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Branch-Cut-and-Price for Scheduling Deliveries with Time Windows in a
Direct Shipping Network

Timo Gschwind∗,a, Stefan Irnicha, Christian Tilka, Simon Emdeb

aChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bFachgebiet Management Science / Operations Research,
Technische Universität Darmstadt, Hochschulstraße 1, D-64289 Darmstadt, Germany.

Abstract

In a direct shipping (or point-to-point) network, individual deliveries are round trips from one
supplier to one customer and back to either the same or another supplier, i.e., a truck can only
visit one customer at a time before it has to return to a supplier. We consider the multiple sources,
multiple sinks case, where a given set of direct deliveries from a set of suppliers to a set of customers
must be scheduled such that the customer time windows are not violated, the truck fleet size is
minimal, and the total weighted customer waiting time is as small as possible. Direct shipping
policies are, for instance, commonly employed in just-in-time logistics (e.g., in the automotive
industry) or in humanitarian logistics. We present an exact branch-cut-and-price algorithm for
this problem, which is shown to perform well on instances from the literature and newly generated
ones. We also investigate under what circumstances bundling suppliers in so-called supplier parks
actually facilitates logistics operations under a direct shipping policy.

Key words: direct deliveries, branch-cut-and-price, weighted customer waiting times, just-in-time
logistics

1. Introduction

Transportation networks for the delivery of physical goods are typically distinguished by their
structure as milk runs, crossdocking, or direct shipping (Chopra and Meindl, 2015, Chpt. 14). Milk
run networks consolidate multiple customers or suppliers on one tour, whereas in a crossdocking
network, shipments are routed through a transshipment hub and consolidated there. Such network
structures are useful to improve economies of transportation if a shipment is less than a truckload
(Du et al., 2007).

In direct shipping networks (also called point-to-point networks), which are the focus of this
paper, goods are moved directly from source to sink, without any intermediary step. Such networks
are widely used in many industries, e.g., the automotive (Boysen et al., 2015). Direct shipments
are also common in many retail supply chains, not necessarily to supply stores directly, but to ship
goods from supplier or wholesaler distribution centers to regional dispatching points (also referred
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to as pool points), where they are then further distributed to local retail stores via milk run (Chen,
2008). Further applications are disaster relief, where humanitarian goods must be moved from
national emergency stockpiles to local staging areas in case of disasters (Knott, 1987; Balcik et al.,
2008), or transporting biomass fuel (Rauch et al., 2007).

Apart from being the fastest way to move goods from A to B, direct shipping can also be con-
sidered the easiest shipping policy to implement and coordinate. It has been shown that it is the
most efficient strategy if the economic lot size of the customers is close to the vehicle capacity (Gal-
lego and Simchi-Levi, 1990; Barnes-Schuster and Bassok, 1997). For these reasons, direct deliveries
are commonly used for just-in-time (JIT), high-velocity, high-bulk, perishable, and specialty goods
(Chen, 2008).

In this context, we tackle the direct delivery scheduling problem in a network (DDSP-N): given a
set of suppliers (e.g., distribution centers or supplier plants) from which a set of customers (e.g., pool
points or OEM plants) need to be served via direct delivery (that is, neither suppliers nor customers
can be aggregated on milk runs), which truck should make which delivery at what time? Since
deliveries are usually made by 3rd party logistics providers, trucks can switch between suppliers.
Moreover, since direct deliveries are particularly common for JIT and high-velocity goods, deliveries
have time windows which must not be violated. From the viewpoint of the logistics provider, it is
desirable to minimize, on the one hand, the cost of the truck fleet. On the other hand, customer
waiting times should not be excessive, as this may lead to significant contractual penalties in case
of delays (Boysen et al., 2015).

The main contributions of this paper are as follows. First, we extend the model by Emde
and Zehtabian (2017) to account for shipping networks with more than one supplier. Second,
we develop a powerful exact branch-cut-and-price algorithm to solve this problem, the first exact
solution method (apart from a default solver) for the DDSP-N. Finally, through computational
experiments, we derive some managerial insight into the usefulness of clustering suppliers (e.g., in
so-called “supplier parks”) under a direct shipping policy.

The remainder of this paper is structured as follows. In Section 2, we review the pertinent
literature. In Section 3, we formally define the DDSP-N, review the mixed-integer programming
model of Emde and Zehtabian (2017), and present a path-based formulation. Section 4 introduces
our custom-tailored branch-cut-and-price schemes, which we test in Section 5. Finally, Section 6
ends the paper with conclusion and outlook.

2. Literature Review

Direct shipping networks, although widespread in practice, have so far almost exclusively re-
ceived attention from a strategic or supply chain management viewpoint, with the goal of de-
termining optimal long-term supply policies considering both transportation as well as inventory
holding cost. Such studies were published, e.g., by Gallego and Simchi-Levi (1990); Barnes-Schuster
and Bassok (1997); Chopra (2003). Meyer and Amberg (2017) review model-based approaches to
strategically select delivery policies and frequencies in the automotive context. Boysen et al. (2015)
survey part logistics in the automotive industry and discuss point-to-point networks in this context
in Section 3.2. of their paper.

