 2.00 8.33 8.29
D3 1.02 2.00 2.00 28.57 15.11
D4 1.01 0.50 2.00 0.00 12.49

Avg. 1.01 1.13 2.00 15.15 8.92
TNV50

D1 1.03 3.19 2.00 17.39 18.71
D2 1.02 1.73 2.00 9.09 14.65
D3 1.05 4.57 2.00 38.46 25.73
D4 1.01 1.00 2.00 0.00 17.88

Avg. 1.03 2.56 2.00 18.33 17.71
TNV75

D1 1.03 3.33 2.00 10.87 21.46
D2 1.03 2.67 2.00 6.82 12.19
D3 1.06 5.71 2.00 38.46 23.28
D4 1.02 1.50 2.00 0.00 17.88

Avg. 1.03 3.20 2.00 15.00 17.32
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Table 9: Relative savings obtained with Objective I for SDVRPTW compared to VRPTW, grouped by
demand scenario

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Policy/
Demand
scenario

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and

costs related to route
durations

SDVRPTW

D1 0.44/2.37/4.61/19 0.00/0.63/9.09/3 0.44/2.37/4.61/19 –28.33/–4.70/16.99/6 –24.58/–2.91/15.84/6

D2 0.00/1.29/3.29/6 0.00/0.65/6.67/5 0.00/1.29/3.29/6 –81.47/–4.28/8.99/2 –70.56/–3.19/7.12/2

D3 3.55/6.45/8.87/14 7.14/8.47/13.33/14 3.55/6.45/8.87/14 –47.37/–13.07/0.73/0 –28.79/–9.12/1.99/0

D4 3.39/4.70/5.23/8 10.00/10.00/10.00/8 3.39/4.70/5.23/8 –58.50/–38.91/–5.21/0 –49.71/–32.81/–4.62/0

Avg. 0.00/2.55/8.87/47 0.00/2.25/13.33/30 0.00/2.55/8.87/47 –81.47/–7.91/16.99/8 –70.56/–5.87/15.84/8

NV2

D1 0.44/2.37/4.61/19 0.00/0.63/9.09/3 0.44/2.37/4.61/19 –28.33/–4.72/18.46/6 –24.58/–2.91/17.19/6

D2 0.00/1.29/3.29/6 0.00/0.65/6.67/5 0.00/1.29/3.29/6 –81.47/–4.41/8.99/3 –70.56/–3.32/7.12/3

D3 3.55/6.45/8.87/14 7.14/8.47/13.33/14 3.55/6.45/8.87/14 –47.37/–13.07/0.73/0 –28.79/–9.12/1.99/0

D4 3.39/4.70/5.23/8 10.00/10.00/10.00/8 3.39/4.70/5.23/8 –58.50/–38.05/1.70/0 –49.71/–32.00/1.82/0

Avg. 0.00/2.55/8.87/47 0.00/2.25/13.33/30 0.00/2.55/8.87/47 –81.47/–7.92/18.46/9 –70.56/–5.87/17.19/9

S0

D1 0.44/2.29/4.00/17 0.00/0.63/9.09/3 0.44/2.29/4.00/17 –273.23/–54.18/2.31/0 –233.31/–37.72/2.39/0

D2 0.00/1.25/3.13/3 0.00/0.65/6.67/5 0.00/1.25/3.13/3 –350.49/–50.33/0.00/0 –300.42/–37.84/0.00/0

D3 3.55/6.45/8.87/14 7.14/8.47/13.33/14 3.55/6.45/8.87/14 –119.93/–44.79/–16.20/0 –101.25/–33.40/–7.64/0

D4 3.39/4.70/5.23/8 10.00/10.00/10.00/8 3.39/4.70/5.23/8 –402.52/–97.72/–8.19/0 –332.27/–81.92/–7.40/0

Avg. 0.00/2.50/8.87/42 0.00/2.25/13.33/30 0.00/2.50/8.87/42 –402.52/–54.36/2.31/0 –332.27/–40.32/2.39/0

TNV25

D1 0.00/1.28/3.50/5 –10.00/–2.38/0.00/0 0.00/1.28/3.50/5 –17.66/–1.26/24.48/5 –15.28/–0.83/18.49/5

D2 0.00/0.65/2.00/0 0.00/0.00/0.00/0 0.00/0.65/2.00/0 –34.49/–1.90/7.39/3 –27.45/–1.47/5.94/1

D3 0.23/2.68/5.49/5 0.00/1.43/6.67/3 0.23/2.68/5.49/5 –16.42/3.16/27.69/5 –13.85/3.59/25.14/5

D4 1.63/3.12/3.57/6 10.00/10.00/10.00/8 1.63/3.12/3.57/6 –46.82/–35.97/–22.61/0 –38.40/–30.61/–19.15/0

Avg. 0.00/1.30/5.49/16 –10.00/0.00/10.00/11 0.00/1.30/5.49/16 –46.82/–3.42/27.69/13 –38.40/–2.65/25.14/11

TNV50

D1 0.37/1.82/3.73/7 0.00/0.41/9.09/2 0.37/1.82/3.73/7 –17.66/–1.89/18.46/5 –15.28/–0.87/17.19/5

D2 0.00/1.10/2.70/0 0.00/0.52/6.67/4 0.00/1.10/2.70/0 –34.49/–1.67/34.26/7 –27.45/–1.39/24.15/5

D3 2.99/5.83/8.19/11 7.14/8.47/13.33/14 2.99/5.83/8.19/11 –28.65/–11.65/0.95/0 –18.42/–8.50/1.86/0

D4 2.70/4.15/4.59/7 10.00/10.00/10.00/8 2.70/4.15/4.59/7 –42.10/–28.17/–6.89/0 –35.64/–23.66/–6.23/0

Avg. 0.00/2.15/8.19/25 0.00/2.11/13.33/28 0.00/2.15/8.19/25 –42.10/–4.81/34.26/12 –35.64/–3.62/24.15/10