To the best of our knowledge, the only paper explicitly dealing with direct shipping from a
scheduling perspective, where a set of given trips needs to be scheduled within a finite planning
horizon, is (Emde and Zehtabian, 2017). The authors introduce the problem and develop several
heuristics, restricting their efforts to the one-supplier multiple-receiver case. In this paper, we
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extend their problem by considering shipping networks with more than one supplier, as they are
often encountered in practice.

Distributing goods from one or more suppliers to multiple customers bears some resemblance
to classic (multi-depot) vehicle routing problems (VRPs, Vigo and Toth, 2014). However, these
models are not immediately applicable to DDSP-N because trucks must return to a supplier between
customer visits for loading. Moreover, the objective of DDSP-N is atypical for VRP. We discuss
parallels between these two problems further in Section 3.2.

Routing problems that consider customer waiting times in the form of minimizing the sum of
arrival times (without considering release dates) are referred to as travelling repairman problems
(TRP), also called deliveryman or minimum latency problems. Literature on TRP with multiple
vehicles is very limited, however. (Fakcharoenphol et al., 2007; Luo et al., 2014; Nucamendi-
Guillén et al., 2016; Angel-Bello et al., 2017) are among the few contributions, assuming a given
fixed number of vehicles and disregarding time windows. Other routing problems with latency
objectives, like the cumulative capacitated VRP (e.g., Ribeiro and Laporte, 2012) or the school bus
routing problem (surveyed by Park and Kim, 2010) are also structurally different from the DDSP-N
because they assume given customer demands and limited vehicle capacities, which are immaterial
for point-to-point deliveries.

The DDSP-N also bears some resemblance to the multi-depot vehicle scheduling problem, where
a set of timetabled trips must be assigned to a fleet of vehicles (e.g., Carpaneto et al., 1989;
Dell’Amico et al., 1993; Ribeiro and Soumis, 1994). Direct deliveries are typically not exactly
timetabled like a bus schedule, however, but merely have time windows which must not be violated.

Finally, scheduling direct deliveries is reminiscent of parallel machine scheduling if we interpret
trucks as machines, trips as jobs, and transfer times between suppliers as setup times. Machine
scheduling with setup times and related problems have been surveyed by Allahverdi et al. (2008)
and Pinedo (2016). However, minimizing the number of machines (trucks) is an unusual objective
in the machine scheduling context (Yu and Zhang, 2009). If the number of vehicles/machines were
fixed, our problem would be structurally similar (albeit not identical) to scheduling a set of jobs
with given time windows and processing times on a set of identical parallel machines to minimize
the total weighted flow time, where switching jobs requires a sequence-dependent setup time. In
machine scheduling notation as introduced by Graham et al. (1979), this corresponds to the tuple
[P |rj , dj , Sij |

∑
wjFj ]. To the best of our knowledge, this problem has not been solved before.

3. Definition and Formulations of the DDSP-N

The DDSP-N can be formally defined as follows: the physical network D = (L,A) has the
vertex set L representing the relevant physical locations, i.e., L = {0, 0′} ∪ S ∪ N , where 0 and 0′

are start and destination depots of the trucks, S is the set of suppliers (=terminals, distribution
centers), and N the set of customers (=OEMs, pool points).

Moreover, we are given the set I of trips that must be performed. Each trip i ∈ I is defined by
the following additional attributes:
si: the supplier si ∈ S from where goods are shipped;
ni: the customer ni ∈ N who receives these goods;
ri: the ready times, i.e., the earliest time when a truck can depart from supplier si with the

shipment associated with the trip;
di: the due date, i.e., the latest time the service has to be completed at customer ni;
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pi: the processing time of the trip, including the loading time of the truck at the supplier, the
driving time to, and the unloading time at the customer, plus the time it takes to do any
other activities necessary to ready the truck for its next trip (possibly refueling or breaks for
the driver);

wi: the weight of the trip to be used in the minimum wait (=earliness) objective (see below).
We assume that a truck can travel along the following connections: between

1. origin depot and all suppliers, i.e., (0, s) ∈ {0} × S ⊂ A,
2. all customers and all suppliers, i.e., (n, s) ∈ N × S ⊂ A,
3. all trips with their associated supplier-customers pair, i.e., {(si, ni) : i ∈ I} ⊂ A, and
4. all customers and the destination depot, i.e., (n, 0′) ∈ N × {0′} ⊂ A.

Finally, we define the travel time τ(n, s) for the connections (n, s) ∈ N × S between customer and
suppliers.

The task of the DDSP-N is to feasibly schedule all trips and to assign them to trucks such that
(i) the number of employed trucks is minimal and (ii) the weighted earliness of all trips is minimal.
Emde and Zehtabian (2017) define the DDSP-N with a hierarchical objective with priority on (i).

To precisely define the weighted earliness, we introduce schedule variables Ti ∈ R for all trips
i ∈ I. The variable Ti describes the point in time when the trip execution is started (with loading at
its supplier si). These schedule variables are bounded by ri ≤ Ti ≤ di − pi. If two trips i, j ∈ I are
assigned to the same truck, then either i precedes j leading to Ti+pi+ τ(ni, sj) ≤ Tj , or j precedes
i implying Tj + pj + τ(nj , si) ≤ Ti. The weighted earliness objective is given by

∑
i∈I wi(Ti − ri).

3.1. Compact Formulation of Emde and Zehtabian (2017)
The single-supplier variant of the DDSP-N was modeled by Emde and Zehtabian (2017). With

slight modifications, this formulation also models the multiple-supplier case. The mixed-integer
programming (MIP) formulation of Emde and Zehtabian uses, in addition to the schedule variables
Ti for all i ∈ I, binary connection variables xij for all i ∈ I ∪ {0} and j ∈ I ∪ {0′}. For two trips
i, j ∈ I, the variable xij is one if i is performed directly before j by the same truck. The variables
x0j are one if j ∈ I is the first trip performed by a truck. Similarly, xi0′ equal to one means that
i ∈ I is the last trip performed by a truck. The model now reads as follows:

min
∑
j∈I

M · x0j +
∑
i∈I

wi · (Ti − ri) (1a)

s.t.
∑

j∈I∪{0′}

xij = 1 ∀i ∈ I (1b)

∑
i∈I∪{0}

xij = 1 ∀j ∈ I (1c)

(1− xij) ·M + Tj ≥ Ti + pi + τ(ni, sj) ∀(i, j) ∈ I × I (1d)
ri ≤ Ti ≤ di − pi ∀i ∈ I (1e)
xij ∈ {0, 1} ∀i ∈ I ∪ {0}, j ∈ I ∪ {0′} (1f)

The objective function (1a) gives priority to the minimization of the fleet (using a big-M constant).
The secondary objective is the minimization of the total weighted earliness. Constraints (1b) and
(1c) make sure that each trip has exactly one successor and predecessor, respectively, which can
either be another trip or one of the depots 0 or 0′. Inequalities (1d) make it impossible for a truck to
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make two trips concurrently. Finally, (1e) ensure that trips are processed within their time windows
and (1f) define the domain of the binary connection variables.

Obviously, constraints (1d) can be eliminated from formulation (1) for those pairs (i, j) ∈ I × I
where i cannot precede j, i.e., ri + pi + τ(ni, sj) > dj − pj . This strengthens the linear relaxation
of formulation (1).

3.2. Path-based Formulation
We now model the movement of a truck as a route in a network. We define the underlying

digraph D = (V,A) with vertex set V = I ∪ {0, 0′} and arc set A. Each trip vertex i ∈ I has an
associated time window [ei, `i] := [ri, di − pi] (see also (1e)) and service time pi. For the origin
and destination depot (0 and 0′), we assume non-constraining time windows [e0, `0] = [e0′ , `0′ ] and
define the weights w0 := w0′ := 0.

The arc set A is a subset of ({0}× I)∪ (I× I)∪ (I×{0′}), where we define travel times t0j := 0
for (0, j) ∈ {0} × I, tij := pi + τ(ni, sj) for (i, j) ∈ I × I, and ti,0′ := 0 for (i, 0′) ∈ I × {0′}. Those
arcs (i, j) ∈ A that fulfill ei + tij ≤ `j are feasible with respect to the travel and service times and
time windows defined above, all other arcs can be eliminated. Figure 1 depicts the two modelling
possibilities of an DDSP-N instance and two representations of a solution.

0

s s′

s′′

a

b c

r1

p1 i1

d1

i2
i3

i4 i5

i6

(a)

0

s s′

s′′

a

b c

p1
τ(a, s′)

(b)

0

i1

[e1, `1] = [r1, d1 − p1]

i2

i3

i4

i5

i6

t13 = p1 + τ(a, s′)

(c)

Figure 1: (a) DDSP-N instance with three suppliers {s, s′, s′′′}, three customers {a, b, c}, and six
trips I = {i1, i2, . . . , i6} with i1 = (s, a), i2 = (s, b), i3 = i4 = (s′, b), i5 = (s′, c), and i6 = (s′′, c);
(b) Solution with three trucks; (c) Trip-based digraph (V,A) with the corresponding solution

A DDSP-N route P is an elementary 0-0′-path in D that is feasible with respect to the travel
and service times and time windows defined above. Formally, for a route P = (i0, i1, . . . , ip, ip+1)
(recall that i0 = 0 and ip+1 = 0′) there must exist a schedule (T0, T1, . . . , Tp, Tp+1) ∈ Rp+2 satisfying
the following two constraints:

Tk ∈ [eik , `ik ] ∀k ∈ {0, 1, 2, . . . , p+ 1} (2a)
Tk−1 + tik−1,ik ≤ Tk ∀k ∈ {1, 2, . . . , p+ 1}. (2b)
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These are classical time-window constraints known from the vehicle routing problem with time
windows (VRPTW, Desaulniers et al., 2014).