TNV75

D1 0.44/2.31/4.41/19 0.00/0.63/9.09/3 0.44/2.31/4.41/19 –28.33/–3.94/18.46/6 –24.58/–2.47/17.19/6

D2 0.00/1.19/2.77/0 0.00/0.52/6.67/4 0.00/1.19/2.77/0 –31.76/–2.29/34.26/6 –27.45/–1.74/24.15/5

D3 3.40/6.16/8.45/14 7.14/8.47/13.33/14 3.40/6.16/8.45/14 –47.55/–14.83/0.55/0 –28.96/–10.70/1.82/0

D4 2.70/4.34/4.97/7 10.00/10.00/10.00/8 2.70/4.34/4.97/7 –56.30/–31.57/–6.89/0 –47.81/–26.55/–6.23/0

Avg. 0.00/2.42/8.45/40 0.00/2.19/13.33/29 0.00/2.42/8.45/40 –56.30/–6.46/34.26/12 –47.81/–4.82/24.15/11
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Table 10: Relative savings obtained with Objective II for SDVRPTW compared to VRPTW, grouped by
demand scenario

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Policy/
Demand
scenario

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and

costs related to route
durations

SDVRPTW

D1 0.00/0.51/1.93/0 0.00/1.28/9.09/6 –1.15/1.16/4.34/11 –1.38/0.03/2.01/0 0.00/0.51/1.93/0

D2 0.00/0.42/1.94/0 0.00/0.75/18.18/3 0.00/1.01/4.86/7 –2.34/–0.01/0.95/0 0.00/0.42/1.94/0

D3 0.00/0.80/2.07/0 0.00/3.06/7.14/6 0.00/1.30/3.60/3 0.00/0.38/1.16/0 0.00/0.80/2.07/0

D4 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.47/2.07/0 0.00/1.17/18.18/15 –1.15/1.03/4.86/21 –2.34/0.06/2.01/0 0.00/0.47/2.07/0

NV2

D1 0.00/0.51/1.93/0 0.00/1.28/9.09/6 –1.15/1.16/4.34/11 –1.38/0.03/2.01/0 0.00/0.51/1.93/0

D2 0.00/0.42/1.94/0 0.00/0.75/18.18/3 0.00/1.01/4.86/7 –2.34/–0.01/0.95/0 0.00/0.42/1.94/0

D3 0.00/0.80/2.07/0 0.00/3.06/7.14/6 0.00/1.27/3.18/3 0.00/0.41/1.16/0 0.00/0.80/2.07/0

D4 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.47/2.07/0 0.00/1.17/18.18/15 –1.15/1.02/4.86/21 –2.34/0.06/2.01/0 0.00/0.47/2.07/0

S0

D1 0.00/0.43/1.93/0 –10.00/0.80/9.09/6 0.00/1.00/4.34/8 –1.19/0.00/1.72/0 0.00/0.43/1.93/0

D2 0.00/0.34/1.85/0 0.00/0.75/18.18/3 0.00/0.87/4.86/6 –2.85/–0.04/0.95/0 0.00/0.34/1.85/0

D3 0.00/0.77/2.06/0 0.00/3.06/7.14/6 0.00/1.27/3.18/3 0.00/0.36/1.16/0 0.00/0.77/2.06/0

D4 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.40/2.06/0 –10.00/1.00/18.18/15 0.00/0.91/4.86/17 –2.85/0.03/1.72/0 0.00/0.40/2.06/0

TNV25

D1 0.00/0.24/1.18/0 –10.00/–1.45/9.09/1 0.00/0.46/2.08/0 –0.97/0.08/0.92/0 0.00/0.24/1.18/0

D2 0.00/0.26/1.71/0 0.00/0.57/10.00/3 0.00/0.45/2.82/0 –0.08/0.13/1.31/0 0.00/0.26/1.71/0

D3 0.00/0.03/0.19/0 0.00/0.00/0.00/0 0.00/0.06/0.64/0 –0.21/0.00/0.20/0 0.00/0.03/0.19/0

D4 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.21/1.71/0 –10.00/–0.28/10.00/4 0.00/0.37/2.82/0 –0.97/0.09/1.31/0 0.00/0.21/1.71/0

TNV50

D1 0.00/0.35/1.42/0 –10.00/0.16/9.09/3 –1.15/0.66/2.56/0 –1.12/0.13/2.01/0 0.00/0.35/1.42/0

D2 0.00/0.34/1.71/0 0.00/0.57/10.00/3 0.00/0.71/2.82/0 –1.66/0.08/1.31/0 0.00/0.34/1.71/0

D3 0.00/0.28/2.01/0 0.00/1.02/7.14/2 0.00/0.41/3.14/1 0.00/0.18/1.45/0 0.00/0.28/2.01/0

D4 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.32/2.01/0 –10.00/0.43/10.00/8 –1.15/0.60/3.14/1 –1.66/0.11/2.01/0 0.00/0.32/2.01/0

TNV75

D1 0.00/0.36/1.42/0 –10.00/0.16/9.09/3 –1.15/0.67/2.56/0 –1.12/0.13/2.01/0 0.00/0.36/1.42/0

D2 0.00/0.42/1.94/0 0.00/0.75/18.18/3 0.00/1.01/4.86/7 –2.34/–0.01/0.95/0 0.00/0.42/1.94/0

D3 0.00/0.79/2.01/0 0.00/3.06/7.14/6 0.00/1.23/3.14/2 0.00/0.43/1.45/0 0.00/0.79/2.01/0

D4 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.41/2.01/0 –10.00/0.76/18.18/12 –1.15/0.84/4.86/9 –2.34/0.10/2.01/0 0.00/0.41/2.01/0
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Table 11: Relative savings obtained with Objective III for SDVRPTW compared to VRPTW, grouped by
demand scenario