In the case of feasibility, using the as-early-as-possible schedule, i.e., T0 := ei0 and Tk :=
max{eik , Tk−1 + tik−1,ik} for k = 1, 2, . . . , p+ 1, the accumulated weighted earliness of the route P
is

wP :=

p+1∑
k=0

wik · (Tk − eik) =

p∑
k=1

wik · (Tk − rik).

Let Ω be the set of all feasible DDSP-N routes, and aiP an indicator whether trip i ∈ I is
performed by route P ∈ Ω. The set-partitioning formulation uses variables λP for P ∈ Ω to select
the routes the solution comprises:

min
∑
P∈Ω

(M + wP )λP (3a)

s.t.
∑
P∈Ω

aiPλP = 1 ∀i ∈ I (3b)

L ≤
∑
P∈Ω

λP ≤ U (3c)

λP ∈ {0, 1} ∀P ∈ Ω (3d)

Analogous to (1a), the objective (3a) is hierarchical minimizing the fleet size first and the to-
tal weighted earliness second. The partitioning constraints (3b) ensure that each trip is performed
exactly once. The fleet size is bounded from below (above) by L (U) with the help of constraints (3c)
(see Section 4.3), and (3d) are the binary constraints.

4. Branch-Cut-and-Price Algorithm

For solving the linear relaxation of the path-based formulation (3), we use a column-generation
algorithm (Desaulniers et al., 2005). Starting with a subset Ω′ ⊂ Ω of the feasible routes, the
linear relaxation of formulation (3) defined over Ω′ is denoted as the restricted master program
(RMP). The column-generation algorithm alternates between the re-optimization of the RMP and
the solution of the column-generation pricing problem that adds negative reduced-cost variables
to the RMP, if one exists (see next section). If no reduced-cost variables exist, the current linear
relaxation is solved to optimality. Branching is required to finally ensure integer solutions.

Section 4.1 presents the pricing problem of formulation (3). To strengthen the linear relaxation
of formulation (3), Section 4.2 briefly describes known valid inequalities for the RMP and separation
strategies for them. In Section 4.3, we present our DDSP-N-tailored branching schemes.

4.1. Pricing Problem
Let πi, i ∈ I, be the dual prices of the partitioning constraints (3b) and let µL and µU be the

dual prices of fleet size constraints (3c). The task of the pricing problem is to identify at least one
feasible route P ∈ Ω with negative reduced cost

c̃P = M + wP − µL − µU −
∑
i∈I

aiP πi
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or guarantee that no such route exists. This problem is a variant of the elementary shortest
path problem with resource constraints (ESPPRC) which can be solved by means of a dynamic-
programming labeling algorithm (Irnich and Desaulniers, 2005). Such an algorithm creates partial
paths by moving forward from an origin to a destination vertex in a network. Herein, a label
stores all necessary information on the resource consumption up to the endpoint of a partial path.
Labels are propagated along the network arcs by resource extension functions (REFs, Desaulniers
et al., 1998; Irnich, 2008). Dominance procedures are invoked to identify and discard those partial
paths and their labels that cannot lead to an optimal SPPRC solution. The main difference to
classical ESPPRCs (as pricing problems of VRP variants) is that there are no routing costs in the
DDSP-N. Instead, the pricing problem has to deal with the accumulated weighted earliness cost.
The associated reduced cost of an arc (i, j) ∈ A can be defined as

c̃ij := −1

2
(πi + πj) +

{
M, if i = 0
0, otherwise , (4)

where we define π0 := π0′ := µL + µU . With this definition, c̃P = wP +
∑

(i,j)∈A(P ) c̃ij holds for all
routes P ∈ Ω.

A label in the DDSP-N is associated with a partial path ending at vertex i ∈ V and has
the attributes (Ci, Ti, (S

v
i )), where Ci is the accumulated reduced cost (including the weighted

earliness), Ti is the time at vertex i (according to the as-early-as-possible schedule), and (Svi ) is
the counter how often a trip v ∈ I has already been performed by the partial path. The initial
label at vertex 0 is (C0, T0, (S

v
0 )) = (0, e0,0). An arbitrary label (Ci, Ti, (S

v
i )) is extend along an

arc (i, j) ∈ A creating a new label (Cj , Tj , (S
v
j )) using the following REFs:

Cj = REF rdc(Ci, Ti, (S
v
i )) = Ci + c̃ij + wj · (Ti + tij − ej)+ (5a)

Tj = REF time(Ci, Ti, (S
v
i )) = max{ej , Ti + tij} (5b)

Svj = REF visit,v(Ci, Ti, (S
v
i )) = Svi + δjv, ∀v ∈ I (5c)

where δjv is the Kronecker delta equal to one if j = v, and 0 otherwise. The new label (Cj , Tj , (S
v
j ))

is feasible if all of the following constraints are fulfilled:

Tj ≤ `j (6a)
Svj ≤ 1 ∀v ∈ I (6b)

Note that for any feasible route P ∈ Ω, the propagation of the initial label along the route’s arcs
according to (5) yields a final label (C0′ , T0′ , (S

v
0′)) at vertex 0′ with C0′ = c̃P .

Since the REFs (5) are non-decreasing and attributes are bounded only from above by (6), labels
can be compared with the standard ≤-operator to impose the following valid dominance rule: Let
(Ci, Ti, (S

v
i )) and (C ′i, T

′
i , (S

′v
i )) be two different labels associated with the same vertex i ∈ I. Then,

(Ci, Ti, (S
v
i )) dominates (C ′i, T

′
i , (S

′v
i )) if Ci ≤ C ′i, Ti ≤ T ′i , and Svi ≤ S′vi for all v ∈ I hold. All

dominated labels can be discarded as long as, for each of them, at least one dominating label is
kept.

Despite the general success of bidirectional labeling (see, e.g., Righini and Salani, 2006; Tilk
et al., 2017), we do not employ it here. The reason is that backward labeling is non-trivial for
the DDSP-N due to the computation of the weighted earliness wP . The simple case, as done in
the VRPTW, is a backward labeling that propagates an as-late-as-possible schedule. This schedule
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however overestimates the true weighted earliness making the definition of an effective dominance
rule impossible. An exact computation of the weighted earliness in backward labeling can be
established using a time-cost tradeoff function such as the piecewise linear tradeoff functions used
in (Ioachim et al., 1998; Tilk et al., 2018). However, the backward case becomes much more difficult
compared to the forward case so that we expect a bidirectional labeling to finally not pay off.

4.2. Cutting
Different classes of valid inequalities to strengthen the linear relaxation were successfully applied

in branch-cut-and-price algorithms for many VRP variants. We use two known classes of valid
inequalities for the VRPTW to strengthen the linear relaxation of formulation (3). First, we use
the k-path inequalities introduced by Kohl et al. (1999) for the VRPTW with k = 2. Let W ⊂ I
be a subset of customers that cannot be visited by a single vehicle due to time window restrictions
and let δ−(W ) be the set of all arcs (i, j) ∈ A with i ∈ W and j /∈ W . The corresponding 2-
path inequality is given by

∑
P∈Ω

∑
(i,j)∈δ−(W ) bijPλP ≥ 2, where bijP indicates whether route P

uses arc (i, j). Note that the 2-path inequalities are robust cuts, meaning that their incorporation
does not require structural adjustments in the pricing problem algorithm. Only the dual price of
each 2-path inequality for a subset W needs to be subtracted from the reduced cost of the arcs
in δ−(W ). We use the heuristic proposed by Kohl et al. (1999) to generate candidate sets W .
Each candidate set is then tested if it has to be served by at least two vehicles (using a standard
dynamic-programming based approach to solve the respective traveling salesman problem with time
windows over W ∪ {0, 0′}), and if so, the corresponding inequality is added.

The second class of valid inequalities that we use are subset-row inequalities (Jepsen et al.,
2008) defined on sets U ⊂ I of cardinality three. They are given by

∑
P∈ΩbhP2 cλP ≤ 1, where

hP is the number of times route P visits a customer in U . Violated subset-row inequalities can
be separated by straightforward enumeration. The addition of subset-row inequalities to the RMP,
however, requires some adjustments in the pricing problem algorithm. The value of the dual price
of a subset-row inequality defined on a vertex set U has to be subtracted from the reduced cost of
a label for every second visit to vertices in U . Therefore, an additional resource is needed for each
inequality counting the number of times that a vertex in U is visited. For details on the adjustments
see (Jepsen et al., 2008).

4.3. Branching
Branching is required to finally ensure integer solutions of formulation (3). Let λ̄P be the values

of the corresponding decision variables λP , P ∈ Ω, and let x̄ij :=
∑

P∈Ω bijP λ̄P , (i, j) ∈ A. We
use two different branching schemes that are computationally evaluated in Section 5.2. In the first
scheme, we apply a standard two-stage hierarchical branching as it is employed in most branch-
cut-and-price approaches for VRP variants. In the first stage, we branch on the number of vehicles,
if fractional, by setting the bounds in constraint (3c) to L := d∑P∈Ω λ̄P e in one branch and
U := b∑P∈Ω λ̄P c in the other. If the number of vehicles is integer, the branching in the second stage
is employed. There, we branch on arcs by choosing an arc (i, j) = arg max(i,j)∈A{(1−|x̄ij−0.5|)wj}.
The zero-branch is implemented by eliminating (i, j) from the network D, while for the one-branch
all ingoing arcs of j and all outgoing arcs of i are eliminated except for the selected arc (i, j).

In the second scheme, we apply a three-stage hierarchical branching by using branching on
time windows of vertices after branching on the number of vehicles and before branching on arcs.
Branching on time windows in column-generation approaches for time constrained routing problems
was introduced in (Gélinas et al., 1995). The idea is that there may be two or more routes visiting
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the same vertex at different points in time in a fractional solution of the RMP while in an integer
solution, each vertex is visited at a unique point in time. Such fractional solutions can be cut
off by creating two branches that split the time window of a specific vertex in two disjunct parts.
Branching on time windows is implemented as follows: We select a vertex i for which the difference
between the latest and the earliest visit time at this vertex in the current solution is maximal, i.e.,
i = arg max{maxP∈Ω:aiP =1{TPi }−minP∈Ω:aiP =1{TPi }}, where TPi denotes the visit time at vertex i
on route P ∈ Ω. The time window is then split into [ei, t̄i−1] and [t̄i, `i], where t̄i = d∑P∈Ω T

P
i λ̄P e

is the average visit time at vertex i in the fractional solution. Note that this branching rule does
not ensure integrality of the route variables, since there can also be two or more routes visiting a
vertex at the same time if the solution is fractional. Therefore, we have to apply branching on arcs
in a third stage to complete the branching scheme.