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Policy/
Demand
scenario

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and

costs related to route
durations

SDVRPTW

D1 0.00/0.22/9.07/1 0.00/0.22/9.09/1 –2.50/1.87/11.78/15 –2.51/0.70/17.71/2 –2.50/1.18/15.76/3

D2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.30/9.37/9 –1.66/0.05/1.41/0 0.00/0.49/3.12/1

D3 0.00/0.04/0.19/0 0.00/0.00/0.00/0 0.00/8.90/12.71/12 –0.67/10.86/40.57/12 0.00/10.98/36.72/12

D4 0.00/0.01/0.10/0 0.00/0.00/0.00/0 0.00/1.29/8.48/1 –0.20/2.53/20.48/1 0.00/2.36/18.78/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.43/12.71/37 –2.51/1.77/40.57/15 –2.50/2.15/36.72/17

NV2

D1 0.00/0.22/9.07/1 0.00/0.22/9.09/1 –2.50/1.87/11.78/15 –2.51/0.70/17.71/2 –2.50/1.18/15.76/3

D2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.30/9.37/9 –1.66/0.05/1.41/0 0.00/0.49/3.12/1

D3 0.00/0.04/0.19/0 0.00/0.00/0.00/0 0.00/8.87/12.71/12 –0.67/10.88/40.57/12 0.00/10.98/36.72/12

D4 0.00/0.01/0.10/0 0.00/0.00/0.00/0 0.00/1.29/8.48/1 –0.20/2.53/20.48/1 0.00/2.36/18.78/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.43/12.71/37 –2.51/1.78/40.57/15 –2.50/2.15/36.72/17

S0

D1 0.00/0.22/9.07/1 0.00/0.22/9.09/1 –2.50/1.72/11.78/13 –3.39/0.62/17.71/2 –3.03/1.07/15.76/3

D2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.16/9.37/8 –1.66/0.01/0.95/0 0.00/0.42/2.83/0

D3 0.00/0.04/0.19/0 0.00/0.00/0.00/0 0.00/8.83/12.71/12 –0.71/10.81/40.17/12 0.00/10.92/36.41/12

D4 0.00/0.01/0.09/0 0.00/0.00/0.00/0 0.00/1.29/8.48/1 –0.20/2.07/16.79/1 0.00/1.97/15.62/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.31/12.71/34 –3.39/1.69/40.17/15 –3.03/2.04/36.41/16

TNV25

D1 0.00/0.22/9.07/1 0.00/0.22/9.09/1 –4.15/0.22/1.91/0 –2.41/0.04/2.03/0 –3.11/0.12/1.54/0

D2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/0.54/4.47/1 0.00/0.16/1.58/0 0.00/0.32/2.79/0

D3 0.00/0.02/0.18/0 0.00/0.00/0.00/0 0.00/3.40/12.30/7 0.00/4.54/37.93/7 0.00/4.60/34.43/7

D4 0.00/0.01/0.05/0 0.00/0.00/0.00/0 0.00/0.33/2.62/0 0.00/1.38/11.02/1 0.00/1.23/9.83/1

Avg. 0.00/0.08/9.07/1 0.00/0.08/9.09/1 –4.15/0.76/12.30/8 –2.41/0.74/37.93/8 –3.11/0.83/34.43/8

TNV50

D1 0.00/0.22/9.07/1 0.00/0.22/9.09/1 –4.15/1.42/11.78/4 –2.41/0.72/17.71/2 –3.11/1.00/15.76/3

D2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.05/9.37/3 –1.66/0.09/1.58/0 0.00/0.42/2.79/0

D3 0.00/0.04/0.18/0 0.00/0.00/0.00/0 0.00/8.10/13.72/12 –0.67/10.32/39.08/12 0.00/10.26/35.61/12

D4 0.00/0.01/0.05/0 0.00/0.00/0.00/0 0.00/0.56/2.62/0 –0.20/1.35/11.02/1 0.00/1.24/9.83/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –4.15/2.01/13.72/19 –2.41/1.65/39.08/15 –3.11/1.89/35.61/16

TNV75

D1 0.00/0.22/9.07/1 0.00/0.22/9.09/1 –2.50/1.47/11.78/4 –2.51/0.72/17.71/2 –2.50/1.01/15.76/3

D2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.30/9.37/9 –1.66/0.05/1.41/0 0.00/0.49/3.12/1

D3 0.00/0.04/0.18/0 0.00/0.00/0.00/0 0.00/8.93/13.72/12 –0.67/10.80/39.08/12 0.00/10.90/35.61/12

D4 0.00/0.01/0.10/0 0.00/0.00/0.00/0 0.00/1.29/8.48/1 –0.20/2.53/20.48/1 0.00/2.36/18.78/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.29/13.72/26 –2.51/1.77/39.08/15 –2.50/2.08/35.61/17
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B. Results grouped by Solomon Class

Similar to the demand scenarios, the difficulty of the instances we constructed varies strongly between
the different Solomon classes. The 115 instances solved to optimality with all objective functions are divided
between the classes as follows:

C1 27
C2 21
R1 22
R2 9
RC1 25
RC2 11

As can be seen, the instances derived from classes R2 and RC2, i.e., the random as well as the random and
clustered instances with wide time windows and large vehicle capacities, are on average much harder to solve
than those from other classes.

Tables 12–17 provide further details on the aggregated results given in Tables 4 and 5: Tables 12–14
show the effects of the different objective functions on the solution structure of the different SDVRPTW
policies compared to the VRPTW, and Tables 15–17 indicate the relative savings obtained with the different
objective functions.

The following observations can be made in the tables:
• For Objective I, the number of visits per customer and the percentage of split customers is lowest for the
RC instances.

• For Objective II, there is no split customer for the C instances (there were several instances with split
customers, but these were not solved to optimality for all policies).

• For Objective III, the number of visits per customer and the percentage of split customers is lower for the
C and for the RC instances than for the R instances.

• The percentage of split customers with deliveries fully synchronized is lowest for the R instances.
• In general, the timespan between the first and last delivery in relation to the time window width is highest
for the R1 instances.

• For Objective I, the savings in the objective function are highest for the C2 instances, as are the savings
in the number of routes.

• For Objective II, both types of savings are highest for the R instances.
• For Objective III, the savings in the objective function are highest for the C2 and R1 instances; savings
in the number of routes are obtained only for R1 instances.

• Solomon classes can be ranked by decreasing savings as follows: C, R, and RC for Objective I; R, RC,
and C for Objective II; R1 and C2 for Objective III.

We may conclude that the effects of the geographical distribution of customers depend on the objective
function.
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Table 12: Effect of Objective I on solution structure of SDVRPTW compared to VRPTW, grouped by
Solomon class

Average of

Policy/
Solomon

class

Number of visits
per customer

Percentage of
split customers

Number of visits
per split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

SDVRPTW
C1 1.09 9.33 2.00 35.99 26.29
C2 1.13 13.14 2.00 25.34 31.28
R1 1.12 11.64 2.00 5.95 40.08
R2 1.12 11.56 2.00 2.78 25.09

RC1 1.07 7.20 2.00 19.91 26.94
RC2 1.06 5.82 2.00 20.83 21.58
Avg. 1.10 9.84 2.00 20.95 29.44

NV2
C1 1.10 9.48 2.00 37.84 22.66
C2 1.13 12.95 2.00 25.45 31.22
R1 1.12 11.82 2.00 5.95 37.60
R2 1.13 12.89 2.00 2.78 28.40

RC1 1.07 7.12 2.00 15.74 26.42
RC2 1.06 6.00 2.00 29.17 22.90
Avg. 1.10 9.98 2.00 21.37 28.37

S0
C1 1.10 9.48 2.00 100.00 0.00
C2 1.13 13.33 2.00 100.00 0.00
R1 1.11 11.09 2.00 100.00 0.00
R2 1.12 12.00 2.00 100.00 0.00

RC1 1.07 7.12 2.00 100.00 0.00
RC2 1.06 6.18 2.00 100.00 0.00
Avg. 1.10 9.86 2.00 100.00 0.00

TNV25
C1 1.03 2.81 2.00 42.11 26.49
C2 1.04 3.81 2.00 40.00 11.96
R1 1.04 3.45 2.00 15.79 20.46
R2 1.04 4.00 2.00 11.11 19.21

RC1 1.02 2.40 2.00 0.00 35.40
RC2 1.02 2.18 2.00 14.29 27.15
Avg. 1.03 3.06 2.00 22.09 24.11

TNV50
C1 1.06 5.78 2.00 35.19 36.66
C2 1.08 7.62 2.00 25.00 24.48
R1 1.07 6.55 2.00 11.90 33.82
R2 1.06 6.22 2.00 11.11 23.34

RC1 1.04 3.36 2.11 11.11 32.47
RC2 1.03 3.27 2.00 31.25 22.67
Avg. 1.06 5.53 2.02 21.88 30.60

TNV75
C1 1.08 7.85 2.00 38.58 22.83
C2 1.10 9.71 2.00 27.94 26.05
R1 1.09 8.91 2.00 7.14 38.74
R2 1.09 9.33 2.00 0.00 29.40

RC1 1.06 6.00 2.00 11.57 28.94
RC2 1.05 5.09 2.00 29.17 21.42
Avg. 1.08 7.84 2.00 21.35 28.17
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Table 13: Effect of Objective II on solution structure of SDVRPTW compared to VRPTW, grouped by
Solomon class

Average of

Policy/
Solomon

class

Number of visits
per customer

Percentage of
split customers

Number of visits
per split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

SDVRPTW
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.00 n.a. n.a. n.a.
R1 1.08 8.18 2.00 12.70 30.19
R2 1.08 8.44 2.00 3.70 31.36

RC1 1.03 2.88 2.04 8.33 21.26
RC2 1.02 1.45 2.00 16.67 9.51
Avg. 1.03 2.99 2.01 10.00 13.76

NV2
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.00 n.a. n.a. n.a.
R1 1.08 8.18 2.00 12.70 28.94
R2 1.08 8.44 2.00 3.70 35.01

RC1 1.03 2.88 2.00 11.11 23.69
RC2 1.02 1.45 2.00 16.67 8.23
Avg. 1.03 2.99 2.00 10.74 14.21

S0
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.00 n.a. n.a. n.a.
R1 1.07 6.73 2.00 100.00 0.00
R2 1.08 7.56 2.00 100.00 0.00

RC1 1.02 1.92 2.07 100.00 0.00
RC2 1.01 1.09 2.00 100.00 0.00
Avg. 1.02 2.40 2.01 100.00 0.00

TNV25
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.00 n.a. n.a. n.a.
R1 1.03 2.91 2.00 12.50 30.68
R2 1.03 3.11 2.00 0.00 30.90

RC1 1.00 0.40 2.00 66.67 3.03
RC2 1.00 0.00 n.a. n.a. n.a.
Avg. 1.01 0.89 2.00 15.38 8.95

TNV05
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.00 n.a. n.a. n.a.
R1 1.05 4.55 2.00 14.29 30.30
R2 1.04 4.44 2.00 5.56 34.43

RC1 1.02 1.68 2.00 11.11 17.17
RC2 1.01 0.73 2.00 0.00 6.70
Avg. 1.02 1.65 2.00 10.98 12.86

TNV75
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.00 n.a. n.a. n.a.
R1 1.06 6.00 2.00 14.29 24.25
R2 1.06 6.22 2.00 5.56 28.66

RC1 1.03 2.72 2.00 4.17 24.36
RC2 1.02 1.45 2.00 16.67 7.08
Avg. 1.02 2.37 2.00 10.00 12.85
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Table 14: Effect of Objective III on solution structure of SDVRPTW compared to VRPTW, grouped by
Solomon class