To accelerate the overall solution process, we apply strong branching at the second and third
stages. The decision on which arc or time window branching is performed is then taken according to
the product rule (Achterberg, 2007, p. 62). A best-bound-first strategy is applied as node-selection
rule, because our primary goal is to improve the dual bound.

5. Computational Results

In this section, we report computational results for our branch-cut-and-price algorithm. All
results were obtained using a standard PC with an Intel(R) Core(TM) i7-5930k processor clocked
at 3.5 GHz, 64 GB RAM, and Windows 7 Enterprise. The algorithms were implemented in C++
and compiled into 64-bit single-thread code with MS Visual Studio 2013. The callable library of
CPLEX 12.6.2 was used for solving the RMP. We use a hard CPU time limit of 3600 seconds for
all computations. To speed up the solution of the pricing problem, we use the ng-path relaxation
(Baldacci et al., 2011) as it is common for VRPs. Moreover, to speed up the column-generation
process, we use arc-reduced networks as heuristic pricers (Irnich and Desaulniers, 2005, p. 57). Cuts
are only separated at the root node. Subset-row cuts are separated up to a maximum of 100 cuts
and the number of cuts involving a specific customer is restricted to 5. Moreover, 2-path cuts are
separated for sets of up to 15 customer and up to a maximum of 100 cuts.

In Section 5.1, we introduce the instances we used to test our branch-cut-and-price algorithm.
Section 5.2 reports results for the different branching strategies and a comparison with (Emde and
Zehtabian, 2017) for the single supplier variant is given. Finally, Section 5.3 provides managerial
insight into the usefulness of clustering suppliers into supplier parks.

5.1. Instances
We tested our algorithm on the single supplier instances from (Emde and Zehtabian, 2017). A

single supplier instance is defined by a set of trips I, each having a certain release and due date
as well as a processing time and a weight in the objective. Emde and Zehtabian (2017) generated
two classes with 10 instances each, in which the number of trips is 25 and 125, respectively. The
planning horizon is one day and a time unit is ten minutes. All other parameters are drawn at
random from given distributions.

To deal with the multi supplier case, we created additional classes of instances in a similar way:
Each trip is associated with a random supplier and travel times between customers and suppliers
based on Euclidean distances are given. Therefore, each physical location is defined by a x- and
y-coordinate taken uniformly random from [1, 50] and the processing times pi are defined as travel
distance plus a service time randomly taken from [1, 10]. Time windows are randomly created as
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follows: ri is taken randomly from [1, 144] and di is randomly taken from [ri + pi + 3, ri + pi + 24].
Moreover, we assume that each client orders multiple trips during the planning horizon such that
there exist five to ten trips to each customer location, which is realistic for JIT distribution systems
(Chuah and Yingling, 2005). In total, we created 24 new classes consisting of five instances each.
The classes differ in the number of trips (50,100,150, or 200), the number of suppliers (2,4,6), and
the length of the planning horizon (1 or 2 days). For the 2-day planning horizon, we also double
the time-window width of trips, i.e., ri is taken random from [1, 288] and di is randomly taken from
[ri + pi + 6, ri + pi + 48].

5.2. Results
In a first test, we compare the two-stage and the three-stage branching schemes with and

without strong branching (SB). Table 1 summarizes the results for the different branching strategies.
Therein, instances are grouped by the number |S| of suppliers and the planning horizon (PH)
resulting in 6 groups with 20 instances each. The table contains for each instance group and each
of the four branching strategies the number of solved instances (#Opt), the average solution time
in seconds (T ), and the average number of nodes in the branch-and-bound tree (#BB).

Comparing the branching schemes, the three-stage branching scheme is clearly superior to the
two-stage branching. Without strong branching, the branch-cut-and-price algorithm with the three-
stage branching scheme is able to solve 28 instances more and the solution time decreases by around
40% on average. Note that strong branching only improves the two-stage branching scheme while it
slightly worsens the performance of the three-stage branching scheme. Compared to the two-stage
branching scheme with strong branching, the branch-cut-and-price algorithm with the three-stage
branching scheme is able to solve only 14 more instances and the average solution time decreases by
21%. This behavior can be attributed to the number of solved nodes in the branch-and-bound tree
that decreases by nearly 95% in the two-stage scheme and only by around 85% in the three-stage
scheme when strong branching is applied. The latter percentage does not suffice to compensate
the additional computation time induced by the evaluation of branching candidates in the strong
branching procedure.

In all settings, there is no significant difference in the number of solved instances as well as in
the average solution time when the number of suppliers varies. On the other hand, the number of
solved instances significantly decreases and the solution times significantly increase in all settings
for the instance groups with a two-day planning horizon.