Average of

Policy/
Solomon

class

Number of visits
per customer

Percentage of
split customers

Number of visits
per split
customer

Percentage of
split customers
with deliveries

fully
synchronized

Timespan between
first and last

delivery in relation
to time window

width in %

SDVRPTW
C1 1.01 0.74 2.00 20.00 5.37
C2 1.03 2.48 2.00 55.00 10.78
R1 1.08 8.36 2.00 8.73 33.66
R2 1.08 8.44 2.00 3.70 26.09

RC1 1.03 2.88 2.04 19.44 18.45
RC2 1.02 2.18 2.00 16.67 15.30
Avg. 1.04 3.72 2.01 19.17 17.18

NV2
C1 1.01 0.74 2.00 20.00 5.37
C2 1.03 2.48 2.00 30.00 17.22
R1 1.08 8.36 2.00 4.76 34.00
R2 1.08 8.44 2.00 0.00 30.60

RC1 1.03 2.88 2.00 11.11 22.40
RC2 1.02 2.18 2.00 16.67 11.29
Avg. 1.04 3.72 2.00 11.39 19.25

S0
C1 1.01 0.74 2.00 100.00 0.00
C2 1.03 2.48 2.00 100.00 0.00
R1 1.07 7.09 2.00 100.00 0.00
R2 1.08 7.56 2.00 100.00 0.00

RC1 1.02 1.92 2.07 100.00 0.00
RC2 1.01 1.09 2.00 100.00 0.00
Avg. 1.03 3.10 2.01 100.00 0.00

TNV25
C1 1.00 0.00 n.a. n.a. n.a.
C2 1.00 0.38 2.00 50.00 4.76
R1 1.03 2.91 2.00 12.50 24.52
R2 1.03 3.11 2.00 0.00 14.97

RC1 1.01 0.88 2.00 33.33 5.99
RC2 1.01 0.73 2.00 0.00 9.29
Avg. 1.01 1.13 2.00 15.15 8.92

TNV50
C1 1.01 0.74 2.00 20.00 5.37
C2 1.02 2.10 2.00 55.00 8.83
R1 1.05 5.09 2.00 9.52 35.16
R2 1.05 5.33 2.00 0.00 30.52

RC1 1.02 2.16 2.00 20.83 18.57
RC2 1.02 1.45 2.00 0.00 17.61
Avg. 1.03 2.56 2.00 18.33 17.71

TNV75
C1 1.01 0.74 2.00 20.00 5.37
C2 1.02 2.29 2.00 55.00 8.83
R1 1.07 6.73 2.00 4.76 31.85
R2 1.07 7.11 2.00 0.00 30.24

RC1 1.03 2.72 2.00 8.33 22.10
RC2 1.02 1.82 2.00 16.67 12.38
Avg. 1.03 3.20 2.00 15.00 17.32
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Table 15: Relative savings obtained with Objective I for SDVRPTW compared to VRPTW, grouped by
Solomon class

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Policy/
Solomon

class

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and

costs related to route
durations

SDVRPTW

C1 1.03/3.03/8.87/9 0.00/3.70/13.33/9 1.03/3.03/8.87/9 –58.50/–19.69/4.27/1 –49.71/–16.70/3.92/1

C2 0.76/3.90/8.51/14 0.00/2.65/10.00/7 0.76/3.90/8.51/14 –81.47/–9.29/16.99/4 –70.56/–7.45/15.84/4

R1 0.00/3.08/4.61/13 0.00/1.21/9.09/3 0.00/3.08/4.61/13 –6.99/–1.38/2.61/0 –2.65/0.48/2.82/0

R2 1.40/3.10/4.00/5 0.00/0.00/0.00/0 1.40/3.10/4.00/5 –23.21/–6.88/8.99/2 –17.73/–3.70/7.12/2

RC1 0.00/1.06/3.56/5 0.00/2.23/7.14/8 0.00/1.06/3.56/5 –6.05/–1.30/0.73/0 –3.10/–0.30/1.99/0

RC2 0.00/0.65/3.56/1 0.00/1.86/7.14/3 0.00/0.65/3.56/1 –47.37/–5.31/10.07/1 –28.79/–3.40/6.50/1

Avg. 0.00/2.55/8.87/47 0.00/2.25/13.33/30 0.00/2.55/8.87/47 –81.47/–7.91/16.99/8 –70.56/–5.87/15.84/8

NV2

C1 1.03/3.03/8.87/9 0.00/3.70/13.33/9 1.03/3.03/8.87/9 –58.50/–20.04/4.27/1 –49.71/–17.01/3.92/1

C2 0.76/3.90/8.51/14 0.00/2.65/10.00/7 0.76/3.90/8.51/14 –81.47/–8.89/18.46/4 –70.56/–7.08/17.19/4

R1 0.00/3.08/4.61/13 0.00/1.21/9.09/3 0.00/3.08/4.61/13 –6.99/–1.18/3.96/1 –2.65/0.60/3.55/1

R2 1.40/3.10/4.00/5 0.00/0.00/0.00/0 1.40/3.10/4.00/5 –23.99/–7.19/8.99/2 –17.73/–3.90/7.12/2

RC1 0.00/1.06/3.56/5 0.00/2.23/7.14/8 0.00/1.06/3.56/5 –6.05/–1.29/0.73/0 –3.10/–0.29/1.99/0

RC2 0.00/0.65/3.56/1 0.00/1.86/7.14/3 0.00/0.65/3.56/1 –47.37/–5.42/10.07/1 –28.79/–3.47/6.50/1

Avg. 0.00/2.55/8.87/47 0.00/2.25/13.33/30 0.00/2.55/8.87/47 –81.47/–7.92/18.46/9 –70.56/–5.87/17.19/9

S0

C1 1.03/3.03/8.87/9 0.00/3.70/13.33/9 1.03/3.03/8.87/9 –68.38/–40.74/–11.80/0 –58.96/–35.11/–10.69/0

C2 0.76/3.90/8.51/14 0.00/2.65/10.00/7 0.76/3.90/8.51/14 –402.52/–107.18/2.31/0 –332.27/–91.43/2.39/0

R1 0.00/2.87/4.00/9 0.00/1.21/9.09/3 0.00/2.87/4.00/9 –43.38/–24.70/0.00/0 –24.90/–13.36/0.00/0

R2 1.40/3.06/4.00/4 0.00/0.00/0.00/0 1.40/3.06/4.00/4 –240.19/–142.72/–58.02/0 –136.52/–90.71/–45.93/0

RC1 0.00/1.06/3.56/5 0.00/2.23/7.14/8 0.00/1.06/3.56/5 –30.26/–13.04/0.00/0 –18.30/–7.09/0.00/0

RC2 0.00/0.65/3.56/1 0.00/1.86/7.14/3 0.00/0.65/3.56/1 –119.68/–67.85/0.00/0 –74.45/–43.75/0.00/0

Avg. 0.00/2.50/8.87/42 0.00/2.25/13.33/30 0.00/2.50/8.87/42 –402.52/–54.36/2.31/0 –332.27/–40.32/2.39/0

TNV25

C1 0.00/1.58/3.57/6 0.00/2.96/10.00/9 0.00/1.58/3.57/6 –41.94/–13.72/3.41/1 –35.72/–11.65/3.13/1

C2 0.00/2.40/5.49/10 0.00/0.95/10.00/2 0.00/2.40/5.49/10 –46.82/0.24/27.69/7 –38.40/0.55/25.14/7

R1 0.00/1.49/2.67/0 –10.00/–3.18/0.00/0 0.00/1.49/2.67/0 –6.05/0.32/3.89/2 –2.45/0.80/2.95/0

R2 1.26/1.71/2.00/0 –10.00/–3.33/0.00/0 1.26/1.71/2.00/0 –34.49/1.58/24.48/3 –27.22/1.03/16.21/3

RC1 0.00/0.24/1.33/0 0.00/0.00/0.00/0 0.00/0.24/1.33/0 –3.06/–0.76/0.60/0 –1.65/–0.34/0.92/0

RC2 0.00/0.18/0.44/0 0.00/0.00/0.00/0 0.00/0.18/0.44/0 –16.42/–2.75/0.09/0 –10.34/–1.80/0.08/0

Avg. 0.00/1.30/5.49/16 –10.00/0.00/10.00/11 0.00/1.30/5.49/16 –46.82/–3.42/27.69/13 –38.40/–2.65/25.14/11

TNV50

C1 0.92/2.78/8.19/9 0.00/3.70/13.33/9 0.92/2.78/8.19/9 –42.10/–15.16/3.41/1 –35.64/–12.82/3.13/1

C2 0.66/3.60/7.85/13 0.00/2.65/10.00/7 0.66/3.60/7.85/13 –31.76/–5.35/18.46/4 –27.45/–4.11/17.19/4

R1 0.00/2.27/2.89/0 0.00/0.79/9.09/2 0.00/2.27/2.89/0 –6.05/0.39/6.56/5 –2.45/1.17/4.96/3

R2 1.26/2.24/2.70/0 0.00/0.00/0.00/0 1.26/2.24/2.70/0 –34.49/2.26/34.26/2 –27.22/2.00/24.15/2

RC1 0.00/0.85/3.00/2 0.00/1.96/7.14/7 0.00/0.85/3.00/2 –3.06/–0.66/0.95/0 –1.65/–0.02/1.86/0

RC2 0.00/0.50/3.03/1 0.00/1.86/7.14/3 0.00/0.50/3.03/1 –28.65/–4.01/0.00/0 –17.10/–2.48/0.00/0

Avg. 0.00/2.15/8.19/25 0.00/2.11/13.33/28 0.00/2.15/8.19/25 –42.10/–4.81/34.26/12 –35.64/–3.62/24.15/10

TNV75

C1 1.03/2.91/8.45/9 0.00/3.70/13.33/9 1.03/2.91/8.45/9 –56.30/–18.89/4.27/1 –47.81/–16.04/3.92/1

C2 0.66/3.73/8.17/13 0.00/2.65/10.00/7 0.66/3.73/8.17/13 –31.76/–6.58/18.46/4 –27.45/–5.16/17.19/4

R1 0.00/2.88/4.41/9 0.00/1.21/9.09/3 0.00/2.88/4.41/9 –6.99/0.26/6.56/4 –2.65/1.35/4.96/3

R2 1.40/2.90/3.80/3 0.00/0.00/0.00/0 1.40/2.90/3.80/3 –23.21/–1.02/34.26/2 –17.73/0.26/24.15/2

RC1 0.00/1.02/3.41/5 0.00/1.96/7.14/7 0.00/1.02/3.41/5 –5.49/–1.21/0.55/0 –3.10/–0.26/1.82/0

RC2 0.00/0.63/3.41/1 0.00/1.86/7.14/3 0.00/0.63/3.41/1 –47.55/–5.49/8.56/1 –28.96/–3.52/5.57/1

Avg. 0.00/2.42/8.45/40 0.00/2.19/13.33/29 0.00/2.42/8.45/40 –56.30/–6.46/34.26/12 –47.81/–4.82/24.15/11
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Table 16: Relative savings obtained with Objective II for SDVRPTW compared to VRPTW, grouped by
Solomon class