Table 1: Comparison of different Branching Strategies

Instances two-stage SB two-stage three-stage SB three-stage

|S| PH #Opt T #BB #Opt T #BB #Opt T #BB #Opt T #BB

2 1 11 1639.3 6738 11 1641.5 355 16 946.3 3013 14 1178.1 444
4 1 11 1722.4 6415 13 1452.1 297 17 894.6 2431 17 1059.1 345
6 1 11 1721.3 6358 14 1243.3 238 16 787.3 1886 16 906.6 282
2 2 9 2100.5 2086 10 1957.0 116 13 1390.5 676 13 1601.7 129
4 2 9 2153.1 1687 11 1984.0 67 11 1691.7 649 11 1765.8 113
6 2 7 2634.3 3386 11 2096.9 136 13 1517.2 773 13 1679.6 145

Total 58 1995.2 4445 70 1729.2 202 86 1204.6 1571 84 1365.1 243

In Table 2, we give more detailed results on our best algorithm (three-stage branching scheme
without strong branching). In addition, we now group the instances by the number of customers and
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the length of the planning horizon, since the number of suppliers does not impact the computation
time significantly. The table contains for each instance group the number of instances (#), the
number of solved instances, and the minimum, average, and maximum computation time needed
to solve an instance to proven optimality. Moreover, the table presents, for the unsolved instances,
two types of gaps between the overall lower bound (at termination) and the best known solution:
(i) the number of times that the number of vehicles in the lower bound differs from the best known
solution by exactly one (#Veh+1) and (ii) the minimum, average, and maximum gap in weighted
earliness (WE [%]). The best known solutions are taken over all test and pretests we have performed.
Note that the difference in the number of vehicles is at most one in all unsolved instances and that
we compute the weighted earliness gap only over all unsolved instances and only over those in which
the number of vehicles in the lower bound is equal to the number of vehicles in the best known
solution. The table shows that the number of customers significantly impacts the solution time.
Regarding the gaps, the number of vehicles in the lower bound differs only five times from the best
known solution and the gap in weighted earliness is around 5% on average.

Table 2: Detailed Results of our best Strategy

Instances T WE [%]

|C| PH # #Opt min avg max #Veh+1 min avg max

50 1 15 15 0.1 0.5 2.2 – – – –
100 1 15 15 0.7 14.8 105.8 – – – –
150 1 15 13 20.5 829.2 3600.0 0 0.03 0.14 0.24
200 1 15 6 177.4 2659.8 3600.0 2 0.03 1.39 5.71
50 2 15 15 0.3 1.9 5.8 – – – –
100 2 15 14 26.6 499.7 3600.0 0 0.05 0.05 0.05
150 2 15 7 134.5 2243.0 3600.0 1 0.11 6.24 17.51
200 2 15 1 416.4 3388.0 3600.0 2 0.04 8.33 33.36

Total 120 86 0.1 1204.6 3600.0 5 0.03 5.30 33.36

Next, we test our algorithm on the single supplier instances of Emde and Zehtabian (2017).
Table 3 summarizes the results. The table contains for both instance classes the number of solved
instances and the average solution times of our branch-cut-and-price algorithm as well as of the
solution of the compact model in CPLEX carried out by Emde and Zehtabian (2017). Moreover, we
compare the best heuristic solutions found in Emde and Zehtabian (2017) regarding the difference in
the number of vehicles and the gap in terms of weighted earliness compared to the optimal solution.
Summarizing, our branch-cut-and-price algorithm is able to solve all single supplier instances to op-
timality with an average computation time of 0.1 seconds for the 25 trip instances and 104.2 seconds
for the 125 trip instances, while CPLEX solves all 25 trip instances in an average of 6.0 seconds
but cannot solve any of the 125 trip instances in 1800 seconds of computation time. Moreover,
the detailed results show that the computation times of our branch-cut-and-price algorithm never
exceed 485 seconds on the single supplier instances. Table 3 also reveals that the heuristic of Emde
and Zehtabian (2017) is able to meet the minimum number of vehicles for all 25 trip instances and
finds 9(1) solutions with 1(2) more vehicles than the minimum number of vehicles for the large
125 trip instances. The average gap in weighted earliness over the instances where they are able to
find the optimal number of vehicles is 4.1%.
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Table 3: Comparison with Emde and Zehtabian (2017) on Single Supplier Instances

BCP CPLEX EZ Heuristic EZ

|C| #inst #Opt T #Opt T #Opt #Veh (+2/1) WE [%]

25 10 10 0.1 10 6.0 3 0/0 4.1
125 10 20 104.2 0 1800.0 0 1/9 –

Total 20 40 52.1 10 903.0 3 1/9 4.1

5.3. Effect of Supplier Centralization
So far, we have assumed that suppliers are randomly dispersed on the map. However, in reality,

this is not necessarily the case. Especially in JIT industries, where short delivery cycles are key,
suppliers often form clusters close to their customers, that is, so-called supplier parks (e.g., Larsson,
2002; Pfohl and Gareis, 2005). Such supplier parks are supposed to facilitate JIT logistics, but for
the companies involved relocating may be expensive and make it impossible to benefit from wage
level and taxation differences across country or regional borders. To investigate whether pooling
suppliers in regional clusters is actually beneficial when employing direct deliveries, we conduct the
following series of experiments.