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Policy/
Solomon

class

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and

costs related to route
durations

SDVRPTW

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

R1 0.00/1.24/1.94/0 0.00/2.53/10.00/6 0.00/2.93/4.34/12 –1.66/0.01/0.95/0 0.00/1.24/1.94/0

R2 0.67/1.32/1.93/0 0.00/4.04/18.18/3 1.59/3.41/4.86/6 –2.34/–0.20/0.29/0 0.67/1.32/1.93/0

RC1 0.00/0.46/2.07/0 0.00/1.43/7.14/5 –1.15/0.75/3.60/3 –0.80/0.23/1.27/0 0.00/0.46/2.07/0

RC2 0.00/0.28/1.53/0 0.00/0.65/7.14/1 0.00/0.38/2.60/0 –0.43/0.20/2.01/0 0.00/0.28/1.53/0

Avg. 0.00/0.47/2.07/0 0.00/1.17/18.18/15 –1.15/1.03/4.86/21 –2.34/0.06/2.01/0 0.00/0.47/2.07/0

NV2

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

R1 0.00/1.24/1.94/0 0.00/2.53/10.00/6 0.00/2.93/4.34/12 –1.66/0.01/0.95/0 0.00/1.24/1.94/0

R2 0.67/1.32/1.93/0 0.00/4.04/18.18/3 1.59/3.41/4.86/6 –2.34/–0.20/0.29/0 0.67/1.32/1.93/0

RC1 0.00/0.46/2.07/0 0.00/1.43/7.14/5 –1.15/0.73/3.18/3 –0.80/0.24/1.27/0 0.00/0.46/2.07/0

RC2 0.00/0.28/1.53/0 0.00/0.65/7.14/1 0.00/0.38/2.60/0 –0.43/0.20/2.01/0 0.00/0.28/1.53/0

Avg. 0.00/0.47/2.07/0 0.00/1.17/18.18/15 –1.15/1.02/4.86/21 –2.34/0.06/2.01/0 0.00/0.47/2.07/0

S0

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

R1 0.00/1.05/1.93/0 –10.00/1.62/10.00/6 0.00/2.49/4.34/8 –1.66/0.01/0.95/0 0.00/1.05/1.93/0

R2 0.00/1.09/1.93/0 0.00/4.04/18.18/3 0.00/3.10/4.86/6 –2.85/–0.38/0.29/0 0.00/1.09/1.93/0

RC1 0.00/0.41/2.06/0 0.00/1.43/7.14/5 0.00/0.73/3.18/3 –0.80/0.16/1.16/0 0.00/0.41/2.06/0

RC2 0.00/0.25/1.53/0 0.00/0.65/7.14/1 0.00/0.30/2.60/0 0.00/0.22/1.72/0 0.00/0.25/1.53/0

Avg. 0.00/0.40/2.06/0 –10.00/1.00/18.18/15 0.00/0.91/4.86/17 –2.85/0.03/1.72/0 0.00/0.40/2.06/0

TNV25

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

R1 0.00/0.72/1.71/0 –10.00/–1.40/10.00/3 0.00/1.26/2.82/0 –0.97/0.33/1.31/0 0.00/0.72/1.71/0

R2 0.00/0.76/1.36/0 –10.00/–0.10/9.09/1 0.00/1.47/2.41/0 –0.08/0.25/0.60/0 0.00/0.76/1.36/0

RC1 0.00/0.05/0.92/0 0.00/0.00/0.00/0 0.00/0.09/1.33/0 –0.21/0.02/0.60/0 0.00/0.05/0.92/0

RC2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

Avg. 0.00/0.21/1.71/0 –10.00/–0.28/10.00/4 0.00/0.37/2.82/0 –0.97/0.09/1.31/0 0.00/0.21/1.71/0

TNV50

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

R1 0.00/0.91/1.71/0 –10.00/1.21/10.00/5 0.00/1.88/2.82/0 –1.66/0.21/1.31/0 0.00/0.91/1.71/0

R2 0.46/0.99/1.36/0 0.00/1.01/9.09/1 1.19/1.99/2.56/0 –0.18/0.26/0.60/0 0.46/0.99/1.36/0

RC1 0.00/0.23/2.01/0 0.00/0.57/7.14/2 –1.15/0.34/3.14/1 –0.80/0.15/1.45/0 0.00/0.23/2.01/0

RC2 0.00/0.14/1.42/0 0.00/0.00/0.00/0 0.00/0.15/0.94/0 –0.43/0.14/2.01/0 0.00/0.14/1.42/0

Avg. 0.00/0.32/2.01/0 –10.00/0.43/10.00/8 –1.15/0.60/3.14/1 –1.66/0.11/2.01/0 0.00/0.32/2.01/0

TNV75

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

R1 0.00/1.04/1.94/0 –10.00/1.21/10.00/5 0.00/2.26/3.89/4 –1.66/0.16/0.95/0 0.00/1.04/1.94/0

R2 0.67/1.11/1.59/0 0.00/2.02/18.18/1 1.59/2.77/4.86/3 –2.34/–0.10/0.52/0 0.67/1.11/1.59/0

RC1 0.00/0.46/2.01/0 0.00/1.43/7.14/5 –1.15/0.71/3.14/2 –0.80/0.25/1.45/0 0.00/0.46/2.01/0

RC2 0.00/0.28/1.53/0 0.00/0.65/7.14/1 0.00/0.38/2.60/0 –0.43/0.20/2.01/0 0.00/0.28/1.53/0

Avg. 0.00/0.41/2.01/0 –10.00/0.76/18.18/12 –1.15/0.84/4.86/9 –2.34/0.10/2.01/0 0.00/0.41/2.01/0
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Table 17: Relative savings obtained with Objective III for SDVRPTW compared to VRPTW, grouped by
Solomon class

Min./Avg./Max. % Savings/# Instances with savings > 3% in

Policy/
Solomon

class

Objective value Number of routes Variable routing
costs

Route durations Sum of variable
routing costs and

costs related to route
durations

SDVRPTW

C1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 0.00/0.92/9.43/3 –1.15/0.23/8.13/1 0.00/0.35/6.79/1

C2 0.00/0.03/0.19/0 0.00/0.00/0.00/0 0.00/4.90/12.71/10 –0.39/7.54/40.57/8 0.00/7.17/36.72/9

R1 0.00/0.41/9.07/1 0.00/0.41/9.09/1 –2.50/2.78/4.45/12 –2.51/–0.04/0.95/0 –2.50/1.14/2.02/0

R2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 1.59/3.51/5.52/6 –0.29/0.23/1.41/0 0.67/1.61/3.12/1

RC1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 –1.15/1.94/9.57/5 –0.80/1.22/6.38/5 0.00/1.54/7.82/5

RC2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/0.98/8.29/1 –0.43/0.70/5.45/1 0.00/0.83/6.73/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.43/12.71/37 –2.51/1.77/40.57/15 –2.50/2.15/36.72/17

NV2

C1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 0.00/0.92/9.43/3 –1.15/0.23/8.13/1 0.00/0.35/6.79/1

C2 0.00/0.03/0.19/0 0.00/0.00/0.00/0 0.00/4.90/12.71/10 –0.39/7.54/40.57/8 0.00/7.17/36.72/9

R1 0.00/0.41/9.07/1 0.00/0.41/9.09/1 –2.50/2.78/4.45/12 –2.51/–0.04/0.95/0 –2.50/1.14/2.02/0

R2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 1.59/3.51/5.52/6 –0.29/0.23/1.41/0 0.67/1.61/3.12/1

RC1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 –1.15/1.92/9.57/5 –0.80/1.24/6.38/5 0.00/1.54/7.82/5

RC2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/0.98/8.29/1 –0.43/0.70/5.45/1 0.00/0.83/6.73/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.43/12.71/37 –2.51/1.78/40.57/15 –2.50/2.15/36.72/17

S0

C1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 0.00/0.90/9.37/3 –1.15/0.23/8.13/1 0.00/0.34/6.79/1

C2 0.00/0.03/0.19/0 0.00/0.00/0.00/0 0.00/4.91/12.71/10 –0.39/7.35/40.17/8 0.00/7.01/36.41/9

R1 0.00/0.41/9.07/1 0.00/0.41/9.09/1 –2.50/2.36/4.45/9 –3.39/–0.11/1.16/0 –3.03/0.93/2.02/0

R2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/3.20/5.52/6 –0.55/0.06/0.91/0 0.00/1.38/2.83/0

RC1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 0.00/1.92/9.57/5 –0.80/1.16/6.38/5 0.00/1.50/7.82/5

RC2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/0.82/8.29/1 0.00/0.65/5.45/1 0.00/0.73/6.73/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.31/12.71/34 –3.39/1.69/40.17/15 –3.03/2.04/36.41/16

TNV25

C1 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0 0.00/0.00/0.00/0

C2 0.00/0.01/0.18/0 0.00/0.00/0.00/0 0.00/0.71/12.30/1 0.00/2.33/37.93/2 0.00/2.11/34.43/2

R1 0.00/0.41/9.07/1 0.00/0.41/9.09/1 –4.15/0.90/2.82/0 –2.41/0.21/1.31/0 –3.11/0.50/1.71/0

R2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.65/4.47/1 –0.43/0.29/1.58/0 0.00/0.86/2.79/0

RC1 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.24/7.04/5 0.00/0.89/5.11/5 0.00/1.05/5.99/5

RC2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/0.58/5.60/1 0.00/0.54/3.93/1 0.00/0.56/4.68/1

Avg. 0.00/0.08/9.07/1 0.00/0.08/9.09/1 –4.15/0.76/12.30/8 –2.41/0.74/37.93/8 –3.11/0.83/34.43/8

TNV50

C1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 0.00/0.92/9.43/3 –1.15/0.23/8.13/1 0.00/0.35/6.79/1

C2 0.00/0.03/0.18/0 0.00/0.00/0.00/0 0.00/4.68/13.72/9 –0.39/7.02/39.08/8 0.00/6.69/35.61/9

R1 0.00/0.41/9.07/1 0.00/0.41/9.09/1 –4.15/1.74/2.82/0 –2.41/0.07/1.31/0 –3.11/0.77/1.71/0

R2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 1.59/2.52/4.47/1 –0.18/0.33/1.58/0 0.67/1.25/2.79/0

RC1 0.00/0.00/0.01/0 0.00/0.00/0.00/0 –1.15/1.53/8.78/5 –0.80/1.05/6.13/5 0.00/1.26/7.18/5

RC2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/0.78/5.60/1 –0.43/0.52/3.93/1 0.00/0.63/4.68/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –4.15/2.01/13.72/19 –2.41/1.65/39.08/15 –3.11/1.89/35.61/16

TNV75

C1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 0.00/0.92/9.43/3 –1.15/0.23/8.13/1 0.00/0.35/6.79/1

C2 0.00/0.03/0.18/0 0.00/0.00/0.00/0 0.00/4.96/13.72/10 –0.39/7.47/39.08/8 0.00/7.12/35.61/9

R1 0.00/0.41/9.07/1 0.00/0.41/9.09/1 –2.50/2.19/3.89/4 –2.51/0.02/1.27/0 –2.50/0.93/1.94/0

R2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 1.59/3.01/5.52/3 –0.22/0.21/1.41/0 0.67/1.38/3.12/1

RC1 0.00/0.00/0.02/0 0.00/0.00/0.00/0 –1.15/1.90/9.57/5 –0.80/1.25/6.38/5 0.00/1.54/7.82/5

RC2 0.00/0.00/0.01/0 0.00/0.00/0.00/0 0.00/1.03/8.29/1 –0.43/0.66/5.45/1 0.00/0.82/6.73/1

Avg. 0.00/0.09/9.07/1 0.00/0.08/9.09/1 –2.50/2.29/13.72/26 –2.51/1.77/39.08/15 –2.50/2.08/35.61/17
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