α = 0

α = 0.25

α = 0.5

α = 0.75

α = 1

Figure 2: Clustering of suppliers with values α ∈ {0, 0.25, 0.5, 0.75, 1.0} for a base instance with
four suppliers

We created 3600 additional instances with 100 trips each that can be divided into two classes
of 1800 instances each.

First, we generate 100 base instances for each class and each |S| ∈ {2, 4, 6} in the same fashion
as before except that the suppliers are placed more centrally in both classes, i.e., placed randomly
at coordinates (xSi , ySi) ∈ [15, 35] × [15, 35], while customers coordinates (xCi , yCi) are taken ran-
domly from [1, 50] × [1, 50], i.e., the suppliers’ locations are somewhat optimized with respect to
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their customers. Additionally, we distinguish the Random instance class, where trips are assigned
randomly to a supplier, and the Optimized class, where trips are assigned to the nearest supplier
(regarding Euclidean distances) with a higher probability of 0.5 + 1

|S| .
For all created base instances and all values α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, we build additional

instances to model the clustering of the suppliers. These instances differ only in the supplier coor-
dinates: For all i ∈ S, we compute new coordinates (xSi , ySi) := (d(1−α)xSi +αxCMe, d(1−α)ySi +
αyCMe), where CM is the center of mass of all customer locations, i.e., CM := (xCM , yCM ) =
(b∑i∈I xCi/|I|c, b

∑
i∈I yCi/|I|c). As a result, α = 0 reproduces the base instance, 0 < α < 1

increases the concentration of suppliers, and α = 1 has all suppliers at the same location. The
procedure of concentrating suppliers for a base instance with four suppliers is depicted in Figure 2.

All of the 3600 instances were solved to optimality in less than 50 seconds on average. Figure 3
shows how often all deliveries could be made with one vehicle less than in the baseline scenario
(α = 0), i.e., where all suppliers are located at their original (random) sites, and how often an extra
vehicle was necessary to visit all customers compared to that scenario. Figure 4 visualizes the same
information with regard to the weighted earliness objective.
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Figure 3: Difference in Number of Vehicles

While there is some expected random fluctuation, surprisingly, our tests reveal that supplier
concentration negatively affects both fleet size and weighted earliness on average. The more cen-
tralized the suppliers are, the more the logistics performance suffers. The performance loss is
particularly strong in case of optimized customer-supplier assignments (class Optimized), because
the advantage of matching customers with nearby suppliers is lost if all suppliers are in the same
spot anyway. However, even in the Random class, more trucks are required and weighted earliness
rises when suppliers are grouped together. At first glance, this seems counterintuitive, since the
average distance between suppliers and customers drops when siting suppliers at the center of mass
of their customers. However, the return trips become longer in many cases. Since trucks do not
need to return to the same supplier from whence they set off, after visiting a far-distant customer,
a truck may be able to return to a nearby supplier for its next trip as long as suppliers are widely
dispersed. If suppliers are clustered in the same location, trucks must always make a full round trip
back to the same area from which they came. This leads to the somewhat surprising conclusion
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Figure 4: Difference in Weighted Earliness

that supplier parks can actually be detrimental to JIT logistics performance when direct shipping
policies are used.

6. Conclusion and Outlook

In this paper, we introduced the direct delivery scheduling problem in networks (DDSP-N),
which is concerned with assigning and timetabling a given set of trips to vehicles such that the
vehicle fleet is as small as possible and the customer waiting times are minimal. We adapted the
compact model of Emde and Zehtabian (2017), presented a path-based formulation, and solved the
latter via branch-cut-and-price. Our algorithm solved all instances from the literature in less than
one minute on average. On newly generated problems, branch-cut-and-price solved to optimality
most DDSP-N instances with up to 100 customers in acceptable time. For larger data sets, it found
tight bounds within 1 hour of CPU time.

Our computational tests also revealed that, somewhat counterintuitively, the common just-in-
time practice of gathering multiple suppliers in so-called supplier parks may not actually facilitate
logistics operations in a direct shipping network. Of course, real-world just-in-time shipping does not
only consist of direct deliveries; however, they do often make up a sizeable share of total deliveries.
For instance, Klug (2010) reports that about 30% of parts are delivered directly via truck to the
BMW plant in Leipzig (Germany). Given such figures, it is worth investigating whether supplier
centralization is necessarily as helpful as is widely believed.

As point-to-point shipping is often used for high-velocity goods, where even slight delays can
be problematic, future research should study the robustness of direct delivery networks by incorpo-
rating uncertain travel times into a stochastic model. Our model considers this only implicitly by
minimizing waiting times. Moreover, industrial distribution networks often contain a mix of direct
deliveries and other shipping strategies. Optimizing delivery policy and route choices in a mixed
network is a worthwhile topic for future work.
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